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Abstract

Let E be an elliptic curve defined over a number field K. We show that for each root of unity ¢, the set
Xrofoe Gal(K /K) such that ¢ is an eigenvalue of infinite multiplicity for o acting on E(K) ® C has
non-empty interior.

For the eigenvalue —1, we can show more: for any ¢ in Gal(K /K), the multiplicity of the eigenvalue —1
is either O or oo. It follows that X' is open.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field, K an algebraic closure of K, and Gg := Gal(K /K) the absolute
Galois group of K over K. Let E be an elliptic curve defined over K. There is a natural continu-
ous action of Gk on the countably infinite-dimensional complex vector space Vg := E(K) ® C.
The resulting representation decomposes as a direct sum of finite-dimensional irreducible repre-
sentations in each of which G g acts through a finite quotient group.

In particular, the action of every ¢ € G on Vg is diagonalizable, with all eigenvalues roots
of unity. In [3], the first-named author showed that for generic o, every root of unity appears
as an eigenvalue of countably infinite multiplicity. This is true both in terms of measure and of
Baire category. However, there exist o for which the spectrum is quite different: trivially, the
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identity and complex conjugation elements; less trivially, examples which can be constructed for
an arbitrary set S of primes, such that ¢ is an eigenvalue if and only if every prime factor of its
order lies in S.

Throughout this paper, we will write X, for the subset of Gk consisting of elements ¢ acting
as ¢ on an infinite-dimensional subspace of Vg (E and K being fixed). For ¢ = 1, a good deal is
known. In [2], it is proved that whenever 1 appears as an eigenvalue of o at all, we have o € X.
It follows that X' is open. By [4], when K = Q, X; is all of G, and quite possibly this may be
true without restriction on K. We have already observed that Xy # Gk for ¢ # 1. We can still
hope for positive answers to the following progression of increasingly optimistic questions:

Question 1.1. Does X; have non-empty interior for all £?
Question 1.2. Is X open for all {?
Question 1.3. Do all eigenvalues of o acting on Vg appear with infinite multiplicity?

In this paper, we give an affirmative answer to Question 1.1 for all ¢ and an affirmative answer
to all three questions for ¢ = —1.

The difficulty in proving such theorems is that placing o in a basic open subset U of Gg
amounts to specifying the action of o on a finite Galois extension L of K. By the Mordell-
Weil theorem, E(L) ® C is finite-dimensional. The surprising thing is that knowing the action
of o on this finite-dimensional subspace of Vg can be enough to guarantee the existence of an
infinite-dimensional ¢-eigenspace for o.

2. Multiplicity of the eigenvalue —1
In this section, we answer Questions 1.2 and 1.3 for { = —1.

Proposition 2.1. Let E /K be an elliptic curve over K. Suppose —1 is an eigenvalue of the action
of 0 € Gk on Vg. Then the —1-eigenspace of o is infinite-dimensional.

Proof. As —1 is an eigenvalue of o acting on Vg, it is an eigenvalue of o acting on E(K) ® Q.
Clearing denominators, there exists a non-torsion P € E(K) such that o(P) + P € E(K)or.
Replacing P by a suitable positive integral multiple, o (P) = —P.

Let y> = f(x) be a fixed Weierstrass equation of E/K. Let P = (o, /f(@)). As o (P) =
—P,wehave o € K° but o (/f(@)) = —/f (@) so /f(a) ¢ K°. Then, \/f(«) ¢ K (), since
K@) CK°.

Let c = f(a) € K (). We still have o € Gal(K /K («)) and o (\/c) = —4/c.

Let E'/K () denote the twist y2 = cf(x). Then, E’ has a rational point P’ = (e, f(a))
over K (a). The K-isomorphism ¢: E — E’ mapping (x,y) — (x,/f(a)y) sends P to P’,
so P’ is of infinite order on E’. By [2, Theorem 5.3], E/(K°) has infinite rank. Let (P =
(xi, /cf (x))}52, be an infinite sequence of linearly independent points of E’ generating the
infinite-dimensional eigenspace of 1 of o in E/(K) ® C. Then, o (x;) = x; and o (J/f(x;)) =
—/f @) forall i, since o (y/c) = —4/c.

Let P = ¢~ '(P/) = (xi, /F(x;)). These are points of the given elliptic curve E such that
o(P;)=—P; foralli, since o(x;) =x; and o (/F(x;)) = =/ F(x;).
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The points P; are linearly independent because the P/ are so. Therefore, {P; ® 1}72, gen-
erates an infinite-dimensional subspace of the —1-eigenspace of o on Vg. This completes the
proof. O

Theorem 2.2. Let E/K be an elliptic curve over K. Then, X _1 is open.

Proof. We have already seen that if o € X_1, we can choose a point P € E(K) of infinite order
such that o (P) = — P. By Proposition 2.1, t(P) = —P implies 7 € X'_1. It follows that X'_
contains the open neighborhood {t € Gk | t(P) =0 (P)}of 0. O

Remark 2.3. The same argument shows that Questions 1.2 and 1.3 have an affirmative answer
for { = w (respectively ¢ = i) when E has complex multiplication by Z[w] (respectively Z[i]).

3. Interior points

In this section, we show that for every root of unity ¢, the set X'; contains a non-empty open
subset. We assume that the order of ¢ is n > 3, the case n = 1 having been treated in [2], and the
case n =2 in Theorem 2.2.

Our strategy will be to find points Q; € E(K) such that the o-orbit of Q; has length n. For
each such point Q;, we set

n—1
Ri:=Y o/(Q)®¢ @)

j=0

and observe that R; is a ¢-eigenvector of o provided that it is non-zero.
We therefore begin with the following proposition.

Proposition 3.1. Let X be a Riemann surface of genus g > 3 with an automorphism o of order
n 2 3. Then X contains a non-empty open set U such that x € U implies that

n—1

Z[oix] ® ;‘i #0

i=0

inPicX ® C.

To prove the proposition, we need the following lemma, which is essentially due to Weil
(see [7, VI, Proposition 7] for a formulation more general than ours, in the setting of £-adic
homology).

Lemma 3.2. Let Rc(G) denote the ring of virtual complex representations of a finite group G,
and for every subgroup H C G, let Iy = Indg 1, where 1 is the trivial representation. For
any compact Riemann surface X on which G acts faithfully, we have the following identity in
Re(G)®@Q:

[(13] — Ustabg ()]
[G : Stabg (x)]

[H'(X.O)]=2+Qh =1+ 2)
xeX
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where h is the genus of X/G, and [V] denotes the class in Rc(G) ® Q associated to the rep-
resentation V. Note that the summand on the right-hand side of (2) is zero for every x with
Stabg (x) = {1}, and therefore the sum is finite.

Proof. Let 7 : X — X/G denote the quotient map. There is a natural injective trace map from
Rc(G) ® Q to the space of complex-valued functions on G. To prove the lemma, it suffices to
take traces of both sides and check equality for all elements of g € G. When g = 1, the equality
of traces in (2) is just the Riemann—Hurwitz formula. For g # 1, the Lefschetz trace formula
asserts

2-tr(g | H'(X.C)) =Fix(g)= Y _ > 1.

YeX/G {xen~lylg(x)=x}

The contribution of the G-orbit of xg € X to this sum is

1 Z - l{k € G | g € k Stabg (x0)k~'}|
[G : Stabg (x0)] (keGle(kGon=k(x0)) [G : Stabg (x0)]

On the other hand, any non-zero g has trace 2 on 24 (2 — 2)[I{1;]. To compute the trace of g on

the remaining terms on the right-hand side of (2), we note that for any subgroup H of G, g fixes

a coset kH if and only if g € kHk ™!, so the trace of g on Iy equals

{keG|gekHk™ Y
|H |

Thus, the trace of g on

Z [1{1}] = Ustabg ()]
[G : Stabg (x)]

xer (7 (x0))
is
|{k € G | g € k Stabg (x0)k ™'}

tr(g 171 = Ustabg o)1) = = | Stabg (x0)|

The lemma follows. 0O
We can now prove Proposition 3.1.

Proof. We can regard X as the set of complex points of a non-singular projective curve whose
Picard scheme has complex locus Pic X. Then Pic X ® Z[¢] is the group of complex points of
a group scheme whose identity component Pic’X ® Z[¢] is isomorphic to the ¢ (n)th power of
the Jacobian variety of this curve. The action of o on X defines an action on Pic X, and the map
Y:Pic X — Pic X ® Z[¢] given by

n—1

Yy =) o'y

i=0
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then comes from a morphism of group schemes. The image of ¢ actually lies in Pic’X ® Z[¢],
and its kernel Pg is Zariski-closed in Pic X.

The set P; of y such that ¥ (y) maps to 0 in PicX ® C is the union of all translates of
Pg0 by torsion points of Pic X. Applying Raynaud’s theorem [6] (i.e., the proof of the Manin—
Mumford conjecture) to the image of X in Pic X/ P?, the intersection X N P; is finite whenever
dimPic X /P{O > 2. It therefore suffices to prove that the Lie algebra of Pg is a subspace of
the Lie algebra of Pic X of codimension > 2 or, equivalently, that the rank of the map ¥,
of Lie algebras is at least 2. We identify the Lie algebra of Pic X in the usual way [1, Chap-
ter 2, §6] with H1(X, Ox) = HO'I(X). Likewise, the Lie algebra of Pic X ® Z[¢] is isomorphic
to HO'I(X) ®z Z[¢]. For every k prime to n, there exists a morphism

¢ H' (X0 @2 ZIE 1 — H*'(X)
obtained from the embedding of Z[¢] into C mapping ¢ to ¢*:
p(ve’) =",

The composition of this map with ¥ is Z;’;()l ;g
0,1 : 1 0,1 : 1

Let Hprim (respectively Hprim(X , C)) denote the subspace of H”"' (respectively H' (X, C))

spanned by eigenvectors of ¢ whose eigenvalues are primitive nth roots of unity. If v is an

eigenvector of o in H%! whose eigenvalue is a primitive nth root of unity ¥, then ¢y (14 (v)) =

nv # 0, while ¢ (¢4 (v)) = 0 for all j # k. It follows that ker . N H;’;iln = {0}, so the rank of ¥,

is at least dim H!

prim- The Hodge decomposition

H'(X,C)=H"' @ HO.1
implies

(X, C) =2dim H!

prim*

. 1
dim Hprim
(X,C) >4.

We apply Lemma 3.2 in the case G = (o). In this case, the primitive part of [y is triv-
ial if H C (o) is non-trivial, and it has dimension ¢ (n) for H = {1}. Thus, the dimension of
lerim (X,C) is 2h — 2 4+ r)¢p(n), where r is the number of ramification points of the cover

. 1
It suffices, therefore, to prove dim Hprim

X — X/G. This is positive except in two cases: the cyclic cover P! — P! of degree n (necessar-
ily ramified over two points) and a degree n isogeny of elliptic curves; these have genus 0 and 1,
respectively. Otherwise, it is at least 4 unless 27 —2 +r =1 and ¢ (n) = 2. The triples (h, r, n)
for which this happens are (0, 3, 3), (0,3,4), (1, 1,3), and (1, 1, 4). None of these is consistent
with the condition g > 3. O

Theorem 3.3. Let E /K be an elliptic curve over a number field K . For each root of unity ¢, there
exists a non-empty open subset X of Gal(K /K) such that the multiplicity of the eigenvalue ¢
foro € X¢ acting on E(K) ® C is infinite.
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Proof. Let ¢ be an nth root of unity. Let A, A2, A3, 00 be the ramification poin_ts of a double
cover E — P!, and let A denote the cross-ratio of (A1, A2, A3, 00). Choose a, b € K such that the
ordered quadruple (a, b, ¢a, ¢b) satisfies

(Ga—a)ghb—b) _
(&b —a)a—b)

This is always possible; for instance, setting a = 1, we get a non-trivial quadratic equation for b,
and since X is not 1 or co, we have b, ¢b ¢ {a, ¢a}. Thus the elliptic curves

Xi :y2 = (x — Ci_la)(x - {i_lb)(x - §ia)(x — Cib), fori=1,...,n

all have the same j-invariant as E.
Let L =K (a, b, ). Fix g € K such that L({/q) is a Galois Z/nZ-extension of L. We claim
that X; contains the open set

Ug:={o eGal(K/L) | o(¥/q)=¢¥q}.

Let M = L(¢/q). For N any number field containing M, let Cy denote the affine curve
over N

Spec N[x, yi, .oy Yul/(PrGx, y1)s ooy PaCx, ), yie o yn — (X" —a") (x" = b)),

where
Pi(x,y)= y2 - (x — {iila)(x — ;ia)(x — {iilb)(x — {ib).

Note that the equation y; - - - y, — (x" —a") (x" — b"") = 0 merely selects one of the two irreducible
components of the 1-dimensional affine scheme cut out by the other equations.

Let X denote the compact Riemann surface which is the compactification of Cy (C). By the
Hurwitz genus formula, the genus of X is (n — 2)2”_2 + 1, which is > 3 since n > 3. For any
n-tuple (ki, ..., k,) € {0, 1}"* with even sum, the map

1wy y) B (60, (DR 2y, (= DRy, (= 1Dy, o (=D Py )  (B)

defines an automorphism o of Cy and therefore of X. As the k; have even sum, o is of order 7.
If x € /gL* and 0 € Uy, then o (x) = {x, s0

o) =ty

and so there exists an n-tuple (kq, ..., k,) with even coordinate sum such that ¢ acts on Q :=
(x, ¥1, ..., yn) by (3). By Proposition 3.1, for all but finitely many values of x,

n—1
R:=) Qe

i=0

is a non-zero eigenvector of ¢ with eigenvalue ¢.
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Assume now that N is a finite Galois extension of M. Consider the morphism from Cy to
the affine line over M given by (x, y1, ..., y») > x. This is a branched Galois cover with Galois
group Gal(N /M) x (7Z/27)"~'. There exists a Hilbert set of values t € M such that the geo-
metric points lying over x = /gt in Cp consists of a single Gal(K /M)-orbit or, equivalently,
Gal(M(y1, ..., yp)/M) = (Z/2Z)"" and M(y1, ..., yp) is linearly disjoint from N over M.
As a Hilbert set of a finite extension of L always contains some Hilbert set of L [5, Chap-
ter 9, Proposition 3.3], it follows that there exists ¢ € L such that setting x = /g1, relative to M,
the extension M (y1, ..., y,) is linearly disjoint from N and has Galois group (Z/27Z)"~!.

We can therefore iteratively construct a sequence f1, t3, ... € L* such that the extensions

M; = M(\/ (@t — a) (/1 — b) (/1 — ca) (/a1 — ¢b). ...
V&t = e-10) (an = ¢ -16) (Van —a) (Yan — b))

are all linearly disjoint over M. Let Q; be a point with x-coordinate {/g?;, and R; the correspond-
ing ¢-eigenvector of o given by (1). We claim that the R; span a space of infinite dimension. The
Q; do so by [2, Lemma 3.12], and as the ¢ —J are linearly independent over Q, it follows that the
R; dosoaswell. O

We conclude with a question that does not seem to be directly amenable to the methods of
this paper.

Question 3.4. Does the set [ cecr, 2t of elements of G g having generic spectrum on Vg always
or
have an interior point?

Acknowledgments

The authors thank L. Moret-Bailly and the referee for correcting versions of Proposition 3.1
appearing in earlier drafts of this manuscript and for suggesting many other improvements.

References

[1] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.

[2] B. Im, Mordell-Weil groups and the rank over large fields of elliptic curves over large fields, math.NT/0411533,
Canad. J. Math., in press.

[3] B. Im, Infinite multiplicity of roots of unity of the Galois group in the representation on elliptic curves, J. Number
Theory 114 (2) (2005) 312-323.

[4] B. Im, Heegner points and Mordell-Weil groups of elliptic curves over large fields, preprint, math.NT/0411534.

[5] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.

[6] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1) (1983) 207-233.

[7] J.-P. Serre, Local Fields, Springer-Verlag, New York, 1979.



