
Theoretical Computer Science 302 (2003) 257–274
www.elsevier.com/locate/tcs

On the complexity of intersecting $nite state
automata and NL versus NP�

George Karakostasa , Richard J. Liptonb;c , Anastasios Viglasd ;∗
aDepartment of Computing and Software, McMaster University, 1280 Main St. West,

Hamilton, Ont., Canada L8S 4K1
bGeorgia Institute of Technology, College of Computing, 801 Atlantic Avenue, Atlanta, GA 30332, USA

cTelcordia Applied Research, USA
dDepartment of Computer Science, University of Toronto, 10 King’s College Road,

Toronto, Ont., Canada M5S 3G4

Received 12 April 2002; received in revised form 22 October 2002; accepted 31 October 2002
Communicated by J. D34az

Abstract

We consider uniform and non-uniform assumptions for the hardness of an explicit problem
from $nite state automata theory. First we show that a small improvement in the known straight-
forward algorithm for this problem can be used to design faster algorithms for subset sum and
factoring, and improved deterministic simulations for non-deterministic time.

On the other hand, we can use the same improved algorithm for our FSA problem to prove
complexity class separation results (NL is not equal to P, or NP for the non-uniform case).
This result can be viewed either as a hardness result for the FSA intersection problem, or as a
method for separating NL from P or NP. It is interesting to note that this approach is based
on a more general method for separating two complexity classes, using algorithms rather than
lower bounds.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Complexity class separations; NL; NP; Finite state automata intersection

� A preliminary version of this work (extended abstract) appeared in the Proceedings of the 15th Annual
IEEE Conference on Computational Complexity, Florence, Italy, July 2000, pp. 229–234. This work was
completed while all the authors were at Princeton University, Computer Science Department, Princeton, NJ,
USA.

∗ Corresponding author.
E-mail addresses: karakos@mcmaster.ca (G. Karakostas), rjl@cc.gatech.edu (R.J. Lipton),

aviglas@cs.toronto.edu (A. Viglas).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00830 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82343476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:karakos@mcmaster.ca
mailto:rjl@cc.gatech.edu
mailto:aviglas@cs.toronto.edu

258 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

1. Introduction

Proving complexity class separations is a major problem in Complexity Theory which
is directly connected to proving hardness results. Strong enough hardness results will
imply class separations in a straightforward way. On the other hand, a strong enough
“easiness” result will also imply class separations in a more indirect way, as we are
going to discuss in this work. In particular, we show a connection between the separa-
tion of NL from other complexity classes and the hardness of an explicit problem in
P. We consider the problem of deciding whether the intersection of a collection of k
deterministic $nite state automata is empty. Either this problem requires large circuits
or NL �=NP. For the uniform case, either this problem does not have fast algorithms
or NL �=P. In both cases, “easiness” of an explicit problem implies a class separation.
On the other hand, we also prove that if the $nite state automata intersection emptiness
problem has indeed fast algorithms, that is, if there exists almost any improvement to
the known algorithm, then we can design faster algorithms for subset sum and integer
factoring. In addition to that, we can also use these fast algorithms for the intersection
emptiness problem to provide improved deterministic simulations for non-deterministic
time.
Let F1; F2; : : : ; Fk be a collection of k $nite state automata of size1 |Fi|= � and

consider the problem of checking whether their intersection is empty:

k⋂
i=1
L(Fi)

?
�= ∅

where L(F) denotes the language accepted by the automaton F .
The standard algorithm for checking the above intersection involves constructing the

$nite state automaton corresponding to the “Cartesian product” F =F1 ×F2 × · · · ×Fk ,
and solving the emptiness problem for F : L(F) �= ∅. The size of the intersection au-
tomaton F is O(�k).
Let F denote the assumption that there is a better algorithm for checking the intersec-

tion emptiness problem for a collection of a $xed number of automata: Let F1; F2; : : : ; Fk
be k FSAs of size �. F denotes the assumption that there is a deterministic algorithm
that can decide whether

k⋂
i=1
L(Fi)

?
�= ∅

in time �(k=f(k))+d, where f(·) is an unbounded function that depends only on k, and
d¿0 is a constant.
Based on the assumption F we can prove the following theorems:

(1) There is an algorithm solving sub-set sum in 2�n for any �¿0.
(2) Integer factorization can also be solved in 2�n for any �¿0.
(3) NTIME(t) ⊆ DTIME(2�t) for any �¿0.

1 For simplicity, in this paper the size of an automaton is the number of states. The number of bits
required for the description of the automaton is the same times a poly-logarithmic factor, which does not
aKect our computations.

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 259

A slight modi$cation of assumption F also allows us to separate NL from P. These
results for the uniform case use the notion of block respecting computation and apply
to the multi-tape Turing Machine model.
If we consider a non-uniform version of our assumption, i.e. that there exists a

“small” circuit that solves the emptiness problem for a collection of FSAs then we can
prove that NL �=NP. This result can be proved using a new lemma, that provides a
general technique for proving complexity class separations and may be of independent
interest.
It is interesting to note that the complexity class separation results mentioned above,

are based on algorithms rather than lower bounds. To complete the separation these
algorithmic techniques will be combined with known hierarchy results or counting
arguments, which means that a diagonalization or a counting argument still lies in the
heart of the separation. In order to separate NL from P for example, all we would
need is to improve the algorithms for deciding whether the intersection of a collection
of $nite state automata is empty.
Note that for the intersection emptiness problem, the parameter k, the number of

the $nite state automata, is constant. The general problem, where this parameter can
depend on the input size is much harder, known to be PSPACE-complete [9]. If k
is a constant then the problem has a polynomial time algorithm as described above.
It is also known that the emptiness problem for a $nite state automaton
is NL-complete [7]. The problem we consider is a parametrized version of a
$nite state automata intersection problem and also captures all NL
computations.
A similar result was given by Feige and Kilian [4]. In that work the clique problem

is considered and more speci$cally the following parameterized version: given a graph
on n nodes, does it contain a clique of size k where k¡ log n? The general clique
problem is NP-complete. But the complexity of the parameterized version mentioned
above, recognizing small-log n size cliques, remains an open problem. Feige and Kilian
[4] prove that if this problem is solvable in polynomial time then there is a “fast”
simulation of non-deterministic computations:

NTIME(t) ⊆ DTIME(�
√
�) (1)

where �= t log t, and t¿n. That work is inspired from the fact that certain NP-
complete problems require only “limited” non-determinism and questions that come
from the framework of 7xed parameter intractability [2,3]. For example the NP-
complete problem Vertex Cover (“given a graph with n vertices, is there a vertex cover
of size k?”) is known to have algorithms with running time of the form O(2k · nc) for
some $xed constant c, which implies a polynomial time algorithm for small values of
the parameter k¡ log n.

Another related result is that of Paul et al. [10]. The main result was that non-
deterministic linear time is more powerful than deterministic linear time NTIME(n)
�=DTIME(n). This is related to the non-deterministic time simulation result presented
in this work.

260 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

2. Notation and de�nitions

We use the standard notation for the usual complexity classes and Turing Machine
time and space bounds: DTIME(t) and NTIME(t) denote the classes of languages
accepted by deterministic and non-deterministic multi-tape Turing Machines respec-
tively, running in time O(t). We will use both nO(1) and poly(n) to denote functions
that are polynomial in n, while exp(x) denotes the exponential 2x. For a machine M ,
L(M) denotes the language accepted by M . In many cases we will just use M to denote
both the machine and the language accepted by the machine, to simplify the notation;
for example if F1 and F2 are two $nite state automata then F1 ∩ F2 denotes the lan-
guage accepted by both automata. The size of a $nite state automaton for our purposes
is the number of states of the automaton. The number of bits required to describe the
automaton is the same times a logarithmic factor, which in any case does not aKect
our computations. The $nite state automata considered in this work are deterministic
unless stated otherwise. The “cartesian product” of two (or more) automata, denoted
F1 ×F2, is the automaton whose set of states is the cartesian product of the state sets
of the two automata and accepts all strings accepted by both automata F1; F2. This
corresponds to the usual construction of the automaton that accepts the intersection of
the languages accepted by the two given automata.
The notion of block respecting computation was introduced by Hopcroft Paul and

Valiant in [6] to prove that deterministic space is strictly more powerful than deter-
ministic time: DTIME(t) ⊆ DSPACE(t= log t). Block respecting Turing machines are
also used in [10] to prove that non-deterministic linear time is more powerful than
deterministic linear time. See also [11] for a generalization of the results from [6] for
RAMs and other machine models (Fig. 1).

De�nition 2.1. Let M be a machine running in time t(n), where n is the length of its
input x. Let the computation of M be partitioned in a(n) segments, where each segment

t s
te

ps

computation

t

b steps tapes

b bits

Fig. 1. Block respecting computation.

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 261

consists of B(n) consecutive steps and a(n) ·B(n)= t(n). Let also the cells of the tapes
of M be partitioned into a(n) blocks each consisting of B(n) cells on each tape. We
will call M block respecting if during each segment of its computation, each head
visits only one block on each tape.

Every Turing Machine can be converted to a block respecting machine with only a
constant factor slow down in its running time. The construction is simple: Let M be a
deterministic Turing Machine running in time t. Break the computation steps (1 : : : t)
in segments of size B. Break the work tapes in blocks of the same size B. If at the
start of a computation segment � the work tape head is in block bj, then during the B
computation steps of that segment, the head could only visit the adjacent blocks, bj−1

or bj+1. Keep a copy of those two blocks along with bj and do all the computation
of segment � reading and updating from those copies, if needed. At the end of the
computation of every segment, there is a clean-up step: update the blocks bj−1 and
bj+1 and move the work tape head to the appropriate block to start the computation of
the next segment. This construction can be done for diKerent block sizes B. For our
purposes B will be t c for a small constant c¡1. For more details on this construction
see [6].
The idea of block respecting computation will be used for simulating Turing ma-

chines in our proofs. The general idea is the following: in order to carry out a simula-
tion of a Turing machine, break the computation in blocks, such that in each block the
computation is “local”. Then check the correctness of the computation in each block
independently. The notion of block respecting computation applies to multi-tape Tur-
ing machines and therefore our results do not seem to generalize directly for random
access machines.
As we mentioned in the introduction, F will denote the assumption that there is a

slight improvement to the standard algorithm for checking the intersection emptiness
problem for a collection of a $xed number k of automata:

Assumption 1 (F). Let F1; F2; : : : ; Fk be k FSAs of size �. There is a deterministic
algorithm that can decide whether

k⋂
i=1
L(Fi)

?
�= ∅

in time �(k=f(k))+d, where f(·) is an unbounded function that depends only on k, and
d¿0 is a constant.

3. Subset sum and factoring

We start by showing the implications of assumption F for two problems that are
considered hard: subset sum and factoring. If F is true then we can construct better
algorithms for solving these problems.

262 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

3.1. Subset sum

We consider the following type of subset sum problem: Given m integers a1; : : : ; am
and a number b, check if there exists a boolean vector x=(x1; : : : ; xm) such that:

m∑
i=1
aixi = b:

Denote by n the size of the input for this problem: a1; : : : ; am; b.
Assuming that there is an “easy” way of checking the intersection of two automata

is empty, we can construct an algorithm solving subset sum in 2n=2nO(1). By choosing
a collection of k automata, the resulting algorithm runs in 2�n for any �¿0.

Theorem 3.1. Assumption F implies that there is an algorithm solving subset sum in
O(2�·n) for all �¿0.

Proof. Pick two primes p; q of size n=2 (size just greater than n=2) and build two
machines Mp and Mq testing

∑m
i=1 aixi≡ b (modp) and

∑m
i=1 aixi≡ b (mod q). The

construction of these automata is simple. The input to the automata is the bit vector
x= x1x2 : : : xm. The numbers a1; : : : ; am are part of the given subset sum problem, and
are used in the construction of the automata since the transitions of each automaton
depend on these ai’s. The machine Mp, reads the bits x1; x2; : : : ; xm and needs to $nd
the value of the sum

∑m
i=1 aixi modulo p. During this computation, Mp only needs to

remember the value of the partial sum modulo p, not the exact value. The automaton
will have width at most p since there are p values modulo p, and length m: that is m
stages of p states. At stage j, the automaton is in a state that shows the value of the
partial sum �=

∑j−1
i=1 aixi (modp), reads xj and goes to a state in the next stage that

corresponds to the value of � + ajxj (modp) and so on. The size (number of states)
of these two machines is |Mp|=O(p · nO(1)), where p=O(2n=2), and Mq has the same
size.
Consider the following intersection problem:

Mp ∩Mq

?
�= ∅: (2)

If there is a solution to the given subset sum problem then the intersection Mp ∩Mq

is non-empty, since
∑m

i=1 aixi≡ b (modp) modulo any number p. If, on the other
hand,

∑m
i=1 aixi≡ b modulo both primes, then b−∑m

i=1 aixi is a multiple of p and q,∑m
i=1 aixi≡ b (modp · q). But the primes p; q where chosen so that pq¿b

and therefore, in this case,
∑m

i=1 aixi= b in general.
In other words, the question “does there exist a solution x to the given subset sum

problem”, translates to “does there exist an input accepted by both automata”. If (and
only if) the intersection (2) is non-empty, then there exists a solution to the given
subset sum problem.
In order to get the desired bound, 2�n for any positive �, use a similar construction for

k automata: pick k primes p1; : : : ; pk of size n=k and follow the same ideas described

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 263

above to construct k automata Mpk that check if b − �mi=1 ≡ 0 (modpk). Consider the
emptiness problem for the intersection:

k⋂
i=1
Mpi : (3)

The size of the automata Mpk is at most �=O(2n=k · nO(1)). Now we can use the
assumption F: for a collection of k automata of size � the emptiness problem of their
intersection can be solved in time O(�(k=f(k))+d). This will give us the following upper
bound:

exp
(

1
f(k)

n+
d
k
n
)
: (4)

The time needed to construct the FSAs described above is 2n=k ·nO(1). For large enough
k the total time required becomes

2(1=f(k))n · poly(n); (5)

assuming that f(k) grows slower than O(k). Since f(k) is unbounded, 1=f(k) can
become less than any constant �¿0 by choosing k appropriately.

3.2. Integer factoring

Using the same ideas as in the previous section, we can prove that integer factoring
of an n-bit number is solvable in nO(1) ·2�n, for any �¿0, provided that the assumption
F is valid. Finding deterministic algorithms for factoring is a major open problem: The
best known deterministic algorithm runs in time 2(1=4)n. With the Extended Riemann
Hypothesis this bound only improves to 2(1=5)n (see [1]).
The problem is the following: Given any integer z of size n, $nd x; y such that

x · y= z.

Theorem 3.2. The assumption F implies that factoring can be solved in time 2�n for
any �¿0.

Proof. We show how to build a $xed number of $nite state automata to check if x ·
y= z. Exactly as in the case of the subset sum problem, pick two primes p and q of size
n=2 and consider the corresponding FSAs Mp;Mq, checking whether x · y≡ z (modp)
and x·y≡ z (mod q), respectively. The following emptiness problem solves the factoring
problem:

Mp ∩Mq

?
�= ∅: (6)

The input of the $nite state machines is the string xy. Since Mp and Mq are $nite
state automata, we need to know the length of x and y in advance; we need to know
where the string x stops and y starts. Recall that only z is given to us as input, and
our algorithm will try to determine whether there exist any x; y such that x · y= z.

264 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

Since the length of the possible factors x; y is not known in advance, we simply check
all possible lengths |x|= n=2; |x|= n=2 − 1; : : : : The size of Mp is p · nO(1) and for
Mqq · nO(1). Based on the assumption F, we can check the intersection (6) for emptiness
in 2n=2 · nO(1).

Now consider k primes p1; : : : ; pk of size n=k each, build the corresponding collection
of FSAs Mp1 ; : : : ; Mpk . The size of each automaton is |Mpi | ≡ �=pi ·nO(1) = 2n=k ·nO(1).
The factoring problem can be solved by checking the following intersection:

k⋂
i=1
Mpi

?
�= ∅: (7)

By our assumption F the intersection from Eq. (7) can be solved in time �(k=f(k))+d.
This yields the following upper bound:

nO(1) exp
(

1
f(k)

n+
d
k
n
)
: (8)

In order to factor a given number z proceed as follows: check whether there exist x; y
such that xy= z, trying all possible lengths for x and using the automata intersection
technique presented above. In order to $nd the actual number x, compute its bits one
by one by solving the following problem: is there a factorization of z= xy where the
$rst bit of x is 1? If we repeat this n=2 times, we can $nd all the bits of the number x.

4. Deterministic simulation of non-deterministic computation

In this section we show how to build a collection of automata to simulate determinis-
tically the computation of a non-deterministic time-bounded Turing machine. Under the
assumption F the time required for constructing the automata and checking their inter-
section for emptiness will give an improvement in the required time for the simulation.
These results apply for the multi-tape Turing machine model.
A trace of the computation on input x of a machine M is a string of computation

steps. Each step contains the current contents of the working tapes, the position of
the heads, the state of M , the input symbol read, the position of the head on the
input tape, and the non-deterministic choice of M at this step. This description of the
computation of a Turing machine M on a certain input is also referred to as a tableau
of computation, the computation string, or just “the computation” of M .
The main idea for the simulation follows roughly these steps: Start from any non-

deterministic Turing machine computation and on input x simulate the computation
deterministically as follows:
(1) Break the non-deterministic computation in blocks.
(2) Make sure the computation is “local” in each block.
(3) Build $nite state automata that will check the correctness of the computation in

each block. Each block can be checked independently.
(4) Check if all the automata accept the computation, which would mean that every

block of the computation is correct.

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 265

If the input x is accepted by the non-deterministic machine M we started from, then
there exists a valid accepting computation of M on x. Therefore, for our deterministic
simulation described above, the question “does there exist an accepting computation
for x” translates to “is there a string accepted by all the automata” in the last step.
To answer this question, we will use the fast algorithm for FSA intersection emptiness
whose existence is implied by assumption F, to speed up the simulation.

Each automaton will be checking a part of the computation. In order to keep the size
of the automata small, we would like to break the computation in such a way so that
each automaton will only have to look in speci$c and as small as possible parts of the
computation to verify correctness. This can be achieved if we make the computation
“local” in the sense of the “block respecting computation” ideas.
For any Turing machine M running in time t, we can break the computation in t=B

segments with B steps per segment, and also each work tape in blocks of the same size,
B bits per block. Now the machine M can be easily converted to be block respecting,
meaning that during each segment of computation only the contents of at most one
block per tape are used=accessed, as mentioned in more detail in the introduction.
Let M be a non-deterministic Turing machine running in time t. On input x, our

simulation proceeds as follows: Convert M to a block respecting machine MB. Consider
the trace of the computation of MB and construct a collection of FSAs that will check if
the computation is correct the following way: each FSA will check the correctness for
a number of segments of the computation trace. Note that since MB is block respecting,
for each segment of the computation, the automaton needs to check the contents of
only one block on each working tape. Now consider the intersection of all the automata
and recall that an automaton accepts its input if it corresponds to a valid computation
of MB on x. If the intersection of the automata is non-empty, then there exists a valid
accepting computation for MB and therefore for M .

In order for an FSA to check a computation segment, it needs to know the contents
of the corresponding blocks the last time they were accessed in the computation trace.
Since the machine MB is non-deterministic, we need to consider many possibilities
for the position of these previous accesses in the computation trace for MB. These
dependencies can be represented by a graph as in [6]. For the deterministic simulation
we need to consider all possible graphs (Fig. 2).

Theorem 4.1. Assumption F implies NTIME(t) ⊆ DTIME(2�t), for any �¿0.

Proof. Let M be a non-deterministic machine with l tapes, running in time t. Let MB

be the corresponding block respecting machine, with running time O(t). Consider the
computation of MB on input x. Break that computation in segments of size B each;
the number of segments is O(t=B). Consider the directed graph G corresponding to the
computation of the block respecting machine as described in [6]: G has one vertex for
every time segment (that is t=B vertices) and the edges are de$ned from the sequence
of head positions. Let v(") denote the vertex corresponding to time segment " and
"i is the last time segment before " during which the ith head was scanning the
same block as during segment ". Then the edges of G are v(" − 1) → v(") and for
all 16i6l, v("i) → v("). The number of edges can be at most O((l + 1)t=B) and

266 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

F1

MB computation

Fk

segment 1

segment t/B
working tapes

tape blocks

...

t/k
 b

its

Fig. 2. Checking block respecting computation with $nite state automata.

therefore the number of bits required to describe the graph is O((l + 1)t=B log t=B).
Since the number of tapes l is a constant, from now on it will be incorporated in the
big-O notation.
The general idea for simulating MB, is to build $nite state automata to check the

computation that takes place on each vertex of the graph (each vertex corresponds to
a segment of the computation). Since the machine M is non-deterministic, we need to
consider all 2O(t=B log t=B) possible such graphs.
Now consider the computation of the block respecting machine during time segment

": this time segment contains B computation steps. In each step, the machine reads
and writes the bits on the head positions in the blocks corresponding to " depending
on the non-deterministic choice at that step (Fig. 3).
In order to check if the computation is correct during one step, we could use an FSA

of constant size which actually depends only on the number of tapes of the machine.
This check can be done by a decision tree of size 2O(B).

Let k be the number of FSAs. Then for any �¿0 we can pick k =1=� such that
each automaton checks (1=k)t=B= �t=B segments or (�t=B)B= �t steps. The size of each
FSA is therefore 2�t (decision tree size).
Our deterministic algorithm that will simulate M must construct the transition di-

agrams for these k FSAs. For each transition (arc in the decision tree), we need to
simulate MB for at most 2B steps. Since 2�t is the total number of transitions, the total
time required is 2�t · 2B. The running time for the construction of all the FSAs for all
possible graphs is therefore:

2�t2B2O((t=B) log(t=B)) = 2O(�t): (9)

In order to check if there exists an accepting computation for M on input x it suRces
to check if the intersection of all FSAs

⋂k
i=1 Fi is non-empty. Under our assumption

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 267

B computation
steps

tape block

s1 s2

b1

b1

b2

s2

s1

b2

computation

B t steps

work
tapes

1

Fig. 3. Graph description of a block-respecting computation.

F, the time needed to intersect k FSAs of size �=2�t =2t=k is

�(k=f(k))+d = (2t=k)(k=f(k))+d

= 2(1=f(k))t+(d=k)t : (10)

Since f(k)= o(k), the time needed for testing the intersection for emptiness is
2O((1=f(k))t). Therefore the total time for our simulation is the time to construct the
FSAs plus the time to check the intersection: 2O(�t) + 2O((1=f(k))t). Since f(k) is un-
bounded we can always pick k appropriately so that f(k)¡1=� and the total time is
2O(�t).

5. Separating complexity classes

Consider the problem of separating two complexity classes, for example, P from
NP. One way to approach this problem is to show that NP is “too hard”, meaning
that there exists a problem in NP that cannot be solved in deterministic polynomial
time. A diKerent way to view this separation problem, is to prove that P is actually
“too easy”, in the sense that everything in P can be solved in small non-deterministic
time. For example, if we can prove that every problem in P has $xed polynomial
size non-uniform circuits (for example size n5) then P �=NP. This approach tries to
prove separation results using upper bounds and algorithmic techniques rather than
lower bounds. In order to complete the separation we still need to apply a known
diagonalization, hierarchy theorem or counting result. In the following section we will

268 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

see an example of this method: If there exists a fast enough algorithm solving the
FSA intersection emptiness problem, then NL is “too easy” for polynomial time P,
meaning that everything in NL can be done in $xed polynomial (less than n2) time.
The separation follows immediately from the well known time hierarchy results. This
means that if one would like to separate NL from P it would suRce to improve
the algorithm for the FSA intersection emptiness problem. On the other hand, this
could be considered as a hardness result for the FSA problem. Since separating these
fundamental complexity classes is considered quite hard, this theorem could be an
indication of the hardness of the FSA problem.
A similar, more general result can be shown for a non-uniform variant of our as-

sumption. If we assume that there is a small enough non-uniform circuit solving the
FSA intersection emptiness problem, then we can separate NL from NP. This is based
on a result of Kannan [8].
In the previous sections, the assumption F that was used, was that given k FSAs

F1; F2; : : : ; Fk of the same size �, there is an algorithm that can check whether their
intersection is empty in time �(k=f(k))+d. We modify slightly this assumption to the
following:

Assumption 2 (F ′). Let F1; F2; : : : ; Fk be k FSAs of size � and G a FSA of size �′.
Then there is a deterministic algorithm that can decide whether

k⋂
i=1
Fi ∩ G

?
�= ∅

in time �(k=f(k))+d�′, where f(·) is an unbounded function and d¿0 is a constant.

Notice that the new assumption F ′ diKers from F only in the introduction of an
extra FSA G which may not have the same size as the rest of the FSAs. The problem
can still be solved by the standard method of taking the Cartesian product of the k+1
automata and deciding whether its language is empty in time O(�k�′). This is a natural
generalization, stating basically the same fact as the original assumption F (“is there a
faster algorithm for FSA intersection emptiness?”) and is used to overcome a technical
point in our proof.
We also prove a similar separation result for the non-uniform setting. For this case,

we will state a more general assumption, which is just the non-uniform version of F ′:
instead of assuming that there exists a fast enough algorithm solving the $nite state
automata intersection emptiness problem, assume that there is a non-uniform circuit
that will solve the same problem in small size. Call this assumption FC .

Assumption 3 (FC). Let F1; F2; : : : ; Fk be k FSAs of size � and G a FSA of size �′.
Then there is a circuit (family of non-uniform circuits) that can decide whether

k⋂
i=1
Fi ∩ G

?
�= ∅

with size �(k=f(k))+d�′, where f(·) is an unbounded function, and d¿0 is a constant.

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 269

In both the uniform and the non-uniform cases, the proofs of the separation theorems
will proceed as follows. Think of the separation of NL from P:
(1) Start from any NL Turing machine ML and consider the computation on some

input x. We will check if there exists any accepting computation on input x.
(2) “Break” the computation of the machine into blocks. In fact we will break the

work tape into blocks, and each such block will correspond to a part of the
computation.

(3) Build one $nite state automaton for each block to check if a given computation
string is correct, in all parts that correspond to that block, ignoring the rest of the
computation string.

(4) The question “does there exist an accepting computation of ML on x” translates to
“does there exist a string accepted by all the automata”

(5) Argue that the entire simulation can be done in some $xed polynomial time or
circuit size.

In order to speed up the simulation described above, we will use the fast algorithm or
small circuit for the intersection emptiness problem for the last two steps.
For the uniform setting, this simulation will give an almost linear time simulation of

NL. Then the deterministic time-hierarchy results will complete the separation proof
of NL and P.

Theorem 5.1 (Deterministic time hierarchy). For any k¿0, DTIME(nk) ⊂
DTIME(nk+1).

For the non-uniform case, the simulation will give non-uniform circuits of size less
than n2. To separate NL from NP, the following result by Kannan [8] will be used:

Theorem 5.2 (Kannan [8]). For any k¿0, there is a language in �p2 ∩$p
2 that does

not have circuits of size nk .

In simple terms, for any k, the polynomial hierarchy contains hard problems,
that require circuits bigger that nk . This theorem can be applied to prove a
general lemma (see Section 7) that can be used to separate complexity classes by
designing fast algorithms and=or simulations rather than proving lower
bounds.

5.1. Uniform assumption: NL vs. P

In the uniform setting, we separate NL from P based on assumption F ′, by
showing that NL is very easy given the power of polynomial time: every non-
deterministic log-space computation can be done in less than n2

time.

Theorem 5.3. Assumption F ′ implies NL ⊆ DTIME(n1+�), for any �¿0.

270 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

Proof. Without loss of generality, we can assume that an NL machine has only one
working tape.
The main idea is the following: break the working tape of the machine into blocks.

This corresponds into breaking the computation of the machine into segments. We will
use one FSA for each tape block that will accept only strings representing ‘correct’
computations for this particular block. This is done by having the automaton going
through its input (claimed to be a valid computation) until the head of the working
tape enters the tape block assigned to this automaton. Then the FSA starts simulating
the computation steps of the machine in this block, and checks whether the input
represents a valid computation. The FSA continues to check all computation steps in
the input until the work tape head leaves its pre-assigned block. Then the automaton
goes through the rest of the computation, ignoring everything, until the head enters
that block again or the computation ends. Note that the automaton ‘remembers’ the
contents in its tape block in its own state, in order to do the simulation the next time
it encounters its block in its input.
If there is a string that belongs in the languages accepted by all the FSAs, that

is, if the intersection of their languages is non-empty, then this string corresponds to
a computation that is correct for each block. There is a technical problem however:
the FSAs cannot check whether the input on the read-only input tape, appears cor-
rectly throughout the computation string would require bigger $nite state automata.
To overcome this diRculty we will use another FSA that will only check the input
of the computation on the computation string. This requires the modi$cation of the
assumption F as discussed above.
More speci$cally, let L∈NL and ML be the corresponding block-respecting Turing

machine, using at most c log n working space and therefore time nc, for some constant
c¿0. The computation on input x of this machine can be described by a string of
computation steps: each step contains information about the position of the head of the
working tape, the state of ML(x), the input symbol read, the non-deterministic choice
of ML(x) at this step and the symbol read=written on the working tape (Fig. 4).
We break the working tape of ML(x) into k blocks of size B each (k is a parameter

to be determined later). Then k = c log n=B. For each block Bi; i=1 : : : k we construct
a FSA Fi that does the following:
(1) Fi reads its input until the working tape head enters Bi.
(2) Simulate the computation in Bi until head moves to Bi−1 or Bi+1.
(3) Go through the rest of the computation string. If the working tape head enters Bi

again, repeat the previous step.
(4) When the end of the computation is reached and the computation string read was

correct, then accept=reject according to what ML(x) does.
(5) If any errors in were discovered in the computation string, reject.

In order to perform the second step, Fi has to keep in its state the contents of Bi and the
current position of the working head, therefore it needs to remember O(c2B log log n)
bits, and since we are going to pick B large enough, the size of Fi is |Fi|=2O(B). The
FSAs are constructed in a straightforward way, as decision trees, branching on every
input bit from the pre-assigned positions on the tape blocks. In order to compute the

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 271

F1 F2 Fk

working tape

B

nc

NL computation

Fig. 4. Checking non-deterministic Logspace computation.

transitions of Fi and label the transitions in the automaton for a single computation
step, we need to run ML(x) starting from all possible con$gurations of Bi. The number
of transitions is at most O(number of states of Fi)= 2O(B). Hence the time needed to
construct the FSAs is at most 2O(B).
We still need to check whether the input (of ML) is read correctly, if the input

bits appear correctly in the computation string. We cannot assign this task to the Fi’s
since this requires too many bits to keep track of. Thus we construct one more FSA G
with O(n) states that goes through the computation string and just checks the positions
where the input bits are read by the NL machine ML.
If the intersection

⋂k
i=1 L(Fi) ∩ G is non-empty, then there is a computation string

that represents a correct accepting computation of ML(x) (as checked by the Fi’s), in
which the input tape bits appear correctly (as checked by G). Using our assumption
F ′, the emptiness of this intersection can be decided in deterministic time

|Fi|(k=f(k))+d|G|= d12d2((kB=f(k))+B)n

= d12
d2c log n
f(k) +

d2c log n
k n (11)

for some constants d1; d2¿0. Considering the time needed to construct the FSAs, and
for f(k)= o(k), the total time needed for the deterministic simulation is at most

n(d3c=f(k))+1

for some constant d3¿0, and thus we can always pick a big enough k so that
d3c=f(k)¡�, for any �¿0, since f(·) is unbounded.

From the well known Time Hierarchy Theorem 5.1 we get the following:

Corollary 5.4. Assumption F ′ implies NL �=P.

272 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

6. Non-uniform assumption: NL vs. NP

The non-uniform version of our assumption FC implies that NL �=NP. We start by
showing that NL has small, $xed polynomial size circuits, or in other words that NL
is “too easy”.
The following theorem proves that NL has size n2 circuits, but note that any $xed

polynomial size circuit simulation would work just as well. This will be obvious in
the proof, where Kannan’s [8] result is used.

Theorem 6.1. Assumption FC implies that NL can be simulated by 7xed polynomial
size circuits.

Proof. The proof is essentially the same as for Theorem 5.3. Each of the automata
Fi; i=1 : : : k, is of size 2O(B) and thus can be described by a circuit of size 2O(B). G can
be described by a circuit of size O(n2). Assuming FC , there is a size |Fi|(k=f(k))+d|G|=
nO(c=f(k)+c=k) circuit that given the description of automata Fi, i=1 : : : k, and G from
Theorem 5.3 decides the emptiness of their intersection. By picking k large enough
this size can be made less than n2 (any constant in the exponent would be suRcient
here, as long as it is independent of c). Hence every language in NL has a circuit of
size n2.

Corollary 6.2. Assumption FC implies NL �=NP.

Proof. (1) NL has $xed polynomial size circuits.
(2) If NL=NP then the polynomial time hierarchy collapses to NL, and Kannan’s

Theorem 5.2 implies that for any constant % there is a language in �p2 and therefore
in NL that is not computable by circuits of size n%.
(3) By Theorem 6.1 NL has $xed polynomial (n2) size circuits. This is a contra-

diction.

Therefore NL �=NP.

Note that the proof of Corollary 6.2 can be considered as an application of Lemma
6.3, presented in the next section.

6.1. A general lemma

The following lemma is a general way to state Kannan’s result [8], as a tool for sep-
arating Complexity classes. As mentioned earlier, this technique provides a somewhat
diKerent approach since it gives a method to separate complexity classes by proving
upper bounds, designing algorithms and eRcient reductions.

Lemma 6.3. Let C1; C2 be two complexity classes such that:
(1) C1 ⊆ P=poly

G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274 273

(2) if C1 = C2 then for any k, there is a language in C2 that requires circuits of size
�nk .

(3) for some 7xed k, C1 has circuits of size 6nk with access to an oracle from C2.
Then C1 �= C2.

Proof. Let C1 = C2. Consider the $xed polynomial size circuit implied by (3). Since
C1 = C2 the C2 oracle has also $xed polynomial size implied, by (1), and therefore all
C2 has $xed polynomial size circuits. But this contradicts (2).

7. Remarks

The results mentioned in this work can be viewed as a method of separating NL
from P or NP (see Fortnow [5] for a related survey). Improving the algorithm for
the $nite state automata intersection emptiness problem would provide very interesting
separation results as well as fast algorithms and simulations discussed in this work.
A uniform algorithm for the FSA intersection problem would separate NL from

P, but it would also provide a sub-exponential simulation of non-deterministic time
(Theorem 4.1). Such a result might be considered unlikely, in which case our result
should be considered as a strong indication that the FSA intersection problem is an
explicit hard function, a good candidate for proving a non-linear lower bound.
On the other hand, separating NL from NP requires a non-uniform construction

for the FSA problem. Since NL is believed to be diKerent from NP, it would be
very interesting to see if the power of non-uniformity can be used to provide such a
construction. It would also be interesting to see if there are other connections between
similar problems and Complexity theory questions. Some of the ideas of this work
could be applied for NL-complete or other problems that capture NL computations
leading to similar results and separations.

Acknowledgements

We would like to thank the anonymous referees for their comments.

References

[1] E. Bach, Number-theoretic algorithms, in: Annual Review of Computer Science, Vol. 4, Annual Reviews,
Inc., 1990, pp. 119–172.

[2] R.G. Downey, M.R. Fellows, Fixed-parameter intractability (extended abstract), in: Proc. 7th Annual
Structure in Complexity Theory Conf., Boston, MA, 22–25 June 1992, IEEE Computer Society Press,
Silverspring, MD, pp. 36–49.

[3] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, Berlin, 1999.
[4] U. Feige, J. Kilian, On limited versus polynomial nondeterminism, Chicago J. Theoret. Comput. Sci.,

March 1997.
[5] L. Fortnow, Diagonalization, Bull. Eur. Assoc. Theoret. Comput. Sci. 71 (2000) 102–112 (Columns:

Computational Complexity).

274 G. Karakostas et al. / Theoretical Computer Science 302 (2003) 257–274

[6] J. Hopcroft, W. Paul, L. Valiant, On time versus space, J. ACM 24 (2) (1977) 332–337.
[7] N.D. Jones, Space-bounded reducibility among combinatorial problems, J. Comput. System Sci. 11

(1975) 68–85.
[8] R. Kannan, A circuit-size lower bound, in: 22nd Ann. Symp. on Foundations of Computer Science, Los

Alamitos, CA, USA, IEEE Computer Society Press, Silverspring, MD, October 1981, pp. 304–309.
[9] D. Kozen, Lower bounds for natural proof systems, in: 18th Ann. Symp. on Foundations of Computer

Science, IEEE, London, October 1977, pp. 254–266.
[10] W.J. Paul, Nicholas Pippenger, Endre Szemer3edi, William T. Trotter, On determinism versus

non-determinism and related problems (preliminary version), in: 24th Ann. Symp. on Foundations of
Computer Science, Tucson, Arizona, 7–9 November 1983, IEEE, London, pp. 429–438.

[11] W. Paul, R. Reischuk, On time versus space II, J. Comput. System Sci. 22 (3) (1981) 312–327.

	On the complexity of intersecting finite state automata and 7876 versus 7880
	Introduction
	Notation and definitions
	Subset sum and factoring
	Subset sum
	Integer factoring

	Deterministic simulation of non-deterministic computation
	Separating complexity classes
	Uniform assumption: 7876 vs. 80

	Non-uniform assumption: 7876 vs. 7880
	A general lemma

	Remarks
	Acknowledgements
	References

