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In this article, we apply the improved “moving plane” method to prove the
symmetry of the solutions of the Dirichlet problem —Au + u= g(u) in infinite strip
domains with zero boundary condition.  © 1998 Academic Press

1. INTRODUCTION

Let N=m+n, m=2, n>1, ® be a smooth bounded domain in R”,
A =@ xR" an infinite strip domain in R¥, and the function g be under
some suitable assumptions. In this article, we consider the following
semilinear elliptic equation

—Adu+u=g(u) in A,
u>0 in A
’ 1
u=0 on 0A, M
lim,,, _, ,, u(x, ) =0 uniformly in  x € .
1
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It is well known that there is a solution of Eq. (1) in the whole space R”.
Moreover, in an elegant paper [ 1], Gidas et al. proved that any solution
of the same equation in R” is radially symmetric with respect to a certain
point in R¥. Later, Kwong [4] proved that the solution of Eq. (1) in
R" is unique. The uniqueness of the solution of Eq. (1) in R" is useful: it
implies the existence of the solution of the same equation in R¥\D, where
D is a bounded domain in R¥.

Similarly, Lien et al. [ 7, Theorem 4.8 ] proved that there is a solution of
Eq. (1) in the infinite strip domain A. However, the symmetric and the
unique properties of a solution of the same equation in A are unknown. If
it is unique, then we can prove the existence of the solution of the same
equation in A\E, where E is a bounded domain in A. See Hsu and Wang
[3] for a related result.

In this article, we apply the improved “moving plane” method given by
Li[5] and Li and Ni[6] to prove that any solution of Eq. (1) in S is
symmetric as follows. Let

S={(x,)eB" (R)xR|x=(xy, .. xy_1) B I(R), 1e R},

where @ = BY~!(R) is a ball with center at the origin and of radius R in RV~ 1.
Then u is radially symmetric in x and axially symmetric in . We also establish,
in Section 2, the asymptotic behavior of positive solutions of Eq. (1) in
domain A. Related results were also studied by Lopes [8].

2. ASYMPTOTIC BEHAVIOR IN A

Let 4, be the first eigenvalue and ¢, the corresponding first positive
eigenfunction of the Dirichlet problem —A4¢,=1,¢; in ®, ¢, =0 on dw.

(P1) g(u)>0as u>0,
(P2) g(u)=0(u?) as u— 0 for some p > 1.

PROPOSITION 1.  Suppose g satisfies (P1) and (P2). Let u be a solution of
Eq. (1). Then for any 0 <d <1+ A, there exist « >0 and >0 such that

ay(x) e VIR Cu(z) S fy(x) eV IFATIL for 2= (x, y) €A,

Proof. (1) Let z;edA and B be a small ball in A such that z,e0B.
Let

ws(z) =, (x) e VI+AFTII for z=(x, y)eA.
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Since wg(z) >0, u(z) >0 for ze B, ws(zy) =0, u(zy) =0, by the Hopf boundary
point lemma (see Gilbarg and Trudinger [2]), (Ow;/0v)(z,) <0, (0u/0v)(z,) <O,
where v is the outward unit normal vector at z,. Thus

) (won) (o)
Zzil:O ws(z)  (Ows/0v)(zo)
normally

Note that

)>O for z=(x, y)eA.

Thus

u(z)

wy(z)

>0 for z=(x,y)eA

For 0<d<1+4,, take R>0 such that 6 —(\/1+ 4, +d(n—1)/|y]) =0
for |y| > R. Since ws(z) and u(z) are in C}(A), if we set

o= inf u(z)

1 b
|;|G<AR wy(z)

and w(z) =aw4(z) for ze A, then a>0 and
w(z)<u(z) for zeA, |y|<R
For z€A, |y| > R, we have

Alw—u)(z)—(w—u)(z) =(Aw(z) —w(z)) + (—du(z) + u(z))

S+ +6(n—1)

[yl

= w(z) <5— >+ g(u)>0.

The maximum principle implies that w—u<0 in zeA, |y|>R, and
therefore

w(z)<u(z) for zeA.
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(2) ForO0<od<1+4,,take R >0 such that g(u) <(J/2)u for |y| = R'.
Let

w_s(z)=¢,(x) e VITh= for z=(x, y)eA,

;’: inf W—(&(Z)’
e W)
v(z)=Pw_4(2) for zeA.

For ze A, | y| = R' we have
—Au—v)(z)+(u—0)(z)=(—du(z) + u(z)) + (4v(z) — v(z))

=g<u(z))+<—5—V 1”““”‘”) o2)

|yl

therefore

As in part (1), we obtain that

u(z) <wv(z) for zeA. |

3. SYMMETRY OF THE SOLUTIONS

Let S={(x,1)eB" " {(R)xR|x=(xy, .., Xxy_;) eBY"(R), 1€ R}.
Now we consider the following equation:

—Au+u=g(u) inS,
u>0 inS

; 2
u=0 on 08, (2)
lim o u(x, 1)=0 uniformlyin xeB~!(R).

We apply the “moving plane” method to prove the symmetry of the
solutions of Eq. (2).

THEOREM 2. Assume that ge C! satisfies (P1) and (P2). Let u(x, t) be
a C? solution of Eq.(2). Then u is radially symmetric in x and axially
symmetric in t; that is to say, u(x, t—o)=u(|x|, |t —a|) for some o.
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Part 1. u is axially symmetric with respect to some hyperplane ¢ =o.
Notations.

Se=1{(x,1)eS|xe BY"(R), t=0};

Ty={(x,1)eS|xe B""YR), 1< 0},

For any (x, 1) €S, set (x, t%) = (x, 20 —t); that is to say, (x, tY) is the
reflection of (x, t) with respect to Sy;

Let @ be the collection of all § € R such that the following statements
hold:

{u(x, 1) <u(x, t% forall (x,t)el,,
u(x,t)>0 onSnNSy.

LemmA 3. There exists 0,>0, such that either (—o0, —0,] <@ or
u(x, t)=u(x, t=%) in I'_g,.

Proof. Given 0eR, set wo(x, t)=u(x, t)—u(x, t%) for (x,t)ely, and
w?(x, t) satisfies

A0 (x, 1)+ co(x, t) Wo(x, 1) =0, (3)

where ¢,(x, 1) = (g(u(x, 1)) —glu(x, 1°)/(u(x, 1) —u(x, 1°)) =1 =g'(&p) — 1
where &, is in between u(x, ) and u(x, t9).

Claim that there exists 0,>0 such that if 6< —0,, then w?(x, ) <0
in I'y.

Otherwise, suppose w?(x, t) >0 for some (x, t) € I',. Since lim, _, _, w/(x, )
=0 uniformly in x, w’(x, ¢) achieves its maximum at (x,, t,) € I'y. Then

Vw?(xy, ty) =0, {Wi(xg, 19)} <O.
Note that by (P2), lim,_ o+ g'(¢) =0. Take #,>0 such that if 0 <z<¢,,

then g'(¢) <1. Choose 0,>0 such that if 1< —0,, u(x, t)<t, uniformly
in x. For 0< —0,, (x4, ty) €y, then

AW (xy, 1) <0, (&'(Ep) = 1) Wl (xp, t5) = cy(x, 1) W(xy, 15) <O,

contradicting Eq. (3). As a consequence of the maximum principle and the
Hopf boundary point lemma, either w=%(x, t)=0 in I'_g, or for < —0,,
w?(x,1)<0 in Iy and w%x,1)>0 for (x,7)eSN Sy, or ulx,1)>0 for
(x,1)eSNS,.

LEMMA 4. If (—oo, 0] = O, then there exists ¢ > 0 such that [0, 0 + &) < O.
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Proof. Suppose not. There exists a decreasing sequence 6, — 6 and
a sequence {(x, )} of points in I, such that w'(x,, 1) = u(x;, 1) —
u(xy, t%) > 0. There is a subsequence {(x;, 7;)} such that x;, > X as k — oo.
There may arise two possibilities as shown in Cases 1 and 2:

Case 1. t,— —oo. As shown in Lemma 3, we assume

M}ak(xk’ tk) = max(x, t)efak M}gk(xa t):
(4)

Vil(xp, ) =0, {w(xs, 1)} <O.

From lim, _, _, u(x, ;) =0, as in Lemma 3, we obtain a contradiction.

Case 2. t,— i. We have (x,, t,) — (X, {) e I, thus w?(x, /) > 0. Clearly
(x,f)¢ Iy since wf(x,t)<0 in I, If (X, i)eS,, then u/x, 7)<0,
which contradicts 0 e ®@. Moreover, (X, {)¢0SnT,. Note that wo(x, t)
satisfies Eq.(3), and by the Hopf boundary point lemma, we obtain
(0/0v) w?(x, f) <0. On the other hand, taking the limit in (4), we obtain
Vwl(x, f) =0, a contradiction. We conclude that Case 2 is impossible. ||

Proof of Part 1. Let o =sup {#eR|(—o0, §) =O}. Then o ¢ 6. If not,
by Lemma 4 we would have [ g, g + ¢) < @, which contradicts the definition
of . By continuity we have u(x, t) <u(x, t?) for all (x, t)e I',. Then by the
maximum principle we have u(x, t) =u(x, t7) for all (x, ¢t) e I',. This proves
u(x, t) is symmetric with respect to the hyperplane t = for all (x, t)eS. ||

Part 11.  u is radially symmetric in BY ~!(R).
Notations.
T,={(x,1)=(X1, X5, e, Xy_1, 1) ES|x; =1};
Zl=Sﬂ {(.x, l‘)|x1<;»};

For any (x,1)=(X;, Xz, ... Xy_1,1)€S, set (x*1)=(24—x, ...
Xny_1.1); that is to say, (x% ¢) is the reflection of (x, #) with respect to T,;

Let A be the collection of all 2e(—R,0) such that the following
statements hold:

u(x, t)<u(x*, t)  forall (x,t)eX,,
Uy, (x, 1)>0 onSnT,.
LEMMA 5. For some 0<d<R, (—R, —R+)c A.

Proof. Given Ze(—R,0), set v*(x, t)=u(x, t) —u(x* t) for (x,1)eX,,
then v*(x, 1) =0 for (x,1)eSn T,, and v*(x, t) satisfies

AvM(x, 1) + c(x, t) v (x, 1) =0, (5)
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where ¢;(x, 1) = (g(u(x, 1)) —g(u(x*, 1)) /(u(x, 1) —u(x*, 1)) = 1=g'({;) — 1
where {; is in between u(x, t) and u(x* 1).

Note that by (P2), lim,_, 4+ g'(¢)=0. Take ¢,>0 such that if 0 <z <1,,
then g'(¢) <1. Since lim,, , g u(x, £) =0, we can choose 6, R>0J >0 such
that if R—0 < |x| <R, u(x, t) <t, uniformly in z.

Claim that if —R</i< —R+J, then v*(x, 1)<0in X,.

Otherwise, suppose there exists 4 such that —R< i< —R+4, v*(x, 1) >0
for some (x,7)eZX,. Since lim,  , v*(x,7)=0 uniformly in x, vH(x, )
achieves its maximum at (x,, ;) €2,. Then

VU}L(X;L, Z;L)ZO, {U?}(XA, tl)} <0
But
AvA(x,, 1) <0, (8'(&5) — 1) vy, 1) = ci(x, 1) v¥(x4, 1) <O,

which contradicts Eq. (5). So for —R<l< —R+J, v*(x,1)<0 in X,.
Applying the maximum principle and the Hopf bounbary point lemma, for
—R<Z<—R+09,wegetv*(x,7)<0in X, and v’ (x, 1) >0for (x, /) eSN T},
Hence u, (x, t)>0 for (x,7)eSnT;. Then (—R, —R+J)= 4.

LemMmA 6. If (—R, A] < A, then there exists 1> 0 such that [, A+ 7)< A.

Proof. Suppose not. There exists a decreasing sequence 4, — 4 and a
sequence {(x;,7;)} of points in X, such that v*(xy, ;)= u(x, 1) —
u(x?, 1,) > 0. There is a subsequence {(x,, t;)} such that x, > xe B¥~'(R).
There may arise two possibilities as shown in Cases 1 and 2:

Case 1. |t | > co. As shown in Lemma 5, we assume

Uik(xk’ tk) = max Uik(xa t):
(x,t)eZy,

) 2
Vork(xg, 1) =0, {viH(xe, 1)} <O.
From lim,, |, ., u(x, t;) =0, as in Lemma 5, we obtain a contradiction.
k

Case 2. t,— i. We have (x,, t;) — (%, ) e X ,. Thus v*(X, /) > 0. Clearly
(%,f)¢X, since vXx,t)<0 in X,. If (x,/)eT, then uy, (X, 1) <0,
which contradicts A€ A. Moreover, (X, i) ¢0Sn X, since if (X,/)edSnX,
then 0=u(%, f) > u(x* f)>0, a contraction. We conclude that Case?2 is
impossible. |

Proof of Part 1I. Let pu=sup{ie(—R,0)|(—R,A)=A}. Then u¢ A. If
not, by Lemma 6 we would have [u, u+¢)< A, which contradicts the
definition of u. We claim that ¢ = 0. Suppose not; u € (— R, 0). By continuity
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we have u(x, t) <u(x”, 1) for all (x, t) e X,. Then by the maximum principle
we have u(x, 1) =u(x*, t) for all (x, t) € X, which is impossible. Thus x = 0. By
reversing the x, axis, we conclude that u(x, ) is symmetric with respect to the
hyperplane T and u,, (x, 1) <0 for x, > 0. Since the x, direction can be chosen

arbitrarily, we conclude that u(x, ¢) is radially symmetric in BY~}(R). |

Remark 1. In the ordinary differential equation case, Theorem 2 will
admit more important properties: Let u be a C? solution of Eq. (2) in R.
Then it is obvious that u is not only symmetric with respect to a certain
point in R but also unique up to translations.
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