Symmetry of Positive Solutions of Semilinear Elliptic Equations in Infinite Strip Domains

Kuan-ju Chen

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Kuo-chang Chen

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

/iew metadata, citation and similar papers at core.ac.uk

nwai-cinuan wang

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China E-mail: hwang@math.nthu.edu.tw

Received June 14, 1996; revised February 9, 1998

In this article, we apply the improved "moving plane" method to prove the symmetry of the solutions of the Dirichlet problem $-\Delta u + u = g(u)$ in infinite strip domains with zero boundary condition. © 1998 Academic Press

1. INTRODUCTION

Let N = m + n, $m \ge 2$, $n \ge 1$, ω be a smooth bounded domain in \mathbb{R}^m , $\mathbf{A} = \boldsymbol{\omega} \times \mathbb{R}^n$ an infinite strip domain in \mathbb{R}^N , and the function g be under some suitable assumptions. In this article, we consider the following semilinear elliptic equation

$$\begin{cases} -\Delta u + u = g(u) & \text{in } \mathbf{A}, \\ u > 0 & \text{in } \mathbf{A}, \\ u = 0 & \text{on } \partial \mathbf{A}, \\ \lim_{\|y\| \to \infty} u(x, y) = 0 & \text{uniformly in } x \in \mathbf{\omega}. \end{cases}$$
(1)

It is well known that there is a solution of Eq. (1) in the whole space \mathbb{R}^N . Moreover, in an elegant paper [1], Gidas *et al.* proved that any solution of the same equation in \mathbb{R}^N is radially symmetric with respect to a certain point in \mathbb{R}^N . Later, Kwong [4] proved that the solution of Eq. (1) in \mathbb{R}^N is unique. The uniqueness of the solution of Eq. (1) in \mathbb{R}^N is useful: it implies the existence of the solution of the same equation in $\mathbb{R}^N \setminus D$, where *D* is a bounded domain in \mathbb{R}^N .

Similarly, Lien *et al.* [7, Theorem 4.8] proved that there is a solution of Eq. (1) in the infinite strip domain **A**. However, the symmetric and the unique properties of a solution of the same equation in **A** are unknown. If it is unique, then we can prove the existence of the solution of the same equation in $\mathbf{A} \setminus E$, where *E* is a bounded domain in **A**. See Hsu and Wang [3] for a related result.

In this article, we apply the improved "moving plane" method given by Li[5] and Li and Ni[6] to prove that any solution of Eq. (1) in S is symmetric as follows. Let

$$\mathbf{S} = \{ (x, t) \in \mathbf{B}^{N-1}(R) \times \mathbb{R} \mid x = (x_1, ..., x_{N-1}) \in \mathbf{B}^{N-1}(R), t \in \mathbb{R} \},\$$

where $\omega = \mathbf{B}^{N-1}(R)$ is a ball with center at the origin and of radius R in \mathbb{R}^{N-1} . Then u is radially symmetric in x and axially symmetric in t. We also establish, in Section 2, the asymptotic behavior of positive solutions of Eq. (1) in domain **A**. Related results were also studied by Lopes [8].

2. ASYMPTOTIC BEHAVIOR IN A

Let λ_1 be the first eigenvalue and ϕ_1 the corresponding first positive eigenfunction of the Dirichlet problem $-\Delta\phi_1 = \lambda_1\phi_1$ in ω , $\phi_1 = 0$ on $\partial\omega$.

- (P1) g(u) > 0 as u > 0,
- (P2) $g(u) = O(u^p)$ as $u \to 0$ for some p > 1.

PROPOSITION 1. Suppose g satisfies (P1) and (P2). Let u be a solution of Eq. (1). Then for any $0 < \delta < 1 + \lambda_1$ there exist $\alpha > 0$ and $\beta > 0$ such that

$$\alpha\phi_1(x) e^{-\sqrt{1+\lambda_1+\delta}|y|} \leq u(z) \leq \beta\phi_1(x) e^{-\sqrt{1+\lambda_1-\delta}|y|}, \quad for \quad z = (x, y) \in \mathbf{A}.$$

Proof. (1) Let $z_0 \in \partial A$ and B be a small ball in A such that $z_0 \in \partial B$. Let

$$w_{\delta}(z) = \phi_1(x) e^{-\sqrt{1+\lambda_1+\delta}|y|}$$
 for $z = (x, y) \in \mathbf{A}$.

Since $w_{\delta}(z) > 0$, u(z) > 0 for $z \in B$, $w_{\delta}(z_0) = 0$, $u(z_0) = 0$, by the Hopf boundary point lemma (see Gilbarg and Trudinger [2]), $(\partial w_{\delta}/\partial v)(z_0) < 0$, $(\partial u/\partial v)(z_0) < 0$, where v is the outward unit normal vector at z_0 . Thus

$$\lim_{\substack{z \in \mathbf{A} \\ z \to z_0 \\ \text{normally}}} \frac{u(z)}{w_{\delta}(z)} = \frac{(\partial u/\partial v)(z_0)}{(\partial w_{\delta}/\partial v)(z_0)} > 0.$$

Note that

$$\frac{u(z)}{w_{\delta}(z)} > 0 \qquad \text{for} \quad z = (x, y) \in \mathbf{A}.$$

Thus

$$\frac{u(z)}{w_{\delta}(z)} > 0$$
 for $z = (x, y) \in \overline{\mathbf{A}}$.

For $0 < \delta < 1 + \lambda_1$, take R > 0 such that $\delta - (\sqrt{1 + \lambda_1 + \delta} (n-1)/|y|) \ge 0$ for $|y| \ge R$. Since $w_{\delta}(z)$ and u(z) are in $C^1(\overline{\mathbf{A}})$, if we set

$$\alpha = \inf_{\substack{z \in \overline{\mathbf{A}} \\ |y| \leqslant R}} \frac{u(z)}{w_{\delta}(z)},$$

and $w(z) = \alpha w_{\delta}(z)$ for $z \in \overline{\mathbf{A}}$, then $\alpha > 0$ and

$$w(z) \leq u(z)$$
 for $z \in \overline{\mathbf{A}}$, $|y| \leq R$.

For $z \in \overline{\mathbf{A}}$, $|y| \ge R$, we have

$$\begin{split} \varDelta(w-u)(z)-(w-u)(z) &= (\varDelta w(z)-w(z))+(-\varDelta u(z)+u(z))\\ &= w(z)\left(\delta-\frac{\sqrt{1+\lambda_1+\delta}\;(n-1)}{|y|}\right)+g(u) \ge 0. \end{split}$$

The maximum principle implies that $w - u \leq 0$ in $z \in \mathbf{A}$, $|y| \geq R$, and therefore

$$w(z) \leq u(z)$$
 for $z \in \mathbf{A}$.

(2) For $0 < \delta < 1 + \lambda_1$, take R' > 0 such that $g(u) \leq (\delta/2)u$ for $|y| \ge R'$. Let

$$\begin{split} w_{-\delta}(z) &= \phi_1(x) \; e^{-\sqrt{1+\lambda_1 - \delta} \; |y|} \quad \text{for} \quad z = (x, \; y) \in \mathbf{A} \\ \frac{1}{\beta} &= \inf_{\substack{z \in \overline{\mathbf{A}} \\ |y| \leqslant R'}} \frac{w_{-\delta}(z)}{u(z)}, \\ v(z) &= \beta w_{-\delta}(z) \quad \text{for} \quad z \in \overline{\mathbf{A}}. \end{split}$$

For $z \in \mathbf{A}$, $|y| \ge R'$ we have

$$\begin{split} -\varDelta(u-v)(z) + (u-v)(z) &= (-\varDelta u(z) + u(z)) + (\varDelta v(z) - v(z)) \\ &= g(u(z)) + \left(-\delta - \frac{\sqrt{1 + \lambda_1 - \delta} (n-1)}{|y|}\right) v(z) \\ &\leqslant \frac{\delta}{2} (u-v)(z), \end{split}$$

therefore

$$-\varDelta(u-v)(z) + \left(1 - \frac{\delta}{2}\right)(u-v)(z) \leq 0.$$

As in part (1), we obtain that

 $u(z) \leq v(z)$ for $z \in \mathbf{A}$.

3. SYMMETRY OF THE SOLUTIONS

Let $\mathbf{S} = \{(x, t) \in \mathbf{B}^{N-1}(R) \times \mathbb{R} | x = (x_1, ..., x_{N-1}) \in \mathbf{B}^{N-1}(R), t \in \mathbb{R}\}.$ Now we consider the following equation:

$$\begin{cases} -\Delta u + u = g(u) & \text{in } \mathbf{S}, \\ u > 0 & \text{in } \mathbf{S}, \\ u = 0 & \text{on } \partial \mathbf{S}, \\ \lim_{|t| \to \infty} u(x, t) = 0 & \text{uniformly in } x \in \mathbf{B}^{-1}(R). \end{cases}$$
(2)

We apply the "moving plane" method to prove the symmetry of the solutions of Eq. (2).

THEOREM 2. Assume that $g \in C^1$ satisfies (P1) and (P2). Let u(x, t) be a C^2 solution of Eq. (2). Then u is radially symmetric in x and axially symmetric in t; that is to say, $u(x, t - \sigma) = u(|x|, |t - \sigma|)$ for some σ .

Part I. *u* is axially symmetric with respect to some hyperplane $t = \sigma$. *Notations.*

$$\begin{split} S_{\theta} &= \left\{ (x, t) \in \mathbf{S} \, | \, x \in B^{N-1}(R), \, t = \theta \right\}; \\ \Gamma_{\theta} &= \left\{ (x, t) \in \mathbf{S} \, | \, x \in B^{N-1}(R), \, t < \theta \right\}; \end{split}$$

For any $(x, t) \in \mathbf{S}$, set $(x, t^{\theta}) = (x, 2\theta - t)$; that is to say, (x, t^{θ}) is the reflection of (x, t) with respect to S_{θ} ;

Let Θ be the collection of all $\theta \in \mathbb{R}$ such that the following statements hold:

$$\begin{cases} u(x, t) < u(x, t^{\theta}) & \text{ for all } (x, t) \in \Gamma_{\theta}, \\ u_t(x, t) > 0 & \text{ on } \mathbf{S} \cap S_{\theta}. \end{cases}$$

LEMMA 3. There exists $\theta_0 > 0$, such that either $(-\infty, -\theta_0] \subset \Theta$ or $u(x, t) \equiv u(x, t^{-\theta_0})$ in $\Gamma_{-\theta_0}$.

Proof. Given $\theta \in \mathbb{R}$, set $w^{\theta}(x, t) = u(x, t) - u(x, t^{\theta})$ for $(x, t) \in \Gamma_{\theta}$, and $w^{\theta}(x, t)$ satisfies

$$\Delta w^{\theta}(x,t) + c_{\theta}(x,t) w^{\theta}(x,t) = 0, \qquad (3)$$

where $c_{\theta}(x, t) = (g(u(x, t)) - g(u(x, t^{\theta})))/(u(x, t) - u(x, t^{\theta})) - 1 = g'(\xi_{\theta}) - 1$ where ξ_{θ} is in between u(x, t) and $u(x, t^{\theta})$.

Claim that there exists $\theta_0 > 0$ such that if $\theta \leq -\theta_0$, then $w^{\theta}(x, t) \leq 0$ in Γ_{θ} .

Otherwise, suppose $w^{\theta}(x, t) > 0$ for some $(x, t) \in \Gamma_{\theta}$. Since $\lim_{t \to -\infty} w^{\theta}(x, t) = 0$ uniformly in x, $w^{\theta}(x, t)$ achieves its maximum at $(x_{\theta}, t_{\theta}) \in \Gamma_{\theta}$. Then

$$\nabla w^{\theta}(x_{\theta}, t_{\theta}) = 0, \qquad \left\{ w^{\theta}_{ij}(x_{\theta}, t_{\theta}) \right\} \leq 0.$$

Note that by (P2), $\lim_{t\to 0^+} g'(t) = 0$. Take $t_0 > 0$ such that if $0 < t \le t_0$, then g'(t) < 1. Choose $\theta_0 > 0$ such that if $t \le -\theta_0$, $u(x, t) \le t_0$ uniformly in x. For $\theta \le -\theta_0$, $(x_{\theta}, t_{\theta}) \in \Gamma_{\theta}$, then

$$\Delta w^{\theta}(x_{\theta}, t_{\theta}) \leq 0, \qquad (g'(\xi_{\theta}) - 1) w^{\theta}(x_{\theta}, t_{\theta}) = c_{\theta}(x, t) w^{\theta}(x_{\theta}, t_{\theta}) < 0,$$

contradicting Eq. (3). As a consequence of the maximum principle and the Hopf boundary point lemma, either $w^{-\theta_0}(x, t) \equiv 0$ in $\Gamma_{-\theta_0}$ or for $\theta \leq -\theta_0$, $w^{\theta}(x, t) < 0$ in Γ_{θ} and $w^{\theta}_t(x, t) > 0$ for $(x, t) \in \mathbf{S} \cap S_{\theta}$, or $u_t(x, t) > 0$ for $(x, t) \in \mathbf{S} \cap S_{\theta}$.

LEMMA 4. If $(-\infty, \theta] \subset \Theta$, then there exists $\varepsilon > 0$ such that $[\theta, \theta + \varepsilon) \subset \Theta$.

Proof. Suppose not. There exists a decreasing sequence $\theta_k \to \theta$ and a sequence $\{(x_k, t_k)\}$ of points in Γ_{θ_k} such that $w^{\theta_k}(x_k, t_k) = u(x_k, t_k) - u(x_k, t_k^{\theta_k}) > 0$. There is a subsequence $\{(x_k, t_k)\}$ such that $x_k \to \bar{x}$ as $k \to \infty$. There may arise two possibilities as shown in Cases 1 and 2:

Case 1. $t_k \rightarrow -\infty$. As shown in Lemma 3, we assume

$$w^{\theta_k}(x_k, t_k) = \max_{(x, t) \in \overline{\Gamma}_{\theta_k}} w^{\theta_k}(x, t),$$

$$\nabla w^{\theta_k}(x_k, t_k) = 0, \qquad \left\{ w^{\theta_k}_{ii}(x_k, t_k) \right\} \leq 0.$$
(4)

From $\lim_{t_k \to -\infty} u(x_k, t_k) = 0$, as in Lemma 3, we obtain a contradiction.

Case 2. $t_k \to \bar{t}$. We have $(x_k, t_k) \to (\bar{x}, \bar{t}) \in \overline{\Gamma_{\theta}}$, thus $w^{\theta}(\bar{x}, \bar{t}) \ge 0$. Clearly $(\bar{x}, \bar{t}) \notin \Gamma_{\theta}$ since $w^{\theta}(x, t) < 0$ in Γ_{θ} . If $(\bar{x}, \bar{t}) \in S_{\theta}$, then $u_t(\bar{x}, \bar{t}) < 0$, which contradicts $\theta \in \Theta$. Moreover, $(\bar{x}, \bar{t}) \notin \partial \mathbf{S} \cap \overline{\Gamma_{\theta}}$. Note that $w^{\theta}(x, t)$ satisfies Eq. (3), and by the Hopf boundary point lemma, we obtain $(\partial/\partial v) w^{\theta}(\bar{x}, \bar{t}) < 0$. On the other hand, taking the limit in (4), we obtain $\nabla w^{\theta}(\bar{x}, \bar{t}) = 0$, a contradiction. We conclude that Case 2 is impossible.

Proof of Part I. Let $\sigma = \sup \{ \theta \in \mathbb{R} \mid (-\infty, \theta) \subset \Theta \}$. Then $\sigma \notin \Theta$. If not, by Lemma 4 we would have $[\sigma, \sigma + \varepsilon) \subset \Theta$, which contradicts the definition of σ . By continuity we have $u(x, t) \leq u(x, t^{\sigma})$ for all $(x, t) \in \Gamma_{\sigma}$. Then by the maximum principle we have $u(x, t) \equiv u(x, t^{\sigma})$ for all $(x, t) \in \Gamma_{\sigma}$. This proves u(x, t) is symmetric with respect to the hyperplane $t = \sigma$ for all $(x, t) \in S$.

Part II. *u* is radially symmetric in $\mathbf{B}^{N-1}(R)$.

Notations.

$$\begin{split} T_{\lambda} &= \{ (x, t) = (x_1, x_2, ..., x_{N-1}, t) \in \mathbf{S} \, | \, x_1 = \lambda \}; \\ \Sigma_{\lambda} &= \mathbf{S} \cap \{ (x, t) \, | \, x_1 < \lambda \}; \end{split}$$

For any $(x, t) = (x_1, x_2, ..., x_{N-1}, t) \in \mathbf{S}$, set $(x^{\lambda}, t) = (2\lambda - x_1, ..., x_{N-1}, t)$; that is to say, (x^{λ}, t) is the reflection of (x, t) with respect to T_{λ} ;

Let Λ be the collection of all $\lambda \in (-R, 0)$ such that the following statements hold:

$$\begin{cases} u(x, t) < u(x^{\lambda}, t) & \text{ for all } (x, t) \in \Sigma_{\lambda}, \\ u_{x, \lambda}(x, t) > 0 & \text{ on } \mathbf{S} \cap T_{\lambda}. \end{cases}$$

Lemma 5. For some $0 < \delta < R$, $(-R, -R + \delta) \subset \Lambda$.

Proof. Given $\lambda \in (-R, 0)$, set $v^{\lambda}(x, t) = u(x, t) - u(x^{\lambda}, t)$ for $(x, t) \in \Sigma_{\lambda}$, then $v^{\lambda}(x, t) = 0$ for $(x, t) \in \mathbf{S} \cap T_{\lambda}$, and $v^{\lambda}(x, t)$ satisfies

$$\Delta v^{\lambda}(x,t) + c_{\lambda}(x,t) v^{\lambda}(x,t) = 0, \qquad (5)$$

where $c_{\lambda}(x, t) = (g(u(x, t)) - g(u(x^{\lambda}, t)))/(u(x, t) - u(x^{\lambda}, t)) - 1 = g'(\zeta_{\lambda}) - 1$ where ζ_{λ} is in between u(x, t) and $u(x^{\lambda}, t)$.

Note that by (P2), $\lim_{t\to 0^+} g'(t) = 0$. Take $t_0 > 0$ such that if $0 < t \le t_0$, then g'(t) < 1. Since $\lim_{|x|\to R} u(x, t) = 0$, we can choose δ , $R > \delta > 0$ such that if $R - \delta < |x| < R$, $u(x, t) \le t_0$ uniformly in *t*.

Claim that if $-R < \lambda < -R + \delta$, then $v^{\lambda}(x, t) \leq 0$ in Σ_{λ} .

Otherwise, suppose there exists λ such that $-R < \lambda < -R + \delta$, $v^{\lambda}(x, t) > 0$ for some $(x, t) \in \Sigma_{\lambda}$. Since $\lim_{|t| \to \infty} v^{\lambda}(x, t) = 0$ uniformly in x, $v^{\lambda}(x, t)$ achieves its maximum at $(x_{\lambda}, t_{\lambda}) \in \Sigma_{\lambda}$. Then

$$\nabla v^{\lambda}(x_{\lambda}, t_{\lambda}) = 0, \qquad \left\{ v_{ij}^{\lambda}(x_{\lambda}, t_{\lambda}) \right\} \leq 0.$$

But

 $\varDelta v^{\lambda}(x_{\lambda}, t_{\lambda}) \leqslant 0, \qquad (g'(\zeta_{\lambda}) - 1) \ v^{\lambda}(x_{\lambda}, t_{\lambda}) = c_{\lambda}(x, t) \ v^{\lambda}(x_{\lambda}, t_{\lambda}) < 0,$

which contradicts Eq. (5). So for $-R < \lambda < -R + \delta$, $v^{\lambda}(x, t) \leq 0$ in Σ_{λ} . Applying the maximum principle and the Hopf bounbary point lemma, for $-R < \lambda < -R + \delta$, we get $v^{\lambda}(x, t) < 0$ in Σ_{λ} and $v^{\lambda}_{x_1}(x, t) > 0$ for $(x, t) \in \mathbf{S} \cap T_{\lambda}$. Hence $u_{x_1}(x, t) > 0$ for $(x, t) \in \mathbf{S} \cap T_{\lambda}$. Then $(-R, -R + \delta) \subset \Lambda$.

LEMMA 6. If $(-R, \lambda] \subset \Lambda$, then there exists $\tau > 0$ such that $[\lambda, \lambda + \tau) \subset \Lambda$.

Proof. Suppose not. There exists a decreasing sequence $\lambda_k \to \lambda$ and a sequence $\{(x_k, t_k)\}$ of points in Σ_{λ_k} such that $v^{\lambda_k}(x_k, t_k) = u(x_k, t_k) - u(x_k^{\lambda_k}, t_k) > 0$. There is a subsequence $\{(x_k, t_k)\}$ such that $x_k \to \bar{x} \in \mathbf{B}^{N-1}(R)$. There may arise two possibilities as shown in Cases 1 and 2:

Case 1. $|t_k| \to \infty$. As shown in Lemma 5, we assume

$$\begin{aligned} v^{\lambda_k}(x_k, t_k) &= \max_{(x,t) \in \overline{\Sigma_{jk}}} v^{\lambda_k}(x, t), \\ \nabla v^{\lambda_k}(x_k, t_k) &= 0, \qquad \left\{ v^{\lambda_k}_{ii}(x_k, t_k) \right\} \leqslant 0 \end{aligned}$$

From $\lim_{|t_k|\to\infty} u(x_k, t_k) = 0$, as in Lemma 5, we obtain a contradiction.

Case 2. $t_k \to \bar{t}$. We have $(x_k, t_k) \to (\bar{x}, \bar{t}) \in \overline{\Sigma_{\lambda}}$. Thus $v^{\lambda}(\bar{x}, \bar{t}) \ge 0$. Clearly $(\bar{x}, \bar{t}) \notin \Sigma_{\lambda}$ since $v^{\lambda}(x, t) < 0$ in Σ_{λ} . If $(\bar{x}, \bar{t}) \in T_{\lambda}$ then $u_{x_1}(\bar{x}, \bar{t}) < 0$, which contradicts $\lambda \in A$. Moreover, $(\bar{x}, \bar{t}) \notin \partial \mathbf{S} \cap \overline{\Sigma_{\lambda}}$ since if $(\bar{x}, \bar{t}) \in \partial \mathbf{S} \cap \overline{\Sigma_{\lambda}}$ then $0 = u(\bar{x}, \bar{t}) \ge u(\bar{x}^{\lambda}, \bar{t}) > 0$, a contraction. We conclude that Case 2 is impossible.

Proof of Part II. Let $\mu = \sup\{\lambda \in (-R, 0) | (-R, \lambda) \subset A\}$. Then $\mu \notin A$. If not, by Lemma 6 we would have $[\mu, \mu + \varepsilon) \subset A$, which contradicts the definition of μ . We claim that $\mu = 0$. Suppose not; $\mu \in (-R, 0)$. By continuity

we have $u(x, t) \leq u(x^{\mu}, t)$ for all $(x, t) \in \Sigma_{\mu}$. Then by the maximum principle we have $u(x, t) \equiv u(x^{\mu}, t)$ for all $(x, t) \in \Sigma_{\mu}$, which is impossible. Thus $\mu = 0$. By reversing the x_1 axis, we conclude that u(x, t) is symmetric with respect to the hyperplane T_0 and $u_{x_1}(x, t) < 0$ for $x_1 > 0$. Since the x_1 direction can be chosen arbitrarily, we conclude that u(x, t) is radially symmetric in $\mathbf{B}^{N-1}(R)$.

Remark 1. In the ordinary differential equation case, Theorem 2 will admit more important properties: Let u be a C^2 solution of Eq. (2) in \mathbb{R} . Then it is obvious that u is not only symmetric with respect to a certain point in \mathbb{R} but also unique up to translations.

ACKNOWLEGMENT

The authors are grateful to the referee whose valuable comments helped to improve the content of this paper.

REFERENCES

- 1. B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n , *in* "Math. Analysis and Applications, Part A," Advances in Math. Supplementary Studies, Vol. 7A, pp. 369–402, 1981.
- D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1983.
- T. S. Hsu and H. C. Wang, A perturbation result of semilinear elliptic equations in exterior strip domains, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 983–1004.
- M. K. Kwong, Uniqueness of positive solutions of ∆u − u + u^p = 0 in ℝⁿ, Arch. Rational Mech. Anal. 105 (1989), 243–266.
- C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, *Comm. Partial Differential Equations* 16 (1991), 585–615.
- 6. L. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n , Comm. Partial Differential Equations 18 (1993), 1043–1054.
- W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, *Differential Integral Equations* 6 (1993), 1281–1298.
- O. Lopes, Radial and nonradial minimizers for some radially symmetric functionals, *Electr. J. Differential Equations* 1996 (1996), 1–14.