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Abstract

Let E be an elliptic curve defined over a number field K . We show that for each root of unity ζ , the set
Σζ of σ ∈ Gal(K/K) such that ζ is an eigenvalue of infinite multiplicity for σ acting on E(K) ⊗ C has
non-empty interior.

For the eigenvalue −1, we can show more: for any σ in Gal(K/K), the multiplicity of the eigenvalue −1
is either 0 or ∞. It follows that Σ−1 is open.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field, K an algebraic closure of K , and GK := Gal(K/K) the absolute
Galois group of K over K . Let E be an elliptic curve defined over K . There is a natural continu-
ous action of GK on the countably infinite-dimensional complex vector space VE := E(K) ⊗ C.
The resulting representation decomposes as a direct sum of finite-dimensional irreducible repre-
sentations in each of which GK acts through a finite quotient group.

In particular, the action of every σ ∈ GK on VE is diagonalizable, with all eigenvalues roots
of unity. In [3], the first-named author showed that for generic σ , every root of unity appears
as an eigenvalue of countably infinite multiplicity. This is true both in terms of measure and of
Baire category. However, there exist σ for which the spectrum is quite different: trivially, the
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identity and complex conjugation elements; less trivially, examples which can be constructed for
an arbitrary set S of primes, such that ζ is an eigenvalue if and only if every prime factor of its
order lies in S.

Throughout this paper, we will write Σζ for the subset of GK consisting of elements σ acting
as ζ on an infinite-dimensional subspace of VE (E and K being fixed). For ζ = 1, a good deal is
known. In [2], it is proved that whenever 1 appears as an eigenvalue of σ at all, we have σ ∈ Σ1.
It follows that Σ1 is open. By [4], when K = Q, Σ1 is all of GK , and quite possibly this may be
true without restriction on K . We have already observed that Σζ �= GK for ζ �= 1. We can still
hope for positive answers to the following progression of increasingly optimistic questions:

Question 1.1. Does Σζ have non-empty interior for all ζ?

Question 1.2. Is Σζ open for all ζ?

Question 1.3. Do all eigenvalues of σ acting on VE appear with infinite multiplicity?

In this paper, we give an affirmative answer to Question 1.1 for all ζ and an affirmative answer
to all three questions for ζ = −1.

The difficulty in proving such theorems is that placing σ in a basic open subset U of GK

amounts to specifying the action of σ on a finite Galois extension L of K . By the Mordell–
Weil theorem, E(L) ⊗ C is finite-dimensional. The surprising thing is that knowing the action
of σ on this finite-dimensional subspace of VE can be enough to guarantee the existence of an
infinite-dimensional ζ -eigenspace for σ .

2. Multiplicity of the eigenvalue −1

In this section, we answer Questions 1.2 and 1.3 for ζ = −1.

Proposition 2.1. Let E/K be an elliptic curve over K . Suppose −1 is an eigenvalue of the action
of σ ∈ GK on VE . Then the −1-eigenspace of σ is infinite-dimensional.

Proof. As −1 is an eigenvalue of σ acting on VE , it is an eigenvalue of σ acting on E(K) ⊗ Q.
Clearing denominators, there exists a non-torsion P ∈ E(K) such that σ(P ) + P ∈ E(K)tor.
Replacing P by a suitable positive integral multiple, σ(P ) = −P .

Let y2 = f (x) be a fixed Weierstrass equation of E/K . Let P = (α,
√

f (α) ). As σ(P ) =
−P , we have α ∈ Kσ but σ(

√
f (α) ) = −√

f (α) so
√

f (α) /∈ Kσ . Then,
√

f (α) /∈ K(α), since
K(α) ⊆ Kσ .

Let c = f (α) ∈ K(α). We still have σ ∈ Gal(K/K(α)) and σ(
√

c ) = −√
c.

Let E′/K(α) denote the twist y2 = cf (x). Then, E′ has a rational point P ′ = (α,f (α))

over K(α). The K-isomorphism φ :E → E′ mapping (x, y) �→ (x,
√

f (α)y ) sends P to P ′,
so P ′ is of infinite order on E′. By [2, Theorem 5.3], E′(Kσ ) has infinite rank. Let {P ′

i =
(xi,

√
cf (xi) )}∞i=1 be an infinite sequence of linearly independent points of E′ generating the

infinite-dimensional eigenspace of 1 of σ in E′(K) ⊗ C. Then, σ(xi) = xi and σ(
√

f (xi) ) =
−√

f (xi) for all i, since σ(
√

c ) = −√
c.

Let Pi = φ−1(P ′
i ) = (xi,

√
f (xi) ). These are points of the given elliptic curve E such that

σ(Pi) = −Pi for all i, since σ(xi) = xi and σ(
√

f (xi) ) = −√
f (xi).
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The points Pi are linearly independent because the P ′
i are so. Therefore, {Pi ⊗ 1}∞i=1 gen-

erates an infinite-dimensional subspace of the −1-eigenspace of σ on VE . This completes the
proof. �
Theorem 2.2. Let E/K be an elliptic curve over K . Then, Σ−1 is open.

Proof. We have already seen that if σ ∈ Σ−1, we can choose a point P ∈ E(K) of infinite order
such that σ(P ) = −P . By Proposition 2.1, τ(P ) = −P implies τ ∈ Σ−1. It follows that Σ−1
contains the open neighborhood {τ ∈ GK | τ(P ) = σ(P )} of σ . �
Remark 2.3. The same argument shows that Questions 1.2 and 1.3 have an affirmative answer
for ζ = ω (respectively ζ = i) when E has complex multiplication by Z[ω] (respectively Z[i]).

3. Interior points

In this section, we show that for every root of unity ζ , the set Σζ contains a non-empty open
subset. We assume that the order of ζ is n � 3, the case n = 1 having been treated in [2], and the
case n = 2 in Theorem 2.2.

Our strategy will be to find points Qi ∈ E(K) such that the σ -orbit of Qi has length n. For
each such point Qi , we set

Ri :=
n−1∑
j=0

σ j (Qi) ⊗ ζ−j (1)

and observe that Ri is a ζ -eigenvector of σ provided that it is non-zero.
We therefore begin with the following proposition.

Proposition 3.1. Let X be a Riemann surface of genus g � 3 with an automorphism σ of order
n � 3. Then X contains a non-empty open set U such that x ∈ U implies that

n−1∑
i=0

[
σ ix

] ⊗ ζ−i �= 0

in PicX ⊗ C.

To prove the proposition, we need the following lemma, which is essentially due to Weil
(see [7, VI, Proposition 7] for a formulation more general than ours, in the setting of 	-adic
homology).

Lemma 3.2. Let RC(G) denote the ring of virtual complex representations of a finite group G,
and for every subgroup H ⊂ G, let IH = IndG

H 1, where 1 is the trivial representation. For
any compact Riemann surface X on which G acts faithfully, we have the following identity in
RC(G) ⊗ Q:

[
H 1(X,C)

] = 2 + (2h − 2)[I{1}] +
∑ [I{1}] − [IStabG(x)]

[G : StabG(x)] , (2)

x∈X
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where h is the genus of X/G, and [V ] denotes the class in RC(G) ⊗ Q associated to the rep-
resentation V . Note that the summand on the right-hand side of (2) is zero for every x with
StabG(x) = {1}, and therefore the sum is finite.

Proof. Let π :X → X/G denote the quotient map. There is a natural injective trace map from
RC(G) ⊗ Q to the space of complex-valued functions on G. To prove the lemma, it suffices to
take traces of both sides and check equality for all elements of g ∈ G. When g = 1, the equality
of traces in (2) is just the Riemann–Hurwitz formula. For g �= 1, the Lefschetz trace formula
asserts

2 − tr
(
g | H 1(X,C)

) = Fix(g) =
∑

y∈X/G

∑

{x∈π−1y|g(x)=x}
1.

The contribution of the G-orbit of x0 ∈ X to this sum is

1

[G : StabG(x0)]
∑

{k∈G|g(k(x0))=k(x0)}
1 = |{k ∈ G | g ∈ k StabG(x0)k

−1}|
[G : StabG(x0)] .

On the other hand, any non-zero g has trace 2 on 2+ (2h−2)[I{1}]. To compute the trace of g on
the remaining terms on the right-hand side of (2), we note that for any subgroup H of G, g fixes
a coset kH if and only if g ∈ kHk−1, so the trace of g on IH equals

|{k ∈ G | g ∈ kHk−1}|
|H | .

Thus, the trace of g on

∑

x∈π−1(π(x0))

[I{1}] − [IStabG(x)]
[G : StabG(x)]

is

tr
(
g | [I{1}] − [IStabG(x0)]

) = −|{k ∈ G | g ∈ k StabG(x0)k
−1}|

|StabG(x0)| .

The lemma follows. �
We can now prove Proposition 3.1.

Proof. We can regard X as the set of complex points of a non-singular projective curve whose
Picard scheme has complex locus PicX. Then PicX ⊗ Z[ζ ] is the group of complex points of
a group scheme whose identity component Pic0X ⊗ Z[ζ ] is isomorphic to the φ(n)th power of
the Jacobian variety of this curve. The action of σ on X defines an action on PicX, and the map
ψ : PicX → PicX ⊗ Z[ζ ] given by

ψ(y) =
n−1∑

σ iy ⊗ ζ−i
i=0
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then comes from a morphism of group schemes. The image of ψ actually lies in Pic0X ⊗ Z[ζ ],
and its kernel P 0

ζ is Zariski-closed in PicX.
The set Pζ of y such that ψ(y) maps to 0 in PicX ⊗ C is the union of all translates of

P 0
ζ by torsion points of PicX. Applying Raynaud’s theorem [6] (i.e., the proof of the Manin–

Mumford conjecture) to the image of X in PicX/P 0
ζ , the intersection X ∩ Pζ is finite whenever

dim PicX/P 0
ζ � 2. It therefore suffices to prove that the Lie algebra of P 0

ζ is a subspace of
the Lie algebra of PicX of codimension � 2 or, equivalently, that the rank of the map ψ∗
of Lie algebras is at least 2. We identify the Lie algebra of PicX in the usual way [1, Chap-
ter 2, §6] with H 1(X,OX) = H 0,1(X). Likewise, the Lie algebra of PicX ⊗ Z[ζ ] is isomorphic
to H 0,1(X) ⊗Z Z[ζ ]. For every k prime to n, there exists a morphism

φk :H 0,1(X) ⊗Z Z[ζ ] → H 0,1(X)

obtained from the embedding of Z[ζ ] into C mapping ζ to ζ k :

φk

(
v ⊗ ζ i

) = ζ ikv.

The composition of this map with ψ∗ is
∑n−1

i=0 ζ−ikσ i .

Let H
0,1
prim (respectively H 1

prim(X,C)) denote the subspace of H 0,1 (respectively H 1(X,C))
spanned by eigenvectors of σ whose eigenvalues are primitive nth roots of unity. If v is an
eigenvector of σ in H 0,1 whose eigenvalue is a primitive nth root of unity ζ k , then φk(ψ∗(v)) =
nv �= 0, while φj (φ∗(v)) = 0 for all j �= k. It follows that kerψ∗ ∩H

0,1
prim = {0}, so the rank of ψ∗

is at least dimH
0,1
prim. The Hodge decomposition

H 1(X,C) = H 0,1 ⊕ H 0,1

implies

dimH 1
prim(X,C) = 2 dimH

0,1
prim.

It suffices, therefore, to prove dimH 1
prim(X,C) � 4.

We apply Lemma 3.2 in the case G = 〈σ 〉. In this case, the primitive part of IH is triv-
ial if H ⊂ 〈σ 〉 is non-trivial, and it has dimension φ(n) for H = {1}. Thus, the dimension of
H 1

prim(X,C) is (2h − 2 + r)φ(n), where r is the number of ramification points of the cover

X → X/G. This is positive except in two cases: the cyclic cover P1 → P1 of degree n (necessar-
ily ramified over two points) and a degree n isogeny of elliptic curves; these have genus 0 and 1,
respectively. Otherwise, it is at least 4 unless 2h − 2 + r = 1 and φ(n) = 2. The triples (h, r, n)

for which this happens are (0,3,3), (0,3,4), (1,1,3), and (1,1,4). None of these is consistent
with the condition g � 3. �
Theorem 3.3. Let E/K be an elliptic curve over a number field K . For each root of unity ζ , there
exists a non-empty open subset Σζ of Gal(K/K) such that the multiplicity of the eigenvalue ζ

for σ ∈ Σζ acting on E(K) ⊗ C is infinite.
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Proof. Let ζ be an nth root of unity. Let λ1, λ2, λ3,∞ be the ramification points of a double
cover E → P1, and let λ denote the cross-ratio of (λ1, λ2, λ3,∞). Choose a, b ∈ K such that the
ordered quadruple (a, b, ζa, ζb) satisfies

(ζa − a)(ζb − b)

(ζb − a)(ζa − b)
= λ.

This is always possible; for instance, setting a = 1, we get a non-trivial quadratic equation for b,
and since λ is not 1 or ∞, we have b, ζb /∈ {a, ζa}. Thus the elliptic curves

Xi : y2 = (
x − ζ i−1a

)(
x − ζ i−1b

)(
x − ζ ia

)(
x − ζ ib

)
, for i = 1, . . . , n

all have the same j -invariant as E.
Let L = K(a,b, ζ ). Fix q ∈ K such that L( n

√
q ) is a Galois Z/nZ-extension of L. We claim

that Σζ contains the open set

Uζ := {
σ ∈ Gal(K/L) | σ (

n
√

q
) = ζ n

√
q

}
.

Let M = L( n
√

q ). For N any number field containing M , let CN denote the affine curve
over N

SpecN [x, y1, . . . , yn]/
(
P1(x, y1), . . . ,Pn(x, yn), y1 · · ·yn − (

xn − an
)(

xn − bn
))

,

where

Pi(x, y) = y2 − (
x − ζ i−1a

)(
x − ζ ia

)(
x − ζ i−1b

)(
x − ζ ib

)
.

Note that the equation y1 · · ·yn−(xn−an)(xn−bn) = 0 merely selects one of the two irreducible
components of the 1-dimensional affine scheme cut out by the other equations.

Let X denote the compact Riemann surface which is the compactification of CN(C). By the
Hurwitz genus formula, the genus of X is (n − 2)2n−2 + 1, which is � 3 since n � 3. For any
n-tuple (k1, . . . , kn) ∈ {0,1}n with even sum, the map

(x, y1, . . . , yn) �→ (
ζx, (−1)k1ζ 2yn, (−1)k2ζ 2y1, (−1)k3ζ 2y2, . . . , (−1)knζ 2yn−1

)
(3)

defines an automorphism σ of CN and therefore of X. As the ki have even sum, σ is of order n.
If x ∈ n

√
qL∗ and σ ∈ Uζ , then σ(x) = ζx, so

σ(yi)
2 = ζ 4y2

i−1,

and so there exists an n-tuple (k1, . . . , kn) with even coordinate sum such that σ acts on Q :=
(x, y1, . . . , yn) by (3). By Proposition 3.1, for all but finitely many values of x,

R :=
n−1∑
i=0

σ i(Q) ⊗ ζ−i

is a non-zero eigenvector of σ with eigenvalue ζ .
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Assume now that N is a finite Galois extension of M . Consider the morphism from CN to
the affine line over M given by (x, y1, . . . , yn) �→ x. This is a branched Galois cover with Galois
group Gal(N/M) × (Z/2Z)n−1. There exists a Hilbert set of values t ∈ M such that the geo-
metric points lying over x = n

√
qt in CM consists of a single Gal(K/M)-orbit or, equivalently,

Gal(M(y1, . . . , yn)/M) ∼= (Z/2Z)n−1 and M(y1, . . . , yn) is linearly disjoint from N over M .
As a Hilbert set of a finite extension of L always contains some Hilbert set of L [5, Chap-
ter 9, Proposition 3.3], it follows that there exists t ∈ L such that setting x = n

√
qt , relative to M ,

the extension M(y1, . . . , yn) is linearly disjoint from N and has Galois group (Z/2Z)n−1.
We can therefore iteratively construct a sequence t1, t2, . . . ∈ L∗ such that the extensions

Mi := M
(√(

n
√

qti − a
)(

n
√

qti − b
)(

n
√

qti − ζa
)(

n
√

qti − ζb
)
, . . . ,

√(
n
√

qti − ζ n−1a
)(

n
√

qti − ζ n−1b
)(

n
√

qti − a
)(

n
√

qti − b
))

are all linearly disjoint over M . Let Qi be a point with x-coordinate n
√

qti , and Ri the correspond-
ing ζ -eigenvector of σ given by (1). We claim that the Ri span a space of infinite dimension. The
Qi do so by [2, Lemma 3.12], and as the ζ−j are linearly independent over Q, it follows that the
Ri do so as well. �

We conclude with a question that does not seem to be directly amenable to the methods of
this paper.

Question 3.4. Does the set
⋂

ζ∈C
∗
tor

Σζ of elements of GK having generic spectrum on VE always
have an interior point?
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