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An irregular filter model
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Abstract

In this paper we introduce a new filter model, which is of a kind that has escaped investigation up to now: it is induced by an
intersection type theory generated in a non-standard way, by a preorder which puts into relation an atom with an arrow type, without
equating them. We study the domain-theoretic implications of this choice, that are not trivial: in order to describe this filter model
a new category is introduced and a special purpose functor defined. The filter model is then characterized as the initial algebra of
the functor.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Intersection type theories (ITT’s) were introduced in the late 70’s by Dezani and Coppo [14,15,12] to overcome
the limitations of a Curry’s type discipline. They were used as a powerful tool for describing existing λ-models and
synthesising new ones. The main features of ITT’s are twofold:

- they give the possibility of describing in a finitary way the interpretation of λ-terms, through the Type Assignment
Systems, see e.g. [12,17,21,25,20];

- they can be calibrated exactly for inducing λ-models which exhibit certain desired properties, see e.g.
[2,26,7,8,18].

As concerns this second aspect, ITT’s exploit the axiomatic presentation through which they are defined. Suppose
we want to define an ITT T with certain properties: essentially the desired properties are kept into account since the
very definition of T , introducing “ad hoc” axioms and rules, modelled on the properties. The space of the filters over
T allows to recover a domain with the desired properties, built as a colimit in ALG (the category of ω-algebraic
lattices and Scott continuous functions) of the ω-chain

D0
f0

→ F(D0)
F( f0)
→ F2(D0) . . .

generated by a suitable functor F . Therefore ITT’s provide a rather simple (set-theoretic) way for building interesting
domains, which can be otherwise recovered by using the complex category theoretic apparatus.

The other side of the coin is that the balance which guarantees the categorical description of ITT’s is rather delicate,
depending on a somewhat rigid scheme used for defining ITT’s: among other steps, it requires to choose specific
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axioms of the shape α ∼ B where α is an atom and B a suitable intersection of arrow types; the emphasis has to be
put on the symmetry of “∼”, since α ∼ B corresponds to the pair of axioms α ≤ B and α ≥ B. This restriction
allows to put at work the Stone duality paradigm of [1], first recognised in [33], and ITT’s can be used, for instance,
for giving presentation to λ-models built as reflexive objects in the category of ω-algebraic lattices, such as the Scott
D∞ [11,32] and the Park model [28].

The questions that we consider are the following. What happens if we break the symmetry of specific axioms, by
considering ITT’s where atoms are just related, but not equated to any intersection of arrow types (that is, we have
α ≤ B, or B ≤ α, but not α ∼ B)? Which is the categorical construction associated with these “irregular” ITT’s?

Before going on with this discussion, an historical remark: irregular intersection type theories appeared just once
in the literature (in [16]), in order to give an instance of λ-model where not all the continuous functions were
representable. As far as the author is aware, there are no other instances in the literature.

Coming back to the questions above, we have no general answer. What is shown in the paper is that breaking
symmetry, even in a seemingly simple case, brings heavy consequences on the domain-theoretic side, so confirming
that the balance between ITT ’s and their categorical description is difficult to keep.

In this paper we consider an irregular version of the Park model. As already mentioned in [16], the Park model is
isomorphic to the filter model PA induced by the intersection type theory over the set of atoms {Ω , φ}, generated by
the axiom

(pa) φ ∼ φ → φ.

What we do is to take just one half of (pa), namely (1/2-pa) φ ≤ φ → φ. Consequently, we call “1/2 Park filter
model” (1/2-PA for short) the irregular λ-model induced by the intersection type theory generated by (1/2-pa).

The break in symmetry has immediate consequences on the categorical side: as far as the author could check, the
well-known property of PA of being a colimit in ALG for a ω-chain generated by the functor F(X) = [X → X ], does
not hold any more for 1/2-PA, nor has the author succeeded in finding an alternative satisfactory characterization in
ALG.

In this paper we show how it is possible to recover a good categorical characterization of 1/2-PA.
The main part of this paper is concerned with introducing the “pointed” version of ALG, named ALG∗, whose

objects are pairs 〈D, δ〉, where δ is a compact element in D, and tailor the special functor G∗ which captures the
domain-theoretic aspects of 1/2-PA: in particular we can describe 1/2-PA as an initial algebra, hence as a colimit, of
a suitable functor over ALG∗, giving the complete categorical characterization of 1/2-PA. Note that the definition of
G∗ would be impossible in ALG. This paper is organized as follows.

Section 2 contains a list of preliminary results on lattices.
In Section 3 we recall basic notions and facts about intersection type theories and filter models and introduce the

irregular ITT T∗. Even though it is not relevant for that which concerns the paper, it is proved that T∗ induces a
λ-model.

In Section 4 we see the difficulties in characterizing 1/2-PA as a colimit of a functor working inside ALG.
In Section 5 we introduce the new category ALG∗ and prove that it is cartesian closed.
In Section 6 we introduce the functor A∗ over ALG∗: this functor enriches a pointed lattice 〈D, δ〉 with a new

point, put just above δ. Thanks to A∗ we can understand the axiom (1/2-pa) from a categorical point of view.
Section 7 is devoted to the technique for solving domain equations in ALG∗: we basically use the classical

technique of [34] for O-categories. At the end of the section we introduce the fundamental functor G∗, built on the
exponential functor and the above mentioned functor A∗, and prove that the equation X ' G∗(X) has a solution A
which is an initial G∗-algebra in the subcategory ALGE⊥

∗ of ALG∗.
Section 8 contains the characterization result. After some technical lemma on T∗ it is proved that 1/2 Park filter

model is an initial G∗-algebra in ALGE⊥
∗ , therefore proving that it is isomorphic to A. This gives the complete semantic

characterization of T∗.
The paper is self-contained as much as possible, except for that which concerns category theory (a standard

reference for this topic is [27]).

2. Domain-theoretic preliminaries

This auxiliary section is devoted to set notation and to recall domain-theoretic definitions and results which concern
lattices. The first part of the section concerns mainly ω-algebraic lattices, and the material presented will be used
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throughout the paper. The last part of the section presents some notions and results on prime algebraic lattices, and
will be used in the last section. A complete reference on lattice theory is [23]. As concerns the relevance of lattices in
the semantics of programming languages, see e.g. [31].
- Let P = 〈P,v〉 be a poset. We say that P is a complete lattice if any subset Z ⊆ P has a least upper bound

⊔
Z .

From now on we denote complete lattices with D, E , possibly with indexes, while posets are denoted by P, Q.
- We say that a subset A ⊆ P is lower-closed [upper-closed] if a ∈ A and a w a′ [resp. a v a′] implies a′

∈ A. Given
B ⊆ P , we define ↓ B = {p ∈ P | ∃b ∈ B.p v b}, ↑ B = {p ∈ P | ∃b ∈ B.p w b}; we write ↓ p for ↓ {p}, and
↑ p for ↑ {p} (p ∈ P).
- A subset Z ⊆ D is directed if it is non-empty and for any z, z′

∈ Z there exists z′′
∈ Z such that z, z′

v z′′.
- A monotone function f : D → E is continuous if for any directed Z ⊆ D

f
(⊔

Z
)

=
⊔

f (Z).

The space of continuous functions from D to E , ordered with pointwise ordering, is denoted [D → E].
- A function f : D → E is additive if for any Z ⊆ D

f
(⊔

Z
)

=
⊔

f (Z).

- An element d ∈ D is compact if for any directed Z ⊆ D, d v
⊔

Z implies that there exists z ∈ Z such that d v z.
K (D) denotes the subset of the compact elements of D.
- D is an ω-algebraic lattice (alg) if K (D) is countable and moreover, for any x ∈ D,

x =
⊔

{d ∈ K (D) | p v x}.

ALG is the category of ω-algebraic lattices and continuous functions.
- Given two ω-algebraic lattices D and E , and two compact elements d ∈ K (D), e ∈ K (E), we define the step
function

(d ⇒ e)(x) =

{
e if d v x
⊥ otherwise

(d ⇒ e) v f if and only if e v f (d) (hence (d ⇒ e) v (d ′
⇒ e′) if and only if [d ′

v d and e v e′]).
Finite sups of step functions are the compact elements in [D → E].

Lemma 2.1. If D and E are alg’s, then

1. K ([D → E]) = {
⊔

i∈I (di ⇒ ei ) | (∀i ∈ I.di , ei compact) and I finite}
2. [D → E] is ω-algebraic.

Morever ALG is a CCC (cartesian closed category) with “enough points”.

- Let i : D → E , j : E → D be continuous functions. We say that ι = 〈i, j〉 : D → E is an embedding-projection
pair (ep for short) if

j ◦ i = IdD
i ◦ j v IdE .

If 〈i, j〉 : D → E and 〈h, k〉 : E → E ′, then 〈i, j〉 ◦ 〈h, k〉 = 〈h ◦ i, j ◦ k〉.
ALGE is the category of ω-algebraic lattices and ep’s.
The next lemma on ep’s is very useful. Its proof can be recovered by using the results of Section 0-3 of [23] on

basic properties of Galois connections.

Lemma 2.2. Let D, E be alg’s and ι = 〈i, j〉 : D → E be an ep.

1. ∀x ∈ D, y ∈ E . i(x) v y ⇔ x v j (y).
j is the right adjoint of i and it is often denoted by i R .

2. ι is completely determined by the the embedding i , since j is forced to satisfy the following equality

j (y) =
⊔

{x | i(x) v y}.
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3. i is additive, injective and preserves compact elements.

- Let D be a lattice. An element p ∈ D is prime if for any Z ⊆ D, d v
⊔

Z implies that there exists z ∈ Z such that
d v z. Pr(D) denotes the subset of prime elements of D. As is obvious by definition, prime implies compact.
- D is a prime algebraic lattice (prime alg for short) if Pr(D) is countable and moreover for any x ∈ D,

x =
⊔

{p ∈ Pr(D) | p v x}.

- In a prime algebraic lattice, compact elements are finite joins of prime elements. If D is prime algebraic, then it is
ω-algebraic. A prime alg is always a distributive lattice.

Lemma 2.3. If D and E are prime alg’s, then

1. Pr([D → E]) = {d ⇒ e | d ∈ K (D), e ∈ Pr(E)}.
2. [D → E] is prime algebraic.

Lemma 2.4. Let D be a prime alg, E be an alg, and i− : Pr(D) → K (E) satisfy

(p-refl) ∀p, p′
∈ Pr(D). p ≤ p′

⇔ i−(p) ≤ i−(p′).

Then i− can be extended to an ep i : D → E by defining, for any x ∈ D,

i(x) =
⊔

{i−(p) | p ∈ Pr(D) & p v x}.

From now on we identify an ep ι = 〈i, i R
〉 with its embedding i .

3. Intersection type theories and filter models

In this section we recall the basic notions and results on intersection types theories and filter models.
Through the years, many definitions of intersection type theories have been proposed in the literature, following a

trend tending to strenghten the generality of definition (compare for instance the definition in [12] with [19]). Since
we focus on a specific intersection type theory, which is a variation on classical ones, we present a definition which is
similar to older ones in the literature. Essentially our presentation follows [16] (in that paper, intersection type theories
were called “extended abstract type structures”, see Definition 1.1).

Definition 3.1. 1. Let C a countable set of atoms containing Ω . An intersection type languages over C, denoted by
T = T(C) is defined by the following abstract syntax:

T = C | T → T | T ∩ T.

Capital letters A, B, . . . range over T.
2. An intersection type theory (ITT) over C, denoted by T (C) or simply T , is a set of statements including the

following axioms and closed under the following rules:

(refl) A ≤ A (Ωη) Ω ≤ Ω → Ω

(idem) A ≤ A ∩ A (mon)
A ≤ A′ B ≤ B ′

A ∩ B ≤ A′
∩ B ′

(inclL ) A ∩ B ≤ A (trans)
A ≤ B B ≤ C

A ≤ C

(inclR) A ∩ B ≤ B (η)
A′

≤ A B ≤ B ′

A → B ≤ A′
→ B ′

(Ω ) A ≤ Ω (→-∩) (A → B) ∩ (A → C) ≤ A → B ∩ C.

Moreover ≤ is required to be antisymmetric over C.

As mentioned, several different definitions of ITT’s have been proposed. In order to avoid confusion when
referring to the literature, we will call an ITT standard or not-standard according to whether or not it is captured
by Definition 3.1. Standard ITT’s are defined for instance in [7,8,12,16–18,20] for investigating a wide variety of
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topics related to the semantics of λ-calculus. Non-standard ITT’s are defined e.g. in the seminal papers [14] and [15],
in [2] and [3] for the study of lazy λ-calculus, in [21] and [25] in order to study properties of call-by-value.

We introduce some notation.
- Atoms will be ranged over by greek letters.
- B range over intersections of arrow types

⋂
i∈I (Ai → Bi ), which are not equivalent to Ω .

- Syntactical equality between types is denoted by ≡.
- Ω is called the top atom.
- We agree that ∩i∈∅ Ai is Ω .
- We will write A ∼ B when both A ≤ B and B ≤ A (so for instance A → (B ∩ C) ∼ (A → B) ∩ (A → C)).
- When A ∼ B we say that A and B are equivalent.
- From now on I, J, K will denote a finite set of indexes.
Associativity and commutativity of ∩ follows from above axioms and rules.
By applying (idem), (mon) and (trans), the following rule is derivable

(meet)
A ≤ B A ≤ C

A ≤ B ∩ C

(meet), along with the two (incl) rules, proves that intersection is the meet operation with respect to ≤.
Syntactical equality up to commutativity and associativity of ∩ is denoted by =. So A∩B = B∩A, A → (B∩C) ∼

(A → B) ∩ (A → C), but A → (B ∩ C) 6= (A → B) ∩ (A → C).
We give a useful technical lemma.

Lemma 3.2. Let T (C) be an ITT. For any I, J , Ai , Bi , A′

j , B ′

j ∈ T(C) (i ∈ I , j ∈ J ), it holds

1.
⋂

i∈I (Ai → Bi ) ≤ (
⋂

i∈I Ai ) → (
⋂

i∈I Bi )

2.
∀ j ∈ J.∃I ′

⊆ I. [A′

j ≤
⋂

i∈I ′ Ai &
⋂

i∈I ′ Bi ≤ B ′

j ] ⇒⋂
i∈I (Ai → Bi ) ≤

⋂
j∈J (A

′

j → B ′

j ).

Definition 3.3. Let T (C) be an ITT.

1. A filter is a set x ⊆ T(C) such that:
(a) Ω ∈ x
(b) A ≤ B and A ∈ x imply B ∈ x
(c) A ∈ x and B ∈ x imply A ∩ B ∈ x .

2. FltT is the set of filters over T , ordered by set-theoretic inclusion, and is called the filter structure over T .
3. If y ⊆ T(C), ⇑ y denotes the filter generated by y. If y = {A}, we write ⇑ A instead of ⇑ {A}. ⇑ A is called a

principal filter. Actually it coincides with ↑ A, the upper closure of A.
4. · : FltT × FltT → FltT is defined by

x · y = {B | ∃A ∈ y.A → B ∈ x}.

5. FT : FltT → [FltT → FltT ] and GT
: [FltT → FltT ] → FltT are introduced:

FT (x) = (y 7→ x · y)
GT ( f ) = ⇑ {A → B | B ∈ f (↑ A)}.

It is well-known (see [16]) that FltT is an ω-algebraic lattice: given X ⊆ FltT

(fil-sup)
⊔

X =↑

{ ⋂
1≤ j≤n

A j | n ∈ N,∀1 ≤ j ≤ n. A j ∈ x j ∈ X

}
,

Moreover x u y = x ∩ y, the bottom filter is ⇑ Ω , the top filter T(C). Compact elements in FltT are the principal
filters: they inherit the order ≤

op:

↑ A ⊆↑ B ⇔ B ≤ A

(we will use this equivalence quite often later on).
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·, FT and GT are continuous functions.
Given an ITT T , a notion of interpretation of λ-terms is introduced (see [16])1:

[[x]]
T
ρ = ρ(x)

[[M N ]]
T
ρ = (FT ([[M]]

T
ρ ))([[N ]]

T
ρ )

[[λx .M]]
T
ρ = GT (d 7→ [[M]]

T
ρ[x/d]

) (d ∈ FltT ).

Not every filter structure FltT gives rise to a lambda model 〈FltT , FT ,GT , [[ ]]〉. According to the definition of
λ-model of Hindley-Longo [24], a sufficient condition for obtaining a λ-model is that FT ◦ GT

= IdFltT .
This is guaranteed by the legality condition of [30].

Definition 3.4. We say that T (C) is legal, if for any I and Ai , Bi ,C, D ∈ T(C) (i ∈ I ), with D 6∼ Ω , we have:⋂
i∈I

(Ai → Bi ) ≤ C → D ⇒

⋂
i∈J

Bi ≤ D where J = {i ∈ I | C ≤ Ai }.

Next lemma is Theorem 2.13(iii) of [16], or a special case of Theorem 10.1.11 of [30].

Lemma 3.5. If T is legal, then FT ◦ GT
= IdFltT , hence 〈FltT , FT ,GT , [[ ]]〉 is a λ-model.

Intersection type theories are a powerful tool for synthesizing new λ-models or describing existing ones. Differently
from graph models, which are based on purely set-theoretic definitions (see e.g. [13,22], the flexibility of intersection
type theories relies mostly on using special purpose axioms that put into relation atoms with (intersection of) arrow
types. In order to reason in a clean way about it we introduce the following definition.

Definition 3.6. Let T (C) be an ITT. Let C− denote the atoms different from Ω .

1. An atom-arrow judgment for α ∈ C− is any judgment of the shape α ≤ B or B ≤ α (where B is an intersection of
arrow types not equivalent to Ω ).

2. α ∈ C− is called arrow-related if an atom-arrow judgment for α is derivable in T .
3. α ∈ C− is called arrow-equated if for some B, both α ≤ B and B ≤ α are derivable in T (that is, α ∼ B).

Note that, for α 6= β, it is not possible to have α ∼ B ∼ β, since this would contrast the antisymmetry of the
relation ≤ on atoms.

Now we come to the “regularity” condition (reg) generally respected in the literature, both for standard and non-
standard intersection type theories. In defining an ITT, special purpose axioms are always introduced in such a way to
satisfy the following restriction:

(reg)
either no atom in C− is arrow-related
or each atom in C− is arrow-equated.

Definition 3.7. We call regular any ITT T defined respecting (reg).

As far as the author could establish, all the intersection type theories defined in the literature are regular, with just
the exception of the intersection type theory of Definition 4.9 of [16].

As relevant examples of ITT’s defined according to (reg), and in view of the definition of our irregular ITT, we
consider the following two intersection type theories. Consider C = {Ω , φ} and the following axioms:

(sc) φ ∼ Ω → φ

(pa) φ ∼ φ → φ.

Let Tsc and Tpa be intersection type theories generated by (sc) and (pa) respectively. Then FltTsc is isomorphic to

Scott D∞ λ-model of [32], built starting from {⊥,>}, while FltTpa is isomorphic to Park λ-model of [28].
The application of (reg) guarantees a good categorical characterization of ITT’s as colimits in ALG (we will see it

in Section 4), but at the price of cutting off some intermediate options on the choice of axioms, which do not respect
(reg).

The next definition is an exemplary case of ITT’s defined without respecting (reg).

1 It coincides with the interpretation defined through the type assignment system, see [16].
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Definition 3.8. An ITT T is called irregular if there is an atom α 6= Ω such that α is arrow-related without being
arrow-equated. FltT is a irregular filter structure if T is irregular.

In the rest of the paper we consider an irregular version of the Park intersection type theory, generated by the axiom

(1/2-pa) φ ≤ φ → φ

Definition 3.9. We call T∗ the intersection type theory over C∗ = {Ω , φ} generated by (1/2-pa). We call FltT∗ 1/2
Park filter model (1/2-PA for short).

From now on we will write T∗ for T(C∗).
Note that T∗ differs from the ITT associated to the Park model for a small syntactic change: in defining T∗, we have

not considered the axiom φ → φ ≤ φ as the Park ITT does. Nevertheless the semantic consequences of this change
are relevant.

In particular, we will see the difficulties of capturing in ALG the categorical characterization of (1/2-PA), and how
to get the required characterization working in a suitable new category.

At present, we do not know that T∗ is irregular. This will be shown in Lemma 3.12. First we need some preliminary
results.

We characterize the types that are equivalent to the top type Ω .

Lemma 3.10. Let EΩ ⊆ T∗ be generated by the following abstract syntax:

EΩ = Ω | EΩ ∩ EΩ | A → EΩ .

Then

1. ↑ Ω = EΩ
2. for any A ∈ T∗ and E ∈ EΩ , A ∼ A ∩ E.

Proof. (1) By induction on the structure of types in EΩ , it follows Ω ≤ E for any E ∈ EΩ , hence EΩ ⊆↑ Ω . By
induction on derivation it follows that if E ∈ EΩ and E ≤ A, then A ∈ EΩ . Therefore, since Ω ∈ EΩ , it follows
EΩ ⊇⇑ Ω .

(2) Immediate from (1), applying (incl) and (meet). �

From now on, when we write a type of the shape
⋂

i∈I (Ai → Bi ) ∩ E , with E ∈ EΩ , it is understood that for any
i ∈ I , Bi /∈ EΩ . This is not restrictive. In fact, if Bi ′ ∈ EΩ , then the corresponding arrow type Ai ′ → Bi ′ is in EΩ too,
so we can read the type as

⋂
i∈I\{i ′}(Ai → Bi ) ∩ (E ∩ (Ai ′ → Bi ′)).

After Lemma 3.10(2), from now on we reason up to the equivalence A ∼ A ∩ E .

Lemma 3.11. If A ≤ φ ∩ B ∈ T∗, then A = φ ∩ A′, for some A′.

Proof. Immediate by induction on derivations. �

Note that for any type A ∈ T∗, either A = B ∩ φ, or A =
⋂

i∈I (Bi → Ci ) ∩ E , with E ∈ EΩ .
We can now prove that T∗ is irregular.

Lemma 3.12. T∗ is an irregular intersection type theory.

Proof. φ 6= Ω is obviously arrow-related by axiom (1/2-pa). On the other hand, it is not possible to have B ∼ φ for
some intersection of arrows B, since this would imply B ≤ φ. By Lemma 3.11 this is not possble. Therefore B ≤ φ is
not derivable. �

Although the topic is not central in the paper, we now investigate some properties of T∗ in relation to λ-calculus.
Next two lemmata are useful for proving that T∗ is legal.

Lemma 3.13. Let
⋂

i∈I (Ai → Bi )∩ E ≤ A′
∈ T∗, with E ∈ EΩ . Then there exists J , C j , D j and E ′

∈ EΩ such that
A′

=
⋂

j∈J (C j → D j ) ∩ E ′.

Proof. By induction on derivations. �
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Lemma 3.14. Let E1, E2 ∈ EΩ . Then⋂
i∈I

(Ai → Bi ) ∩ E1 ≤

⋂
j∈J

(Ci → D j ) ∩ E2 ∈ T∗ ⇔

∀ j ∈ J.∃I ′
⊆ I.C j ≤

⋂
i∈I ′

Ai &
⋂
i∈I ′

Bi ≤ D j .

Proof. (⇐) easy, by applying Lemma 3.2(1) and Lemma 3.10.
(⇒) by induction on derivations. The non-trivial step is the case of (trans). Suppose that the conclusion depends on
an application of (trans) to the two judgments

(i)
⋂
i∈I

(Ai → Bi ) ∩ E1 ≤ A′′

(ii) A′′
≤

⋂
j∈J

(C j → D j ) ∩ E2.

By Lemma 3.13, we have A′′
=

⋂
k∈K (A

′

k → B ′

k) ∩ E ′

1. Then we can apply the inductive hypothesis to (ii), and
derive that

∀ j ∈ J.∃K ′
⊆ K .

[
C j ≤

⋂
k∈K ′

A′

k &
⋂

k∈K ′

B ′

k ≤ D j

]
.

Then, applying induction to (i),

∀k ∈ K ′. ∃Ik ⊆ I.

[
A′

k ≤

⋂
i∈Ik

Ai &
⋂
i∈Ik

Bi ≤ B ′

k

]
.

Defining I ′
=

⋃
k∈K ′ Ik , we get

C j ≤

⋂
i∈I ′

Ai &
⋂
i∈I ′

Bi ≤ D j

which proves the thesis. �

Theorem 3.15. 1. T∗ is legal.
2. FltT∗ is a λ-model.

Proof. (1) Let A =
⋂

i∈I (Ai → Bi ) ≤ C → D. If D ∈ EΩ , it is sufficient to choose the set J of Definition 3.4 as ∅.
Otherwise, we have A =

⋂
i∈I ′(Ai → Bi ) ∩ E , where I ′

= {i ∈ I | Bi /∈ EΩ }, and E ∈ EΩ . As a consequence of
A ≤ C → D it follows

⋂
i∈I ′(Ai → Bi ) ∩ E ≤ (C → D) ∩ Ω . Applying Lemma 3.14 to this last judgment, there

exists J ⊆ I ′ such that C ≤
⋂

i∈J Ai and
⋂

i∈J Bi ≤ D, proving that T∗ is legal.
(2) By (1) and Lemma 3.5, we get that FltT∗ is a λ-model. �

Lemma 3.16. Let φ ≤ A ≤ φ → φ. Then A ≤
⋂

i∈I (Bi → Ci ) if and only if for any i ∈ I , Bi ≤ φ and φ ≤ Ci .

Proof. By induction on derivations. The non-trivial step is when the (trans) rule is applied. Suppose that the derivation
ends with an application of (trans) whose premises are (a) A ≤ A′ and (b) A′

≤
⋂

i∈I (Bi → Ci ). There are
two cases. If A′ has the shape D ∩ φ, then A′

∼ φ, and the thesis follows by induction applied to (b). Otherwise,
A′

=
⋂

j∈J (B
′

j → C ′

j ) ∩ E , with E ∈ EΩ . By Lemma 3.14, it follows that for any i ∈ I , there exists Ji ⊆ J such
that

(c) Bi ≤

⋂
j∈Ji

B ′

j &
⋂
j∈Ji

C ′

j ≤ Ci .

By induction on (a), we get B ′

j ≤ φ and φ ≤ C ′

j , for any j ∈ J . This, along with (c) and (trans), implies Bi ≤ φ and
φ ≤ Ci , for any i ∈ I . �
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Fig. 1. i0 : D0 → [D0 → D0] induced by Tpa.

Fig. 2. i0 : D0 → D? induced by T∗.

4. Why T ∗ does not fit to ALG

This section contains a digression for explaining how the correspondence between ITT’s and colimits in ALG
works in the regular case, and which are the difficulties in finding the correspondence in the irregular case of T∗.

First we introduce some notation. Let ρ be a triple 〈F, D0, i0〉, where F : ALG → ALG is a locally continuous
endofunctor, D0 an initial domain, i0 : D0 → F(D0) an initial embedding. We define ∆(ρ) as the ω-chain

D0
i0
→ F(D0)

F(i0)
→ F2(D0)

F2(i0)
→ F3(D0) . . .

colim(ρ) denotes the colimit of ∆(ρ).
Given a regular ITT T , quite often it is easy to recover, by the Stone duality paradigm of [1], a colimit

characterization of FltT of the shape

FltT ' colim(ρT )

for a suitable triple ρT . The way for determine ρT amounts to define D0 as {↑
⋂

i∈I αi | αi ∈ C}, ordered by set-
theoretic inclusion; the functor F is built using the exponential functor; the embedding i0 depends on the judgments
that arrow-equate atoms (see e.g. [1,5]), according to the rule

i0(↑ α) =
⊔

i∈I (↑ βi ⇒↑ γi ) ⇔ α ∼

⋂
i∈I

(βi → γi ).

As an example, consider the Park ITT Tpa over {Ω , φ}, already introduced in Section 3. Then the triple ρpa consists
of: the two-point lattice, the functor F(X) = [X → X ], the embedding i0(d) = d ⇒ d, as pictured in Fig. 1. This
corresponds exactly to the starting point of the ω-chain whose colimit is the Park model of [28].

Consider now T∗. We would like to characterize T∗ as above, by finding a suitable ρT∗
such that

(∗-ch) FltT∗ ' colim(ρT∗
).

We can easily translate the definition of T∗ into an embedding, as done in Fig. 2. Axioms (Ω ) and (Ωη) force i0(↑ Ω)
to be the constant bottom function ↑ Ω ⇒↑ Ω . But as a consequence of the irregularity of T∗, ↑ φ is not identified via
the embedding to any function. As a consequence, what is missing is the categorical interpretation of the domain on
the right in Fig. 2 (called at the moment D?): the axiom φ ≤ φ → φ leads to the lifting of the point ↑ φ above the step
function ↑ φ ⇒↑ φ. The author is unaware if there is a functor over ALG which can perform the action required for
building D? out of D0, and moreover allows recovery of colimit characterization of FltT∗ . The solution proposed in
the next section seeks to find an alternative category, where a functor that captures the construction of D? does exist.
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5. The category ALG∗

In this section we introduce the category ALG∗ that we will use in order to solve the problem related to the
categorical characterization of T∗. ALG∗ is defined as a variation of the category ALG: objects are chosen as ω-
algebraic lattices 〈D, δ〉, where the special point δ is in K (D). The notion of morphism is relaxed with respect to the
preservation of special points. We will not require, given a morphism f : 〈D, δ〉 → 〈E, η〉, (ht) f (δ) = η, since
this condition would forbid the existence of the exponential functor (needed for defining the fundamental domain
equation in the paper). So we will just require on morphisms, the weaker condition η v f (δ) (however (ht) will hold
for embedding-projection pairs).

Definition 5.1. 1. A pointed alg (p-alg) is a pair 〈D, δ〉 where D is an object in ALG and δ ∈ K (D). δ is called the
special element. Quite often we will write simply D instead of 〈D, δ〉.

2. Let 〈D, δ〉 and 〈E, η〉 be two p-alg’s. We say that a monotone function f : D → E is tidy if for any x ∈ D,
η v f (δ). We say that f is hypertidy if the stronger condition f (δ) = η holds.

3. ALG∗ consists of p-alg’s and tidy continuous functions,
4. ALGE

∗ consists of p-alg’s and ep’s 〈i, j〉 such that both i and j are tidy.

Lemma 5.2. Given 〈i, j〉 : 〈D, δ〉 → 〈E, η〉 in ALGE
∗ , then i and j are hypertidy.

Proof. From tidiness of j we have δ v j (η). This implies i(δ) v i( j (η)) v η. Moreover η v i(δ), since i is tidy,
so it must hold i(δ) = η, proving that i is hypertidy. As to j , by above j (η) = j (i(δ)), and the thesis follows from
j ◦ i = IdD . �

In view of the future characterization of FltT∗ , we introduce ALGE⊥
∗ , the full subcategory of ALGE

∗ whose objects
are p-alg’s 〈D, δ〉 with δ 6= ⊥. The interest of ALGE⊥

∗ is based on the fact that, differently from ALGE
∗ , it has an

initial object.

Corollary 5.3. ALGE⊥
∗ has as initial object Ξ0 = 〈{⊥, ξ0}, ξ0〉.

Proof. let i : Ξ0 → 〈E, η〉. i(⊥) = ⊥, since i is additive by Lemma 2.2(3). Moreover by previous lemma it holds
i(ξ0) = η. So i is uniquely determined. Its right adjoint is i R

= (η ⇒ ξ0). �

The next lemma shows a relevant property of ALG∗.

Lemma 5.4. ALG∗ is a concrete CCC.

Proof. ALG∗ is concrete (see [4], Definition 5.1) since the forgetful functor U : ALG∗ → Set is trivially faithful.
The terminal object is the one-point pointed lattice 1 = 〈{?}, ?〉. Let 〈D, δ〉, 〈E, η〉 and 〈C, γ 〉 be p-alg’s. The cartesian
product 〈D, δ〉 × 〈E, η〉 is 〈D × E, (δ, η)〉, with the usual projections (details are omitted). As to the exponential E D ,
we take 〈[D → E], δ ⇒ η〉 (we recall that [D → E] contains all the continuous functions, also the non-tidy ones).
The proof of continuity of the functions below is as in Section 2 of [29], so we just prove tidiness.
Define applyD,C : 〈D × [D → C], (δ, δ ⇒ γ )〉 → 〈C, γ 〉 by (we omit subscripts)

apply(d, f ) = f (d)

apply is hypertidy, since

apply(δ, δ ⇒ γ ) = (δ ⇒ γ )(δ)

= γ.

Given a tidy continuous function f : 〈D × E, (δ, η)〉 → 〈C, γ 〉, define curry( f ) : 〈E, η〉 → 〈[D → C], δ ⇒ γ 〉 by

∀y ∈ E . curry( f )(y) = (x ∈ D 7→ f (x, y))

curry( f ) is tidy. In fact, for any x ∈ D, such that x w δ, we have

(curry( f )(η))(x) = f (x, η)
w γ since f is tidy
= (δ ⇒ γ )(x).
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Therefore curry( f )(η) w δ ⇒ γ , proving that curry is tidy. Finally, curry( f ) is the unique continuous function such
that apply ◦ (Id × curry( f )) = f . �

The exponential functor →∗ : ALGop
∗ ×ALG∗ → ALG∗ is explicitly defined as follows (as usual we use the infix

notation for it):
- on objects: given p-alg’s D = 〈D, δ〉 and E = 〈E, η〉,

(D→∗E) = 〈[D → E], δ ⇒ η〉

- on morphisms: let f ∈ ALG∗(D′, D), g ∈ ALG∗(E, E ′). ( f →∗g) : [D → E] → [D′
→ E ′

] is defined by

∀u ∈ [D → E] ( f →∗g)(u) = g ◦ u ◦ f

( f →∗g) is a morphism in ALG∗. It is continuous (see e.g. Section 2 of [29]), and tidy, as checked directly in the
following lemma.

Lemma 5.5. Let f : 〈D′, δ′〉 → 〈D, δ〉 and g : 〈E, η〉 → 〈E ′, η′
〉 be tidy continuous functions. Then ( f →∗g) is tidy.

Proof. We have to prove that

(δ′ ⇒ η′) v g ◦ (δ ⇒ η) ◦ . f

Since f is tidy, we have δ v f (δ′), so η = (δ ⇒ η)( f (δ′)). Therefore

true ⇔ η′
v g(η) since g is tidy

⇔ η′
v g((δ ⇒ η)( f (δ′))) by above

⇔ (δ′ ⇒ η′) v g ◦ (δ ⇒ η) ◦ f. �

Now a short investigation on the relationship between ALG and ALG∗.

Lemma 5.6. Let U : ALG∗ → ALG be the forgetful functor. Then U has as right adjoint the full and faithful functor
I : ALG → ALG∗ whose action, for any D object and f morphism in ALG, is:

I(D) = 〈D,⊥〉

I( f ) = f.

Proof. LetD = 〈D, δ〉. Note that homALG∗
(D, 〈E,⊥〉) = homALG(D, E), since the tidiness condition trivially holds

for any continuous function from D to E , when the special point in E is ⊥. As a consequence I is well-defined on
morphisms, full and faithful, and the identity

homALG∗
(D, I(E)) = homALG(U(D), E)

is the natural isomorphism between homALG∗
( , I( )) and homALG(U( ), ). �

For sake of completeness, we end this section by investigating the relation between ALG∗ and λ-models.
An object X in a CCC is reflexive if there exists a pair of morphisms Φ : X → X X and Ψ : X X

→ X such that

Φ ◦ Ψ = IdX X

(we use the standard notation [X → X ] E X when X is reflexive).
Note that, although it is a CCC, ALG∗ has not “enough points”, since homALG∗

(1, 〈D, δ〉) contains just those
functions which send the unique point ? ∈ 1 to some point above δ, so covering just ↑ δ, which in general is a proper
subset of D (unless δ = ⊥). For instance, consider Ξ0 and the two endofunctions constξ0 , IdΞ0 : Ξ0 → Ξ0; they are
different, since constξ0(⊥) = ξ0 6= ⊥ = IdΞ0(⊥). But the unique morphism m : 1 → D is m(?) = ξ0, which does
not allow to discriminate constξ0 from IdΞ0 , since constξ0 ◦ m = IdΞ0 ◦ m.

As a consequence, the classical result (see e.g. [9], Theorem 2.11) which connects CCC to λ-models, namely

“Any reflexive object in a CCC, which has “enough points”, is a λ-model”

does not apply to the case of ALG∗. We can easily prove in another way that reflexive objects in ALG∗ are λ-models.
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Theorem 5.7. Any reflexive object D = 〈D, δ〉 in ALG∗ is a λ-model.

Proof. If D is reflexive, there are morphisms in ALG∗, Φ : D → DD and Ψ : DD → D, such that Φ ◦ Ψ = IdDD .
By Lemma 5.4, DD is 〈[D → D], δ ⇒ δ〉; therefore, by definition of morphism in ALG∗, we have that
Φ ∈ homALG(D, [D → D]), Ψ ∈ homALG([D → D], D), with Φ ◦ Ψ = IdDD , hence D is a reflexive object
in ALG. Since this last category is a CCC with enough points, we get that D, hence D, is a λ-model. �

6. The endofunctor A∗ over ALG∗

Given a category C we say that T is a functor over C if T : (Cop)m ×Cn
→ C, for some m, n ∈ N. In this section we

introduce the endofunctor A∗ over ALG∗, which adds to a lattice a new compact point just above the special element.
This functor will be crucial for the construction of the domain D? and for the characterization (∗-ch).

Let 〈D, δ〉 be a p-alg. We define

A(D) = D ∪ {(0, x) | x w δ}.

The element (0, δ) is shorlty written ξD . A(D) is ordered as follows:

v v z ⇔

v vD z if v, z ∈ D
v vD y if v ∈ D, z = (0, y)
x vD y if v = (0, x), z = (0, y).

In order to characterize sups in A(D), we introduce the following notation. Given Z ⊆ A(D), let

Z (1) = Z ∩ D;

Z (2) = {x ∈↑ δ | (0, x) ∈ Z}.

It easy to check that

(
∗-

⊔) ⊔
Z =

{⊔D Z if Z ⊆ D
(0,

⊔D
(Z (1) ∪ Z (2)) otherwise

where the sup
⊔

is taken in A(D), while
⊔D is taken in D. Applying (∗-

⊔
) at the binary case, we have:(

∗-
⊔

-bin
)

∀x ∈ D.x w δ ⇒ ξD t x = (0, x).

Finally note that

(
∗-

⊔
-dir

) Z ⊆ D directed and Z (2) non-empty imply

Z (2) directed and
⊔

Z =
⊔

{(0, y) | y ∈ Z (2)} =

(
0,

⊔D Z (2)
)
.

Proof of next lemma is omitted. It follows easily from (∗-
⊔

).

Lemma 6.1. 1. For any p-alg 〈D, δ〉, A(D) is an ω-algebraic lattice, whose compact elements are

K (A(D)) = K (D) ∪ {(0, d) | d ∈ K (D)}.

2. The set-theoretic inclusion D ⊆ A(D) is an embedding.
3. If moreover D is prime algebraic, then so it A(D). In such a case we have

Pr(A(D)) = Pr(D) ∪ {ξD}.

Definition 6.2. Given a p-alg D = 〈D, δ〉, A∗(D) is defined as 〈A(D), ξD〉. By Lemma 6.1 A∗(D) in an object in
ALG∗.

We now extend the action of A∗ on morphisms.
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Lemma 6.3. Let D = 〈D, δ〉 and E = 〈E, η〉 be p-alg’s, and f : 〈D, δ〉 → 〈E, η〉 be a tidy continuous function. For
any z ∈ A∗(D), define

(??) A∗( f )(z) =

{
f (z) if z ∈ D
(0, f (y)) if z = (0, y).

Then A∗( f ) : A∗(D) → A∗(E) is a tidy continuous function.

Proof. First of all note that if z = (0, y), then f (z) = (0, f (y)) is an element of A∗(E). In fact, in such a case y w δ,
since z ∈ A∗(D). Then it follows f (y) w η, since f is tidy, hence f (z) ∈ A∗(E).

Note moreover that by definition, A∗( f ) satisfies the following commutativity properties with respect to the
operation ( )(1) and ( )(2): for any Z ⊆ A∗(D)

(a) (A∗( f )(Z))(1) = f (Z (1))
(b) (A∗( f )(Z))(2) = { f (y) | y ∈ Z (2)}.

A∗( f ) is tidy: by definition of A∗, it follows immediately ξE v A∗( f )(ξD). A∗( f ) is monotone. Let v, z ∈

A∗(D), with v v z. There are three possible cases:
- v vD z. In such a case A∗( f )(v) = f (v) v f (z) = A∗( f )(z).
- v ∈ D, z = (0, y) (with y w δ), and v vD y. Then

A∗( f )(v) = f (v)
v f (y) since f is monotone and vD ⊆ v

v (0, f (y))
= A∗( f )(z)

- v = (0, x), z = (0, y), and x vD y. In this case we have

A∗( f )(v) = (0, f (x))
v (0, f (y))
= A∗( f )(z)

A∗( f ) is continuous. In fact, let Z any directed set in A∗(D). If Z (2) is empty, then

A∗( f )
(⊔

Z
)

= A∗( f )
(⊔

Z (1)
)

= f
(⊔D Z (1)

)
=

⊔D
{ f (z) | z ∈ Z (1)} since f is continuous

=
⊔

{A∗( f )(z) | z ∈ Z (1)} since Z (1) ⊆ D
=

⊔
{A∗( f )(z) | z ∈ Z}.

If Z (2) is non-empty, then

A∗( f )
(⊔

Z
)

= A∗( f )
(

0,
⊔D Z (2)

)
by

(
∗-

⊔
-dir

)
=

(
0, f

(⊔D Z (2)
))

by definition of A∗( f )

=

(
0,

⊔D
{ f (y) | y ∈ Z (2)}

)
since f is continuous

=
⊔

{(0, f (y)) | y ∈ Z (2)} by
(
∗-

⊔)
=

⊔
{0} × (A∗( f )(Z))(2) by (b)

=

(
0,

⊔D
(A∗( f )(Z)(2))

)
=

⊔
(A∗( f )(Z)) by

(
∗-

⊔
-dir

)
.

The proof is complete. �

From previous lemma and the routine check that A∗ commutes with compositions and preserves identities, it
follows

Proposition 6.4. A∗ : ALG∗ → ALG∗ is a functor.
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7. Domain equations in ALG∗

In this section we study the existence of solutions of domain equation X ' F(X), where F is an endofunctor over
ALG∗.

Once we have shown how to solve domain equations, we can concentrate on defining the right equation for
describing 1/2-PA.

For all the categorical notions involved in this section we refer to [34]. We just recall the definition of T E
:

(ALGE
∗ )

m+n
→ ALGE

∗ starting from T : (ALGop
∗ )

m
× ALGn

∗ → ALG∗. Let D1 . . . Dm , E1 . . . En , be p-alg’s, and
is : Ds → D′

s , hr : Er → E ′
r be ep’s, for any 1 ≤ s ≤ m, 1 ≤ r ≤ n. Then

T E(D1, . . . , Dm, E1, . . . , En) = T (D1, . . . , Dm, E1, . . . , En);

T E(i1, . . . , im, h1, . . . , hn) = 〈T (i R
1 , . . . , i R

m , h1, . . . , hn), T (i1, . . . , im, h R
1 , . . . , h R

n )〉

For instance, in the case of →∗, (i→E
∗ h) = 〈(i R

→∗h), (i→∗h R)〉.

Lemma 7.1. 1. ALG∗ is an O-category.
2. In ALG∗ every ω-chain of embeddings has an O-colimit, i.e. a universal cocone 〈A, µn〉n such that

(O-col)
⊔

n µn ◦ µR
n = IdA.

Proof. (1) From e.g. Section 4 of [29], we know that:
- every ascending chain of (tidy) continuous functions is continuous;
- composition of continuous functions is continuous.
In order to conclude that ALG∗ is an O-category it remains to show that an ascending chain of tidy continuous
functions is tidy, which is trivial.

(2) Consider an ω-chain of embeddings, Γ = 〈〈Dn, δn〉, in〉n , where in : Dn → Dn+1. Following the Scott
construction of direct limit (see e.g. Lemma 4, Section 4, of [29]), we define DΓ ⊆ Πn Dn by

DΓ = {〈xn〉n | ∀n.xn ∈ Dn & i R
n (xn+1) = xn}

DΓ is a alg with

K (DΓ ) = {〈inm(p)〉m | p ∈ K (Dn)}

where inm : Dn → Dm is defined as im−1 ◦ . . . in if n < m, as i R
n−1 ◦ · · · ◦ i R

m if n > m, and as IdDn if n = m.
We now have to transform DΓ into a p-alg, by choosing a special element: we select δΓ = 〈δn〉n . δΓ is in DΓ ,

since in and i R
n are hypertidy by Lemma 5.2, so i R

n (δn+1) = δn . We make DΓ a cocone for Γ in the usual way, by
defining the tidy ep’s αn : Dn → DΓ :

∀x ∈ Dn . αn(x) = 〈inm(xn)〉m

∀〈xm〉m ∈ DΓ . α
R
n (〈xm〉m) = xn .

(O-col) holds for DΓ , exactly with the same proof of Lemma 4, Section 4 of [29]. �

From point 2 of the previous lemma, and Theorem 2 of [34], it follows that ALG∗ locally determines colimits of
ω-chain of embeddings 〈in : Dn → Dn+1〉n (see Definition 8 of [34]). So we have

Theorem 7.2. Let T be a locally continuous functor over ALG∗. Then

1. T E is ω-continuous.
2. The domain equation X ' T (X) has solution in ALG∗.

Proof. (1) It follows immediately from Theorem 3 of [34].
(2) X can be chosen as the colimit of ∆(〈T, D0, i0〉) (for the proof, see e.g. Section 2 of [34]). �

Now we concentrate on the two functors A∗ and →∗, and will prove that they are locally continuous.

Proposition 7.3. 1. →∗ is locally continuous.
2. A∗ is locally continuous.
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Fig. 3. The unique embedding from Ξ0 to G∗(Ξ0).

Proof. (1) →∗ is locally continuous by exactly the same proof presented after Definition 4, Section 4, of [29].
(2) A∗ is locally monotonic. If f, g ∈ ALG∗(D, E) with f v g, then A∗( f ) v A∗(g) follows immediately from

(??) of Lemma 6.3. Let 〈 fn〉n be an ascending chain of morphisms fn : D → E . Let z ∈ A∗(D). There are two cases.
If z ∈ D, then

A∗

(⊔
n( fn)

)
(z) =

(⊔
n fn

)
(z)

=
⊔D

n fn(z)
=

⊔D
n A∗( fn)(z)

=
(⊔

n A∗( fn)
)
(z)

If z = (0, y), we have

A∗

(⊔
n fn

)
(z) = A∗

(⊔
n fn

)
(0, y)

=
(
0,

(⊔
n fn

)
(y)

)
by (??)

=

(
0,

⊔D
n fn(y)

)
=

⊔
n(0, fn(y)) by

(
∗-

⊔)
=

⊔
n A∗( fn)(0, y)

=
(⊔

n A∗( fn)
)
(0, y)

The proof is so complete. �

By Theorem 7.3 we get immediately

Theorem 7.4. AE
∗ and →

E
∗ are ω-continuous functors.

Consider the functor F̃∗ = →∗ ◦ D : ALG∗ → ALG∗, where D : ALG∗ → ALG∗ × ALG∗ is the diagonal
functor, namely

F̃∗(〈D, δ〉) = 〈[D → D], δ ⇒ δ〉

F̃∗(〈i, i R
〉) = 〈i R

→ i, i → i R
〉

F̃∗ is locally continuous, since it is obtained as composition of locally continuous functors.

Theorem 7.5. Let G∗ = A∗ ◦ F̃∗ : ALG∗ → ALG∗. Then the equation

(♦) X ' G∗(X)

has solution in ALG∗.

Proof. G∗ is locally continuous since it is a composition of locally continuous functors. The conclusion follows from
Theorem 7.2(2). �

Note the action of G∗ on Ξ0. By applying first F̃∗ we obtain the domain pictured in the middle of Fig. 3; then by
applying A∗ we obtain the domain G∗(Ξ0) shown in the right of the figure. The unique embedding possible from Ξ0
to G∗ in ALGE

∗ is obtained by composing the two pairs of arrows in the figure.
One can compare Fig. 2 with Fig. 3 in order to see that G∗ performs exactly the action required for building D? out

of Ξ0.
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Relying on G∗, we can introduce the colimit which, as we will prove, satisfies (∗-ch), so providing the required
characterization of 1/2-PA.

Let ρ∗ be the triple 〈G∗,Ξ0, i0〉 of Fig. 3, that is i0 : Ξ0 → G∗(Ξ0) is the unique morphism given by

i0(⊥) = ⊥

i0(ξ0) = ξ1.

Definition 7.6. Let A = colim(ρ∗) be the solution of equation (♦). We call τ the mediating isomorphism from G∗(A)
to A.

Theorem 7.7. 〈A, τ 〉 is the initial G∗-algebra in ALGE⊥
∗ .

Proof. G∗ is ω-continuous over ALGE⊥
∗ , by the same proof by which it is ω-continuous over ALGE

∗ . Moreover, by
Lemma 5.3, Ξ0 is the initial object of ALGE⊥

∗ . The conclusion follows from Lemma 2 of [34]. �

Note that by Lemma 6.1(2), [A → A] embeds into A∗(A →∗ A). Since this last domain is exactly G∗(A) which is
isomorphic to A, we conclude, using Theorem 5.7

Theorem 7.8. A is a reflexive object, hence a λ-model.

In view of Theorems 8.10 and 7.8 can be viewed as the semantic counterpart of Theorem 3.15(2).

8. Characterizion of FltT∗

This section contains the main result of the paper, namely the domain-theoretic characterization of FltT∗ .
Before that, we have to pave the way with some technical results on T∗.

Definition 8.1. The subset P ⊆ T∗ of prime types2 is defined by the following abstract syntax:

P = φ | (P ∩ · · · ∩ P) → P

(intersection may be empty).

Prime types are ranged over by P, Q, R.
We define two functions: the prime decomposition of types dec : T∗ → Pfin(P) and the canonical forms of types

( )] : T∗ → T∗. These are defined by mutual induction on the construction of types.

A] =

⋂
{P | P ∈ dec(A)}

dec(Ω) = ∅

dec(φ) = {φ}

dec(A ∩ B) = dec(A) ∪ dec(B)
dec(A → B) = {A] → P | P ∈ dec(B)}

By induction on the construction of A, it follows that dec(A) is a finite set.

Lemma 8.2. For any A ∈ T∗ we have:

1. dec(A) ⊆ P
2. A ∼ A].

Proof. (1) By induction on the definition of dec. We give the proof for arrow types A → B: A] is by induction an
intersection of prime types, so A] → P , for P ∈ dec(B), is a prime type.

2 Prime types are more commonly known with the name of strict types, see e.g. [10] and are studied in [6].
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(2) By induction on the construction of the type. For Ω and φ the thesis is trivial. For intersections A ∩ B, it
follows from definition of ( )] that (A ∩ B)] ≤ A], and (A ∩ B)] ≤ B]. By induction A] ∼ A and B] ∼ B, hence
(A ∩ B)] ≤ A ∩ B. With a similar argument, we get A ∩ B ≤ (A ∩ B)]. Finally, for arrow types:

(A → B)] ∼

⋂
{A] → P | P ∈ dec(B)}

∼

⋂
{A → P | P ∈ dec(B)} by induction and (η)

∼ A →

(⋂
{P | P ∈ dec(B)}

)
by Lemma 3.2(1)

∼ A → B] by definition of ]
∼ A → B by induction �

Lemma 8.3. Let A, B ∈ T∗. A ≤ B if and only if for any B ′
∈ dec(B) there exists A′

∈ dec(A) such that A′
≤ B ′.

Proof. By induction on the derivation of the judgment. �

Lemmas 8.2 and 8.3 demonstrates that FltT∗ is a prime alg.

Proposition 8.4. FltT∗ is a prime alg, with

Pr(FltT∗) = {↑ P | P ∈ P}.

Proof. First of all, each ↑ P , with P ∈ P is prime element. In fact, let ↑ P ⊆
⊔

i∈I xi . Then, by (fil-sup), there exists
a finite subset I ⊆ I, and, for any i ∈ I , types Ai ∈ xi , such that

⋂
i∈I Ai ≤ P . Let B =

⋂
i∈I Ai . By Lemma 8.3,

there exists A′
∈ dec(B) such that A′

≤ P . Since dec(B) =
⋃

i∈I dec(Ai ), it follows that there exists i ′ ∈ I such that
A′

∈ dec(Ai ′). Since Ai ′ ≤ A′, we get Ai ′ ≤ P by (trans), hence P ∈ xi ′ , proving that ↑ P is prime.
On the other hand, for any ↑ A, we have

↑ A = ↑ A] by Lemma 8.2(2)
= ↑

⋂
{P | P ∈ dec(A)} by definition of ( )]

=
⊔

{↑ P | P ∈ dec(A)} by (fil-sup).

If ↑ A is prime then, by the above, there exists P ∈ dec(A) such that ↑ A =↑ P . By Lemma 8.2(1) we have P ∈ P.
So we have proved that every prime element in FltT∗ has the shape ↑ P , for some P ∈ P.
Finally we prove that for any filter x , x =

⊔
{↑ P | P ∈ x}. (⊇) is trivial. As concerns (⊆), let A ∈ x . By Lemma 8.2

(use both points of it), it follows that A ∼
⋂

i∈I Pi for suitable prime types Pi , which implies both A ∈
⊔

i∈I ↑ Pi
(by (fil-sup)) and Pi ∈ x (since x is upward closed). Therefore it follows A ∈

⊔
{↑ P | P ∈ x}. �

The fact that FltT∗ is a prime alg will allow us to use Lemma 2.4 for defining ep’s.
We now turn FltT∗ into a prime p-alg.

Definition 8.5. As an object of ALG∗, we define FltT∗ = 〈FltT∗ ,↑ φ〉.

We are now in position for turning FltT∗ into a G∗-algebra in ALGE
∗ , by defining a suitable morphism θ :

G∗(FltT∗) → FltT∗ .
In what follows, we write ξ instead of ξ

[FltT∗→FltT∗ ]
. By Lemma 2.3 and Lemma 6.1(3), we have

Pr(G∗(FltT∗)) = {ξ} ∪ {↑ A ⇒↑ P | A ∈ T(C), P ∈ P}.

In order to define θ , first we define θ−
: Pr(G∗(FltT∗)) → Pr(FltT∗), and show that it satisfies the condition (p-refl)

of Lemma 2.4. Then we will define its extension θ . We define

θ−(ξ) = ↑ φ

θ−(↑ A ⇒↑ P) = ↑ (A → P).

Lemma 8.6. θ−
: Pr(G∗(FltT∗)) → Pr(FltT∗) satisfies (p-refl).
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Proof. We prove that θ− is monotone. If ↑ A ⇒↑ P v↑ A′
⇒↑ P ′, then [↑ A′

⊆↑ A and ↑ P ⊆↑ P ′], which is
equivalent to [A ≤ A′ and P ′

≤ P]. By rule (η), we have A′
→ P ′

≤ A → P , which proves monotonicity in this
case. If ↑ A ⇒↑ P v ξ , then it is the case ↑ A ⇒↑ P v↑ φ ⇒↑ φ (which is the special element in [FltT∗ → FltT∗ ]).
This implies [↑ φ ⊆↑ A and ↑ P ⊆↑ φ] which is equivalent to [A ≤ φ and φ ≤ P]. By applying rule (η) we have
φ → φ ≤ A → P , and by (1/2-Pa) and (trans) we get φ ≤ A → P , which implies monotonicity of θ− also in this
case.

Finally we prove that θ− reflects order: if θ−(v) ⊆ θ−(z), then v v z. Let v, z ∈ Pr(FltT∗) and let θ−(v) ⊆ θ−(z).
If v =↑ A ⇒↑ P and z =↑ A′

⇒↑ P ′, then by definition of θ− it follows ↑ (A → P) ⊆↑ (A′
→ P ′), which is

equivalent to A′
→ P ′

≤ A → P . Since T∗ is legal, we have [A ≤ A′ and P ′
≤ P]. This is equivalent to [↑ A′

⊆↑ A
and ↑ P ⊆↑ P ′], which imples ↑ A ⇒↑ P v↑ A′

⇒↑ P ′, that is v v z.
The other case is v =↑ A ⇒↑ P and z = ξ . In such a case θ−(v) ⊆ θ−(z) corresponds to ↑ (A → P) ⊆↑ φ, that is
φ ≤ (A → P). By Lemma 3.16 we have that [A ≤ φ and φ ≤ P], which implies ↑ A ⇒↑ P v↑ φ ⇒↑ φ. Since
ξ w↑ φ ⇒↑ φ, we get ↑ A ⇒↑ P v ξ , that is v v z. �

We can now define θ .

Lemma 8.7. Define θ : G∗(FltT∗) → FltT∗ by

θ(x) =
⋃

{θ−(p) | p ∈ Pr(G∗(FltT∗)) & p v x}

θ induces an ep 〈θ, θ R
〉 : G∗(FltT∗) → FltT∗ .

Proof. By Lemma 8.6, θ− satisfies (p-refl). Therefore we can apply Lemma 2.4 and conclude that the extension θ of
θ− is an ep. �

Proposition 8.8. 〈FltT∗ , θ〉 is a G∗-algebra in ALGE
∗ .

Proof. After Lemma 8.7, in order to prove that θ is a morphism in ALGE
∗ , we are left to show that it is hypertidy. This

follows from the definition of θ , since θ(ξ) = θ−(ξ) =↑ φ. �

Before giving the the semantic characterization of FltT∗ , we recall that a morphism of G∗-algebras µ : G∗(C) → C
and ν : G∗(D) → D is a ep i : C → D such that

ν ◦ G∗(i) = i ◦ µ.

We will strengthen Proposition 8.8 and show that FltT∗ is the initial G∗-algebra.

Theorem 8.9. 〈FltT∗ , θ〉 is an initial G∗-algebra in ALGE⊥
∗ .

Proof. Let B = 〈B, β〉 be a p-alg with β 6= ⊥, and let ψ : G∗(B) → B be a G∗-algebra in ALGE⊥
∗ (hence ψ is an ep

and satisfies conditions of Lemma 2.2(3)). In order to define ρ : FltT∗ → B, we first define ρ−
: Pr(FltT∗) → K (B),

using the characterization of prime elements given in Proposition 8.4. We proceed by induction on the number of
arrows in the type P ∈ P:

ρ−(↑ φ) = β

ρ−(↑ (A → P)) = ψ(ρ−(↑ A) ⇒ ρ−(↑ P))

where ρ−(↑ A) =
⊔

{ρ−(↑ Q) | Q ∈ dec(A)}.
We now prove that ρ− is monotone. Let ↑ R1 ⊆↑ R2, with R1, R2 ∈ P. We will prove that ρ−(↑ R1) v ρ−(↑ R2)

by induction on the number n of arrows in R1. If n = 0, we are in the trivial case R1 ≡ R2 ≡ φ. Otherwise we have
R1 ≡ A → P and two cases are possible.
- R2 = φ. In such a case, by Lemma 3.16, we have A ≤ φ and φ ≤ P . By Lemma 3.11, it follows that φ ∈ dec(A),
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hence (a) ρ−(↑ φ) v ρ−(↑ A). From φ ≤ P we derive by induction (b) ρ−(↑ P) v ρ−(↑ φ). From (a) and (b) it
follows (c) ρ−(↑ A) ⇒ ρ−(↑ P) v ρ−(↑ φ) ⇒ ρ−(↑ φ). We have

ρ−(↑ (A → P)) = ψ(ρ−(↑ A) ⇒ ρ−(↑ P))
v ψ(ρ−(↑ φ) ⇒ ρ−(↑ φ)) by (c), since ψ is monotone
= ψ(β ⇒ β)

v ψ(ξ[B→B])

= β since ψ is hypertidy
= ρ−(↑ φ)

- R2 = A′
→ P ′. In such a case, ↑ R1 ⊆↑ R2 implies, by Lemma 3.15(1), A ≤ A′ and P ′

≤ P . By Lemma 8.3, for
any Q′

∈ dec(A′), there exists Q ∈ dec(A) such that Q ≤ Q′. By induction we have: for any Q′
∈ dec(A′), there

exists Q ∈ dec(A) such that ρ−(↑ Q′) v ρ−(↑ Q), which implies (a’) ρ−(↑ A′) v ρ−(↑ A). Similarly, by induction
we obtain (b’) ρ−(↑ P) v ρ−(↑ P ′). (a’) and (b’) imply (c’) ρ−(↑ A) ⇒ ρ−(↑ P) v ρ−(↑ A′) ⇒ ρ−(↑ P ′). We
have

ρ−(↑ (A → P)) = ψ(ρ−(↑ A) ⇒ ρ−(↑ P))
v ψ(ρ−(↑ A′) ⇒ ρ−(↑ P ′)) by (c’), as ψ is monotone
= ρ−(↑ (A′

→ P ′)).

The proof that ρ− is monotone is complete.
The proof that ρ−(↑ R1) v ρ−(↑ R2) implies ↑ R1 ⊆↑ R2 descends on the more general result

∀A, B ∈ T∗.ρ
−(↑ A) v ρ−(↑ B) ⇒ ↑ A ⊆↑ B

which can be proven by induction on types: the technique is quite similar to that used in the previous proof of
monotonicity and is omitted; in the basis case of atoms, use is made of the fact that β is different from ⊥. Therefore
we have that ρ− is well-defined and satisfies (p-refl).

We can now apply Lemma 2.4 and extend ρ− to an ep

ρ : FltT∗ → B.

We prove that ρ is a morphism of G∗-algebras, that is

(alg-comm) ρ ◦ θ = ψ ◦ G∗(ρ)

Since all the involved functions are additive and the domain is a prime alg, it is enough to prove that (alg-comm)
holds for prime elements z in Pr(G∗(FltT∗)). We have two cases to consider. If z = ξ , then it is trivial that
ρ(θ(ξ)) = ψ(G∗(ρ)(ξ)), since the special elements are preserved. Otherwise z =↑ A ⇒↑ P , with A ∈ T∗ and
P ∈ P. We have

ρ(θ(↑ A ⇒↑ P)) = ρ(↑ (A → B)) by definition of θ
= ψ(ρ(↑ A) ⇒ ρ(↑ P)) by definition of ρ
= ψ(G∗(ρ)(↑ A ⇒↑ P)) by definition of G∗

Therefore (alg-comm) holds.
Finally, (alg-comm) forces to define ρ inductively (on the number of arrows in the type) in a unique way. In fact ↑ φ,

as the special element, must be sent to β. Any other prime element ↑ (A → P)must be sent to ψ(ρ(↑ A) ⇒ ρ(↑ P))
in order to respect (alg-comm). So the action of ρ on prime elements is uniquely determined, and being ρ additive it
follows that it is uniquely determined also over FltT∗ . �

Note that as a consequence of the previous theorem and Lemma 1 of [34], θ is an isomorphism.
We can now give a complete characterization of the 1/2 Park model FltT∗ .

Theorem 8.10. 〈A, τ 〉 and 〈FltT∗ , θ〉 are isomorphic.

Proof. The thesis follows by unicity of initial G∗-algebras, since by Theorem 7.7 and Theorem 8.9 both 〈A, τ 〉 and
〈FltT∗ , θ〉 are initial G∗-algebras in ALGE⊥

∗ . �
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9. Conclusions

Although the main result of the paper is rather specific, nevertheless there are some interesting points/questions, so
that the paper is without doubt just a starting point.

Here is a list of question related to 1/2 Park model.

• First of all a fundamental question: is it possible to describe properly FltT∗ working in ALG?
• The second question concerns the relation between irregular filter structures and colimits: a categorical

characterization as colimits of regular ITT’s works inside ALG. With irregular ITT’s, the problem seems to grow
complicated, since, varying the axioms, it is not known in general which is the right category that allows a proper
characterization

(char) FltT ' colim(ρ)

We found it (namely ALG∗) in the very particular case of (1/2-pa). Is there a general technique which, starting
from the axioms of an irregular ITT T , allows us to find the right category, along with the right functor, in order to
get characterization (char) for T ?

• As an instance of the general problem above, the following question arises: which is the right category for the study
of (1/2-sc); is the “1/2-Scott” irregular ITT generated over C∗ by the axiom φ ≤ Ω → φ? Are we forced to find a
new category different from ALG∗? (It seems to the author that ALG∗ is of no use for characterizing (1/2-sc)).

• Similarly for the “second half” (pa-1/2) of axiom (pa), namely φ → φ ≤ φ: which is the right category and the
right functor in order to recover the colimit characterization of the filter structure induced by (pa-1/2)?

• ALG can be faithfully and fully embedded into ALG∗ through the functor I. Is there any advantage in developing
domain theory in ALG∗? Besides G∗, are there other functors of some interest which exist over ALG∗ but cannot
be defined over ALG?

• How is the λ-theory induced by FltT∗?
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