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During the past 40 years, the classical and nonclassical theories of maximal
orders (in simple algebras) have experienced parallel development with a
reasonably complete structure theory available only in global dimension 1 For
the classical theory, pertinent references are [2, 6, 15-18]; for the nonclassical
theory, [1, 7, 11-14, 19]. Maximal orders having global dimension >>2 have
been studied primarnly in the classical setting by Ramras and Riley. Some
results are available but a complete classification awaits discovery.

In this paper, we initiate a program similar m approach to that of Asano,
Robson, and Michler for Asano orders, but broader in scope, which will include
many mmportant orders, both classical and nonclassical, In a different vein, we
have tried to develop noncommutative techniques which are also useful in the
classical context, where heretofore, commutative methods have been employed
to prove noncommutative results.

Section 1 1s a potpourn of facts about reflexivity, a concept ubiquitous to
both the classical and nonclassical theories. Lemma 13 provides a useful
module—theoretic criterion for reflexivity of an cssential right ideal which
avoids any hint of locahization, and which has such consequences as: 1n a quasi-
local maximal order with global dimension <2, the intersection of projective
right ideals is prmcipal.

In Section 2, we begin a study of the arsthmetic (2 la Asano and Robson) of
what we call Rl-orders, culmnating in an axiomization of their arithmetic. The
model for such orders is any Noetherian maximal order with global dimension
(2. These orders provide a rich source of examples, more general than Asano
orders, and at the same time, provide a natural departure from the rich theory
of Dedekind prime rings.
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Section 3 elucidates the basic properties of Asano’s overring S and the
intersection T of all the Goldie localizations at invertible primes. When the
underlying ring R 1s a Noetherian Rl-order, we show that S is an RI-order but
“unbounded” in the sense that it possesses no nontrivial reflexive S-ideals.
Using techniques of Hajarnavis and Lenagan, T is shown to be a bounded
RI-order and that the globalization theorem of Kuzmanovich holds, namely,
R = S N T. Ths result suggests that in the bounded case, R is actually the
noncommutative analog of a Krull domain since R = (pcp Rp , where & is the
set of all height one primes and each R, , the Goldie localization at P, is almost
a noncommutative DVR.

Section 4 examines a more general localization due to Asano and generalizes
many of the results which hold for Asano orders.

Finally, Section 5 applies some results of the preceding sections to the case
of quasi-local Noetherian orders having global dimension <(2. Here we prove a
structure theorem for these orders (Theorem 5.2) in the spirit of the Auslander—
Goldman, Ramras, and Michler theorems. In particular, we show as a con-
sequence of purely noncommutative methods, that several important results of
Ramras deduced by classical techniques, hold 1n a more general setting.

1. PRELIMINARIES

Throughout this paper, O will denote a sumple Artin ring. A subring R of Q
1s called an order 1n Q 1f O 1s a classical two-sided quotient ring of R. For brevity
a ring R will be called an order 1f 1t 1s an order 1n a simple Artin ring

Two orders R and S 1in Q are equivalent, R ~ S, 1if there exist regular (unit)
elements a, b, ¢, d €Q such that aRb C .S and ¢Sd C R. Two orders R and S 1n
O are left (right) equivalent R L8 (R~ S) 1f there exist regular elements
a, beQ such that RaC S (aRC .S) and SbC R (bS T R).

An order, R 10 Q is a maximal left equivalent, maximal right equivalent, respec-
tvely, maximal equivalent order, if whenever S is an order in Q with RC S and
RL S, R~ S, respectively, R ~ S, then R = S A maximal equivalent order
will be called a maximal order

Let R be an order in Q. A right (left) R-submodule I of Q 1s called a fractional
right (left) R-rdeal if aR D12 bR (Ra D12 Rb) for units a, b of Q. If ICR,
then R 1s called an integral right (left) R-ideal Of course, these are just the
essential right (left) 1deals of R A left and right fractional (integral) R-ideal is
called a fractional (integral) R-ideal In fact, since an integral R-ideal is an
ordinary 1deal of R, we shall refer to these as ideals; fractional R-ideals will be
called R-ideals.

Let I be a fractional right R-ideal. It 1s easily verified that the set
{g€0 | ¢l CI}isan order in Q, equivalent to R. This order 1s called the left order
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of I and denoted O,(I). Similarly, we define the right order of I and denote it by
O,(I) Once agam, this is an ordet of O, equivalent to R. Since Iy is an essential
submodule of Qg , O,(I) can be identified with End I, via the map taking ¢ € O,({}
to ¢, , left multiplication by ¢.

For a fractional right R-ideal I, its snverse, I, 1s defined by

I = {geQ | I C T}
— {g€0 | I C O(I),
— (g0 | I C O

The following propostition due to Robson [19] will be needed later.

ProposITION 1.1. Let I be a fractional right R-ideal. Then II7' = O(I}
tf and only if I 1s a projective right O,(I)-ideal; equrvalently, I 1s a projective sight
R-ideal |

Closely related to I-1 1s the R-dual of I, I* = homg(Z, R). As before, since I
is essential, I* can be identified with the set {g € Q | ¢/ C R}. Note that when R s
a maximal order and [ 1s an R-ideal, O,(I) = R and hence, -1 = I*. We shall
call an R-ideal I invertible if I*I = II* = R 'There 1s a canonical map g:
I — I** defined by evaluation, namely, (f) p(x) = f(x),Vxel, fel* Ifpisa
monomorphism (isomorphism), 1 is called torsionless (veflexive).

For any module My , the biendomorphism ring of M, Biend M 1s defined as
follows. If § = End My, Biend My = End M, where (M 1s the canonical left
S-module. My, 1s called balanced if Biend Mz = R

Lemma 12. For R an order in Q the following statements are equivalent.

(1) R s a maximal left equivalent order
(2} O4A4) = R for each nonzero ideal A of R
(3) Every torsionless faithful lefi R-module 15 balanced

Proof (1)=(2) IS = Oy4), then clearly RC S Smce I 15 a nonzero
1deal of the prime ring R, 4 1s an essential right ideal of R so A contains a regular
element d, hence SdC SAC AC Rso R < S, and therefore, R = §

(2) = (3). If S = Biend (zM), then the canonical map R— S is a one-
to-one since R\ is faithful. Identifying R as a subring of S, ST C R, where T is
the trace ideal of M (see [5, Proposition 1.1]) Cozzens [5, Proposition 1.1] also
has shown that for R torsionless faithful, (sm)f = s(mf) whenever s S,
me M and fe M* = Hom(zxM, zR). Hence if se€S and sT =0, 0 =
s(MM*) = (sM) M*. Since M is torsionless s; = 0, so s = 0. It now follows
that left multiplication by s € S induces a umque R-endomorphism of the ideal
ST of R regarded as a right R-module so by (2), S = R.
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B)=(1). ITRCSCQO and R < S, SdC R for some regular element
dof R. Consequently, 4 = SdR 1s a nonzero ideal of R, so 4 is a faithful torsion-
less left R-module. Clearly S C Biend (r4) = Rand (1) follows. |

Remark. 1f R 1s an order in Q then R is a maxumal order if and only if R 1s
a maximal left equivalent and maximal right equivalent order (see [10, p 284]).
Thus, R 1s a maximal order if and only if Oy(4) = R = O,(4) for all 1deals
4 of R.

The next lemma has a number of interesting consequences Among these 1s
the fact that 1n a two-sided Noetherian ring with glb R < 2, the intersection of
any collection of essential projective 1deals 1s projective Later, we shall show
that this implies that in a quasi-local maximal order having global dimension
< 2, the mntersection of projective right 1deals 1s principal. These generalize
results of Ramras [15] obtained for a classical maximal R-order /4, where
glb A = 2 and R 1s a two~-dimensional regular local ring.

Levva 13 Let R be an order in Q.

If I, 15 essential right ideal of R, then Iy is reflexive if and only if (R[I), embeds
monomorphically i a product of copies of the right R-module (Q[R)y .

Proof. If I = I** and ae R-I then there 1s an element g €1* such that
ga ¢ R, hence ¢ induces by left multiplication an R-homomorphism R/I -~ Q/R
which distinguishes a + I € R/I from 0, thus R/I embeds monomorphically in a
product of copies of O/R.

Conversely, if there is an embedding of R/I 1n a product of copies of Q/R,
R[I 2 TIQ/R, then o followed by each projection JIQ/R — Q/R is given by
some left multiphication by g € I'* Therefore, there 1s a subset B C I* such that
ifaec Rand BaC R, then ael Clearly then, f qeI** BaCI*aC R, soael
and the lemma follows |

CororrLary 14. If I, 1, are essential reflexive right ideals of R, then so
LN,

Proof. R|I; N I, embeds monomorphically m R/I;, x R[I,. |}

CorOLLARY 1 5. IfIis an essential right 1deal of R, then I** is a reflexive right
ideal of Rand [ CI** C R

Proof Clearly I C I** C R If r € R-I** then there 1s a g € I* such that
gr ¢ R, so each element of R/I** can be distinguished from zero by a map
R[I** — QR and, therefore, R[I** embeds monomorphically in a product of
copies of the right R-module Q/R. |

Ruley [17] has shown that if 4 is a (classical) maximal R-order, R an integrally
closed Noetherian domain, then a prime P is minimal if and only if P is reflexive.
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The next theorem generalizes the suffictency to any maximal order (later, we
shall show that the necessity 1s also valid for any bounded maximal order). This
theorem will prove basic to the results of Sections 2-4 where maximal reflexives
turn out to be in a very precise sense, the buildig blocks of the reflexive R-ideals.

TuEOREM 1.6. Let R be a maximal order If P is a nonzero maximal reflexive
proper ideal of R. Then P 1s a height | (mnimal nonzeroy prime ideal of R.

Proof. Suppose AB C P, where A, B are ideals of R properly contamning P
It may be assumed without loss of generality that 4* =R, otherwise 4** would be
a proper reflexive ideal of R properly containing P, an impossiblity. Similarly,
B* =R Now, if g€ P* then g4ABCqPC RsoqAC B* = Rhencege 4* = R,
so P* C R which is untenable. Thus, P is a prime ideal.

Now if B (. P and B is a nonzero prime ideal of R, then BP* C PP* C R and
(BP*) PC B. Since P € B, BP* C B as B is prime However, R 1s 2 maximal
order so P* C R an impossibility and the theorem follows §

The next result gives some basic characterizations of a reflexive prime 1deal

1n a maximal order which are useful.

ProrositioN 1.7. Let R be a maximal order and P a nonzero prime ideal of R,
then the following statements are equivalent :

(1) P =P+,
(2) P*2R,
(3) PP*QP.

Moreover, whenever P is reflexive, P is mimmal.
Proof. (1) = (2) is trivial.

(2) = (3). If PP* = P then P*C R by the maximality of R contra-
dicting (2)

(3) = (1) If r e P¥* then (PP*)r C P. Since PP* is an ideal of R and
PP* € Pby (3) r € P and (1) follows.
Suppose P’ P and P’ is a prime ideal, then (P'P*) P C P’ hence P'P* C P’
and by the maximality of R, P* C R a contradiction. J

2. RI-ORDERS

For a bounded order R, Asano [19] showed that the R-ideals form a group
under multiplication if and only if R 1s a maximal order satisfying the a.c.c. on
integral R-ideals and such that prime integral R-ideals are maximal. Robson
[19} removed the boundedness assumption, characterizing right orders R whose
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R-ideals form a group under multiplication. These he called dsano right orders.
Important examples of maximal orders exist m global dimension 2 and more
generally, which are not Asano. For example, any two dimensional regular local
ring; and if R 1s any simple Goldie ning, M any finite (Goldie)-dumensional
reflexave, nonprojective generator, k = End M}, 15 a maxmmal order which 1s not
Asano {see [5]).

Noetherian maximal orders with global dimension <{ 2 have an important
property which can be thought of as the natural generalization of the defining
property of an Asano order, namely, each reflexive R-ideal (night or left) 1s
mverttble This assertion follows from Bass’ characterization of Noetherian
rings with global dimension <{ 2 as rings over which duals of finitely generated
modules are projective [3, Proposition 5.2]. For, if I 1s a reflexive R-ideal, say Iy
15 reflexive, IT* == O,(I) = R by projectivity of I and maxmoality of R. Once
again, by maximahty of R, I* = {geQ |IgC R} =, I 1s reflexive = Il =
R = I is invertible. Since orders other than those with global dunension < 2
satisfy this property (both of the aforementioned examples do), we shall call
orders satisfying the condition that R-ideals, left or right reflexive, are invertible,
Rl-grders Of course, each Asano order 1s an Rl-order.

The first theorem characterizes these orders 1 eactly the same way as Robson
characterizes Asano orders [68, Theorem 2.1] In fact, the proof is essentially
his adapted to our more general setting. First, a useful lemma.

Lemwma 2.1, Let A and B be R-ideals with B invertible and Ay reflexive.
Then {BA)y is reflexive.

Proof. Fust, observe that (B4)* = A*B*. For, clearly (BA)* 2 A*B* and
if gBACR, ¢B C A* = ¢BB* = gRC A*B*
If (4*B*) g CR = B¥*gC A** = A = ge BA = (BAY** = BA. |}

By a reflexive R-ideal we mean an R-ideal which is R-reflexive both as a right
and as a left R-module,

Turorem 2.2.  The following statements are equivalent for a prime ring R:
(1) If A is an R-ideal which is reflexive as a right R-module, then AX = R
for some R-rdeal X

(1*) If B is an R-ideal which 1s reflexive as a left R-module, then YB = R
for some R-tdeal ¥

(2) R is a maximal order and reflextve ideals of R are invertible.

(3) R is a maximal order and the reflexive R-ideals form a group under
multiplication

(4) Each R-ideal which is reflexive as a left or right R-module is invertible.
Proof. (1) = (1%). If B is an R-ideal which is reflexive as a left R-module,
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then B* is an R-1deal which 1s reflexive as a right R-module, so by 1, B*X = R
for some R-1deal X. It now follows that Bp* is fimitely generated and projective
and O,(B*) == R. Since 5B 1s reflexive and By* 1s finitely generated and projec-
tive, B 1s finitely generated and projective. Clearly O(B) = O,B*) = R, so0
let Y = B*

(1*) = (2) If B1s an ideal of R, then O(B) C O/(B**), B** the bidual
of zB By 1*, YB** = R for some R-1deal Y, hence if ¢ & O,(B), then Rg =
YB**g C VYB** = R so ¢e R, thus by Lemma 12, R 1s a2 maximal right
equivalent order and by symmetry a maximal left equivalent order and, there-

fore, a maximal order
Now, if B is a reflexive 1deal of R by (1%) (and (1)), B is invertible.

(2) = (3). If 4 15 any R-ideal, then set B = {reR| Ar CR}. Since
Ad C R for some regular element d of R, B is a nontrivial ideal of R Now if
r € R-B, then Ar ¢ R so R/B 1s embeddable monomorphically m a product of
copies of (Q/R) via left multiplications by elements of 4 and, therefore, By 1s
reflexive by Lemma 1.3. By (2), B 1s invertible. If 4 is reflexive, then by Lemma
2.1, AB 1s reflexive so by Lemma 2.1, 4 has a right inverse and by symmetry 4
has a left inverse and (3) is shown.

(3) = (4). This s trivial, as an R-1deal which is erther left or right reflexive
1s reflexive by the maximality of R.

4) = (1). Tnvial. |

The next results give an explicit description of invertible ideals and hence, the
group of mvertible R-ideals 1n the spirit of the Asano-Robson characterization.
However, m the absence of the Asano axioms, some chain conditions must be
assumed.

Proposition 2.3. Let R be a maximal order. Then each maximal invertible
ideal is prime If R satisfies the a.c.c. on invertible ideals, each invertible ideal is a
product of maximal invertible 1deals. Finally, of R 15 an Rl-order, the group of
invertible R-ideals is a free abelian group on the maximal inveriible ideals.

Proof. 'The first assertion is a special case of Theorem 1 6.

Let A be an vertible 1deal maximal with respect to the property that 41s not
a product of maximal invertible ideals. Then 4 C P with P a maximal invertible
ideal A C AP*C R, and if 4 = AP = P* C 0,(4) = R, a contradiction.
Thus, 4 C AP, Since AP~1 15 an invertible ideal properly containing 4, AP~
is a product of maximal invertibles and hence, so 18 (AP )P =4 a
contradiction.

To establish the last assertion, it suffices to show that the maximal nvertibles
commute. To that end, suppose P and P’ are distinct maximal mvertibles.
PN P CP = Pn P = PA for some invertible ideal (P2 (P N P) in fact).
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Now PP’ C P n P’ C PA and hence P’ C A by invertibility of P = P’ = 4.
Simlarly, P’'P = P N P’ by symmetry. Hence, PP’ = P'P as claimed |

Our final result in this section 1s an attempt to say something about the height
1 (minimal) primes 1n an Rl-order, paralleling the Asano-Robson description of
primes in an Asano order. That our description turns out to be a characterization
of Rl-orders should come as no surprise in view of Proposition 2.3. Recall that

an order is bounded 1f each fractional right or left R-ideal contains a nonzero
R-ideal.

PropositioN 2.4 Let R be a maximal order satisfying the a c.c. on reflexive
wdeals Then R 1s an Rl-order 1f and only if each reflexive minumal prime 15 invertible.
In this case, each minimal prime 15 invertible whenever R 1s bounded.

Proof 'The necessity 1s clear For the sufficiency, observe that each maximal
reflexive is 2 minimal prime by Theorem 1.6 and hence, invertible by assumption.
Choose, if possible, a reflexive 1deal 4, maximal with respect to the property of
being nonmvertible. 4 C P a maximal reflexive which is necessarily mvertible.
As in Proposition 2.3, 4 = AP-'. By Lemma 2.1, AP~ is reflexive and hence
invertible by maximality of 4 Thus, 4 1s invertible.

To establish the last assertion, 1t suffices to show that when R 1s a bounded
Rl-order, each minimal prime P 1s reflexive (equivalently, invertible). To that
end, choose 2 regular element x € P. By boundedness, xR contains an nonzero
ideal 4 which we can clearly assume to be reflexive. By assumption, 4 can be
expressed as a product of mvertible primes = P comcides with (one of) these by
minmmality of P. ||

As a consequence of Proposition 2 4, we are now in a position to exhibit a
broad class of classical, not necessarily Asano, RI-orders, namely, any maximal
R-order 4, where R 1s a Noethenan mtegrally closed domain. For, if P1s a mini-
mal prime of A, choose 0 %% x€ P N R. Ax 1s clearly an invertible ideal of A
contamed in P, and hence, a product of maximal invertible ideals of A by
Proposition 2 3. Since these are necessarily prime, P comncides with one of them
by minimality of P. Thus each munimal prime is invertible and 4 is an RI-
order by Proposition 2.4. Riley [17] has shown that whenever A is a maximal
R-order 1n 2, a full matrix algebra over K, the quotient field of R, R Noetherian
integrally closed, the minimal primes of A are projective whenever the minimal
primes of R are projective

3. NorTHERIAN RI-ORDERS
For R a prime maximal order denote S = S(R) = [} B~%, where the union is

taken over all nonzero ideals of R. Since B~ = B—1-1-1 and B! is a reflexive
ideal, S = {J B, where the union 1s taken over all nonzero reflexive 1deals B.
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If B, B,,., B, are nonzero reflexive ideals of R, then for B =
(BiB,* B,)*Y B*CB B 'Bi*C (BB, - B,)'=DB"1 and so it
follows that the union {J B! taken over all nonzero reflexive ideals B of R 1s
directed and S 1s a subring of O containing R. S is called the Asano overring of R

TrrorEM 3.1  Let R be a Noetherian Rl-order and S the Asano overring of R,
then

(1) S s aleft and right flat epimorphic ring extension of R.
(2) For eachright ideal IT of S, (JINR) S =11

(3) S s a Noetherian maximal order with no nontrivial veflexive ideals.

Proof. (1) To show that S1s an epimorphic ring extension of R, it is sufficient
to show that for 1€ S, t ® 1 =1 ® t 1 S ®z S (e.g., see [20]). Let B be an
invertible 1deal of Rsuch that tBC R, thenforbe B[t ® 1) — (1 ® )] & =0,
hence [ R D -0 ®HBBL=[EX®1)— (1 &R and, therefore,
tR1l=1t

S is R-flat as a left and nght R-module since it 1s a directed union of invertible,
hence, projective R-ideals of O

Statement (2) is an easy consequence of (1) and will be omitted.

(3) Let A be an ideal of S and ¢geQ such that ¢4 C 4, hence
g(A N R)C 4. Since ¢g(4 N R) 1s isomorphic to the image of an 1deal of
R and R 1s Noetherian g(4 N R) 1s finitely generated as a right R-module, hence
there 1 an mnvertible ideal B of R such that Bg(4 N R) C R. Now 1t follows that
Bg C (4 N Ry C S and therefore, g € Rg = B-1Bg C B~1S = S Simuilarly, if
Ap C A for some pe(Q, then pe S. By Lemma 1.2, S 18 a maximal order. If
IT 15 a noninvial reflexive (with respect to S) ideal of S and ge I, then
g(IT ~ R) C S. Smee g(JI N R) 1s a finitely generated right R-module, there 1s an
invertible 1deal B of R such that Bq(II N R) C R, hence ¢ € Rg = B-'Bq C B~
{IIT R C S, thus IT7* = S and, therefore, IT = § §

CoroLLARY 3 2. If Ris a Noetherian Rl-order, then S the Asano overring of
R 15 a Noetherian Rl-order.

Proof. S 1s Noetherian 1 view of part (1) of the theorem and the remamnder
of the corollary follows from the theorem. |

CororLary 3.3. If R s a Noetherian Rl-order and S the Asano overring of R,
then
glb(S) < glb(R)

Proof 'This corollary follows from the fact that S is a flat epimorphic ring
extension of R. ||
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Goldie has defined the localization of a Noethertan ring R at a prime ideal
P utthzing C(P) = {ce R | cx e P = x € P} and has shown that under certain
conditions on P, C(P) 1s a right Ore set of regular elements and that the localiza-
tion of R at P 1s the classical ring of rnight quotients of R with respect to the right
Ore set C(P) One of the above conditions is that the intersection of the symbolic
powers of P (see [69]) 1s zero In the event that P is an mnvertible 1deal of R,
Michler [14] has shown that the nth symbolic power of P1s P* Michler [14] has
also shown that if P s an mvertible prime ideal of 2 Noetherian prime ring R,
then (\,_, P™ = 0.

Goldie’s other condition on P assuring that the localization of R at P 1s classical
15 that P satisfies an Artin—Rees type condition. Chatters and Ginn [74] have
shown that if P is an imnvertible prime 1deal of R then P satisfies the second of
Goldie’s conditions guaranteeing that the localization of R at P is classical

Summarizing the above, the localization of a Noetherian prime ning R at an
invertible prime ideal P of R 1s the classical ring of quotients of R, necessarily
two-sided 1n view of the symmetric hypotheses, with respect to the left and right
Ore set C(P) of regular elements of R

Goldie has called a ring A a local ring if /4 has a unique maximal ideal M =
rad 4, A/M is an Artin ring and (),_, M® = 0 and has shown that R, is a local
ring with umique maximal ideal PR, = R,P. In what follows R, denotes the
localization of R at P for an invertible prime 1deal P of 2 Noetherian prime ring R.

The following theorem lists some properties of Rp .

Turorem 3 4. Let R be Noetherian RI-order and P an invertible prime (maxmmal
invertible) ideal of R, then the followmng hold -

(1) Rp 1s a left and right R-flat epimorphic ring extension of R and
(AN R) Ry = A for each right 1deal A of Rp .

(2) Rp 15 a Noetherian local prime ring with Jacobson radical J(Rp) =
PR, = R,P.

(3) Ry 15 a hereditary principal right and left ideal ring and a bounded
Asano order.

Proof Property (1) for a classical quotient ring with respect to an Ore set of
regular elements 1s easily verified

The fact that Rp 1s a local ing (in Gold:e’s sense) follows from earlier remarks,
Since Rp 15 a left and right R-flat epimorphic ring extension of R and R is
Noetherian 1t follows that R, 1s Noetherian. Since P 1s mvertible so 1s PRy =
RyP and (3) now follows from Hajarnavis and Lenagan [11, Proposition 1.3] [

The proof of the followimng lemma is a modification of the proof of [11,
Lemma 3 4] adapted to the weaker hypotheses of a Noethertan RI-order.

Levma 35 If ¢ is a regular element of R, a Noetherian prime Rl-order, then
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c € C(P) for all but a finite number of invertible prime (maximal reflexive) ideals
PofR.

Proof Smce R is a Noetherian ring ¥, [(P) N R] = Y., [(P7%) N R},
where the left-hand summation is taken over all Pe £. If P € &, then

k3
P%¢nRCY PenP7%c = [(Z P;‘) N P‘i] ¢

[y ol ]

Now if P £ P, forz = 1,2,..., nthen [[,_, P, € P and by the maximal reflexivity
of P, [(IP) + P]-* = R hence P~%¢c N R C Rec and, therefore, by the inver-
tibility of P, Re n P C Pc. Now if xc € P then xc € Re N PC Pc so x € P and,
therefore, ¢ € C(P) and the lemma follows.

We shall now investigate some properties of the subring T(R) = () Rp of Q,
where R 1s a Noetherian RI-order,

Turorem 3 6. Let R be a Noetherian Rl-order and T = T(R), then T 1s a
directed union, T =) K* = ({J L¥), where the union s taken over veflexive right
{left) ideals of R such that KRp = Rpy(RpL = Rp) for all Pe &

Proof. If Ky is a reflexive right ideal of R such that KR, = R, for every
mvertible prime ideal P of R, then for ge K*, ge gKRp, C RR, = Rpsoge R, .
Since P was an arbitrary invertible prime 1deal of R, K* C (), Rp = T. Now if
xe T, then K = {re R | xre R} 15 a reflexive right ideal of R by Lemma 1 3,
since R/K is embeddable in Q/R by left multiplication by x. Smce x & R, there
18 a ¢ € C(P) such that xc € R, so K N C(P) # & for every mvertible prime 1deal
P of R, hence KR, = R, for each invertible prime 1deal P of R. Thus, we have
shown that 7" = |J K*. Now if K ,.. , K, are reflexive right ideals of R such that
KRy, = Rpforall P,i = 1,...,n, thenby Lemma 1.3, KN K,n - NK, =K
1s a reflexive right ideal of R with K,* C K*, KR, = R, as R is flat, and the
theorem follows. The left-sided analog for the theorem 1s shown similarly. J

CoroLLARY 3.7. If R 1s a Noetherian Rl-order with glb R <2, then T 15 a
left and right R-flat epimorphic extension ring of R.

Proof By Bass [63], reflexive right (left) ideals of R are projective For
T =={) K* (as above), pK* is an R-projective left R-module, so 7 is a directed
union, hence a direct limit, of projective left R-modules so ;7 is R-flat Similarly,
Tk 18 R-flat.

Now if i€ T, tK C R for some reflexive right ideal K of R such that K* C 7.
In T@RxT (RN —-(1RNK =0, so (tR1)—(1®1) KK*=0.
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Smce Ky 1s projective 1 € KK*, hence t ® 1 =1 ® t and it follows that T
is a ring epimorphic extension of R |

Some further properties of T will be established in the following.

ProrosiTioN 3.8. Let R be a Noetherian Rl-order and 1 a right 1deal of T,
then the following hold

(Iy IR, =({UNRR,.

(@) (IR)* = RI A R)*.

(3) I* = ReI A R)*.

(4) If I 1s reflexave, then (I N RY** C 1.
(5) If I 15 reflextve, then I N R 1s reflexive.
(6) If Iy 1s veflexive, then (Vo (IRp) = I.

Proof of (1). Clearly I NR)Rp CIR,. If x€lIR, then xcel for some
¢ € C(P). Since xc € T there is a reflexive right ideal X of R such that xeK C R
and KRp = Rp NowxcKCIN Rand xR, = xcKRp, C(INRY R,

Proof of (2). Clearly Rp(I N R)y* C (IR,)* by 1 Now, 1f ¢/R, C R, , then
gd N R) C R, . Since I M R 1s a finitely generated rightideal of R, ¢(I N R)is a
finitely generated right R-submodule of 7, so by Theorem 3 6 there 1s a reflexive
left ideal L of R with R,L = Rp such that Lg( N R) C R. Thus, Lg C (I N R)*
and R,Lg C Rp,(I N R)*.

Proof of (3). If ¢ C T, then gIR, C Rp so by (2) ¢ € (IRp)* = Rp(I N R)¥,
hence I* C Nz (Rp(I N R)*) Now, if ¢ € (5 (Rp( N R)*) then ¢I C R, for all
Pe?, henceqgl C(p Rp = T'sogel*

Proof of (4). If ge (I N Ry** then (I N R)* ¢ C R, hence R, (INR)*qC R,
for all P e Z. Since Rp(I N R)* = (IRp)* 2 I*, I*q C R, for all P € &, hence
I*qCNyp Rp =T, s0qel** =1

Proof of (5). Smce (I N R)** CIby4,then(INR**CINR,solNRis

reflexive

Proof of (6). Clearly I C (s (IRp). If ¢ € Np(IR}p) then I*q¢ C I*IR, C Rp
forall Pe#, hence I*q C T,soqel** =1 |

Lemma 39, Let R be a Noetherian RI-order and 1 an ideal of R, then IR, =
RpI for every Pe .

Proof Let I be maximal among those 1deals of R for which IR, # R,I,
with P fixed Clearly, I C P, otherwise I N C(P) % @ and then IR, = R, =
RpI. Now IP-* C R and I C IP* since 1f I = IP then I C (),,_, P* = 0. Since
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RyP = PR, , PR, = R,P1, hence IP'R, = IR P = RpIP-* and so
IR, = RpI a contradiction. |

Cororrary 3.10. If Ris a Noetherian Rl-order and I 1s an ideal of T, then
IR, = Rpl.

Proof. ByProposition 3.8, part (1),IR, = (I N R)Rp = R(INR)=RpI. }

TreoREM 3 11.  Let R be a Noetherian RI order, then T = (5 Rp is a bounded
Ri-order.

Proof. Let I be a nonzero ideal of T and ge Oyl), that 15, ¢gf C 1
then ¢IR, C IR, for each P e . Since IR, is an ideal of R, by Corollary 3.10,
and R, is a maximal order, g & Ry for each Pe?, hence gz R, = T and
the maximality of T now follows from Lemma 1.2.

If I'is a reflexave ideal of T, then by Proposition 3.8, I M R is a reflexive ideal
of R. Clearly, (I N Ry* C I*, hence

IFDUINRINR* =R so lell*

and by symmetry and maximality of 7T, I 1s an invertible ideal of 7.
The boundedness of T" uses the argument of Hajarnavis and Lenagan [11,
Theorem 3 5] with Lemma 3.5, and, therefore, the proof will be omitted. §

Turorem 3.12.  If R is a Noetherian Rl-order then R = S (\ T, where S =
S(R), T = T(R).

Proof. The proof of the corresponding result for Asano orders found in
Hajarnavis and Lenagan [11, Theorem 3.1] can be used without change to
provide a proof of this result. §

PropositioN 3.13  Let R be a Noetherian Rl-order and I a nonzero prime ideal
of R, then
(1) If I contains an mvertible ideal, then IS = S.
(2) If I does not contain an invertible ideal, then IS " R = I

Proof. The proof of (1) is obvious.

Suppose I does not contain an invertible ideal. If x€ IS N R, then aBC [T
for some invertible ideal B of R. Since B¢ and I 1s prime x& I and (2) follows. |

Cororrary 3.14. If I is a prime ideal of R, then Ker (R[I — R/I ®z S) s
either O or R/I.

Proof. Smce Ker (R[I — R/I ®z S) = IS N R/I the corollary follows from
the proposition.  §
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Lemma 3.15. Let R be a Noetherian Rl-order and I a prime ideal of R not
containing any inveriible, then IB = BI for every invertible 1deal B of R.

Proof. Smce (BIBYBCIand B {1, BIB-CIso BICIB and by symmetry
Bl =1B. |

CororrarY 3.16. If R is a Noetherian Rl-order and I prime ideal of R not
contarmng any moeriible of R, then IS = SI.

Proof. IS =) IB~, where the union s taken over all invertible 1deals B
of R. By the lemma, IB-! = B~ hence IS ={JIB ' =B = SI. |

THEOREM 3.17. Let R be a Noetherian prume Rl-order and S = S(R), then

(1) If1is a prume ideal of R not containng an mvertible ideal, then IS = SI
is a prime ideal of S.

(2) If IT is a prime ideal of S, then II = LS for a unique prime ideal I =
IO N Rof R, thus I — IS, IT — IT N\ R are one-one correspondences, mutually
inverse, between the class of prime ideals of R which do not contain any invertible and
the prime tdeals of S.

Proof. (1) By Lemma 3, SI = I8 and by Silver [20, Corollary 1 10], SI = IS
is a prime 1deal of S,

(2) LetI == IT 0 R. Then since R is Noetherian I contains a product of
prime 1deals each of which can be chosen to contain I with the product irredun~
dant, hence there are ideals A, B such that AB C I, where 4 1s a prime ideal
containing f and B ¢ L.

Case 1. If A contains an mvertible 1deal, then B C SB = SAB C SI = 1I1
hence B C IT n R = I a contradiction.

Case 2. If A does pot contan an invertible then using 1, S48 = ASB so
SAB = SASB C IT and by the primality of I, SA CH or SBCIT, hence ACT
or BCI. Since B € I1s impossible, 4 C I and, therefore, 4 =1. |}

CoroLLaRY 3.18 For R a Noctherian Rl-order S(R) is a simple ring if and
only if every nonzero prime 1deal of R contans an invertible wdeal of R, §

Let A be a (classical) maximal R-order i a simple algebra where R is a
Noetherian mtegrally closed domain. By remarks at the end of Section 2, 4 is
an Rl-order and since 4 1s bounded, 4 = (Vpep Ap by Theorem 3 12. Here, # 15
the set of all minimal (invertible) primes of A. On the other hand,
A = yent,(m) 4p, where 4, = A &g R, and ht(R) is the collection of all
minimal primes of R {e.g, see [15]) The natural question to ask 1s, What 1s the
relationship between these two decompositions of A ? The next proposition
supplies the anticipated answer



MAXIMAL ORDERS AND LOCALIZATION I 333

ProposrtioN 3.19. Let A be a maxtmal R order where R 15 a Noethersan
wntegrally closed domain and p a mimmal prime of R. Then A, = Ap for a unique
minimal prime P of A Conversely, if Ap 1s the Goldie localization at an invertible
prime Pof A, then A, = Ap , where p = P N R

Proof. Given any minimal prime p of R there 1s a unique miimal P of /4
lying above p (e.g., see [17]). Furst, we show that R — p = C(P) N R. Since R/ p
is canonically embedded in A/P it follows that R — p 2 C(P) N R. Now for
xR —p,let] = {Ae ]| e P}. Then R/Iis embedded in R/P as left and right
R-module by multiplication by x Since P is reflexive as « is an Rl-order 1t
follows by Lemma 1.3 that I is reflexive. Now as P C I and P 1s a maximal
reflexive P = I. Thus, we have x e C(P) N R

Now smce R — p C C(P) N R, 1t follows that 4, C A, and by the maximality
ofd, A, =4p.

Conversely, if P 1s 2 munimal prime of A then p = P N R1s a minimal prime
of Rand Pliesabove p Asabove 4, =/,. |

4, Asano’s LOCALIZATION

Let R be any order and P a prime 1deal of R. By Asano’s Localization of R at P,
A(P), we mean the set {geQ | ¢B C R for some invertible B € P}. It 1s easily
verified that 4(P) is a subring of O containing R.

The following proposition is a “local” version of Theorem 3.1.

ProrosttioN 4.1. Let R be a Noetherian RI-order and P an wnvertible prime
ideal of R. Then,

(1) A(P) s a left and right R-flat epimorphic sing extension of R.
(2) For I arightideal of A(P),(I " R) A(P) =1.

(3) A(P)is a Noetherian RI-order with unique invertible ideal P = PA(P) =
A(P)P.

Proof. Statements (1) and (2) can be verified in a fashion very sumilar to
that of Statements (1) and (2) of Theorem 3 1

Proof of (3). If x e PA(P) then xB C P for some invertible ideal B ¢ P so
x € PB. Since PB~* = B-'P, xe B-'PC A(P)P so P is an ideal of A(P).

Now if I is an ideal of A(P) and ¢ C I, then ¢(I N R) is a finitely generated
right R-submodule of 4(P) so there is an invertible ideal B of R, B £ P such
that Bg(I © R) C R. Clearly, Bg(I N R) C {I n R) and since R is a maximal
order Bg C R so ge B-* C A(P) and, therefore, A(P) is a maximal order by
Lemma 1.2. If I is a reflexive ideal of A(P) and g € I*, then g(I N R) is a finitely
generated right R-submodule of A(P), so there exists an invertible ideal B of R,

481/44/2-2
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B € P, such that Bg(IN R)C R, hence BgC(INn R)1and ge BYI N R)1C
A(P)I n R)-1. Since (I N R)~ is an invertible R-ideal, it follows that IT* =
A(P) by the maximality of A(P) Similarly, I*I = A(P)

Clearly, P 1s mvertible whenever P 1s. If I 1s an invertible 1deal of A(P),
It = A(P)I n Ry However, (I N Ry C A(P) unless I n R C P. In the
former case, I-1 C A(P), a contradiction. In the latter case, I = (I N R) A(P)C P
which clearly implies that P 1s the unique maximal invertible ideal of A(P). |

ProrosiTiON 4.2. Let R be a Noetherian Rl-order and P an invertible prime
wdeal of R. Then,

(1) A(P)CR,.
(2) PA(P)NR = P.

(3) A(P)=Rp if and only 1f ¥Yce C(P), cR2Ddeal (RcDideal). In
particular, if R is bounded, A(P) = R, .

Proof. (1) Given xe A(P), 3 an invertible B ¢ P with B C R. Since P is
prime and B L P, BN C(P) s @ = xc = r € R for some ce C(P), r € R and
hence, x = r¢ 1. Thus, xe Rp .

(2) Clear.

(3) If R, = A(P) and ce C(P), 3 an invertible B P with c1BC R or
B C cR. Conversely, if 3 an ideal B C cR, we can assume that B 1s the largest
such B and hence invertible If BCP = BC¢P = BP-1C¢R = BP1C Bwhich
by maximality of R = P-* C R a contradiction. Thus, B £ P = c1e A(P)
and hence R, C A(P) The proof of the final assertion 1s clear. [|

When R is a Noetherian RI-order, the importance of A(P) stems from the fact
that it always exists, 1s a localization 1n the sense of Silver, hence, a Noetherian
RI-order, and that it has a unique maximal invertible ideal Of course, when R
is bounded A(P) = R, and A(P) 1s thus a classical localization as well.

Lemma 4 3. Let R be a Noetherian Rl-order, P an invertible prime 1deal and
P’ a prime rdeal of R containing P but no other invertible prime ideal then P'B = BP’
for every wmvertible ideal B & P

Proof. If B is an invertible ideal not contained in P then B ¢ P’, since B
is a product of prime invertibles none of which is P. Now (BP'B-1) BC P’ and
since B L P’, BP'B1C P’ so BP'C P’B and by symmetry BP' = P'B. |

CoROLLARY 4 4. If Ris a Noetherian RI-order and P’ 1s a prime ideal containing
a unique mvertible prime ideal P, then P'A(P) = A(P) P'.

Proof. Since A(P) =) B-Y, where each B is an wnvertible ideal not con-
tained in P, P’B-1 = B-1P’ by the lemma so it follows that P’ A(P) == A(P) P". |}
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Prorosrtion 4.5. Let R be a Noetherian Rl-order and P an inveriible prime
ideal of R.

() If P’ is a prime ideal of R contaimng P and no other invertible prime
ideal, then P’ A(P) = A(P) P’ is a prime ideal of A(P).

(2) If T'1s a prime sdeal of A(P), then T = T'A(P) for a umque prime T' 2 P,
Moreover, T' = T'n\ R and T' contains no other invertible ideal of R.

Proof. (1) Since 0 — R/P’ > A(P) ®y R/P’ is exact by arguments similar
to those in Corollary 3 14, the result now follows from Lemma 4.4 above and
{20, Corollary 1.10]. In fact, this is the “local’” version of Theorem 3.17

(2) “Locahze” Theorem 3.17(2) §

THEOREM 4.6. Let P’ be a nonzero prime ideal of R. Then

A4Py= [} AP,

P mvertible
PCP’
Moreover,

R= [} A®).

P mvertible

Proof. Trivially, A{P"} == S iff P’ contains no invertible primes In this case,
the intersection on the right extends over the empty set yielding § as well.
Thus, we can assume that P’ contains an invertible prime and that

X =( () AP)— A(P")) # .

PCP

Choose an invertible BD P maximal with respect to the property that 3 x e X with
xB C R We claim that B is prime. Suppose this 1s not the case Then B = BB,
for certain invertible B, with BC B and BC B, . Clearly, B C P'since x & A(P').
Moreaver, B, C A(P'). Otherwise, there would exist an »’ e x8; N X with
x'B, C R, contradicting the choice of B. Sumilarly, B, C A(P").

By definition of A(P’) there exists an invertible C € P’ with xB,C C R,
As above, *C ¢ A(P’) is impossible but since C- C A(P7), #C C A(P") 1s likewise
impossible. Consequently, B is prime and since B C P’ necessarily one of the P's,
However, since xB = xP L R = x € P1 n A(P) = R by Proposition 4 2(2},
a contradiction. Thus X = o proving the first assertion.

To prove the second, suppose x & () A(P) Then for each P, 3B, L P B,
mvertible with xB, C R Set B =Y, By . Clearly, xB C R and since B 18 not
contained in any P, B¥ = R = xcR. |
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5. SEmI-Locar. ORDERS

An order R is called semu-lIocal (quasi-local) if R is semisumple (sumple) Artinian
modulo its Jacobson radical A ring R is called (right) p-connected (after Bass)
if projective (right) R-modules are generators (e.g., any quasi-local order),
"The goal of this section 1s to extend the results of Michler and Robson for semi-
Iocal hereditary Asano orders to global dimension 2, and at the same tume, to
generalize certain important results of Ramras [16] for classical two-dimensional
orders over regular local rings. To avoid repetition and to simplify the statement
of theorems, we shall assume throughout this section that an order R is a two-
sided Noetherian semilocal, p-connected order with glb R < 2 (this 1s not an
exercise in name calling!)

Tusorem 5.1 (Fuller and Shutters [74]). If R is a p-connected semi-local
ring then there exists a primitive idempotent e € R such that every projective vight
(left) R-module 1s 1somorphic to a direct sum of copes of eR(Re). |

TueoreMm 52  Let R be an order Then for somen > 0, R ~ M, (k), where k is
a right Ore doman. Moreover, projective right ideals of R are principal.

Proof. Let Uy be a basic (uniform) right ideal of R Since U = U**, Upg
is necessarily projective and hence, a progenerator by p-connectivity. Thus,
k = End Ujg 1s Monta equivalent to R and hence, semi-local and p-connected.
Since % 15 a domain and Morita equivalent to R, projective k-modules are free
by Theorem 51 Thus, U ~ k* forsomen >0 = R A M, (%) as claimed.

To show that projective right ideals of R are principal, 1t suffices to show that
any projective k-submodule of %;" is generated by <C # elements. For, if P1s a
projective night 1deal of R, P ®j k" 1s a projective right k-submodule of 2"
and (P ®;, k") @y k" ~ P in mod-k, . If P ®; k" 1s generated by x;, , %,
say where m < n, then viewing the x,’s as column vectors of length 7, then X n
matrix having sth column x, for 1 <{ 2 < m and remaining columns zero, say,
generates (P ®;, k") @y k" as a right ,-module. However, any projective
submodule of kk’? 1s free, say ~~ ™ and since &k 18 an Ore domain, m <<z |}

CoroLLARY 5.3 (Robson). Any semilocal hereditary Asano order is a principal
right and left ideal ring

Proof R is clearly p-connected. |}
In order to continue our analysis of semi-local (maximal) orders, we shall
examine the relationship between R and its equivalent orders.

LEMMA 5.4. Let R be an order and let S o R. Then C = {xeR|SxCR}is
projective and hence, a principal right ideal of R.
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Proof. Since glb R < 2, it suffices to show that Cy is reflexave Clearly,
S C C* and hence SC** C C*C** C R = C** C C = Cis reflexive. §

THEOREM 5.5. Let R be an order. If S is any maximal ovder equivalent to R,
then S is Morita equivalent to R and hence R 1s maximal

Proof Suppose aSBC R for units o, 0. Then S = aSu? satisfies
S'B CR for B/ = aff. Since S’ 18 maximal and R 1s Morita equivalent to S if
and only if it is Morita equivalent to S’, we can assume that Sx C R for « regular
m R. Set I = SaR. I is clearly an integral night R-ideal of R, and S = O,(I) ~
EndI; smce OfI) ~R~ S, OfI)2 85 and S 15 maximal. Similarly,
S = O(I*) ~ End, I'*. Since R is p-connected and glb R < 2, zI* 1s a pro-
generator = S is Morita equivalent to R |

THEOREM 5 6. Let R be a bounded order. Then if S s any maximal order
equivalent to R, S is conjugate to R.

Proof. By Theorem 5.5, S 1s Morita equivalent to R = § is a2 bounded order
as well. Thus, there exist regular elements 4 € R and b € S satisfying S2 C R and
RECS. Set A={xecR|SxCR}and B = {xcS|ReCS}. Then 4 = sR
and B =18 for regular elements seé R and te S by Lemma 54 Swce
SsC A =sRand Rt C ¢S, RCtSt1CtsRs L Clearly, R ~ts R(ts) 1 = R =
tSt~ as claimed.  |J

Note added 1n proof It has been brought to the attention of the authors that there 53
some overlap between section 3 of this paper and that of Chamarie, M., Localisations
dans les ordres maximaux, Comm. n Algebra 4 (1974), 279-293,
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