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In this article, we apply the improved ``moving plane'' method to prove the
symmetry of the solutions of the Dirichlet problem &2u+u= g(u) in infinite strip
domains with zero boundary condition. � 1998 Academic Press

1. INTRODUCTION

Let N=m+n, m�2, n�1, | be a smooth bounded domain in Rm,
A=|_Rn an infinite strip domain in RN, and the function g be under
some suitable assumptions. In this article, we consider the following
semilinear elliptic equation

{
&2u+u=g(u)
u>0
u=0
lim | y| � � u(x, y)=0

in A,
in A,
on �A,
uniformly in x # |.

(1)
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It is well known that there is a solution of Eq. (1) in the whole space RN.
Moreover, in an elegant paper [1], Gidas et al. proved that any solution
of the same equation in RN is radially symmetric with respect to a certain
point in RN. Later, Kwong [4] proved that the solution of Eq. (1) in
RN is unique. The uniqueness of the solution of Eq. (1) in RN is useful: it
implies the existence of the solution of the same equation in RN"D, where
D is a bounded domain in RN.

Similarly, Lien et al. [7, Theorem 4.8] proved that there is a solution of
Eq. (1) in the infinite strip domain A. However, the symmetric and the
unique properties of a solution of the same equation in A are unknown. If
it is unique, then we can prove the existence of the solution of the same
equation in A"E, where E is a bounded domain in A. See Hsu and Wang
[3] for a related result.

In this article, we apply the improved ``moving plane'' method given by
Li [5] and Li and Ni [6] to prove that any solution of Eq. (1) in S is
symmetric as follows. Let

S=[(x, t) # BN&1(R)_R | x=(x1 , ..., xN&1) # BN&1(R), t # R],

where |=BN&1(R) is a ball with center at the origin and of radius R in RN&1.
Then u is radially symmetric in x and axially symmetric in t. We also establish,
in Section 2, the asymptotic behavior of positive solutions of Eq. (1) in
domain A. Related results were also studied by Lopes [8].

2. ASYMPTOTIC BEHAVIOR IN A

Let *1 be the first eigenvalue and ,1 the corresponding first positive
eigenfunction of the Dirichlet problem &2,1=*1 ,1 in |, ,1=0 on �|.

(P1) g(u)>0 as u>0,

(P2) g(u)=O(u p) as u � 0 for some p>1.

Proposition 1. Suppose g satisfies (P1) and (P2). Let u be a solution of
Eq. (1). Then for any 0<$<1+*1 there exist :>0 and ;>0 such that

:,1(x) e&- 1+*1+$ | y|�u(z)�;,1(x) e&- 1+*1&$ | y|, for z=(x, y) # A.

Proof. (1) Let z0 # �A and B be a small ball in A such that z0 # �B.
Let

w$(z)=,1(x) e&- 1+*1+$ | y| for z=(x, y) # A.
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Since w$(z)>0, u(z)>0 for z # B, w$(z0)=0, u(z0)=0, by the Hopf boundary
point lemma (see Gilbarg and Trudinger [2]), (�w$��&)(z0)<0, (�u��&)(z0)<0,
where & is the outward unit normal vector at z0 . Thus

lim

normally

z # A
z � z0

u(z)
w$(z)

=
(�u��&)(z0)

(�w$��&)(z0)
>0.

Note that

u(z)
w$(z)

>0 for z=(x, y) # A.

Thus

u(z)
w$(z)

>0 for z=(x, y) # A� .

For 0<$<1+*1 , take R>0 such that $&(- 1+*1+$ (n&1)�| y| )�0
for | y|�R. Since w$(z) and u(z) are in C1(A� ), if we set

:= inf
| y|�R
z # A�

u(z)
w$(z)

,

and w(z)=:w$(z) for z # A� , then :>0 and

w(z)�u(z) for z # A� , | y|�R.

For z # A� , | y|�R, we have

2(w&u)(z)&(w&u)(z)=(2w(z)&w(z))+(&2u(z)+u(z))

=w(z) \$&
- 1+*1+$ (n&1)

| y| ++ g(u)�0.

The maximum principle implies that w&u�0 in z # A, | y|�R, and
therefore

w(z)�u(z) for z # A.
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(2) For 0<$<1+*1 , take R$>0 such that g(u)�($�2)u for | y|�R$.
Let

w&$(z)=,1(x) e&- 1+*1&$ | y| for z=(x, y) # A,

1
;

= inf
| y| �R$

z # A�

w&$(z)
u(z)

,

v(z)=;w&$(z) for z # A� .

For z # A, | y|�R$ we have

&2(u&v)(z)+(u&v)(z)=(&2u(z)+u(z))+(2v(z)&v(z))

= g(u(z))+\&$&
- 1+*1&$ (n&1)

| y| + v(z)

�
$
2

(u&v)(z),

therefore

&2(u&v)(z)+\1&
$
2+ (u&v)(z)�0.

As in part (1), we obtain that

u(z)�v(z) for z # A. K

3. SYMMETRY OF THE SOLUTIONS

Let S=[(x, t) # BN&1(R)_R | x=(x1 , ..., xN&1) # BN&1(R), t # R].
Now we consider the following equation:

{
&2u+u=g(u)
u>0
u=0
lim |t| � � u(x, t)=0

in S,
in S,
on �S,
uniformly in x # B&1(R).

(2)

We apply the ``moving plane'' method to prove the symmetry of the
solutions of Eq. (2).

Theorem 2. Assume that g # C1 satisfies (P1) and (P2). Let u(x, t) be
a C2 solution of Eq. (2). Then u is radially symmetric in x and axially
symmetric in t; that is to say, u(x, t&_)=u( |x|, |t&_| ) for some _.
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Part I. u is axially symmetric with respect to some hyperplane t=_.

Notations.

S%=[(x, t) # S | x # BN&1(R), t=%];

1%=[(x, t) # S | x # BN&1(R), t<%];

For any (x, t) # S, set (x, t%)=(x, 2%&t); that is to say, (x, t%) is the
reflection of (x, t) with respect to S% ;

Let 3 be the collection of all % # R such that the following statements
hold:

{u(x, t)<u(x, t%)
ut(x, t)>0

for all (x, t) # 1% ,
on S & S% .

Lemma 3. There exists %0>0, such that either (&�, &%0]/3 or
u(x, t)#u(x, t&%0) in 1&%0

.

Proof. Given % # R, set w% (x, t)=u(x, t)&u(x, t%) for (x, t) # 1% , and
w% (x, t) satisfies

2w% (x, t)+c% (x, t) w% (x, t)=0, (3)

where c% (x, t)=( g(u(x, t))&g(u(x, t%)))�(u(x, t)&u(x, t%))&1= g$(!%)&1
where !% is in between u(x, t) and u(x, t%).

Claim that there exists %0>0 such that if %�&%0 , then w% (x, t)�0
in 1% .

Otherwise, suppose w%(x, t)>0 for some (x, t) # 1% . Since limt �&� w%(x, t)
=0 uniformly in x, w% (x, t) achieves its maximum at (x% , t%) # 1% . Then

{w% (x% , t%)=0, [w%
ij (x% , t%)]�0.

Note that by (P2), limt � 0 + g$(t)=0. Take t0>0 such that if 0<t�t0 ,
then g$(t)<1. Choose %0>0 such that if t�&%0 , u(x, t)�t0 uniformly
in x. For %�&%0 , (x% , t%) # 1% , then

2w% (x% , t%)�0, ( g$(!%)&1) w% (x% , t%)=c% (x, t) w% (x% , t%)<0,

contradicting Eq. (3). As a consequence of the maximum principle and the
Hopf boundary point lemma, either w&%0 (x, t)#0 in 1&%0

or for %�&%0 ,
w% (x, t)<0 in 1% and w%

t (x, t)>0 for (x, t) # S & S% , or ut(x, t)>0 for
(x, t) # S & S% .

Lemma 4. If (&�, %]/3, then there exists =>0 such that [%, %+=)/3.
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Proof. Suppose not. There exists a decreasing sequence %k � % and
a sequence [(xk , tk)] of points in 1%k

such that w%k (xk , tk)=u(xk , tk)&
u(xk , t%k

k )>0. There is a subsequence [(xk , tk)] such that xk � x� as k � �.
There may arise two possibilities as shown in Cases 1 and 2:

Case 1. tk � &�. As shown in Lemma 3, we assume

w%k (xk , tk)=max(x, t) # 1� %k
w%k (x, t),

(4)
{w%k (xk , tk)=0, [w%k

ij (xk , tk)]�0.

From limtk � &� u(xk , tk)=0, as in Lemma 3, we obtain a contradiction.

Case 2. tk � t� . We have (xk , tk) � (x� , t� ) # 1% , thus w% (x� , t� )�0. Clearly
(x� , t� ) � 1% since w% (x, t)<0 in 1% . If (x� , t� ) # S% , then ut(x� , t� )<0,
which contradicts % # 3. Moreover, (x� , t� ) � �S & 1% . Note that w% (x, t)
satisfies Eq. (3), and by the Hopf boundary point lemma, we obtain
(���&) w% (x� , t� )<0. On the other hand, taking the limit in (4), we obtain
{w% (x� , t� )=0, a contradiction. We conclude that Case 2 is impossible. K

Proof of Part I. Let _=sup [% # R | (&�, %)/3]. Then _ � 3. If not,
by Lemma 4 we would have [_, _+=)/3, which contradicts the definition
of _. By continuity we have u(x, t)�u(x, t_) for all (x, t) # 1_ . Then by the
maximum principle we have u(x, t)#u(x, t_) for all (x, t) # 1_ . This proves
u(x, t) is symmetric with respect to the hyperplane t=_ for all (x, t) # S. K

Part II. u is radially symmetric in BN&1(R).

Notations.

T*=[(x, t)=(x1 , x2 , ..., xN&1 , t) # S | x1=*];

7*=S & [(x, t) | x1<*];

For any (x, t)=(x1 , x2 , ..., xN&1 , t) # S, set (x*, t)=(2*&x1 , ....,
xN&1 , t); that is to say, (x*, t) is the reflection of (x, t) with respect to T* ;

Let 4 be the collection of all * # (&R, 0) such that the following
statements hold:

{u(x, t)<u(x*, t)
ux1

(x, t)>0
for all (x, t) # 7* ,
on S & T* .

Lemma 5. For some 0<$<R, (&R, &R+$)/4.

Proof. Given * # (&R, 0), set v*(x, t)=u(x, t)&u(x*, t) for (x, t) # 7* ,
then v*(x, t)=0 for (x, t) # S & T* , and v*(x, t) satisfies

2v*(x, t)+c*(x, t) v*(x, t)=0, (5)
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where c*(x, t)=( g(u(x, t))&g(u(x*, t)))�(u(x, t)&u(x*, t))&1= g$(`*)&1
where `* is in between u(x, t) and u(x*, t).

Note that by (P2), limt � 0+ g$(t)=0. Take t0>0 such that if 0<t�t0 ,
then g$(t)<1. Since lim |x| � R u(x, t)=0, we can choose $, R>$>0 such
that if R&$<|x|<R, u(x, t)�t0 uniformly in t.

Claim that if &R<*<&R+$, then v*(x, t)�0 in 7* .
Otherwise, suppose there exists * such that &R<*<&R+$, v*(x, t)>0

for some (x, t) # 7* . Since lim |t| � � v*(x, t)=0 uniformly in x, v*(x, t)
achieves its maximum at (x* , t*) # 7* . Then

{v*(x* , t*)=0, [v*
ij(x* , t*)]�0.

But

2v*(x* , t*)�0, (g$(`*)&1) v*(x* , t*)=c*(x, t) v*(x* , t*)<0,

which contradicts Eq. (5). So for &R<*<&R+$, v*(x, t)�0 in 7* .
Applying the maximum principle and the Hopf bounbary point lemma, for
&R<*<&R+$, we get v*(x, t)<0 in 7* and v*

x1
(x, t)>0 for (x, t) # S & T* .

Hence ux1
(x, t)>0 for (x, t) # S & T* . Then (&R, &R+$)/4.

Lemma 6. If (&R, *]/4, then there exists {>0 such that [*, *+{)/4.

Proof. Suppose not. There exists a decreasing sequence *k � * and a
sequence [(xk , tk)] of points in 7*k

such that v*k (xk , tk)=u(xk , tk)&
u(x*k

k , tk)>0. There is a subsequence [(xk , tk)] such that xk � x� # BN&1(R).
There may arise two possibilities as shown in Cases 1 and 2:

Case 1. |tk | � �. As shown in Lemma 5, we assume

v*k (xk , tk)= max
(x, t) # 7*k

v*k (x, t),

{v*k (xk , tk)=0, [v*k
ij (xk , tk)]�0.

From lim |tk | � � u(xk , tk)=0, as in Lemma 5, we obtain a contradiction.

Case 2. tk � t� . We have (xk , tk) � (x� , t� ) # 7* . Thus v*(x� , t� )�0. Clearly
(x� , t� ) � 7* since v*(x, t)<0 in 7* . If (x� , t� ) # T* then ux1

(x� , t� )<0,
which contradicts * # 4. Moreover, (x� , t� ) � �S & 7* since if (x� , t� ) # �S & 7*

then 0=u(x� , t� )�u(x� *, t� )>0, a contraction. We conclude that Case 2 is
impossible. K

Proof of Part II. Let +=sup[* # (&R, 0) | (&R, *)/4]. Then + � 4. If
not, by Lemma 6 we would have [+, ++=)/4, which contradicts the
definition of +. We claim that +=0. Suppose not; + # (&R, 0). By continuity

7SEMILINEAR ELLIPTIC EQUATIONS



we have u(x, t)�u(x+, t) for all (x, t) # 7+ . Then by the maximum principle
we have u(x, t)#u(x+, t) for all (x, t) # 7+ , which is impossible. Thus +=0. By
reversing the x1 axis, we conclude that u(x, t) is symmetric with respect to the
hyperplane T0 and ux1

(x, t)<0 for x1>0. Since the x1 direction can be chosen
arbitrarily, we conclude that u(x, t) is radially symmetric in BN&1(R). K

Remark 1. In the ordinary differential equation case, Theorem 2 will
admit more important properties: Let u be a C2 solution of Eq. (2) in R.
Then it is obvious that u is not only symmetric with respect to a certain
point in R but also unique up to translations.
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