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The é-operator on an almost complex abstract Wiener space (B, H, u, J) is
defined by making use of the Malliavin calculus. The authors then study
pseudoconvex domains in B, domains where the d-equations i = / are solvable. As
an application, they establish an approximation theorem of holomorphic forms and
a Dolbeault type theorem. Examples of such domains, obtained through SDE, one
also discussed. 7 1993 Academic Press. Inc.

0. INTRODUCTION

Let (B, H,u,J) be an almost complex abstract Wiener space. The
d-operator is defined as the composition of the projection onto the space
of (p, q)-forms and the exterior derivative, which is obtained by anti-
symmetrizing the gradient operator D appearing in the Malliavin calculus.
For details, see Section 1. In this paper, we study pseudoconvex domains
in B, domains where the é-equation du = f possesses solutions.

To observe the solvability of 5-equations on a domain 2 in B, we extend
¢ to a closed operator TP LA A\ e du)— LA, N9, e 77 du),
where o,y are suitable weight functions and A”? is a subspace of
A?TY(H*® C) consisting of p-complex and g-conjugate complex linear
forms (Section 3). As in [2], the power —7 is used to dominate the
divergence of the derivative of an exhaustion function on £ near the
boundary and to avoid taking into account the boundary conditions. We
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PSEUDOCONVEX DOMAIN IN WIENER SPACE 63

show that d-equations possess solutions in the sense that Ker(7\%¢* ")
LYQ; A7, e” " du) < Image(T(%¢") provided that ¢ and y enjoy the
inequality

el + 6(5(0-&-2}')2%8})@5}* (0.1)

{Theorem 3.2). To establish the existence theorem, we employ a functional
analytic method similar to that used by Hormander in [2]. Great pains are
taken to establish the L2-estimate on T!7 and its adjoint, which is stated
in Lemma 3.9. The assumed mequallty (0 1), which in a form with no
el-term has already appeared implicitly in [2], plays a key role in the
estimation. The Gaussian measure, y, we are dealing with a priori possesses
a strictly plurisubharmonic function “|z|?” as its exponent and it is this
“|z|®” that brings us the /.

The solvability of d-equations is taken advantage of to verify a
Dolbeault-type theorem in Section 6. To be more precise, let £, be a
complex Hilbert space and F: Q — E, be a nice holomorphic mapping. For
a family {U,},, of open pseudoconvex sets in E, and J< I with #J < oc,
another class of smooth (p, g)-forms on F~ "(N,o, U, say Pn 0 (A7),
is introduced and the J-operator is extended to the class. We set Of =
{ueZn 0 (A7) du=0}. Then a quasi-sheaf ” of holomorphic (p, 0)-
forms is constructed algebraically from {0%:Jcl, #J<ax} (Sections 5
and 6). Putting U ={J,_, U,, we define

el
A= F D) > AP fl o€ Do (N i€l
(é/\Lﬂ"f)l F-l2(uy = é(fl F*‘(u,|)-
The following Dolbeault type theorem is verified,
HHOP) ~ Ker(é/\{_.q)/lmage(ﬁf/\lc:q 0),

where HY((i*) is the gth cohomology group with coefficients in (¢/” with
respect to {U;},. (Theorem 6.10).

As examples where the above assumptions are satisfied, we consider a
domain obtained by using stochastic differential equations (SDE in
abbreviation). Let A, .., A, : CY — C* be holomorphic and z(t, z) be the
solution to the SDE:

2(1)= Y, Au(z(0))-dB (1) + Aq(=(1)) dt

5800 117-1-3



64 KUSUOKA AND TANIGUCHI

where (B'(7), ..., BY(¢)) is a C*-valued Brownian motion. The solution may
explode. Choose xe(0, 1), meN to satisfy that 2ma>1 and a+(55) <,
and put

Let|z(e, 0) — z(s, 0)]*™
¢O=LLI(1 )—z(s, 0)| dr ds

|t_S'I+2mm
Q= {¢o<o0}.

Then obviously ¢, is an exhaustion function on . To control the
derivative D¢, we consider Y(¢)=dz(t, z)/0z| . _, and define

L Y() = Y(s)1*”
¢1=¢0+L o Jr—s|iTEm

I —112m
L[ e

lt_sl1+2m:

dr ds

We show that there are non-decreasing and convex y, € C™(R; R) such
that y = y(¢,) and o, = j7(¢,) possess the destred properties (Section 7). The
involvement of Y(¢) is due to that Dz(¢) is represented in terms of Y(-). It
is also seen that Q@ = {#, <r} have g, and y possessing the desired proper-
ties. Moreover, regarding z(-) as a mapping of Q to L*([0, 1]; C¥'), we see
that z(-) is a nice holomorphic function such as that described above and
hence a Dolbeault type theorem holds in this case.

Exhaustion functions and weight functions which we investigate are not
smooth in the usual sense of the Malliavin calculus. For example, the
above ¢,’s are not integrable in general. In Section 1, after reviewing the
Mailliavin calculus briefly, we introduce some classes of differentiable func-
tions assumed to be only either “locally integrable” or “locally bounded.”
In the classes our exhaustion and weight functions are contained. We study
the ¢-equation on the full space B in Section 2. Our aim in the section is
to establish an estimation on ¢ and its adjoint, which is used in Section 3
to obtain a similar estimation for T"’"’ and its adjoint. The solvability
of d-equations on B follows from the estlmatlon We remark that the L°-
d-cohomology vanishing theorem in [8], which has been shown in a
different manner from ours, also yields the solvability on B. As another
application of the L%-estimation established in Section 3, we show an
approximation theorem of holomorphic functions in Section 4. In Section 5
the definition of quasi-sheaves is given and a Dolbeault type theorem is
shown in Section 6. Section 7 is devoted to giving examples that take
advantage of SDE.
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1. PRELIMINARIES

In this section, we give a brief review on an almost complex abstract
Wiener space, differentiable forms on it, and C, ,-capacities. Further, we
define a linear operator ¢ and give some new classes of differentiable forms.

A quadruple (B, H, u, J) is called an almost complex abstract Wiener
space if B is a real separable Banach space, H is a real separable Hilbert
space imbedded in B continuously and densely, p is a Borel probability
measure on B such that

[ exply/=T¢z 1)) du(z) = expl = 31113 ] (L1)

for any /e B* (= the dual space of B), and J: B — B is an isomorphism
such that J2= —1 and J|, : H— H is also isomorphic, where {, > denotes
the natural pairing of B and B*. We denote by H*€ the complex Hilbert
space of all continuous R-linear operators of H into C and set

H*'" O ={pe H*  : J*p=/—1¢)}
H*OV={pe H* . J*op=—/—1 ¢},

where J* is used to denote the natural extension of J* on H* to H*C.
Let (H*€)®" be the completion of the n-fold algebraic tensor
H*C® ... ® H*C with respect to the Hilbert-Schmidt inner product,

o

a,by= Y alh, .. h)blh,, . h)

Ny idp=1

{h,} being a CONS of H. Then (H*€)®" is a complex Hilbert space. The
alternation operator 7, on (H*¢)®” is given by

1
A, ® - ®@h,)= ngn(f)hﬂn@ ®hr(;m hy, .., h,eH,

whee the summation is taken over all permutations 7 of {1, .., n}. We then
define the closed subspace A" H*€ of (H*€)®" by

N H*C={Ae(H*)®": o/ (A)= 4},
and let A" be the set of all 4e A?*¢ H*C satisfying that

A((ah, + bJh)), ..., (ah, + bJh,))

=(a+~/=1b)" (a— /=1 b) A(h,, .. h,)
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for any a,beR and he H. A\" H* is a complex Hilbert space equipped
with an inner product {a, b ,us=(1/n1)<a, b> and A"“ is a closed sub-
space of the complex Hilbert space A”*¢ H*C. We denote by =, the
projection of A”*“H*€ onto A" and set

100 =g I=1— /=11 and  10V=2m, I={+/—11,

for Ie H*C.
A function F: B — C is said to be smooth if it is of the form

F(z)=f(z, i Dy s <2, 1),

where fe Cl(C";C), [,,..l,e B**(=B*®./—1 B*). We denote the
totality of smooth functions by #C(B;C). For a separable complex
Hilbert space E, # C;(B; E) consists of all linear combinations of finite
number of elements of the form Fe, FeFCJ(B;C) and ee E. For
Ge FCJ(B; E), DG(z)e H*“® E is defined by

1
DG(:)[h]zlim7 {G(z+1th)—G(2)}.
110
Sobolev spaces D/ (E), reR, pe(l, oc), are completions of FC(8B; E)
with respect to the norms |||, , defined by
IGIl,. , = II= L)Y Gl 1ns. & ap)»

respectively, where & is the Ornstein—-Uhlenbeck operator on B. We put

D, (Ey={) U DyE)

reR pef(l, x)

D7 (E)=() () Dy(E)

reR pe(l, »)

For each reR and pe (1, oc), it holds that
sup{|DGll, , ,/IGl, ,:GeFCF(B,E),G#0} < +x. (1.2)

See [9]. Thus the operator D can be extended to a bounded operator of
D/ (E) into D" '(H*“® E), which is denoted by D again. Further, by
virtue of (1.2), we can define a continuous linear operator

8:D; A1) =D (A"
so that

3G=n,,, (p+q+ 1), ,,(DG),  GeFCF(BiA"). (13)
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For the sake of later use, we introduce several more classes of
differentiable functions. Let

X, ={Kc< B:Kiscompact and u(K)>0}.

Take an arbitrary but fixed Ke X4, and define

px(x)=

{inf{\lx—kliH:keK} if Knix+H)#g
o0 otherwise.

Then for any geC,(R;R), g(px)eD. (R) (=N, 4. ., D,(R)) and
| Dg(p )l - <sup{|g'(x)| : xe R}. See [4]. Moreover, the quasi-invariance
of y implies that

Mpx<oc)=1 (1.4)
For a separable Hilbert space E, we set
SK(Ey={f:B—E:g(px) feD (E)forevery ge Cy(R;R)}
For feS}(E), the derivattve Df can be defined by

8.(px)Df = g,(px) D(gn 1 (px) )

where g, € Cy (R; R) satisfies that g, (x)=1if x| <nand =0if |x| >n+1.
Further, for such an f, éf can be also defined. We set

St E)={feS}(E):DfeS"(H*®E))}
U Sx(E
Ke X'y

For feS%(E), D*f, k <n, is defined so that

g.(px) D" f=g,(px) D* (g, . (pk) D).

We moreover define

SO (E) = {fi B — E: fis measurable and is p-essentially}

bounded on each {p,<r},r< o
and
St (E)={feS%(E): D*f eSS, (H*)®* Q@ E),0<k <n}
SHE)= | Sku(E).

Ke X,

We have
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Lemma 1.1, If f,eSUE)) and g,eS™E]), j=1,2,.. then there is a
Ke X', such that f,eS%  (E;) and g,€ SY(E]) for every j.

Proof. Let Ke#¥, and K,={pg<r}. Then K,e ¥,. See [4,
Theorem 4.1]. Further, it is easily seen that S% ,(E)=8% ,(E) and
SL(E)=8% (E). Hence, by (1.4), for each f; and g;, we can choos¢c a

2

K;. Kje A, such that fieS} , (E). g €Sy (E)), n(K)>1-2 /2 and
w(K/)>1—2" * Then K= ,(K,nK/) satisfies the desired proper-
ties. ||

We close this section by recailing the capacities and the splitting
property of u. For re(0,oc) and pe(l, o0), a capacity C, , is a set
function given by

C, ,(O)=inf{ul|ll ,:ueD}(R), u(z) 21, p-ae z€ 0} (1.5)
for any open O c B and
C, ,(4)=inf{C, ,(O): O is open and contains 4 } (1.6)

for any A < B. A capacity C, . is defined by

C.(4)= i 277C . (A), AcB. (1.7)

n=1

We say that 4 < B is C| . -quasiopen if there exists an increasing sequence
{K,} of compact sets such that K, < B\A and C, , ((B\A\K,) |0 n— 0.

Let 1 : H* > H be a natural isomorphism. Choose a family {/,}|_, < B*
such that {/,, J*/,} is an ONB in H* and we set

Then the mapping defined by

k

C*xH, 2@+ ~1nwy— Y () +n(J*))+weB, (18)
j=1

where &= (&, ., &), 1= (1}, ., 1) € R, is an isomorphism of C* x H,
onto B. Through this isomorphism, we have the splitting of the measure g,

H=Hee X 1yt (1.9)
where e (dl) =" exp(—|{|?) dL.
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2. 3-EQUATION ON L¥(B; A™9, du)

In this section, we investigate d-equations on L3(B; A% du). The obser-
vations made in this section play a fundamental role in the following
sections and the notation introduced here is used throughout the paper.

We define

Dom(T'79) = {we LX(B; AP, du) : ue LAB; A™*+ ', du))  (2.1)
774y = du, ue Dom(T 74", (2.2)

The following lemma then holds.

LemMa 2.1. (i) The densely defined linear operator T'74 is a closed
operator of L*(B; A™4, du) into L*(B; A7¢*%", du).
(i) DI(A?9) < Dom(T'"9).
(iii) TP9Pu=e 'P(T'"9u) for every ue Dom(T ‘")), where {P,}
is the Ornstein—Uhlenbeck semigroup.

(iv) If EeD3(R), |&| + [IDEN - is bounded, and ue Dom(T ‘"), then
fue Dom(T'74) and T'P4(Eu) = ET' P + 08 A u

(v) Image(T79)c Ker(T'79+"),
Proof. The first assertion follows from the continuity of
D: L*(B; AP, du)=DYUA™) = D3 (H* @ AP+

and the definition of é. The second follows from the fact that D maps
D!(A”Y) into DY H*“® A"Y). To see the third and fourth assertions, it
suffices to recall the identities that

DP,u=e¢ 'P,(Du) and Dlu)=¢EDu+DE®u

for ue D7, 7(A”?) and ¢ € D;(R). For these identities, see [9, 10].
To see the last assertion, let ue # Cg(B; A7 9). It is then easily seen that

(du)=0. (2.3)

By the continuity of D: D[ *(A”*)~»D; *(A”**"), we see that (2.3)
holds for ueD; *(A”9) and for ue L*(B; A"9 du). This implies that
Image(T"9)c Ker(T»4+ D). |

To study the adjoint operator T‘7%" of the densely defined closed linear
operator T'79: L*(B; A™4, du)— L*(B; A%, du), we prepare some
notation. For complex separable Hilbert spaces E,, E,, E,, and densely
defined closed operators 4, : Eg — E, and A, : E, - E,, we simply say that
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u,—u in Dom(A,) (resp., Dom(A4,)~Dom(A4,)) if u,e Dom(4,) (resp.,
Dom(A4,)nDom(4,)) and u, converges to u with respect to the graph
norm

ol =lol g+ 1400y (resp., vl = ol g+ 140l g, + 14200 5).

Note that if xe H*(1,0) then its complex conjugate & is in H*{0,1). For
ae H*'® and ne A we then define i(a)ne A”9 ! by

(& AN ans =<0, )N ) aps, wEAPTL

A continuous operator ¢ : D[ *(A”9) - D[ (A”*") can be defined so
that

0G=n,, ,(p+g+1),,,..(DG), GeFCF(A™)

Lemma 2.2. (i) DYAP*') < Dom(T'"") and T u=n, (s, , (D*u)),
ueDyA"*"), D* being the adjoint operator of D:L*(B; \™ du)—
LB H*“@ A", du).

(i) For wueDom(T™4%), P,ueDom(T'"9") and T'7""(P,u)=
e’P,(T“’“’"u).

(iii) For any ue Dom(T'79* )y~ Dom(T 79"}, there is a sequence
{u,} c FCF(B; N79*") such that u,,— u in Dom(T'”** V) A Dom(T'»").

(iv) If EeD5(R), &+ |DE||ye is bounded, and ueDom(T'79"),
then Eue Dom(T'79"Y and TP (Eu) = ETP 9"y — i{(0E ) u.

Proof. Let ue DY(A™¢*'). By the definition T~ we see that
J Cuy T ) pys dp
B

1
=L(—'p+—q+—”“! Cumy o ((p+Hg+1) e, (DV))) dp

1
=Jg(p+q)! <o Do di

=] pal s o (D)), 03 s
for every ve FCF(B; A\™?), which means that assertion (i) holds.

Since” PueDF (AP * ) =0, g DAA") il ueLAB;AP*", du)
[10], it follows from assertion (i) that P,ue Dom(T*4") provided that
u e Dom(T»9%), By the symmetry of P, and Lemma 2.1(iii), we can easily
conclude that he second assertion holds.
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Recall that P,v—vin L*(B; A”9* !, du) as t| 0. See [10]. Thus, by (ii)
and Lemma 2.1(ii), we see that P,u — u in Dom(7*4* D)~ Dom(T"4'")
as t|0. Hence it suffices to approximate P,u in Dom(T'"“*+")n
Dom(T79"), Since P,ueDy(A”¢*"), there exists a sequence {v,}c
FCF(B; AP9*") converging to P,u in DF(A”9*"). Then the continuity
of D:DYA™ )5 DOUH*@A”*") and D*:DUH*CQA™)—
DY(A”?), combined with (1.3) and (i), implies that v,— Pu in
Dom(T"’"’*”)mDom(T"""’").

Let ue Dom(7'7%"). Then, by Lemma 2.1(iv),

[ <, TP00) s du = Gt TO0E0) = 38 A 0 s d
B B
= [ TP U= (88, 1) ans i
B

Thus assertion (iv) has been seen. |
_ We now establish a main estimation to show the existence theorems for
J-equations.

LeEmMMa 2.3, For every ue Dom(T 7%+ 1y~ Dom(T'7»9"), it holds that
[ s du < [ 0T s ot [ T s i (24)

Proof. Consider a (p, g+ l)-form g(()=3, g, ,)d’ A dl’ on C¥,
where Y, ; means that the summation is performed only over strictly
increasing multi-indices 7= {i, < --- <i,}, J={/i < <j, 1}, i<i,,
Jo<k, and dll=d{" A - A dl AL =d0" A -+ A dCPt The norm || gl
is given by

llgii= 3" 1g. (N

We denote by S'7¢ the L3(u)-closure of the usual d-operator on C* and
by S'79" its adjoint, where the inner product on the space of ( p, g)-forms
is determined by the norm Jj-|l. Applying the observation made in
[2, pp. 82-84] with ¢({)=|{|* and ¥ =0, we have

s Mgl duc <[ WS Vgl dugs+ | IS8l dhes (25)
ct ck ck

for any C,-(p, g+ 1)-form g.
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To show (2.4), by Lemma 2.2(iii), we may assume that we ZC (A”9H1).
Moreover, by virtue of the continuity of D and D*, we may assume that
u is of the form

_ 4 (1,0) (0.1}
U-Zf/.Jll AT
1.

where (i) {/,, ... I} = B* satisfies that {/,, J*/,, .., [,, J*/,} is an ONS in
H*, (ii) each f, , is represented as

fi(2)=g, AL 100, L, 1Y)

for some g, ,€Cy(C*;C), and (i) 1P O=1"A o A0 PV =

1) (0.1)
17 A A 1_/4” . Let

g=. g d" A dl.

LJ
It is then easily seen that
() aas =277 (< 100D ey <2 RO
IT 0 2) s = 20 02 S Vg2 1, (2 1)

T y(z)=2 Z’ (S(/’-q)‘g),‘K ({z, 1111.0|>, w L2, 121.0)>) 1111.0; A 1',8‘”

LK

I s = 2712 IS0 (K2 10, oy (2 1)),

where K runs over strictly increasing multi-indices of length g. Plugging
these into (2.5), we obtain (24). |

We are now ready to establish the existence theorem for d-equations on
y
L*(B; A\™ du) and the related results.

TueOREM 2.4. (i) Image(T'79)=Ker(T7¢* "),

(i1) TImage(T'™?) and lmage(T'74*'") are both closed in
L} (B; \N"*, du) and

LY(B; AN7¢", du) = Image(T"*')@® Image(T' 74+ ") (orthogonal).
Proof. By Lemmas 2.1 and 2.3, we have that

[ ghZus die [ 177" g1 di

B B

forevery geKer(T'”4*V)nDom(T'"9")
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and that
Image(T""‘”) c KCI’( T!ra+ i i).

Applying Lemma 4.1.1 in [2], we obtain the first assertion.

Assertion (i) implies that Image(7'7%) is closed. Moreover, by
Lemma4.1.2 in [2], we see that Image(7T'”“*"") coincides with the
orthogonal complement of Ker(7”4* "), Hence Image(7 79+ """} is closed
and L*(B; A”9*", du) is decomposed as stated in (ii). ||

Remark 2.1. The second assertion of Theorem 2.4 means that the de
Rham-Hodge-Kodaira decomposition of L*(B; A™%, du) holds and there
is no harmonic form for the é-laplacian. The decomposition has been also
established by Nishimura [8] in a different manner from ours.

3. ¢-EQUATION ON L*(2; A”% e ” du)—A GENERAL OBSERVATION

In this section we consider the existence theorems to d-equations on
C, .-quasi-open set Q2. We set

Y : Q2 - [0, oc) : Y is measurable and
Y(2)= 1, g(4) e S,(R)nS*(R)
forevery ge CF(R; R)

For ¢ € ¥(82), we define

LW, 2)={c:2->[0,0):1,g(})aeS,(R)nS*(R)
forevery ge Cg(R;R)}
riy, Q={yeSW.Q):15¢ " IDYI}. SR}

Note that log(1 + | Dy||*) e I' (s, 22) provided hat 1, g(yy) €S} (R) for every
g€ Cy(R; R). In what follows, we fix an arbitrary y € ¥(Q2).
Let
D! _(2;E)={ueD! (E):u=1g4u}.

We have
LEMMA 3.1. Let ae L (Y, 2) and ye I'(, Q). Then the operator
0 LA\ e dp)
SD! (2 A" 2urdue L(Q; N\ e "7 du)

is closable.
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Proof Suppose that w,eD! _ (2;A™) converges to 0 in

LY (Q2; A" e %dy) and Ou,—»v in L*Q2; A" e " 7"du). Choose
feD* (A”9*'),and g, §e C7(R; R) with §=1 on supp[ g]. Then there
is a KeJi’ such that 1, g(y), 1, g(¥)o, and 1, g(Y)y are all in Sy ,(R).
Taking oe C;/(R;R) with ¢ =1 on (—oc,0] and =0 on [I, ov), we
define &, =@(px—n). Then e 7 "g() ¢, f=e (781 g(h)E, fe
D! _(A™4*"). Hence we obtain

J, B &S aus e 7 d

= lim (6”" g &, fCuk>AHsdH

k — o

= lim <7Ipq( Ay (D*e™ "7 gW) &, 1)) wi) ans dit

k = o0

:O,

where to see the last identity we have used that du<Ce “du on
supp[ g(¥)¢,] for some C < +oc. Letting g1 1 and n1 o0, we see that v =0
and hence the operator 4 is “closable. |

We denote by T'”¢’ the closed minimal extension of the above ¢. We are
now ready to state our results,

THEOREM 3.2. Let o€ £ (Y, Q) and yeI'(Y, Q). Assume further that
there exists an ¢>0 so that

el+20(0+27)2e 'Oy ®0y.

If feKer(TF 1) n LA AP, e 7 dp), then therezsaueDom(T”"”)
such that T""”u = f and |ul|l, < (1 ~2)""?|fll,, where IL£12 =
jQ Hf“AHs eiad/‘

As an application of this theorem, we have

THEOREM 3.3. Suppose that there exist o, (Y, Q2), yel(y, R),
e€(0, 1), and nye N such that

ess. sup{y(z) 1 go(z)<n} <o for any n>n, (3.1)

el+ 000, +2y)2e ' Oy ® Dy u-ae.onf{o,>ne}  (3.2)

86,2 0. (33)



PSEUDOCONVEX DOMAIN IN WIENER SPACE 75

Then, for any a € S ({1, 2) with 866 >0 p-a.e. on 2, it holds that

Ker(T{%9* ) < Image(T 7,"").

For g€ % (Y, 2), we set
A2 (Q)={ueDom(T ") : T'\"9ue LX(Q; N7, e " du)}
f'f{vq' =T ALYR2)
Finally we show

THEOREM 3.4. Assume the existence of 64,7y, and € as in Theorem 3.3. If
a € Ly, 2) satisfies that éda 2 0, then

Image(T(%7) = Ker(T(r4* 1),
In particular, the sequence
Ar@) D Do Ay Ao @)D Aze @)L
is exact, where T = 7"“,{’;,"' on A2¥(R2).

The proofs of the theorems are broken into several steps, each step being

a lemma.
Taking f,e C*(R;R) such that 0 < £, < 1, f,(£)=1, <0, and f,(1)=0,
=1, we set

= 1o folh — V).

By Lemma 1.1, for every ce (¢, ) and ye I'(f, 2), there is a Ke X,
such that n,6, 1,7, 1,€S),(R)YnS;(R), and e 7 |Dy|3}.€S% ,(R),
v=1,2, ... We then put

énzfo(PK“n), ’121,2,....

It is satisfied that

¢, eD! _(R), (3.4)

IDE Ml e <supilfo(x)l : xe R}, (3.5)

D¢, ,=0 p-a.e.onsupp[&,], (3.6)

&, I Dn |l i,. <C,é forsome C,< oo independentofv, (3.7)

1D(n, &) 11+ 1s bounded. (3.8)
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We first see several properties of 7'("%.

LEMMma 3.5 Let ae F (Y, Q) and ye I' (Y, 2).

(1) If ue Dom(T'"%), then n,&,ue Dom(T 7"} for any n,ve N and
Trn, &,u)=T"""(n,¢,u)

(2) If&eD! (R), &+ ||DE| - is bounded, and ue Dom(T ("), then
Eue Dom(T:") and T 9(&u) = ET " Pu+ 0& A u.

(3) For ueDom(T\"#"), &,u—u in Dom(T\"") as n— «, and
0 &,u— & uin Dom(T77) as v — o,

(4) If ue Dom(T.7%), then n, &, ue Dom(T'"9) and T "9 (n,&,u) =
Tr(n, &, u).

(5) For ue Dom(T %), 0,y &y (0, utt) > & u in Dom(T (7))
as t)0.

(6) TImage(T."?) < Ker(T!7%).).

Proof. (1) Let ue Dom(T ”’). As was seen in the proof of Lemma 2.2,

there is a {u,,}=D” (A”9) converging to u in Dom(T'”¢). Then
n&u, €Dl (25 A™9). Since 020 and n,, &, are both bounded, we

”m

have that

’7\'61 U, ’7.5»;” in LZ(Q;/\I)J]’() ndﬂ)asm—"w-

By virtue of Lemma 2.1(iv) and (3.8), we also obtain that

5(’7I’éﬂ unl = ’7\‘5” 5“”1 + ﬁ("’\én) /\ u"l
- rl\'én T‘p.q’u + é(nvén) /\ u = T"’“"(”\‘i"u)

in LYQ; A" e ° 7"dy) as m-—co, since e ° "du<du This
completes the proof of the first assertion.

(2) Take ¢eD! (R) such that &+ ||D¢|,. is bounded and let
u € Dom(T{7). Choose {u,} < DI (2;A™) with u, » u in
Dom(Tf,{’.l:"'). Then fu,eD! _ (2; A”?). Since o and y are both non-
negative, we have that

O&uy) = & du, + 82, = ET 0+ 08 A

in L3(Q; A”9*', e 7 "du) as n— . Thus, the second assertion has been
seen.

(3) Let ueDom(T.\”¢). Since ¢,eD!) (R) and ¢,+[[D¢E,| is
bounded, it follows from (2) that ¢, ue Dom(T!":#"). By (3.6), it holds that
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&,71 and DE,—0 p-ae. as n— oo. Then, applying Assertion 2 and the
dominated convergence theorem, we see that

Eu—ru in L2(Q; A", e "dy) as n—wx
TrO(Eu) =, T u+ 08, Au— T u
in LX(2; \N"% e " "du)asn— o

because 7 = 0. Thus, the first half of Assertion (3) has been verified.
To see the second half, apply Assertion 2 with ¢ =5 ,¢, and {=¢,, and
note that
T, &) =0, 8, T u+0(n,8,) A u

=, T (Eu)+ &, 0n, Au.
Since 0<n, <1 and .71, we have
N T PNEu) = TRO(Eu)  in LAY e 7V du)asv— oo
Moreover, by (3.7), we see that

I, a'?x A u“AHs = ‘f,, | Dn., “H‘ “ullAHs <C, ¢ ”u”,\ns
for some C, < +oc. Then the dominated convergence theorem yields that
&, 0n, Au—0 inL2Q2; A7 e Tdu)asy—

because Dy, »0 p-ae. as v—oc. Thus #,¢,u—E,u in Dom(T"“) as
V> oC,

(4) Let wueDom(T.”") and choose u,eD! _ (2:A"¢) with
u,, —uin Dom(T"’ 49y as m— oo. As was seen in the proof of Assertion 2,
1. -, &,uin Dom(T‘{"I‘”) as m — oo. The boundedness of ¢ and y on
supp[n\‘f,,] then implies that

nvénum—’r’\* nl in LE(B;/\p,q, d;“)
Tlp‘ql(nvénum) = T:I{];'q)(n\'ér:uzr:) - Tn‘v{,‘,"q'(r’r‘:nu) iﬂ L2(B, /\p.q, d.u)a

as m — oo, which means that Assertion 4 holds.

(5) Let ue Dom(T"?"). By (4), n,&,ue L*(B; A7 du). Then the
hypercontractivity of the Ornstein-Uhlenbeck semigroup {P,} implies that

P.(n.u)eD], (A™Y),
where e =¢,=¢’ — 1. By Assertion 1, we see that

r’v+ lén+ 1 P,(q‘,g“,,u)eDom(T:,f’}j“)).
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Since e du < dy, the strong continuity of {P,} implies that

Boir S P Eu) =, Eu in L2 (5 A™9, e “du)ast]0.

On account of Lemma 2.1(ii1) and Assertions 1, 2, and 4 above, we obtain
that

Tfr{,;'ql(”\'+lén+lPl(nvénu))
=”v+lén+l eilPl(T(p‘q)(nvénu))+a—(’7v+lén+l) A Pl(”vénu)
- nv+lén+ { T”"‘”("\‘én“) = Ti;{’;‘q)(rlvénu)

in LY(Q; A™4* ', e ° 7 du), where we have used the property that
nvénD(”\'+lén+l)=Os (39)

which follows from (3.6) and the very definition of 5,’s.
(6) LetueD!, (2;A\"¢)andsetu, ,=n.¢,u Then, by Lemma 2.1(v),

T, =T %, e Ker(T'"* "),

Since 7, &, T 0, =T %u, ,, by the Assertion 1, we have that
Tiray \,,eKer(T”’"*”) Letting v,n— oc, by (3), we can show that
Ty € Ker(T47+ D). Thus we obtain

TUODL . (25 A7) e Ker(T 90 0).

For general ue Dom(7T{",*"), choose u,, e D), .0( ; A7Y) converging to u
in Dom(T'7*"). Then, T""“u — Ty in LYQ; AP9*' e °du) and
T"’"*“(T"’"'um)—o Hence T"’"’ueKer(TL”+‘{’,f§“) and Image(T(7) <
Ker(T7:0.). |

g+ 7y

We next study 774, In what follows, we simply denote by ¢, >, the
inner product in L? (Q A4 e 7 du) and do not mention which space A "¢
is considered.

LemMMa 3.6, Let o L (Y, Q) and ye I'(y, 2).
(1) If ¢eD. (R), &+ D&, is bounded, and veDom(T'7¥"),
then &v eDom(T‘p"") and (T(’“’)‘)(ql)— T""’" —e i)
(2) For every ve Dom(T"4"), &,v—>v in Dom(T") as n— oc
and n,.¢,v = &,v in Dom(T%9") as v — .
(3) Let veDom(T4"). Then n,¢,veDom(T'7") for every
v,neN and

T (n,&,0)=e {T'"""(n,&,0) +n,¢,i(d(a +7))v}.
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(4) IfveD,, (AP*"") for some ¢ >0, then n,&,ve Dom(T79") for
every v, ne N and

TP (n,E0)=e [0, E (TP v +i(8(c +7))v} —i(d(n,&,)v].

(5) For UEDOm(T;ﬁ,‘“.) and v, nENs /o lén+lPI(’1vénv)——) n\'énv in
Dom(T{74") as ¢ | 0.

Proof. (1) By Lemma 3.5(2), we obtain
(e, T u>, = (o, TOO(Eu) =3 A ud, .,
=T v—e "i(38)v, u),

for any ue Dom(T{”.*"), which means that Assertion 1 holds.

(2) Let veDom(Tf,f’,,:""). According to (3.5) and (3.6), and
Assertion 1, the dominated convergence theorem implies that

E,o—>0 in Lz(g;/\p’q+l,e""7d#)
T (E,0) =&, T v e i(dp,)o - TH"0
in L2(Q; \79, e ° dy).

Thus &,v - v in Dom(T797).
Because of Assertion 1 and the boundedness of n.E,+ 11D, E N e and
én+ ”Dén”H" we have

T (0, 80y =, &y T2 0 — e 7i(3(n,E,)) 0
=1 T (&, v) —e 7, i(on,)v.
Applying the dominated convergence theorem, we see that
nE,v— &, in L2(2; AP9* e " "du)as v—
n T RO Ep) > TERO(E, ) in LA\ e " du)as v — .
On the other hand, by (3.7),
lle &, i(On. vl aus e~ & 1D 5 0l ius S Cue 7 vl Ans

for some C, < + «. Hence applying the dominated convergence theorem
again, we obtain

e ' i(dn,)v—0  in LYQ2; A" e °du)asv— .

Thus, #,¢,v— &,v in Dom(T{%7) as v — .

S80 117 1-6
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(3) Letve Dom(Tf,{’.]:""). It follows from Assertion 1 that
’7\*+ 1 én+ 1 T:,f’}q,‘(mfnv) = TL{’.}""(r]‘,é,,v). (310)
Then, for any we D% _(A”“), we have

<e*UT£,‘P.;‘III‘(”Vé"U)’ “,>0= <T(a{";'qv(nvénv)’ nv+ 1 €n+ 1 M’>d
= <”vénvs T(p'q)(r]v-f—lén«i- 1 w)>a+‘,‘
= (o™ G0, T Do,
where we have used Lemma 3.5(1) to show the second equality and

Lemma 2.1(iv) and the property (3.9) to see the last equality. This implies
that

e~ 7 ™, &, ve Dom(T 797
and
T (e 7m0 = e T (1, E,0) (311)

Since g=7,,,¢,,.,€° "7 is in D! (R) and g+ ||Dg| 4. is bounded, by
Lemma 2.2(iv) and (3.9)-(3.11), we obtain that n ¢, v=ge " 'n.é,ve
Dom(T ") and

TP (g, E,0)=gT " (e =7 ", &,0) —i(g)e °"n,¢,v)
=1, 181 € TP (1,8,0) = i(0(a +7))n,&,v)
=10, 1 &n i ) E40)
=T (n,&,0)—n,,i(d(a +7))v.

This completes the proof of Assertion 3.
(4) Let veD;, (A”?*'), ¢>0. Then, by virtue of Assertion 3,

Lemma 3.5(2)(4), (3.9), Lemma2.2(iv), and that n,, ,¢,, , e 7 7€
D' _ (R), we obtain that, for any u€ Dom(T'%;?),
M &ao, Ty,

= (v, T, E,u) =0, ) A udy
=Myrlnrre 770, TP, u) Do~ (e Ti0(n, E,))v, u),
=LTP (N, 1 Suvre 770N Eaudo— LT 7i(0(n,6,)) 0, uD,
= e TP v+ i(d(a + 7)o}, 0, &ue— e Ti(8(n,8,))0, u),
=<e " LT "0 +i(8(a +7))v)) —i(d(n.£,)) v}, ud,.
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Since ,¢,, | D(o + y)|| 4= is bounded, this implies that n,£,ve Dom(Tf,‘”Y"’")
and that

T (n&,0)=e {0, S (T v+ i(8(0 +7))v) — (8(n,8,))v ).

(5) Let veDom(T.”"). Since o+ is bounded on supp[n,¢,],
n.&,ve L*(B; A*9 du). Then the hypercontractivity of the semigroup {P,}
implies that

P.(n,&,0)eD], (AP,  e=g=e"—L (3.12)
By Assertion 4 and Lemma?22, we see that n,.,¢,,.,P,(n¢,v)e
Dom(T%"") and that
T2 My 1&0s 1 Pi(n,E,0))
=e [Ny 1 Ca AT (P, (n,8,0)) +i(8(a +7)) P,(n,&,0)}
—i(0(n, 18,4 1)) P(n,C,0)]
=e " &uy i e PAT 7 (,8,0)) +i(8(c + 7)) P (n,&,0)}
—i(0(n, 1 &y 1 ) Po(n,8,0)].

The nonnegativity of ¢ and y an the strong continuity of {P,} on
L*(B; A™4*", du) then imply that Assertion 5 holds. [

This lemma implies another property of T\%.¢).
LemMma 3.7. Let oce (Y, Q) and yel(y,2). Consider ¢:2—R
satisfying that 1, g(y)p € S'(R) for every ge C5 (R;R). If ue Dom(T %),

oue LXQ; N\ e “du), and @T'"u,Cp AueL(2; \"% e " 7 dy),
then oue Dom(T 7%’} and T%9(ou) = @T /" u+ o A u.

Proof. We first assume in addition that ¢eD! (R) and take
weD!L _ (2;A7*") with w=n.,w for some v and n. Then, by
Lemma 3.6, we have

Cou, T Wy, = pu, e {T 7wy, 8y ié(a+7)w) D,
= T (e =" w) o
=<lu, TP (e " Tow)+i(Cp)e 7wy
= (u, T (@w) ), + (u, i(0p) e ™7 w g
= ((pTi,f’;,‘”u-ké(p AUWD g,

Since such w’s are dense in Dom(Tf,{’}',""), we obtain that the assertion
holds if e D! _(R).
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For general ¢, without loss of generality, we may assume that £, also
satisfies that n,&,oeD! (R), v,n=1, 2, ... By virtue of the above obser-
vation, we have

n,&,0ue Dom(T Y9,
T2, Enou) =n,8,0T U+ 3(n,8,0) A 1

As in the proof of Lemma 3.6, letting v — o0 and n— oo, we obtain the
desired conclusion. |

We now show

LemMa 38. Letae S (Y, 2)andye I'(Y, Q). For each ue Dom(T 77" 1))
N Dom(T%.97), there is a sequence {u,} D, _ ,(2; A™?) converging to u
in Dom(T %%+ ") Dom(T%9"") as n — 0.

Proof. Let ue Dom(T%%"") " Dom(T'/,¥"). By Lemmas 3.5 and 3.6,
it suffices to approximate #,,,¢,, P, (n.é,u), t>0. By (3.12), we can
choose {w,}c=DL (A”¢*") converging to P,(n,&,u) in D;, (A”¢)).
On account of (3.8), we have that

'7\'+16n+lwm_’nv+lén+1Pl(’7v£nu) in D;+£‘(/\p.q+l)_

Combining this with Lemmas 2.1 and 2.2, and the continuity of D and D*,
we see that

U én%— Wi 2 Hy 41 5;1+1P1('1v5nu) in Dom(TUhq-*-li)m Dom(T(l’.ql').

By Lemma 3.5(1), Lemma 3.6(4), the nonnegativity of ¢ and y, and the
boundedness of D(a + y) on supp[#,. ¢, ], we see that the convergence
also takes place in Dom(T . * V)~ Dom(T74"). |

We are now ready to show a key estimation analogous to Lemma 2.3.

LemMa 39. Let ceS (Y, Q) and yel(y, Q). Suppose that &I+
(o +2y)=2e" "' dy®0y holds for some 0< <i. Then, for every

ue Dom(T 9" ")~ Dom(T 7;4"), it holds that

ITZ O ul 24+ | TEE )2, o, 2 (1= 2e) flu) 2, 5, (3.13)
Proof. On account of Lemmas 3.5, 3.6, and 3.8, it suffices to show
(3.13) for ue DL _ (2; A"4*"') with u=n,&,u for some v, n. Define

’ 14
a =nv+26n+20s 7 ='7v+2£n+2?~

Since 0,7 #(Y,2), o',7,e 7" are all in D! (R) According to
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Lemmas 2.1, 2.2, 3.5, and 3.6, and the property that i(d(n,, ¢, ))u=0,
we then have that

N7+ NT 85l s,
=le "ty 1 Enid (TP u+i((c + 7 Nud| 2+ ITP0 D2,y
= [T (e 7 u) + 400 e 72 w3

FIT P e~ 27 y) 4 48(6" + 29 ) A (e 7727w}
2T @l + )T Vil

+ Re{ (TP, i(86")ii Do+ (TP Vi, 86" +27') A it Dy}, (3.14)
where i=e "2 7"yeD! _(A”“*"). Note that
C,,_*]DU’ED;_(H*) and énD(éni»lDoJ):énDzas
and the same assertion holds for y. Thus we obtain
Re{TP9" i1, i(8(a' + 27 )it de
—Reli(d(e' +2y") T™9* Vi1, 1>y + Red Der(8d(o + 27)) i, D
= —Re(T™4*Vj (6" +27')) A i1 Do + RedDer(8d(o + 27)) i, & Do,

where for bounded linear 4 : H*€ — H*C, Der(A4) : (H*€)®" - (H*)®" is
given by Der(4)({,® --- @)=/, [,® - ®f;_ fAL,®;,,® --- QI,.
Thus, taking advantage of Lemma 2.3, we have

IT ) 2+ | T Vi,
ZNT P g+ T Vil
+ Re(Der(dd(o +2y))i, > — 2 Re( T 79" 4, i(dy' )i Dy

> (1= &) TP a3+ | T Va3

; 1 ,
+ Re<{Der(8d(o + 27)) 1, a>0—g li(éy"yalg

> (1—¢) lalil+Re <Der <aé(a +2y) —%c'?yf/éy') i, a>

V]

= (1-2¢) jlul;

a+ 20

since (8/2)1+65(a+2y)—(l/s)8;*’@(?—*,"20 on supp[#]. The proof is
completed. |}

We now proceed to the proofs of the theorems.
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Proof of Theorem 32. Fix an arbitrary feKer(T4* ")
L*(2; A7+, e 7 du). By virtue of Lemma 3.5(6), (](er(T"""f’l”))L the
orthogonal complement of Ker(T!“*") in LHQ;A\P9"" e 7 7dy), is
contained in Ker(T"’""). Let P be the orthogonal projection of
LAQ;A™*1 e """ du) onto (Ker(T{%4*")* and ve Dom(T7%").
Then

(I-P)oe(Dom(T%%")  and TV ((I—P)o)=TV%" 0,

By applying Lemma 3.9, we have
‘<f; U>ry+‘,’| = |<./; (I—P)U>U+','|
<N/l =Pl oy
<(1=2e) "2iflNTm" 0],

Applying Hahn-Banach’s theorem, we see the existence of we
L*(Q2: A™, e " du) such that (ul|,<(1—2¢) '?|fIl, and

Lvdery=<u, T vy,  forany veDom(T").

Hence ue€ Dom(T[7) and T %'u=f |

Proof of Theorem 3.3. Choose a strictly increasing sequence {c,} such
that
ess. sup{y(z):oo(z)<n} <ec,.

Take g,, ¢, € C*(R; R) so that
£.20, 0<g,<l, g.(x)=0,
X€e(—0, ¢, 1) ga.(x)=1x, X€E(C,i2, )
o' =0, @(x)=0, xe(—oc, 0],
p(x)=1, xe(l,o) 20, xny)=1
Define
G,,(r)=£)’ o(s—n+ 1) g(s)ds
0.(2)=G,(0,(2)) +a(z)
Yal2)= 8, (7(2)) — g (cui 1)
Then g, (¢, 2), v, e 'y, 2), and

N 1 B
el +3dd(o,+2y,)> - a0y, ® 0y, p-a.e. on Q for n > n,.
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Indeed, on {y<c,,,}, the inequality is easily obtained by using
that 6,>0 and 336 >0. On {y>c,,,}, the inequality follows from
assumption (3.3) and that g, <1. Let feKer(T{¢*"). Since 6 <0, and
YSVnt &alCaii);

feKer(Tdr Dy LA(Q2; AP, e o du).

an+ ¥a.

As an application of Theorem 3.2, we see that there is a u, € Dom(T‘U’”’;fI{"’)
such that

lallo, < (1 =26) "2 (1 fll,, < (1 =26) "2 I f4 (3.15)
TPy =f (3.16)

On¥n n

In particular, since 6 =0, on {go,<n—1},

[ Tl o dus(1=20) IS

{oo<n —
Thus 1, ., u,~u weakly in LY (Q;A™, e "du) for some ue
LY AP, e 7 dy).

Without loss of generality, we may and do assume that 5,0, is also in
SX(R)NSi,(R). LetveD. _ ,(2; A”**") and set v, ,, = n,&,,v. Then, for
1= ess. sup{ao(z czesupp(n.&,,]}, we have

<l {ao<n—1}Un> T::f’*}q)‘vv,m>a = <u T(p'q)‘vv,m>a
= U TEO (e 0 7o, ),

Fns¥n

=LeT T D et e

= <.ﬁ Uv,m>a+‘,"
Letting n — o0, v — o0, and then m — oc, we have
g
Cu, TR0y, = fivdausys veD! _ (@A)

We therefore have that ue Dom(T%:?) and T 'u=f |

Proof of Theorem 3.4. The inclusion that Image(7T.¢") > Ker(f”,‘,{’_;,‘” 1y
follows from Theorem 3.3.

Let ue AZ¢(2). Then T""ue L*(Q; A", e 7 du). Moreover, by
Lemma 3.5, there exist u, eDl _o(Q; A7), v(n), and m(n) such that

un =’7\'(n)ém(n)un
u,—u in L2(Q2; A", e ? du)
TV u, T u in L} (Q; A9 e ° "V du).
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Note that T!7?u, e Ker(T 7" D), Indeed, it follows from Lemma 2.1 that
T/ u,= T"’ 9y, e Ker(T'* 4+1)) Lemma 3.5 then implies that 7" u, =
Motny+1Emimy + 1 T(p D, € Ker(T"’ arihy,
Choose we D! (Q AT9r? ) with w=1#,¢,,w for some v and m. Note
that (T‘r,f’.;,""w)e eL (2:A"%, e ° "du). We then have
(TP Dy, T Ouy = (T wye', TP ud, .,
= lim (T w) e, T8 u,D, .,

=0.

Since D! _ ((2; A”“*?) is dense in Dom(T{¢*""), we obtain that
T"”"’ueKer(T"’""") Thus T"’"’ueKer(T"‘"*”) |

4. AN APPROXIMATION THEOREM

We shall establish an approximation theorem as an application of
Lemma 3.9. We set

PLW, Q)= {oe S, Q) : 866 >0 p-ae. on 2}.

Throughout this section, we consider o, 2L (Y, 2), 0 € ¥ (Y, Q), and
ye I'(y, 2) such that for some o, e (Y, 2) and € (0, 1),

ess. sup{o,(z):oo(z) <1} <0 (4.1)
_ 1 _
el+ (o + o, +2}')>E6}'®8}’ uy-a.e.on Q. (4.2)
Set
o (o)={) {Ker(T'/°).) e L (i, 2), ess. sup{a(z) 1 g4(z) <1} < o0}

Q, _;={zeQ:04(z)<1-0}, de(0,1)

THEOREM 4.1. For each ue \72(R2) with T2 ulq =0, there is a
sequence {u, } < .o/ (a) such that

Hu|nl,,,_unlgl,ﬁ“a"’0 as n-—>o0.

Proof. Let # ={ue A"2(Q): T uly =0}. Choose an arbitrary
but fixed ve L2 (2; A?° e~ ° d,u) such that v=00on 2\, _, and v 1 (o)
in L*(Q; A"° e~ 7 du). It then suffices to show that v is also orthogonal
to .

We first claim that if & € #(y, ) satisfies that

El+00(c+6+2)) 28 "y ®dy (4.3)
ess. sup{d(z) 1 aq(z) <1} (4.4)
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for some 0 <& < 4, then there exists a measurable ge L*(2; A", e® 7 du)
such that

[ Igliuse™ dus<(1=20)"" | Joi®e® " du (45)
Q [2]
Jﬁ v, w)anse " du =j (& T w)anse “du for “'E/\LI.’-}O)(Q)-
Q [o]

(4.6)

To see this, note that

ve® e Ker(TL0) ) (in L*($; A7 e 7~ 7 dp))

g+ o,
——WT— 2, - 0 -7
=Image(Ty,0),) @AMt

_ T(_""OP, [DOm(T(""O)‘ )m Ker(T(p_ TY )] LUR AP e F Vd;l). (47)

G+ 0oy &+ o,y G40+

It follaws from Lemma 3.9 that

W2, SE=28) 2T fls s s
feDom(T0" YA Ker(TmY ),

d+oy G+a+7,y

(4.8)

Hence there are {f,} e Dom(T°)" )~ Ker(T'), . ) and fe LY(Q; A\,
e~ %7 "% du), such that

Jo— S in LQ2; A" e * 7 ¥du),
T(~I’.0|- ‘ "—-»veﬁ iﬂ LZ(Q, /\p.O’ e—ri adu)

d+a,;

Let g=fe 777 Equation (4.8) then implies (4.5). To see (4.6), let
we AL2(£2). Then we have

J‘ (v, w)anse du
Q

I

; {p.0) , 4
lim | (T fowDanse © 7 du
n— r Y

lim j Lo Tﬁ,{’;o'w>AHS e T dy
Q

n—- x

Il

lim f (fe FH7 22 (TP w)e 00002 s d
«Q

H— x

L) A T((;{);'O"i.>AHS e 77 Tdy,
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where to see the second identity we have used the fact that Dom(T("%)
Dom(T°) ) and TP =T on Dom(T("”). Hence (4.6) has been

gtay G+a.y

verified.
Choose a non-decreasing, convex ye C™(R;R) such that y(x)=0 on
(—o0, 1 —238] and (1 —4)= 1. If we put

6"=nl(00)+61,

then it is easily seen that &,e.%(y, 2) and satisfies (4.3) and (4.7). We
therefore obtain g, e L*(2; A™', e” 7 du) such that

sup | g, ans €™ 7 du< a0 (4.9)
n [e)
_f {e,wHanse “du
Q

= [ G TUMwoanse “du weALY(R)  (410)
Q

Since ¢,<6,,,, choosing a subsequence if necessary, we may assume that
{g,} converges weakly in L*(2; A”', e” "°du) to a limit g. Moreover,
we have

S

fop=1 -4

| Hgn“f\Hs e“l ? dlu

<e "sup] lgilipse™ “du—0 as n—oo. (411
k 2

Since g, is essentially bounded on 2, and v vanishes outside of Q, _,, it
follows from (4.10) and (4.11) that

_( v, whause “du

o4

= J (& Tyw)ause 7du, forany weAZ?(Q).
Q. !

Hence v 1L #. |
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5. QUASI-SHEAVES AND COHOMOLOGY

We first introduce the notion of quasi-sheaves. Let I be an arbitrary set
and

1= {1= (i, . i) €11, # 0, if j£ k),
[goz {Jcl : #J—:n}9

= U | (8
n=1

For Iely,, J(I) denotes the subset of I consisting of the components of /.
We call a pair ¥ =({V,: Jely}, {n, :J,J €ly, J=J'}) a quasi-
sheaf (indexed by I) if

(1) each V, is a vector space,
(i) m,, :V,—»V, is linear,
(i) mgyomp=ngon,x, f K, K'cJ, JcK K

For quasi-sheaves ¥V =({VY'}, {z''}), j=1,2, a morphism ¢=
(pr Jely} from ¥ to ¥ is a family of linear mappings
@, V- Vi satisfying that n'})-p,=¢,on!)). In this case, p¥ V=
(1o ‘”V“'} {n“'}) Ker(p) = ({Ker(p,)}, {n}}}}) are also quasi-sheaves.

Each permutation t of {1,2,...n+1} acts on I=(i, .., i,,)elj*! as
=l e bene1y) We then set

,(¥)={{v,: 1el}*'} v, =sgn(1)r,

for any permutation z of {1, ..., n+ 1}}.

For v,={v,} €6,(¢"), d,v,={w, : I'el7**} €%,, (¥) is given by

n+2

L kel .
wp = Z (1" Teanmblrs
k=1

where [’ = (i), s ik 12 fx 41y ine2) It is easily seen that §,,,-6,=0
and hence we can define the nth cohomology group with coefficients in the
quasi-sheaf ¥ by

H' (¥ )=2Z"(4)/8, (€, (¥), n=0,

where Z"(¥ )= {v,€%,(¥):d,v,=0} and & % ,(¥)={0}. We say

that a quasi-sheaf ¥ is fine if H"(¥")=0 for every n> I.
Every morphism ¢ = {¢,} of ¥ " to ¥ * determines a linear mapping
26, (1 V)%, (¥ ) so that @, ({v,})={@,,t,}. Itis straightforward
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to show that J,¢,=0,,,0,. We can therefore define a linear mapping
@ H'(V" )Y HY($™ ) by @,.[v,]=[0,v,], v,€Z"(¥"), where [-]
denotes the cosets.

For quasi-sheaves ¥ ') and morphisms @' = {@} of ¥"/' to ¥ /* 1),
a sequence

¢ () anA y (2) o y(3) o e gl o\ gl 7t h
is said to be exact if Ker(o!/* ") =Image(p}’), j=1, 2, .., Je 4. We have

PROPOSITION 5.1.  Assume that

) o0 §(h) @' PURE ytm (/, 1”,_(”+“ PLERT!

O (4] v __1__) 1’”‘0 .
(5.1)

is an exact sequence of quasi-sheaves and that every ¥ is fine. Then
H'(#) = Ho(o" V9™ D)ol VHO® V), nxl (52)

Proof. Suppose that 0% ¥~ oy "Ly 2,0 is exact. By a
standard argument, we see the existence of linear maps d,.: H'(#"") -
H"*'(¥") such that the sequence

dg» - @y

025 HO¥ ) —2 0 HO¥ ) 2 HO>y ") —2 s HY(y ) —2s .

H"(1 )———> H"( )———w——) H"(“}""’)_j R H"*l(“t")

"n 1% Pn+*
—_—

is exact. See [3, Chap.3].

Note that 0-% @ Dy -Dgytm oL iy tn 8,0 j5  exact.
Combining this with the above observation, we can conclude the desired
equivalence. For details, see [3]. |

By the exactness of (5.1) and (5.2), in the same situation as that in
Proposition 5.1, it holds that

H'(#) =~ H'(Ker(o"™))/pln "HY(¥ =1, nxl. (5.3)

6. A DOLBEAULT-TYPE THEOREM

Let A B be a measurable set and M be a Polish space. For measurable
f:A—-[0,00)and g: 44— M, we say that g is compactly dominated by f
(g < f in notation) if for each » there is a compact L,c M such that
u(gé¢lL,, f<n)=0. We set

Z={x:[0, 0)— [0, oc): xis C? non-decreasing, and convex }.
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We remark that every fe C([0, oc); [0, c0}) possesses y € Z so that /< y.
We have

PROPOSITION 6.1. Let 0,7e (Y, Q) and assume that

dbo > A for some symmetric Hilbert Schmidt A >0 (6.1)
(Dy, D*y) <. (6.2)

Then there is a y € ¥ such that
(x(o) +27) =24 3y ® Oy. (6.3)

Moreover, for every y,€ X, there is a y, € X such that (6.3) holds with y = x,
and y = yo(0) + .

Proof. 1t follows from (6.2) that there is an increasing function
g:[0, o) = [0, oc) such that,

gn)A= =280y +4y®dy on {o<n}.
Choosing 3 € X such that y' > g, we can conclude from this and (6.1) that

(6.3) holds.
Since

3(x0(0) +7)® 8(xo(0) +7) < 2{(x4(6))? 80 ® do + 8y ® v},

to see the last assertion it suffices to choose x;€Z such that y3(c)4>
—230y+ 8 éy® éy and set

x1(x)=2x,(x)+8 L L, (xozN*dzdy. |

For o e (¢, 2), we set

W2, E)y={ueD! _ (Q;E):u=0
and Du=0 p-ae. on {¢>n} for some n}
LU E)={) {L* (2, E, e/ du): [ : {0, v} — [0, ov ) is continuous }
=) {LAQ;E, e "'du) : yeq}.

To introduce a new class of differentiable ( p, g)-forms on Q, we prepare
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LEMMA 6.2. (i) If we W, (2; A™9) then T'""""w=0 p-ae. on {d>m}
Jor some m. In particular, for any ue L2(2; N79) and we W _(Q; A"9),

f [, TP W) gl d < 0.
Q
(i) If ve L2(Q; A" satisfies that

f (0, W) ans di =0, we W_(Q; A9+,
Q
then v=0 p-ae. on Q.

Proof. Choose ge C*(R; R) with g'<0, g=1on(—cwc,0] and =0 on
[1, «0). Fix an m with w=0 and Dw =0 on {6 >m}. Then, w= g(6 —m}w
and it holds that

T (n,&,w)=T'"""(n,¢, glo —m)w)
=T (1,80 g1 280, 20 —m)W)
=8N+ 28020 —m) T (0,8, w)
— (g1 280420 —m))n Euw).
Hence we have
T, E,w)=0  p-ae.on{o>m+1}.
Since

T (0,8, w)=n,8, T """ w—i(3(n,¢,))w, (6.4)

we see that 79" w=0 p-ae on {o>m+1, n,é,=1} for every v, n
Letting v— oo and then #n— oo, we obtain that 774 w=0 p-ae. on
{g>m+1}. Thus Assertion (i) has been verified.

To see the second assertion, let g be as above. Then 5., g(c —m) fe
W_(2; A7 ") for every feD! (A7¢*'). By the assumption, we have

L} N, glo—m)v, 5 aus du=0, fGDL,(/\"“’+]),

We therefore have
n.¢,8lc—m)v=0 u-a.e.on Q.

Letting m — o0, v — o, and n — o, we obtain that 1 =0 p-ae. on Q. |§
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We can now define
Z,(82; A\7Y)
ue #2(2; N\"%): thereisave L2(2; \™¢* ") such that

- j” Cuy TP W aps dl~‘=jn v, W)aps du
for every we W (S AP4F)

lu=v  for ueZ,(Q;A\").

We then have

LEMMA 6.3.  Assume that there is a ye I'(y, Q) with y € o. Then it holds
that

@o(g;/\kq)___ U Dom(T“’"” ).

2oLy
xed
; (p.gq) Ao, _ T(pq)
Furthermore, if ue Dom(Tl(”)‘,',), then 6Mu— Tl(a]‘.l,u.

Proof. Tt follows from Lemma 3.6 that for any we £2(2;A™),
weW_ (Q; A"9*}), and ye X,
Cu, T4 (n,8,w) Do
= Cu, T4 (0,8,w) —1,8,i(8(x(0) + 7)) whe
=u, e MITE (X, Ew) Do

= <“9 T(pd]i' (el(a)+."r’vénu’)>x((l)' (65)

xlo)y

Suppose first that ue Dom(T7,%) ). By (6.5), we have

e

<ua T(p‘q"(r’vénw)>0= <TL[(‘:;_,..M, r’v&nw.>0'

Since y <o,
Y < xol(a) for some y,eZ%. (6.6)

Hence we see that T\%:%) ue #2(2; A™) and

lim lim (T@9 u n,Ewdo= T4 u, wd,.

R 00 VX o) x(a).y

On the other hand, it follows from (3.7), (6.4), (6.6), and Lemma 6.2(i) that

Hm  lim Cu, 779 (n,8,w)do= u, TP w ),

n-— X vl

Thus, ue Z,(82; A™9).



94 KUSUOKA AND TANIGUCHI

We next assume that ue Z,(2; A"9). Let feD! _ ,(2; A™9). For each
v, n, if m>ess.sup{n,, &, 0(z):ze R}, then

nvénf——’nvén g(a—m)fe WG(Q;/\p'q)s

where g is the function appearing in the proof of Lemma 6.2. By (6.5), we
obtain

CEyrunaf Ya= < TP (1,8, /) g
=i, T 0,8, ) o

where y€Z is chosen so that 6“”ueL2(Q;/\”"’“,e”“"’dy). It then
follows that

<a(ﬂ)u . é f>,((a|+) <u T;fa‘;)‘(’? énf)>)(l‘7)’

which means that ue Dom(7{%4) ) and T70 u=300u. |

The lemma yields

COROLLARY 6.4. If there is a ye I'(Y, 2) with y <o, then it holds that

BNDALAPNC L, (@AY and ), 0050 =0.

Py +1

Proof. Let ueZ,(2; A\”“). By Lemma 6.3, ue Dom(T (/%)) for some
¥ € Z. Applying Lemma 3.5(6), we see that

(p.q) (pg+1) (pg+1) (r.q) —
T/(al ueDom(Tm,)Jr“) and Tx(a)+ 1(T1(0) u)

Since y <o, there is a 7eZ such that y< (o). We then obtain that
T;’(’a","ueDom(Tﬁfj;"a’,}) and that Tﬁ)’(’;’;,('a’)](T‘,’(’a",’ u)=0. The desired
assertion follows by applying Lemma 6.3 again.

We now show the exactness of 6%7):

PROPOSITION 6.5. Assume that there is a ye I'(y, ) with y <, éd6 20
u-a.e. on Q; and (6.3) is fulfilled for some y e X. Then it holds that

Image(ég’q') = Ker(ﬁ‘”’ 1)

Proof. By Corollary 6.4, it suffices to show that Ker(ﬁ“"j e
Image(d ‘”)) Let ue Ker(é“‘”H) By Lemma 6.3, ue Ker(T:41 ") for some
jed. We then see that ueI(er(T:;;’L’;“’a',H N LY(K; /\”" e~ T g4)
and that

A0((F+x)0)+27) =4 3y ® .
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Applying Theorem 3.2, we obtain ve Dom(T{¢:¢ | . )sothat (2%

T . - A ICN i+ ey P = s
which implies that u e Imagc(a;i’;) by virtue of Lemma 6.3.

Let E, be a complex Hilbert space and U be an open subset of E,. We
define

Exh(U)={f:U— [0, 00): fis C*and each {f <n} is closed in U}.

By virtue of [6, Chap. II, Theorem 27, we see that

(a) Exh(U)# ),

(b) for every closed Ac U, there is an feExh(U) such that
Ac{f<m} for some m. Fix arbitrary g, (Y, Q) and F: Q- E,
satisfying that

(1) 1,8(y)FeS*E,) for every ge C5 (R R),
(2) CF=0p-ae. on £,
(3) (F,DF)<a,.

We then have

LEMMA 6.6. Let fe Exh(U) and ye I'(Y, Q). Then

(i) §=y+f(F)e¥P(F "(U)).
(i) d=ao+f(FYe L, F 1(U)).
(iii) There is a ye X such that =y + y(é)e I'(§, F(U)).

Proof. Let ge CX(R;R). It is easily seen that 1,1, g(¥) e S*R) and
that 1,~77.1L3,g($)6682(k). To see the boundedness of them and their
derivatives, take a Ke.#, such that n‘,aoeS}(.h(R), v=12,.... On
{px<n, Y <m}, especially on {p,<n, y <m}, , and Do, are bounded
and (F, DF) is contained in a compact set. Moreover, since f e Exh(U),
f(F) and f'(F) are both bounded on {p,<n, ¥ <m}. Hence 1.1, g(¥),
1. M;,g(qu)&eS,‘,(R). Thus Assertions (i) and (i1) have been proved.

Note that (F, DF)eL,xL, on {d<n} for some compact L,c E,
and L, c H*® E,. Since feExh(U), we may think of L, as a compact
set contained in U. We can therefore find a yeZ such that
IDU(F)) jye 5, < €7 The last assertion then follows. |}

LEMMA 6.7. Let f, @ € Exh(U). Then it holds that
() Wos i F {UYE)=W, . on(F "(U)E).
(i) L%, nlF WLE)=2" (F '(U), E).

ao+ @(F)

(it} Zpys il F NULEATY =2y ol E UK AT,

580117 1.7
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Proof. Since F <o, for each n, there is an m such that

loo+f(F)<n} < {og+@(F)<m}
and (6.7)
{oo+@(FYsn} < {o,+ fIF)<m}.

This implies the first assertion.
Equation (6.7) also yields that

oo+ @(F)<ylog+ f(F))  and oo+ f(F)< (oo + @(F))

for some y € ', which implies the second assertion.
The third assertion follows from the first two assertions. |}

We can now define

Qv(/\’”’) = Doy o F~HUY AT,

7o+,
pg =0

where f'e Exh(U). We say that U is pseudoconvex if there is an /'€ Exh(U)
with ééf = 0.

PROPOSITION 6.8. Assume that (a) there exists a yel(y, Q) with
(3, Dy, D*y)<a,, (b) Eq. (6.1) is fulfilled with ¢=0,, and (c) U is
pseudoconvex. Then the sequence

f/l,(/\f’ﬂ)—ﬁp'—o-»-- __. (A7) ;' GNP 2 ity
is exact.

Proof. Choose feExh(U) with 80f>0 and set Y=y + f(F) and
6=~00f(F). As in Lemma 6.6, take a yoeZ so that }v= + xold) e
Iy, F '(U)). It is easily seen that ye (i, F '(U)), 66> A, and
v, Dy, D*y)< 6. As an application of Proposition 6.1, we obtam ayed
such that

31 (6)+27)2407®3F  onF (V).

Then the assertion follows from Proposition 6.5. ||

Let {U,},., be a locally family of open sets in E, and set U={),., U;;
ie., every xe€ U has a neighbourhood ¥ such that #{i: U nV#} <.
We denote by {¢,},., the corresponding partition of unity (for details, see
[67). For u,: F "(U;))— A", we define

T )= Z @ (Flu,.

i€l
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LEMMA 6.9. Suppose that there is a ye I'(y, 2) with y<a,. Then the
mapping

T: D Zeniv N> Zon (A7)

iel
is a well-defined linear mapping.

Proof. Choose feExh(U) and f;e Exh(U,) such that {¢;>0}c
{f;<m,} for some m,. We set §, = + f(F) + fi(F), §,= 6o+ [(F) + fi( F),
and take 7,€ 7 such that §,=y+j, (6, e ' (Y,, F (U,n U)).

Let u,e &, . (A™¥). Since

f |“:‘|fo5 e ~xian du < oo,
F Yunt)
for some y, € ¥ and 6,<o,+ f(F)+m, on {@, (F)>0}, we have

2 2 (1(00 + f(F) + my)
j - @; (F)lulause ' " dp
F T n )

5 s
< [t s € ™ du < o
F YU AUy

Thus
@ (F)ue ,_Y’::'M arlF I(Un UK A™9).

Since (7,, F, DF) < 6;, Lemmas 3.7 and 6.3 imply that

@, (F)u;e Dom(T‘M) )

b ACANT
TS (@ (Flu) =@ (F)TUD 4 e, (F) A u,,

for some y,e#. Noting that 7, <y+ %, (6o+ f(F)+m,;) on {f, (F)<m,},
we can conclude that
T4 (@ (F)u;)e f!’f,ﬁ_,.(,.)(l” T AU A™9).

AN

As in the proof of Lemma 6.3, we can further show that

J _ (@i (F)u;, T w ) pyys dp
FoUE AL

< T'zf’l'g,)),i‘(q)i (F)u), w)aps du

YE DA
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for every we W, jo(F- (U Uy, A»4*"). Since F<o,, we then have
that

Z P (F)uie‘-?xzroJr,l'(l-‘)(Fﬂl(f]m U);, A7),

iel

LT le (P u)ye L | (p(F (OAUR AP,

xi{ 6. T
iel

and

J <Z @ {F)u,;, T”"‘”'W> du
F-{(On ) AHS

iel

—J. < ;f)l:,)) ”{(P (F) ui)* W> d#*
AU \jc1 AHS

for any we W, , ,»F (T U;A”*Y). Thus 3,0, (Flu, €
7PN VASAR A |

In what follows we consider-an example of quasi-sheaves and show a
Dolbeault type theorem. For J, J € ly,, J< J', we define

VP-‘I:_ gﬂAeJL",(/\p'q) ifﬂie.] UI?£Q3
’ {0} otherwise
{0, Ui#Fandue Vi,

TI'”'J“’L( = ul MNies U,
/ 0 otherwise.

: {é”'t/ on gmysjl:’,(/\p'q) N, Ui#D,
Opgs=

0 otherwise.

We have the following Dolbeault type theorem.

THEOREM 6.10. Assume that (a) there exists a yel(, Q) with
(7, Dy, D*y) < gy, (b) Eq.(6.1) is satisfied with 6 =0, and (c) every U, is
pseudoconvex. Then the following assertions holds.

(i) ,sz/” 1= ({V5}, {nh?}) is a quasi-sheaf.

(i) ={0,,,} is a morphism of /"4 to /74",
(1ii) Let @”=Ker(é,,v0). Then the sequence

a

; H
0L org ogr® 2 grpt 0 i

PN XS B RN

(6.8)

is exact.
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(iv) Every /™9 is fine. Moreover, it holds that
HY(O") ~ Ker(éAga)/Image(éA?q— ),

where
AL ={u: F YD) A" ul gy € Dy (N"9), i1}

a/\f.i"“ [ F vy = ap.q.{i} (u] rf'w,))-

Proof. Let (N, ., U;# & and f,e Exh(U,). Then 3_;_, f;€ Exh((),., U)).
Hence, if J< J', then

W oo+ Sies itk (Fl ( N U,-);/\""')

ieJ’

EW s S (Fﬁl N U.'>J/\"“’>

ied

gi(ﬁ—&u‘ JAla) (Ffl ( Ui)if\p'q>
. ielJ’
2 nyt (‘ygm Ties i) (Fil (ﬂ Ui>;/\p'q)>-
ieldJ

This implies that
AR EZPNTR VAN ) R AW VAN

PaL A =3 pq
nhfel, .4 =0,, ol

Thus the first and second assertions have been verified.

Note that (),., U, is also pseudoconvex. Hence the third assertion
follows from Proposition 6.8.

To see the fourth assertion, take w,,, = {w,,},,e,gue‘gﬁ,(d""’) with
8, 1Wn ey =0 1If we define v, = {v,},elaﬂ by v,=3 4 ;i @i(F) g, then,
by Lemma 6.9, we see that v, €%, (/"9). It is straightforward to see that
S,b,=w, . (for example, see [3]). Thus /™ is fine. By virtue of (5.3),

n-n

we then obtain that
HY(P) =~ H(Ker (S, /(0,4 1)or HY(P 7).
To complete the proof, it suffices to note that
HC(Ker(¢,,,)) = Ker(d yr0)

and

(él"-‘/_ ])0‘ Ho(tdp.‘l* 1): Image(a/\l:’qfl). I

(4
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7. PSEUDOCONVEX DOMAINS GIVEN THROUGH SDE

In this section, we consider the case where B is a space of continuous
functions on [0, 1] starting at 0 with values in RY (d=2d"), H is its
Cameron-Martin space equipped with the norm [[4]2, =2 [} |A(s)] ds, and
i is the standard Wiener measure on B. For we B, we denote by w(¢) its
position at time ¢ and by x*(r, w) (resp. y*(+, w)) the (2k —1)th (resp.,
2kth) component of w(t), k=1, 2, .., d". If we set B*(t, w) + \/TT v, w),
then an almost complex structure J:B— B is given by B*(1,Jw)=
 — 1 B¥(1, w).

Our first aim of this section is to give some examples of functions in
S”"(R™)and S}(R"). For We C*(R"; R"), we define W*eC” (R”"; R"®R")
and WFe C*(R"x (R"®R"); R"®R™)) by

AL

[¢
W*(y)= :
(J) (8}71 (} ))léi.jém

and

W”(_V,a)=<W(y),( 5 (W#);;(y)af) )
Isig.jsm

k=1

where yeR”, ae R"®R"”. Take an arbitrary but fixed De N and put
g,=D and q,,,=gq,+q}. Note that (x,e,,..,e,) (xeR”, ¢,e R“®@R%)
is a coordinate system on RY*' since D+g¢g>+ --- +¢>=4,,,. For
VeC*(R”;R”), we define V"WeC™R»';R") and V*"e
C” (R*; R ® R9) successively by
Vit(x, e )= V5(x, e,) and V*Mix)=V*(x)
Vﬂ(")(x, €1y ey (’") = { VM" h l))!: ((x’ el > ey en— 1 )’ 6’"

V#(")(xa €1, ey en~ l)= ( Vh(ni ! ))# (.\’, (’1, (X (’" - l)'

Let V, e Cy(R”;R”) and consider a system of SDEs

d
dX(1)=3 Vi (X(2))edw*(t)+ V,(X(1)) dt (7.1)

k=1

dYV ()= Y VEO(X(1) YOty dwh(n) + VED(X() YOy de (7.2)

k=1
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d
dy™y= 3y VZ"(X(), YN@), ., YT D)y Y () - aw*(1)
k=1
+VENX(), YV, L Y D)) Y1) dr (7.3)
X(0)=x,

Y‘ ”(0) = IR"/@ R4+

where wi(r)= (w'(1), .., wi(t)), we B. Since each V?")(-) depends only on
the coordinate (x, e,, .., e, _,;), we see inductively that there exists a unique
strong solution (X(z, xo; w), Y'"'(1, xo; w), Y21, xo5w),...) to the system
of SDEs. By the definition, we note that

#in—- 1),
£ (V7 (x,e e, 2) 0
VE X, e, ..e, )= N -

and hence we have

n—1) -
Y (1, x¢) O) (7.4)

Yini(t’ x())=( * «

Moreover, every Y, x,)eR”®R? is invertible and the inverse
Y™ 11, xo) enjoys

d
dylni l(t)z_z Ym)—l(,) V:é(n]

k=1
X (X(1, xg), YL, Xo), ey Y11, Xo)) o dW (1)
— Y VED(X(L XY YU Xp), e Y1, Xg) dt
Y(’”(O) = IRq,,@R‘in'

For arbitrarily fixed o€ (0, 1) and me N with 2ma>1 and a + (35) <3, we
put

j‘ [X (1, Xo; w) — X (5, X5 w)|>” it ds

)’_S'1+2mz

1
(p:"i‘m;;\‘())(",) — j.
0

Q

q);;.m, \'o)(w) — ¢:12.n1:x0)(w)

Ut Y1, xo3 w) — YIS, X w)| 2
+ J‘O J.O dr ds

|t_sll+2ma

dt ds.

LY i w) = Y (s, g w)I
+1,1
0 Y0

|Y—-S‘l+2"m

Our first goal will be
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THEOREM 7.1. (i) X(1, xo) € SZ(R?) = N, SHR?P), Y"1, x,) €
S7(R”"@R™). (i) @™ eS>(R) and there exist C(n, 1)< and
0< p(n, 1) < oo, which depend only on D, o, m, n, I, and the bounds of V,’s
and their derivatives of order <n+1, such that

ID'BEma < O, (1 + B oy ptnd) (7.5)

Furthermore, it holds that

2
(o, 1)=<16D“ + 2ma)(1 +\/5)>
2mo — 1
“\! - b 7.6
( +(m—2ma)(m—2ma+1)) Vie o Va (7.6)
1
p(0, 1)=1 +—, an

v,=sup{IV,(x)| : 1 <k <d, xeR”}.

The proof is broken into several steps. We first see

LEMMA 7.2, @*™ < ¢ p-ae. on B.

Proof. Since V,’s are bounded, by Doob’s inequality, we have

Plemix et _le=s”
E[ 0 ]\Cm ~—IT—2m—adtds<Oo
o o |t —si

for some C,, < «. Thus, the assertion holds for n =0.
Note that ¥ ?!")(x)= ¥ ?(x) are all bounded and hence

sup [YV(5, x)l +1Y'™"" U1, x0)fe () LP(B:R,dp).

O0<rx1 1< p<a

Then applying Doob’s inequality we see that the assertion holds for n=1.
We shall show the assertion by induction. Hence suppose that
@>mx) < oo y-ae By [7, Theorem 2.1.3], we have

1 + 2ma
2ma—1

"(F [ g, dv)m 78)
]

o Iu_v|1+2ma

lt_slaﬂ 1/2m

(1) — gs) < 16
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for every ¢ € C([0, 1]; R). Hence we have

sup | X(1,x)|

LEES}

16\/—(l+2ma )1+ |x,])

2ma— 1

sup. (Y”"(t, xo)l v Y711, xo)]

(1 + ¢£]m,m:xo})l‘r‘2m (79)

0
1

//W\
//\//\

16q,,(l +2mo)(1+ \/q,)

2ma —1

1 + ¢1”atvm:m))1;2m' (7'10)

Remember that ¢,+3Y7_,9 =g¢,,, and hence (x,e,,..e,) (xeR?
e,e R“"®@R") is a coordinate system on R%-'. Choose ¢, € C;(R%*';R)

so that ¢, (&)=1 for lfl<16q,,(l+2ma)(l+fr0l+\/q_,, 1+ L)v2my
(2ma—1). If we set

Jiwlx, e e =0, (x, e, .,e,) V(x e, ..e,)

and denote by ¥+ (4, x,) the solution to the SDE

dY‘"*”({)— Z S (X1, xg), Y, Xo), o YU, X))

k=1

x D)o dwh(1)
7, o (X1, xg), YL Xo), s YU, X)) PV V(1) di
P 0) = Tnur s orun s
then, by (7.10), it holds that
Y0, x0) = T (1, xo), 0<<l,

p-ae. on {PrmroL LY (7.11)

As in the case that n=1, we can conclude from this identity that
Prm V<o pae on (@O LY. Letting L— oo, we see that the

assertion holds for n +1. §

LeMMma 7.3, For each n, there is a Ke X, such that X(t x)ESE(R?Y N
Sks(R?), Y1, x0), Y'Y 7!(1, %) € SE(R*QRY) NS} ,(R“QRY), 0<
(<1, 1</<n, and " eS% ,(R).

Proof. Set N=D+2%"_,q;. Let C([0,1];R") be the space of
g-Holder continuous functions defined on [0, 1] with values in R, and
We((0, 1); RY) be the L>-Sobolev space or order ¢ over (0, 1) asin [1]. We
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denote by C*([0, 1]; R") the closure of C'([0, 1];R") in C°([0, 1];R")
and by H* the closed subspace of W*((0, 1); R") consisting of 4’s with
h(0) =0, respectively. We consider

G(w) = (X(1, xo; w), Y4, x4: w),

YU N xgiw), e YU X w), YV (L, xgs W)
By virtue of Theorem (0.2} in [5], for every we B, the mapping
G(w+-): H)3h— G(w+h)e C*[0,1];RY) (7.12)

is continuous, where B=ax+(im) and d=(3)+f v (). Indeed, the
boundedness assumption on vector fields governing SDE made in [5] is
needed only to see the unique existence of a strong solution to the SDE.
Since our system of SDE’s possesses a unique strong solution, the result in
[5] is applicable to our system of SDE’s. In what follows, for the sake of
simplicity we write E for C#([0, 1]; R").

We set

By(ry={heH:|hl|,<r}.
For A< H{, we denote by C,(A; E) the space of continuous functions of
A into E, where the subscript H{ is used to emphasize that the continuity

is considered with respect to the topology inherited from H{. By the above
observation,

Gw+ ) g, € Cop(Bylr); E) forevery r>0and we B.
Since the mapping
Bow (Gw+ N gueen€ [ Crp(Bylk): E)
k=1

is measurable [5, Theorem (0.2)], by virtue of Lusin’s theorem and the
inner regularity of the Wiener measure y, there is a Ke #7, such that the

mapping
Kaw G(w+ )| g4, € Crt(By (k) E)
is continuous for any k € N. By virtue of the compactness of K in B and

that of B, (k) in H?, this implies that the mapping G: K+ By (k) E is
continuous for every k. In particular, we have

1G(w)(1) = G(w)(s)]
sup Tl
k=1,2,.. (7.13)

:0<s<t<l,weK+BH(k)}<oo,
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Recall an obvious inequality

(7.14)

' _ RYPS 2m
‘d)(naz,m;xo)(w)l <(2n+ 1)( sup IG(H )(f) G(\t )(S)’) .

Ogr<rgl ]]—slﬁ

Combining this with (7.13) we obtain that

(Di,z‘m; Yl e S(l)xh(R )

Now plugged into (7.9) and (7.10), (7.14) also yields that
X(Is xO)ES[I)\'.b(RD)»
YUt xo), Y (1, x0) €83, (R ® R,

for 0<r<1 and 1 <j < n Further, it also follows from (7.10), (7.13), and
(7.14) that, on each {p,<r}, X(1,x,), Y''(t,x0), YU, xp), ..,
Y"1, xg), and Y (1, x,) coincide with solutions to SDE’s governed by
C-vector fields. Hence

X(t, x0)eSE(RP),

YL Xo), Y1 (1, x0)eSE(R"®R*),  0<1<1,1<j<n

The proof is completed. |

LEMMA 7.4. (i) If f;€S,(E), f,— f p-ae., Df,—> F g-ae, and | f;| .+
IDf i)l e : < G, j=1,2, ..., for some GeS)(R), then f€S,(E), Df =F, and
IDf ) oo e <G.

(i) Let T be a compact metric space, m be a probability measure on
T, and f(t,-)eS,(E). Assume that 1+ f(t,w), t+> Df(t,w) are both
continuous and that there is a GeSYR) such thar {f(t, w)lz+
IDf(t, w)ll oo e G for every teT. Then ij(t)m(dt)eS},(E) and
D(§ 7 f(1) m(dt)) = | ; Df(z) m(dt).

Proof. The second assertion follows from the first one by using the
Riemann sum approximation and the bounded convergence theorem.
To see the first assertion, choose Ke X', such that f,eS, ,(E) and
GeS% ,(R). For any ge C{(R;R),

glpx) ;€D (E)

and

D(glpx) f)=D(glpx)® f;+ glpk) Df,.
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Since g(p )G is bounded, the bounded convergence theorem implies that

glpx)fi— glpk)f in L?(B; E, du),
Diglp) )= D(elp)®f+ glps)F  in LB, H*® E, dy)

for any pe (1, o). Thus g(py)feD), _(E) and D(g(px)f)=D(g(px))®
S+ glpx) F. This implies the desired conclusion. |

For the sake of simplicity, we set
YO, 1) = X(1, xo) — X{s, Xo),
Y(s, 1) = Y4, x0) — YM(s, x4),
Z%s, 1)=0,
Z"M(s, )= Y"1, x0) = Y715, x0),

and write @, for @x"),
We then have

LemMMA 7.5. For each le N, n=0, there exist C,(n, 1), Cy(n,1) < «c, and
0< p,(n, D), p5(n,{)< oo, depending only on D, a, m, n, I, and the bounds of
V.'s and their derivatives of order up to n+ 1, such that

1D Y s, Ol e S C(n, D= I+ 1Y (s, DDA+ @, )0 (7.15)
IDZ") (s, )] o < C(m, (1 =51"2+ 1Y s, 1)
+]Z" s, 0D+ B, )D (7.16)

for any s, te [0, V). In particular, for every n and I, there is a Ke X, such
that
X(1, xo) €Sk, (RP),

Y1, xo) Y (1, x0) €Sh ,(R"®R*),  0<r<1.

Proof. We show the assertion by induction on /.
By (7.11), we can show that

X (1, xq)

Y“ )(ta Jc())

D [A]

Y(" )( Z xO)
d

'
=Y"‘*”(t,x0) Z J Yln+1)—l(u’x0)

k=1"0

X VEO(X(u, X0 YOty Xo)y ey ¥'"N1ty X)) B () i (7.17)
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Combining this with (7.10) and the elementary inequality that
b, 2
[ 11 ) ds<ib—al"? i,

we see that (7.15) holds for /= 1.
Since

DY N1 xg)= =Y " Y1, xg) DY (1, x0) Y M1, x),  (7.18)
and (7.4) yields that

(YU, )<Y, 1)) and  |ZY (s, ) <27, ), (7.19)

on account of (7.10), we see that (7.16) for /=1 follows from (7.15) for
=1

Suppose now that (7.15) and (7.16) are fulfilied for every k </ and n. By
applying Lemma 7.4, we can conclude from (7.17) that

X(1, x5}

Y(”({7 xl’))

Dl+l [h]

Y(ﬂ)( { x())

!
— Z [D’ Y'"*”([, xo)]
j=0

d P .
x Y L D' (YU Yy, x) VE(-)) kM) du. (7.20)

k=1

By virtue of the assumption of induction, (7.10), (7.19), and (7.20), we can
easily show that (7.15) holds for /+ 1. Applying (7.10), (7.18), and (7.19)
again, we see that (7.16) also holds for /+1. |}

Proof of Theorem 7.1. We have already established the first assertion.
To see the second assertion, for the sake of simplicity, in this proof all
constants of the form C,(n, /) or p,(n, [} are assumed to depend only on
D, a, m, n, I, and the bounds of V. ’s and their derivatives of order <n+ 1,

and we will not mention it each time when constants appear.
Let

dt ds.

)’—S)I + 2mx

¢u= ] o WY s )+ (245, )™
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Then, by Lemmas 7.4 and 7.5 and (7.8), @, , €S, (R) and
bo,,= || Tiel2I07 071 DUZ M 077

![ ll + 2mx

L dr ds.

It s> Lk
(BT

Recall that there exist universal constants ag” .k, Such that
2mont

DI(F;’IH): FZm r alm Dk1F® ®Dk,,E
ky. .

p=1 kit o dhp=1
k=1

Hence, by (7.15), (7.16), and (7.19), there are C;(n [)<oc and
0< ps(n 1)< oo such that

{JIZ o D' LY s,0))*" ]+ D' [(Z (s, 1)1}
)

S‘ 1+ 2ma

dt ds

0 lt—

< Ca(” 1+ ¢“+()m<n./>

’m/\l{J\JA
j= 0 p=1 0 Y0

_ ol 2 (i+4h (W3] 2m
(If s H YV 0D Y 1) pdtds+f]fl

l Y‘ 1+ 2mx

x((t—sl"2+ YUHIs, )+ 129 0s, )7 12, D)™ P

“_ s,Il+2nm

dt a’s}.

Applying Holder’s inequality, we obtain constants C,(n, /)< oc and
0< py(n, 1)< oo such that

dr ds

J‘l fl Zl’=l) [DI( Y”'(S, ())3m+ D/(Z(i)(s’ {))Zm]
0 Yo

|I _ SI 1+ 2mx
< Cyn, D1+, )oeimD,

By Lemma 7.4, we can conclude that @, =1lim,_, , &,,€8,(R) and (7.5)
holds.

The precise expression of C(0, 1) and p(0, 1) can be shown by repeating
the above argument and taking into account the identity

d 1 .
DX(1, x)[h]= Y (toxa) Y [ ¥ (s, x) Ve (X5, oA (s) s
k=1"%0

We omit the details. |}

We now give examples of compact domination g < f.
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THEOREM 7.6. (i) (X(1, xo), DX(1, xo), D> X(1, x4)) € D),
(i1) If we define F:B—-LY¥[0,1};RY) by F=X(,x,), then
(F DF DzF) (pla . \nl
(i) Let 0<x <% and neN. Then there is an myeN so that, for each

mz=mgy, 2ma> 1, a+ (55) < 3, and there are 0 < B <} and m’ satisfving that
2'71'/; > l, [);_'_ (2_’1;7) < %‘ and (d,i’x.m;\‘n)’ D¢£'az.m;,\‘())’ DZ(pLﬂ,m;ru)) < ¢:'/f;’)2l':v\u).

Proof. (1) Fix an arbitrary i/ and define k,(u) by
d 1 dhl
DX(r, x)[h]) = k — (u) du.
(2, xq)[ 4] /}::1 L ((u) du {(u) du

It holds that

d
hy(u)= l[o,;](”) z (Y(”);(’)(ymi ‘)2 (u) V'[‘(X(u, Xo))-
k=1

By (7.8)-(7.10), we see that [0, 113 uw h, (1) is Holder continuous and the
Holder constant is dominated by ®$"*. Thus, by Ascoli-Arzeld’s
theorem, for each n, there exists a compact L, < C([0, 1]; R) such that
,u(h lto.1 € Lo, @7 <n)=0. Then through the natural imbedding

C([0, 11: RYY o L*([0, t1:RY) o L([0, 1]; R¥), we see that DX(¢, xo) <
¢(1 m; \'0).

Define &, (1, v) by

/
D X1, xollhs ha]= Z f f ko, u}(—iﬁl(u)d 2 (o) du db.

It then holds that k,, (u, v) =4k, (v, u) and &, (u, v) = (d/dv)[ Dk, (1) 1(v).
Using expression (7.17), we can conclude that the mapping 4,= {(u, v)e
[0,1} . v<u}s(u, v)r>k, ,{(u,v) is Holder continuous and the Holder
constant is dominated by @ ™. Then through the natural imbedding
C4,;RY) g L*(4,; RY) 5 L*(4,; RY), we see that D?X(1, x,) < =",

(i1) By virtue of Lemma 7.5, t — X(1 x,), t — DX(t, x,), and
t+— D2X(1, x,) are all Holder continuous and the Hélder constants are
dominated by @{*"*). By the above observation and Ascoli’s theorem, for
each n, there are compact L, = C([0, 1]: H*) and L, < C([0, 1]; (H*)®?)
such that p(DX(., xo¢ L,(L,, ®""'<n)=0 and u(D°X(-, x4)¢L,,
Pt < n)=0. Then, through the natural continuous imbedding

C([0, 12:(H*)®") s LY([0, 1]: (H*)®") 5 (H*)®"® L*([0, 1 ]; R).

we see that (F, DF, D*F) < @m0,

(ui1) For the sake of simplicity, we fix x, and consider only the case
where n =0 (the assertion in the other cases n = 1 can be seen in the same
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way). Hence we write @™, X(¢), Y(t) for @™, X(1, x,), YV'(1, x,).
Define g, (1) by

d 1 dhl
&= [h]= ~— (u) d
Do [h]= 3, J, & 0% ) du

We have

(X'(1) = X'(5)) | X(1) — X(5))* -
g/(u)=8m,/k—l[{f dt.‘;)d PR

X (Y'(1)— x;(s>>}

1 u i _y! _ 2m - 2
+{J‘ dtf dS(X(f) X'(s)) [X(2) = X(s)| Yi'(s)}:l

_SI1+2mz /

u 0 it
X (YU 1)) V(X (u)).
For u<u’, it holds that

(X'(1) — X'(5) | X(r) = X(s)]*" 2 (Y1) = Yi(s))

ll—Sll+2m2

u !
dt 5
a o

_ _ 2m - 2
’f dtfd (X'(0) = X'(5)) 1 X(2) = X(s)| (Yi(1)— Yi(s))

l[__s,ll+7mnz

u t _ 2m 1
<[ arf g XD =X 7w vy
O

't_s,|l+2mx

s(] dzj'ds |z—sr"’2>

(J i Gl ds) am

I[—Y|l+” 2)+ dmix

1 iy s,)'hlm tidm
<f I It_s|l+1l’)+4mudds> :

Moreover, by applying the Holder inequality, we obtain

(2

2m-2
I)-X(S)HXU)— X(s)| ¥i(s)

Sl 14 2mx

dz

w i Y _ 2)] 2m -2
“f d’f 4 X0 X(S)))ﬂtz),,,, X($)I Yiis)

|t —s

g C(m, \2) PH—‘ZJ” 12 {1 +¢(I1,m;,m\)l,’4m (¢(I§.4m 2))1‘2,
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where B =(dma+1)/(4m—2). Since DS*"gP*™ for a<a’ and
(@>myF g pix+ Urdmpdenet for p>2, we therefore see that wr g,(u) is
Holder continuous and the Holder constant is dominated by @-""*9 for
some B and m’' with 28'm'>1 and B +(55) <3 provided that m is
sufficiently large. Thus D@ « @m0,

If we denote by g,, the kernel of D*¢™™), then in exactly the same
manner we can show that 4su+— g,, (4, v) is Holder continuous and that
the Holder constant is dominated by some ®{"""* This implies that
,)2¢(:.m) <& ¢(2/3".m":xo)‘ l

We next give an example of Q, 4, and y satisfying assumptions in
Theorems 3.2-3.4. Let Ay, 4, .., A, be holomorphic mappings of C* to

C“, and z(¢) and Y(t) be the solutions to the following SDEs on C“" and
CY ® C¥, respectively,

”
dz(1)= Y. A, (2(1))odB (1) + Aq(z(1)) dt (7.21)
k=1

dY(1)= Y 04,(z(1)) Y(1)-dB (1) + 840 (z(1)) Y(1)dr  (7.22)

k=1

|

z(0)=0
¥(0) =id,

where 84, =(8A4,/02'), ., <, and 8/0z’ is the complex derivative. The
solutions may explode but Y(7) is invertible up to time of explosion. We set

! Ulz(r) — z(s)| ™"
b=, [ S s (7.23)
— 2m -1 _ ~12m
¢1=¢o+fljl‘y(” YN+ 1v) = Y6 17 g (7.4
o Yo |t —s|
Q,={go<r}, O<r< .
We have

LEMMA 7.7, (1) ¢oe V(R ) and ¢, € F(Pg, 2..)-

(1) There is a non-decreasing and convex ye C™(R;R) such that
7. = x(¢,) satisfies that

ess. sup | Dol 3. e 7 < 0.
€2,

In particular, y . € I'(¢y, 2,).
(iii) 8¢y=0, and 364, >0 p-ae. on 2, .

S80 117 (-8
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Proof. By (7.8), we have
16 /d(1 +2ma) , ,
z(t)] S —————= /"
2ma — 1

Let R>0 and take ¢@reCy(C*;R) such that @g(z)=1 if |z|<
16 \/t_tf(2mrx—l)’l (1 +2ma)(R+1)'”". Denote by z,(¢) and Y.(1) the
solutions to the SDEs

&
dzp(t)= Z ((PRAk)(ZR(t))OdBk(’)+ (@ rA)z (1)) dl

k=1

dY z(1)= Z NP rA Nz (1) Ye(1)odB (1)

k=1
+ @ rA)zg(1)) Yr(2) dt
2(0)=0
Y(0)=id,
and define ¢,z and ¢, x by (7.23) and (7.24) with z=z, and Y =Y,,

respectively. If ge C;(R; R) enjoys supp[g]c(—R—1, R+ 1), then we
have that

g(do) = g(do. &) and g(¢0)¢l=g(¢0,R)¢1.R-

Thinking of (z,Z) as a real coordinate system on C¢ and set X.(¢)=
(zx(2), 2o (0)). If we define Y')'(r) by (7.2) with X(t) = X (t), then

Yr 0
Y'R”(l)=( O(I) 7‘(7)) on {¢, < R}. (7.25)

Applying Theorem 7.1, we see that ¢, ¥(Q.,.) and ¢, € F(dy, 2. ).
To see the second assertion, note that

B0 = Po, rs Pr=01r and D¢y = Dgq g on {¢0<R}- (7.26)
Let

b(R) =sup {|Ak(z)| k=0,1,..d,

16 \/d(1 + 2ma)

zl <
2l < 2ma—1

(R+ 1)“‘“2"'}.

By Theorem 7.1 and (7.26), we obtain that

IIDGoll 11- < Cob(RI1 +,)' "1™ on {$y <R},
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where C, = (16d(1 + 2max)(1 + ﬂ)/Zmoc —1)2 (1 + (2/(m = 2ma)(m —
2ma+ 1)}). Thus we see

| Ddoll 1+ < Cob(d )1 +¢,) +1m.

It therefore suffices to choose a non-decreasing and convex y € C*(R; R) so
that

1(x) = 2log[h(x)(1 + x)' + 1] for x=0.

We now show the last assertion. If ¢ e C*(C"; C) and F e S'(C"), then

é 2 _
Do(F) = Z a—‘ﬂ(F) DF'+ =% (F) DF,
j=1
and hence
dp(F)= Y i—(F) oF + Z ? (F)eF (7.27)
/—l i=1 "
do(F) = Z -—(F) oF’ + Z £3£(F OF. (7.28)
j=1 Jj=1
We further recall that
T
o ([ s-as*(n) th)
0
T T d
= | DAOUAI-dB () + | f(0) = BXe, b dr. (7.29)
0 0 dt

Define A '(z, P)eCYTEPRQCITEV QLY+ to be the Jacobian
matrix with respect to the holomorphic differentiation of the mapping

C! x(CYRCT)3(z, y)— A} gz, ¥) = (@A (2), (@A) ).
We set
ALR @y, Y = (0rAu2), (@A) ¥, AR (2, ¥) ¥,

where y 2 e C¥ @@ CY +147 Let Y2'(1) be the solution to the SDE:

dY(1) = Z AL (z(1), YR(1) Y1) dB (1)

k=1

+ALR (zp(1), YR(1) YRA0) dt

Y(R?)(O) = chw(,/'p?@c/w(,/';?.
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Since @Ay, A} x, A}'Z are holomorphic on {@z=1} and B(1, 7, oh) =
B(1, h), we have that

zg(1)
dé| Ye(r)
Y1)
& zg(2)
Z DY zg(1), Yr(1), Y1) E| Yr(t) |<dBX (1)
- YR(1)
zx(1)
+(PAS Nz R (1), YR(0), YRU)) | YR(r) |t
Y31)
zp(t)
da(h(ﬂ) 4]
= 5 472G, Yama (250 (- as
= ¥ arfeato. vouna (1)) t-aso
S ALz (1), Y (z))&(z’*('))[h]dz
0O.R \*R * R YR(I)
+ Z A} g (zg( YR(f))—B"(f h) dr
k=1
{¢o< R} for every R>0. Thus we see that
zg(1)
O Ye(r) |=0
Y1)
zg(?)
a(mn) 4]
d' ¢ d
= ¥ YR0[ YD) AL p(za(5). Yal(s)) < BH(s. h) ds
k=1 0

ds
for 0<r<1 on {¢,< R}. We can therefore conclude that

O0zp(1)=0,  8Y,h(1)=0,

and  30YR(1)=0
The third assertion follows from these. |

00zg(1) = on Q.
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LEMMA 7.8. There exists a non-negative, non-decreasing, and convex
7€ C(R;R) such that o.,.=j(¢,)e F(dy, 2.) and fulfills conditions
(3.1)-(3.3) in Theorem 3.3 with 6,=0,,7=7.., and ¢= 1.

Proof. Since
80¢, >0,
307,20, and 3y, ®dy, = (1) (4)) 04, ® 0,
it suffices to put F(x)=4 {5 {6 (x') (w) dudv. |

Thus, as an application of Theorems 3.3 and 3.4, we have established

THEOREM 79. Let Q, and y, be as above. Then, for every
o€ FL(po, 2. ) with 000 =0 i ae. on Q. , it holds that

Ker(T{:4* ") < Image(T{/,4").
Moreover, the sequence

A2 (@) T A2 (@)

o AR, AL, )
is exact, where T=T" on \7¢ (Q.,).
We next consider 2,, r < cc. If we put
Y, (w)= —log(r—¢o(w))+logr, weQ,
then, as in the proof of Lemma 7.7, we see that
Y,e¥(Q,) and ¢, €S, Q).
Let v,=2y,+7v,.. Then, by Lemma 7.7,

ess.sup | Dy, [13,. e < 0.
2,

Hence ¢, e I'(y,, £2,). Further, since

N 8 N , B
&y, ®0y, < z5(13()(’9(‘;‘(150+2(1’)~ (¢,) 09, ®0¢,,
(r— o)

the function

dy pv
0’532¢’+8.(0 L (') (u) du dv
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satisfies (3.1)-(3.3) in Theorem 3.3 with s4=0,, y=7,, and e¢=4. We
therefore have

THEOREM 7.10. Let 2, and y, be as above. Then, for every 6 € £(Y,, 2,)
with 800 =0 u-a.e. on 2., it holds that

Ker(T7¢* "y < Image(T ,9).
Moreover, the sequence

2082, e AL (R2,)

O, a,
T 7 7
= ARLTHR) o AR
is exact, where T=T'"% on \2'4(R,).

We next consider an example of ¢, and F: Q2 — E, which appeared in
the Dolbeault type theorem. We construct 47¢" from A4, in the same way
as we did V2" from ¥V, by using the complex coordinate instead of the
real one. Let Y'(r) be the solution to the SDEs

d'
Ay =3 AFO(0), Y1), . YU 1(0)) Y1) e dBH(1)

k=1

+AFIz(0), Y1), o YU D(1) YO

with the initial condition Y")(0)=1id. Obviously Y"'(¢+}= Y(¢). For n =0,
we define ¢/* by

o= B s

Jo Yo l[_s| 1+ 248

dt ds.

J,l IY(")(f)ﬂ Yl;li(s)|2k+ IYan—l(t)_ Y(n) 1(S)|zk

1
(k) _ (ﬂ.ki_*_j
¢n ¢'n -1 o I, _ Sl 14 2kf8

0
As in the proof of Lemma 7.2, we see that ¢/*' < oo on Q. Suppose
further that m = m,, m, being the constant obtained in Theorem 7.6(iii). By
Theorem 7.6, we see that (., Dy, , Dy, )< ¢¥* for some 0 < B <! and
keN with 2kf>1 and f+(5)<3. As before, we can show that
00 #*)>0 on Q,. Thus we can construct a o,€ ¥ (., 2, ) satisfying
0-02 ¢(3ﬁ.kl and

o= A for some symmetric Hilbert-Schmidt 4 > 0.
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In particular,
(VI L] Dyo@a DZT:L ) < 60'

Then from Theorems 6.10 and 7.6 follows

THEOREM T.11.  Assume either that E,=C" and F=(z(t,), .., z(t,)) or
that Eqg= L*([0, 1); C¥) and F=z(-). If {U,},_, is a locally finite family of
pseudoconvex open sets in E, then

HY(O?) ~ Ker(J ,»e)/Image(d ,re1).
Np Y

We finally consider an example of approximation theorems studied in
Section4. We continue to work with the above o, and y_,. If
o€.7(py, 2. ) is decomposed as o =0,+ g, with 6,e 25¥(¢,, 2, ), and
o.€ S ¢y, 2, ) such that D’e_<a,, then we can find a yeZ such that
(4.2)-is satisfied with o, = y(0,). Indeed, we can find yeZ satisfying
é(x(o) + 0,) =0 because D%s, <a,. Obviously, o, fulfills (4.1). Thus we
obtain

THEOREM 7.12. Suppose that o€ S (P, £2.,) is decomposed as above.
Then, for each ue A2 (R) with TV ul, =0, there is a sequence
{u,} = o (6) such that

hulg, ,—ualg _la—0 as n-— oo.
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