JOURNAL OF
Algebra

Open conditions for infinite multiplicity eigenvalues on elliptic curves

Bo-Hae Im ${ }^{\text {a }}$, Michael Larsen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

Received 4 April 2005
Available online 20 March 2006
Communicated by Laurent Moret-Bailly

Abstract

Let E be an elliptic curve defined over a number field K. We show that for each root of unity ζ, the set Σ_{ζ} of $\sigma \in \operatorname{Gal}(\bar{K} / K)$ such that ζ is an eigenvalue of infinite multiplicity for σ acting on $E(\bar{K}) \otimes \mathbb{C}$ has non-empty interior.

For the eigenvalue -1 , we can show more: for any σ in $\operatorname{Gal}(\bar{K} / K)$, the multiplicity of the eigenvalue -1 is either 0 or ∞. It follows that Σ_{-1} is open. © 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field, \bar{K} an algebraic closure of K, and $G_{K}:=\operatorname{Gal}(\bar{K} / K)$ the absolute Galois group of \bar{K} over K. Let E be an elliptic curve defined over K. There is a natural continuous action of G_{K} on the countably infinite-dimensional complex vector space $V_{E}:=E(\bar{K}) \otimes \mathbb{C}$. The resulting representation decomposes as a direct sum of finite-dimensional irreducible representations in each of which G_{K} acts through a finite quotient group.

In particular, the action of every $\sigma \in G_{K}$ on V_{E} is diagonalizable, with all eigenvalues roots of unity. In [3], the first-named author showed that for generic σ, every root of unity appears as an eigenvalue of countably infinite multiplicity. This is true both in terms of measure and of Baire category. However, there exist σ for which the spectrum is quite different: trivially, the

[^0]identity and complex conjugation elements; less trivially, examples which can be constructed for an arbitrary set S of primes, such that ζ is an eigenvalue if and only if every prime factor of its order lies in S.

Throughout this paper, we will write Σ_{ζ} for the subset of G_{K} consisting of elements σ acting as ζ on an infinite-dimensional subspace of V_{E} (E and K being fixed). For $\zeta=1$, a good deal is known. In [2], it is proved that whenever 1 appears as an eigenvalue of σ at all, we have $\sigma \in \Sigma_{1}$. It follows that Σ_{1} is open. By [4], when $K=\mathbb{Q}, \Sigma_{1}$ is all of G_{K}, and quite possibly this may be true without restriction on K. We have already observed that $\Sigma_{\zeta} \neq G_{K}$ for $\zeta \neq 1$. We can still hope for positive answers to the following progression of increasingly optimistic questions:

Question 1.1. Does Σ_{ζ} have non-empty interior for all ζ ?
Question 1.2. Is Σ_{ζ} open for all ζ ?
Question 1.3. Do all eigenvalues of σ acting on V_{E} appear with infinite multiplicity?
In this paper, we give an affirmative answer to Question 1.1 for all ζ and an affirmative answer to all three questions for $\zeta=-1$.

The difficulty in proving such theorems is that placing σ in a basic open subset U of G_{K} amounts to specifying the action of σ on a finite Galois extension L of K. By the MordellWeil theorem, $E(L) \otimes \mathbb{C}$ is finite-dimensional. The surprising thing is that knowing the action of σ on this finite-dimensional subspace of V_{E} can be enough to guarantee the existence of an infinite-dimensional ζ-eigenspace for σ.

2. Multiplicity of the eigenvalue - 1

In this section, we answer Questions 1.2 and 1.3 for $\zeta=-1$.

Proposition 2.1. Let E / K be an elliptic curve over K. Suppose -1 is an eigenvalue of the action of $\sigma \in G_{K}$ on V_{E}. Then the -1-eigenspace of σ is infinite-dimensional.

Proof. As -1 is an eigenvalue of σ acting on V_{E}, it is an eigenvalue of σ acting on $E(\bar{K}) \otimes \mathbb{Q}$. Clearing denominators, there exists a non-torsion $P \in E(\bar{K})$ such that $\sigma(P)+P \in E(\bar{K})_{\text {tor }}$. Replacing P by a suitable positive integral multiple, $\sigma(P)=-P$.

Let $y^{2}=f(x)$ be a fixed Weierstrass equation of E / K. Let $P=(\alpha, \sqrt{f(\alpha)})$. As $\sigma(P)=$ $-P$, we have $\alpha \in \bar{K}^{\sigma}$ but $\sigma(\sqrt{f(\alpha)})=-\sqrt{f(\alpha)}$ so $\sqrt{f(\alpha)} \notin \bar{K}^{\sigma}$. Then, $\sqrt{f(\alpha)} \notin K(\alpha)$, since $K(\alpha) \subseteq \bar{K}^{\sigma}$.

Let $c=f(\alpha) \in K(\alpha)$. We still have $\sigma \in \operatorname{Gal}(\bar{K} / K(\alpha))$ and $\sigma(\sqrt{c})=-\sqrt{c}$.
Let $E^{\prime} / K(\alpha)$ denote the twist $y^{2}=c f(x)$. Then, E^{\prime} has a rational point $P^{\prime}=(\alpha, f(\alpha))$ over $K(\alpha)$. The \bar{K}-isomorphism $\phi: E \rightarrow E^{\prime}$ mapping $(x, y) \mapsto(x, \sqrt{f(\alpha) y})$ sends P to P^{\prime}, so P^{\prime} is of infinite order on E^{\prime}. By [2, Theorem 5.3], $E^{\prime}\left(\bar{K}^{\sigma}\right)$ has infinite rank. Let $\left\{P_{i}^{\prime}=\right.$ $\left.\left(x_{i}, \sqrt{c f\left(x_{i}\right)}\right)\right\}_{i=1}^{\infty}$ be an infinite sequence of linearly independent points of E^{\prime} generating the infinite-dimensional eigenspace of 1 of σ in $E^{\prime}(\bar{K}) \otimes \mathbb{C}$. Then, $\sigma\left(x_{i}\right)=x_{i}$ and $\sigma\left(\sqrt{f\left(x_{i}\right)}\right)=$ $-\sqrt{f\left(x_{i}\right)}$ for all i, since $\sigma(\sqrt{c})=-\sqrt{c}$.

Let $P_{i}=\phi^{-1}\left(P_{i}^{\prime}\right)=\left(x_{i}, \sqrt{f\left(x_{i}\right)}\right)$. These are points of the given elliptic curve E such that $\sigma\left(P_{i}\right)=-P_{i}$ for all i, since $\sigma\left(x_{i}\right)=x_{i}$ and $\sigma\left(\sqrt{f\left(x_{i}\right)}\right)=-\sqrt{f\left(x_{i}\right)}$.

The points P_{i} are linearly independent because the P_{i}^{\prime} are so. Therefore, $\left\{P_{i} \otimes 1\right\}_{i=1}^{\infty}$ generates an infinite-dimensional subspace of the -1 -eigenspace of σ on V_{E}. This completes the proof.

Theorem 2.2. Let E / K be an elliptic curve over K. Then, Σ_{-1} is open.
Proof. We have already seen that if $\sigma \in \Sigma_{-1}$, we can choose a point $P \in E(\bar{K})$ of infinite order such that $\sigma(P)=-P$. By Proposition 2.1, $\tau(P)=-P$ implies $\tau \in \Sigma_{-1}$. It follows that Σ_{-1} contains the open neighborhood $\left\{\tau \in G_{K} \mid \tau(P)=\sigma(P)\right\}$ of σ.

Remark 2.3. The same argument shows that Questions 1.2 and 1.3 have an affirmative answer for $\zeta=\omega$ (respectively $\zeta=i$) when E has complex multiplication by $\mathbb{Z}[\omega]$ (respectively $\mathbb{Z}[i]$).

3. Interior points

In this section, we show that for every root of unity ζ, the set Σ_{ζ} contains a non-empty open subset. We assume that the order of ζ is $n \geqslant 3$, the case $n=1$ having been treated in [2], and the case $n=2$ in Theorem 2.2.

Our strategy will be to find points $Q_{i} \in E(\bar{K})$ such that the σ-orbit of Q_{i} has length n. For each such point Q_{i}, we set

$$
\begin{equation*}
R_{i}:=\sum_{j=0}^{n-1} \sigma^{j}\left(Q_{i}\right) \otimes \zeta^{-j} \tag{1}
\end{equation*}
$$

and observe that R_{i} is a ζ-eigenvector of σ provided that it is non-zero.
We therefore begin with the following proposition.
Proposition 3.1. Let X be a Riemann surface of genus $g \geqslant 3$ with an automorphism σ of order $n \geqslant 3$. Then X contains a non-empty open set U such that $x \in U$ implies that

$$
\sum_{i=0}^{n-1}\left[\sigma^{i} x\right] \otimes \zeta^{-i} \neq 0
$$

in $\operatorname{Pic} X \otimes \mathbb{C}$.
To prove the proposition, we need the following lemma, which is essentially due to Weil (see [7, VI, Proposition 7] for a formulation more general than ours, in the setting of ℓ-adic homology).

Lemma 3.2. Let $R_{\mathbb{C}}(G)$ denote the ring of virtual complex representations of a finite group G, and for every subgroup $H \subset G$, let $I_{H}=\operatorname{Ind}_{H}^{G} 1$, where 1 is the trivial representation. For any compact Riemann surface X on which G acts faithfully, we have the following identity in $R_{\mathbb{C}}(G) \otimes \mathbb{Q}:$

$$
\begin{equation*}
\left[H^{1}(X, \mathbb{C})\right]=2+(2 h-2)\left[I_{\{1\}}\right]+\sum_{x \in X} \frac{\left[I_{\{1\}}\right]-\left[I_{\operatorname{Stab}_{G}(x)}\right]}{\left[G: \operatorname{Stab}_{G}(x)\right]} \tag{2}
\end{equation*}
$$

where h is the genus of X / G, and $[V]$ denotes the class in $R_{\mathbb{C}}(G) \otimes \mathbb{Q}$ associated to the representation V. Note that the summand on the right-hand side of (2) is zero for every x with $\operatorname{Stab}_{G}(x)=\{1\}$, and therefore the sum is finite.

Proof. Let $\pi: X \rightarrow X / G$ denote the quotient map. There is a natural injective trace map from $R_{\mathbb{C}}(G) \otimes \mathbb{Q}$ to the space of complex-valued functions on G. To prove the lemma, it suffices to take traces of both sides and check equality for all elements of $g \in G$. When $g=1$, the equality of traces in (2) is just the Riemann-Hurwitz formula. For $g \neq 1$, the Lefschetz trace formula asserts

$$
2-\operatorname{tr}\left(g \mid H^{1}(X, \mathbb{C})\right)=\operatorname{Fix}(g)=\sum_{y \in X / G} \sum_{\left\{x \in \pi^{-1} y \mid g(x)=x\right\}} 1 .
$$

The contribution of the G-orbit of $x_{0} \in X$ to this sum is

$$
\frac{1}{\left[G: \operatorname{Stab}_{G}\left(x_{0}\right)\right]} \sum_{\left\{k \in G \mid g\left(k\left(x_{0}\right)\right)=k\left(x_{0}\right)\right\}} 1=\frac{\left|\left\{k \in G \mid g \in k \operatorname{Stab}_{G}\left(x_{0}\right) k^{-1}\right\}\right|}{\left[G: \operatorname{Stab}_{G}\left(x_{0}\right)\right]}
$$

On the other hand, any non-zero g has trace 2 on $2+(2 h-2)\left[I_{\{1\}}\right]$. To compute the trace of g on the remaining terms on the right-hand side of (2), we note that for any subgroup H of G, g fixes a coset $k H$ if and only if $g \in k H k^{-1}$, so the trace of g on I_{H} equals

$$
\frac{\left|\left\{k \in G \mid g \in k H k^{-1}\right\}\right|}{|H|}
$$

Thus, the trace of g on

$$
\sum_{x \in \pi^{-1}\left(\pi\left(x_{0}\right)\right)} \frac{\left[I_{\{1\}}\right]-\left[I_{\operatorname{Stab}_{G}(x)}\right]}{\left[G: \operatorname{Stab}_{G}(x)\right]}
$$

is

$$
\operatorname{tr}\left(g \mid\left[I_{\{1\}}\right]-\left[I_{\operatorname{Stab}_{G}\left(x_{0}\right)}\right]\right)=-\frac{\left|\left\{k \in G \mid g \in k \operatorname{Stab}_{G}\left(x_{0}\right) k^{-1}\right\}\right|}{\left|\operatorname{Stab}_{G}\left(x_{0}\right)\right|} .
$$

The lemma follows.
We can now prove Proposition 3.1.
Proof. We can regard X as the set of complex points of a non-singular projective curve whose Picard scheme has complex locus Pic X. Then Pic $X \otimes \mathbb{Z}[\zeta]$ is the group of complex points of a group scheme whose identity component $\operatorname{Pic}^{0} X \otimes \mathbb{Z}[\zeta]$ is isomorphic to the $\phi(n)$ th power of the Jacobian variety of this curve. The action of σ on X defines an action on Pic X, and the map $\psi: \operatorname{Pic} X \rightarrow \operatorname{Pic} X \otimes \mathbb{Z}[\zeta]$ given by

$$
\psi(y)=\sum_{i=0}^{n-1} \sigma^{i} y \otimes \zeta^{-i}
$$

then comes from a morphism of group schemes. The image of ψ actually lies in $\operatorname{Pic}^{0} X \otimes \mathbb{Z}[\zeta]$, and its kernel P_{ζ}^{0} is Zariski-closed in Pic X.

The set P_{ζ} of y such that $\psi(y)$ maps to 0 in $\operatorname{Pic} X \otimes \mathbb{C}$ is the union of all translates of P_{ζ}^{0} by torsion points of Pic X. Applying Raynaud's theorem [6] (i.e., the proof of the ManinMumford conjecture) to the image of X in $\operatorname{Pic} X / P_{\zeta}^{0}$, the intersection $X \cap P_{\zeta}$ is finite whenever $\operatorname{dim} \operatorname{Pic} X / P_{\zeta}^{0} \geqslant 2$. It therefore suffices to prove that the Lie algebra of P_{ζ}^{0} is a subspace of the Lie algebra of Pic X of codimension $\geqslant 2$ or, equivalently, that the rank of the map ψ_{*} of Lie algebras is at least 2 . We identify the Lie algebra of $\operatorname{Pic} X$ in the usual way [1, Chapter 2, §6] with $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{0,1}(X)$. Likewise, the Lie algebra of Pic $X \otimes \mathbb{Z}[\zeta]$ is isomorphic to $H^{0,1}(X) \otimes \mathbb{Z} \mathbb{Z}[\zeta]$. For every k prime to n, there exists a morphism

$$
\phi_{k}: H^{0,1}(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\zeta] \rightarrow H^{0,1}(X)
$$

obtained from the embedding of $\mathbb{Z}[\zeta]$ into \mathbb{C} mapping ζ to ζ^{k} :

$$
\phi_{k}\left(v \otimes \zeta^{i}\right)=\zeta^{i k} v
$$

The composition of this map with ψ_{*} is $\sum_{i=0}^{n-1} \zeta^{-i k} \sigma^{i}$.
Let $H_{\text {prim }}^{0,1}\left(\right.$ respectively $\left.H_{\text {prim }}^{1}(X, \mathbb{C})\right)$ denote the subspace of $H^{0,1}$ (respectively $H^{1}(X, \mathbb{C})$) spanned by eigenvectors of σ whose eigenvalues are primitive nth roots of unity. If v is an eigenvector of σ in $H^{0,1}$ whose eigenvalue is a primitive nth root of unity ζ^{k}, then $\phi_{k}\left(\psi_{*}(v)\right)=$ $n v \neq 0$, while $\phi_{j}\left(\phi_{*}(v)\right)=0$ for all $j \neq k$. It follows that ker $\psi_{*} \cap H_{\text {prim }}^{0,1}=\{0\}$, so the rank of ψ_{*} is at least $\operatorname{dim} H_{\text {prim }}^{0,1}$. The Hodge decomposition

$$
H^{1}(X, \mathbb{C})=H^{0,1} \oplus \overline{H^{0,1}}
$$

implies

$$
\operatorname{dim} H_{\mathrm{prim}}^{1}(X, \mathbb{C})=2 \operatorname{dim} H_{\mathrm{prim}}^{0,1} .
$$

It suffices, therefore, to prove $\operatorname{dim} H_{\text {prim }}^{1}(X, \mathbb{C}) \geqslant 4$.
We apply Lemma 3.2 in the case $G=\langle\sigma\rangle$. In this case, the primitive part of I_{H} is trivial if $H \subset\langle\sigma\rangle$ is non-trivial, and it has dimension $\phi(n)$ for $H=\{1\}$. Thus, the dimension of $H_{\text {prim }}^{1}(X, \mathbb{C})$ is $(2 h-2+r) \phi(n)$, where r is the number of ramification points of the cover $X \rightarrow X / G$. This is positive except in two cases: the cyclic cover $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree n (necessarily ramified over two points) and a degree n isogeny of elliptic curves; these have genus 0 and 1 , respectively. Otherwise, it is at least 4 unless $2 h-2+r=1$ and $\phi(n)=2$. The triples (h, r, n) for which this happens are $(0,3,3),(0,3,4),(1,1,3)$, and $(1,1,4)$. None of these is consistent with the condition $g \geqslant 3$.

Theorem 3.3. Let E / K be an elliptic curve over a number field K. For each root of unity ζ, there exists a non-empty open subset Σ_{ζ} of $\operatorname{Gal}(\bar{K} / K)$ such that the multiplicity of the eigenvalue ζ for $\sigma \in \Sigma_{\zeta}$ acting on $E(\bar{K}) \otimes \mathbb{C}$ is infinite.

Proof. Let ζ be an nth root of unity. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \infty$ be the ramification points of a double cover $E \rightarrow \mathbb{P}^{1}$, and let λ denote the cross-ratio of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \infty\right)$. Choose $a, b \in \bar{K}$ such that the ordered quadruple ($a, b, \zeta a, \zeta b$) satisfies

$$
\frac{(\zeta a-a)(\zeta b-b)}{(\zeta b-a)(\zeta a-b)}=\lambda
$$

This is always possible; for instance, setting $a=1$, we get a non-trivial quadratic equation for b, and since λ is not 1 or ∞, we have $b, \zeta b \notin\{a, \zeta a\}$. Thus the elliptic curves

$$
X_{i}: y^{2}=\left(x-\zeta^{i-1} a\right)\left(x-\zeta^{i-1} b\right)\left(x-\zeta^{i} a\right)\left(x-\zeta^{i} b\right), \quad \text { for } i=1, \ldots, n
$$

all have the same j-invariant as E.
Let $L=K(a, b, \zeta)$. Fix $q \in K$ such that $L(\sqrt[n]{q})$ is a Galois $\mathbb{Z} / n \mathbb{Z}$-extension of L. We claim that Σ_{ζ} contains the open set

$$
U_{\zeta}:=\{\sigma \in \operatorname{Gal}(\bar{K} / L) \mid \sigma(\sqrt[n]{q})=\zeta \sqrt[n]{q}\}
$$

Let $M=L(\sqrt[n]{q})$. For N any number field containing M, let C_{N} denote the affine curve over N

$$
\operatorname{Spec} N\left[x, y_{1}, \ldots, y_{n}\right] /\left(P_{1}\left(x, y_{1}\right), \ldots, P_{n}\left(x, y_{n}\right), y_{1} \cdots y_{n}-\left(x^{n}-a^{n}\right)\left(x^{n}-b^{n}\right)\right)
$$

where

$$
P_{i}(x, y)=y^{2}-\left(x-\zeta^{i-1} a\right)\left(x-\zeta^{i} a\right)\left(x-\zeta^{i-1} b\right)\left(x-\zeta^{i} b\right)
$$

Note that the equation $y_{1} \cdots y_{n}-\left(x^{n}-a^{n}\right)\left(x^{n}-b^{n}\right)=0$ merely selects one of the two irreducible components of the 1-dimensional affine scheme cut out by the other equations.

Let X denote the compact Riemann surface which is the compactification of $C_{N}(\mathbb{C})$. By the Hurwitz genus formula, the genus of X is $(n-2) 2^{n-2}+1$, which is $\geqslant 3$ since $n \geqslant 3$. For any n-tuple $\left(k_{1}, \ldots, k_{n}\right) \in\{0,1\}^{n}$ with even sum, the map

$$
\begin{equation*}
\left(x, y_{1}, \ldots, y_{n}\right) \mapsto\left(\zeta x,(-1)^{k_{1}} \zeta^{2} y_{n},(-1)^{k_{2}} \zeta^{2} y_{1},(-1)^{k_{3}} \zeta^{2} y_{2}, \ldots,(-1)^{k_{n}} \zeta^{2} y_{n-1}\right) \tag{3}
\end{equation*}
$$

defines an automorphism σ of C_{N} and therefore of X. As the k_{i} have even sum, σ is of order n. If $x \in \sqrt[n]{q} L^{*}$ and $\sigma \in U_{\zeta}$, then $\sigma(x)=\zeta x$, so

$$
\sigma\left(y_{i}\right)^{2}=\zeta^{4} y_{i-1}^{2}
$$

and so there exists an n-tuple $\left(k_{1}, \ldots, k_{n}\right)$ with even coordinate sum such that σ acts on $Q:=$ (x, y_{1}, \ldots, y_{n}) by (3). By Proposition 3.1, for all but finitely many values of x,

$$
R:=\sum_{i=0}^{n-1} \sigma^{i}(Q) \otimes \zeta^{-i}
$$

is a non-zero eigenvector of σ with eigenvalue ζ.

Assume now that N is a finite Galois extension of M. Consider the morphism from C_{N} to the affine line over M given by $\left(x, y_{1}, \ldots, y_{n}\right) \mapsto x$. This is a branched Galois cover with Galois $\operatorname{group} \operatorname{Gal}(N / M) \times(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$. There exists a Hilbert set of values $t \in M$ such that the geometric points lying over $x=\sqrt[n]{q} t$ in C_{M} consists of a single $\operatorname{Gal}(\bar{K} / M)$-orbit or, equivalently, $\operatorname{Gal}\left(M\left(y_{1}, \ldots, y_{n}\right) / M\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ and $M\left(y_{1}, \ldots, y_{n}\right)$ is linearly disjoint from N over M. As a Hilbert set of a finite extension of L always contains some Hilbert set of L [5, Chapter 9, Proposition 3.3], it follows that there exists $t \in L$ such that setting $x=\sqrt[n]{q} t$, relative to M, the extension $M\left(y_{1}, \ldots, y_{n}\right)$ is linearly disjoint from N and has Galois group $(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$.

We can therefore iteratively construct a sequence $t_{1}, t_{2}, \ldots \in L^{*}$ such that the extensions

$$
\begin{aligned}
M_{i}:= & M\left(\sqrt{\left(\sqrt[n]{q} t_{i}-a\right)\left(\sqrt[n]{q} t_{i}-b\right)\left(\sqrt[n]{q} t_{i}-\zeta a\right)\left(\sqrt[n]{q} t_{i}-\zeta b\right)}, \ldots,\right. \\
& \left.\sqrt{\left(\sqrt[n]{q} t_{i}-\zeta^{n-1} a\right)\left(\sqrt[n]{q} t_{i}-\zeta^{n-1} b\right)\left(\sqrt[n]{q} t_{i}-a\right)\left(\sqrt[n]{q} t_{i}-b\right)}\right)
\end{aligned}
$$

are all linearly disjoint over M. Let Q_{i} be a point with x-coordinate $\sqrt[n]{q} t_{i}$, and R_{i} the corresponding ζ-eigenvector of σ given by (1). We claim that the R_{i} span a space of infinite dimension. The Q_{i} do so by [2, Lemma 3.12], and as the ζ^{-j} are linearly independent over \mathbb{Q}, it follows that the R_{i} do so as well.

We conclude with a question that does not seem to be directly amenable to the methods of this paper.

Question 3.4. Does the set $\bigcap_{\zeta \in \mathbb{C}_{\text {tor }}^{*}} \Sigma_{\zeta}$ of elements of G_{K} having generic spectrum on V_{E} always have an interior point?

Acknowledgments

The authors thank L. Moret-Bailly and the referee for correcting versions of Proposition 3.1 appearing in earlier drafts of this manuscript and for suggesting many other improvements.

References

[1] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
[2] B. Im, Mordell-Weil groups and the rank over large fields of elliptic curves over large fields, math.NT/0411533, Canad. J. Math., in press.
[3] B. Im, Infinite multiplicity of roots of unity of the Galois group in the representation on elliptic curves, J. Number Theory 114 (2) (2005) 312-323.
[4] B. Im, Heegner points and Mordell-Weil groups of elliptic curves over large fields, preprint, math.NT/0411534.
[5] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.
[6] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1) (1983) 207-233.
[7] J.-P. Serre, Local Fields, Springer-Verlag, New York, 1979.

[^0]: * Corresponding author.

 E-mail addresses: im@math.utah.edu (B.-H. Im), larsen@ math.indiana.edu (M. Larsen).

