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We investigate the nucleon’s rest mass and dispersion relation in the nuclear medium which is 
holographically described by the thermal charged AdS geometry. With this background, the chiral 
condensate plays an important role to determine the nucleon’s mass in both the vacuum and the nuclear 
medium. It also significantly modifies the nucleon’s dispersion relation. The nucleon’s mass in the high 
density regime increases with density as expected, while in the low density regime it slightly decreases. 
We further study the splitting of the nucleon’s energies caused by the isospin interaction with the nuclear 
medium.
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1. Introduction

The AdS/CFT correspondence is a fascinating and useful tool to 
understand physical phenomena. It says that the quantum field 
theory (QFT) in the strong coupling regime can be figured out from 
a classical one-dimensional higher gravity theory [1–4]. Many in-
teresting phenomena of the quantum chromodynamics (QCD) and 
condensed matter theory happen in the strong coupling regime. 
Therefore, applying the AdS/CFT correspondence to them may 
shed light on understanding the nonperturbative aspects of vari-
ous strongly interacting QFT [5–7].

In the QCD and its holographic models, there exists a decon-
finement phase transition between hadrons and quarks [8–12]. 
Hadrons are fundamental excitations in the confining phase which 
usually reside in the strong coupling regime. In a nuclear medium, 
this confining phase transits into the deconfining phase above a 
certain critical temperature and chemical potential where hadrons 
dissolve into quarks [13–15,17]. In the holographic QCD model, the 
deconfinement phase transition is identified with the Hawking–
Page transition of the dual gravity [16]. In this procedure, the 
deconfining phase maps to a black hole geometry, while the con-
fining phase corresponds to a non-black-hole geometry with an 
appropriate IR modification [8–10]. In the hard wall model, the 
thermal AdS (tAdS) space with an IR cutoff corresponds to the 
confining phase without a nuclear density. If turning on a nonzero 
nuclear density, the dual geometry of the confining phase is gener-
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alized to the tAdS with a nonzero electric charge which describes 
the flavor charge of the dual QCD [18–26]. This geometry was 
called the thermal charged AdS (tcAdS) space [21]. This geom-
etry has a singularity at the center. However, in the hard wall 
model we need to introduce an IR cutoff in order to represent the 
confinement which prevents all bulk fields from approaching this 
singularity. Therefore, the singularity of tcAdS is not harmful at 
least in the hard wall model. On this tcAdS background the holo-
graphic study on the deconfinement phase transition have shown 
that the holographic phase diagram is similar to the one expected 
in particle phenomenology [15,21].

The holographic analysis on the tcAdS space has been further 
generalized to the case with two flavor charges by regarding U (2)

non-Abelian gauge fields [27–29]. In this case, the diagonal time 
components of these gauge fields are dual to the number den-
sity operators of proton and neutron, so one can interpreted a 
tcAdS geometry as a nuclear medium in the dual QFT. On this 
tcAdS space with two flavor symmetries, it was shown that the 
deconfinement phase transition and symmetric energy depend on 
the number asymmetry between proton and neutron [27]. Fur-
thermore, the meson spectra represented by off-diagonal compo-
nents of gauge fields were also studied [28,29]. In general, meson’s 
masses increase with the density of the nuclear medium. On the 
other hand, the isospin interaction reduces the meson mass when 
the isospin charge of meson is opposite to the net isospin charge 
of nuclear medium. It was also shown that the competition be-
tween those two interactions can lead to the pion condensation in 
the high density regime [28,30–32].

Similarly, the nucleon’s mass spectra have been investigated 
in the vacuum corresponding to tAdS [33–38] and further in the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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isospin medium [39] which includes only the isospin chemical 
potential without the nuclear density effect. In general, there ex-
ist two different descriptions for baryons. The first is a Skyrmion 
model in which baryons can be understood as a solitonic ob-
ject composed of pions. In [11,12], it has been shown that the 
Skyrmion-like solutions naturally appear in the top-down model 
with D4–D8 branes. The other is to introduce bulk fermions dual 
to baryons. The latter mimics the chiral perturbation theory and 
is useful to investigate various interactions between mesons and 
baryons. In this work, we will focus on the latter to study the 
medium effect on the nucleon’s dispersion relation. Although the 
isospin medium provides a good playground to figure out the 
isospin effect on nucleon’s masses, it is less physical. In order to 
understand more realistic nuclear physics phenomena, we need 
to go beyond the isospin medium. In this letter, we will holo-
graphically investigate nucleon’s spectra in the nuclear medium 
composed of protons and neutrons.

The rest of paper is organized as follows. In Section 2, we sum-
marize the tcAdS geometry with two flavor symmetries and ex-
plain how five-dimensional fermions living in tcAdS are reduced to 
proton and neutron in the dual QFT. In Section 3, we discuss nucle-
on’s rest masses and dispersion relations in the nuclear medium. 
We finish this work with some concluding remarks in Section 4.

2. Nucleons in a nuclear medium

The nuclear matter is composed of two kinds of particles, pro-
ton and neutron, with the baryon and isospin charges. In order to 
describe it holographically, one should take into account a grav-
ity theory including at least U (2) flavor symmetry. Here we regard 
an U (2)L × U (2)R flavor group to represent parity explicitly. In the 
dual QFT, it is related to the chirality of nucleons [33,40–43]. In 
the hard wall model, the gravity action describing the holographic 
nuclear medium is given by [28,29]

S =
∫

d5x
√−G

[
1

2κ2 (R− 2�)

− 1

4g2

(
F (L)

MN F (L)MN + F (R)
MN F (R)MN

)]
, (1)

where � = −6/R2 is the cosmological constant and the gauge field 
strengths for U (2)L and U (2)R are given by

F (L)
MN = ∂M LN − ∂N LM − i [LM , LN ] ,

F (R)
MN = ∂M R N − ∂N R M − i [R M , R N ] . (2)

The nuclear medium can be classified by two quantum numbers, 
baryon and isospin charges [27]. This fact implies that it is suf-
ficient to turn on only diagonal time components of the gauge 
field because they uniquely determine quantum numbers of the 
nuclear medium. Their nontrivial values, V 0

t and V 3
t , break the 

U (2)L × U (2)R flavor group to U (1)2
L × U (1)2

R . This reduced flavor 
symmetry group can be further decomposed into the symmetric 
and anti-symmetric combinations, U (1)2

S and U (1)2
A . In this case, 

the symmetric combination corresponds to a parity-even state, 
while the antisymmetric one describes a parity-odd state. The low-
est parity-even states are identified with proton and neutron. Since 
the energy of a parity-even state is lower than that of a par-
ity-odd state, it is natural in the low energy regime to consider 
a nuclear medium composed of the lowest parity-even states [33,
39]. In the holographic model, it can be accomplished by taking 
LM = R M = −V M .1 On this background, the deconfinement phase 
transition and the symmetry energy have been studied in [27]. In 
additions, SU(2) meson spectra have been investigated in [28].

In the holographic model, the dual operators of V 0
t and V 3

t cor-
respond to baryon and isospin charge of quark respectively. To see 
this, let us recall the AdS/CFT correspondence. The dual opera-
tor of the bulk gauge field should have the conformal dimension 
3. One of candidates is a fermionic current, ψ̄γμψ , because a 
fermionic field in a (3 + 1)-dimensional conformal field theory has 
a conformal dimension 3/2. This fact indicates that the duals of 
the bulk gauge fields are not nucleons but quarks. However, since 
fundamental excitations in the confining phase are nucleons, one 
need to reinterpret quark’s quantum numbers in terms of nucle-
on’s quantities. In the hard wall model representing the confining 
phase, these quark’s quantities can be easily reinterpreted as nu-
cleon’s ones by using the conservation of the net quark number. 
As a consequence, the resulting tcAdS geometry can be described 
by [27,28]

ds2 = R2

z2

(
− f (z)dt2 + 1

f (z)
dz2 + d�x2

)
, (4)

with

f (z) = 1 + 3Q 2κ2

g2 R2
z6 + D2κ2

3g2 R2
z6,

V 0
t = Q√

2

(
2z2

IR − 3z2
)

,

V 3
t = D

3
√

2

(
2z2

IR − 3z2
)

, (5)

where Q = Q P + Q N and D = Q P − Q N denote the total nucleon 
number density and density difference between proton and neu-
tron. Here Q p and Q N are the number of proton and neutron 
respectively.

In the confining phase, another important ingredient is the chi-
ral condensate. In order to see the chiral condensate effect, one 
should further introduce a complex scalar field � with a negative 
mass, −3/R2. Let us parameterize the complex scalar field as

� = φ1ei
√

2π , (6)

where π = π i T i with the SU(2) generators, T i . Then, the modulus 
φ can be mapped to the chiral condensate, while π i corresponds 
to the pseudoscalar fluctuations, the so-called pions. From now on, 
we set R = 1 for convenience. On the geometry in (4) the modulus 
φ satisfies the following equation of motion [28]

0 = 1√−g
∂z

(√−g gzz∂zφ
) + 3φ, (7)

and its solution is given by

φ(z) = mqz2 F1

(
1

6
,

1

2
,

2

3
,−

(
D2 + 9Q 2

)
z6

3Nc

)

+ σ z3
2 F1

(
1

2
,

5

6
,

4

3
,−

(
D2 + 9Q 2

)
z6

3Nc

)
, (8)

1 This convention is different from the one used in [28]. However, the results 
in [28] can be reproduced by defining mesons differently. For example, defining 
charged ρ-mesons like

ρ±
m = 1√

2

(
v1

m ∓ iv2
m

)
, (3)

reproduces the same meson mass spectrum obtained in [28].
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where mq and σ denote the current quark mass and chiral con-
densate respectively and Nc is the rank of the gauge group. In 
general, the gravitational backreaction of the scalar field changes 
the background geometry. As shown in [44], it corresponds to 1/Nc
correction. In this letter we ignore the gravitational backreaction of 
the scalar field, as done in usual holographic models [8–10].

The tcAdS geometry, as explained before, is dual to a nuclear 
medium composed of the lowest parity-even states, proton and 
neutron. In order to describe nucleons in this nuclear medium, 
we should introduce corresponding bulk fields on this tcAdS space. 
Since nucleons are fermions, the corresponding bulk fields should 
be also fermions. Then, bulk fermions in the tcAdS background are 
governed by [33,36–39]

S = i

∫
d5x

√−G
[
�1M∇M�1 + �2M∇M�2

− m1�
1�1 − m2�

2�2

− gY

(
�1��2 + �2�+�1

)]
, (9)

where gY denotes the Yukawa coupling. Since we are interest in 
nucleons rather than quarks in the confining phase, the mass of 
bulk fermions must be ±5/2 because this value is related to the 
conformal dimension of nucleons, 9/2, in the dual field theory. 
Here, we do not take into account the anomalous dimension for 
simplicity. If regarding the anomalous dimension, the baryon op-
erator can have a smaller conformal dimension and its physical 
properties can be affected by the conformal dimension change. We 
leave this issue as a future work.

In order to realize the chirality of the 4-dimensional fermions 
from the 5-dimensional parity under U (2)L ↔ U (2)R , we take 
m1 = −m2 = 5/2. Above the covariant derivative ∇M is defined as

∇M�1 =
(

∂M − i

4
ωM − iLM

)
�1,

∇M�2 =
(

∂M − i

4
ωM − iR M

)
�2. (10)

In this case, �1 and �2 transform as 
(

1
2 ,0

)
and 

(
0, 1

2

)
under the 

flavor group. In general, the Yukawa term couples �1 to �2 and 
then breaks the chiral symmetry.

The variation of action leads to the following Dirac equations

0 =
[

eM
C C

(
∂M − i

4
ωAB

M AB + iV M

)
− m1

]
�1 − gY φ�2,

0 =
[

eM
C C

(
∂M − i

4
ωAB

M AB + iV M

)
− m2

]
�2 − gY φ�1,

(11)

where AB = i
2

[
A,B

]
and LM = R M = −V M is used. For the 

well-defined variation, the solutions of the Dirac equations should 
satisfy the following boundary condition

δ�(1,2)M�(1,2)
∣∣∣zIR

ε
= 0, (12)

where zIR and ε are the IR and UV cutoff respectively. Since this 
Dirac equation is defined on the curved manifold, it is more conve-
nient to introduce quantities on the tangent manifold. The vielbein 
e A

M of the tcAdS space is given by

e A
M = diag

(√
f (z)

z
,

1

z
,

1

z
,

1

z
,

1

z
√

f (z)

)
, (13)

where A, B and M , N are indices of the tangent and curved man-
ifold respectively. Then, non-zero components of spin connection 
ωAB are given by
M
ω5A
M = diag

(
f (z)

z
− f (z)′

2
,

√
f (z)

z
,

√
f (z)

z
,

√
f (z)

z
,0

)
. (14)

We choose the following gamma matrices on the tangent space

0 =
(

0 i
i 0

)
, i =

(
0 −iσ i

iσ i 0

)
, 4 =

(
1 0
0 −1

)
. (15)

Since 0 is pure imaginary, �̄� is not invariant under the hermi-
tian conjugation. To make the action invariant under the hermi-
tian conjugation, i in front of the fermion action was inserted. If 
one further defines the 4-dimensional gamma matrices γ μ = μ

(μ = 0, 1, 2, 3), then the 4-dimensional chirality operator is given 
by γ 5 = 4.

Now, let us think of the Fourier mode expansion of 5-dimen-
sional fermions

�(z, t, �x) =
∑
ωn

∫
d3 p

(2π)4
�(z,ωn, �p) e−i

(
ωnt−�p·�x), (16)

where � implies either �1 or �2. Since solutions of 5-dimensional 
Dirac equations usually depend on the parity and isospin charge it 
is useful to represent fermions with the parity and isospin quan-
tum numbers. In terms of 4-dimensional Weyl spinors, ψL and ψR

satisfying ψL = γ 5ψL and ψR = −γ 5ψR , the Fourier mode can be 
further decomposed into [39]

�1(z,ωn, �p) =
(

f 1(n,±,±)
L ψ

(n,±,±)
L

f 1(n,±,±)
R ψ

(n,±,±)
R

)
and

�2(z,ωn, �p) =
(

f 2(n,±,±)
L ψ

(n,±,±)
L

f 2(n,±,±)
R ψ

(n,±,±)
R

)
, (17)

where n denotes the n-th resonance and the first and second 
sign imply the parity and isospin quantum number respectively. 
In these decompositions, the mode functions denoted by f 1,2

L,R are 
given by functions of z, ωn and �p.

If one takes the normalizable mode functions to be f 1
L and f 2

R , 
the 5-dimensional parity under the U (2)L ×U (2)R flavor group can 
be associated with the 4-dimensional chirality. Using the previous 
Fourier mode decomposition, the 5-dimensional Dirac equations in 
(11) are reduced to( D− 1 − gY φ

z 1

− gY φ
z 1 D+ 1

)(
f 1(n,±,±)

L

f 2(n,±,±)
L

)

= −
(
E+ 0
0 E+

)(
f 1(n,±,±)

R

f 2(n,±,±)
R

)
, (18)( D+ 1 gY φ

z 1
gY φ

z 1 D− 1

)(
f 1(n,±,±)

R

f 2(n,±,±)
R

)

=
(
E− 0
0 E−

)(
f 1(n,±,±)

L

f 2(n,±,±)
L

)
, (19)

where 1 denotes a 2 × 2 identity matrix and

D± = √
f (z)

[
∂z − 2

z

(
1 − zf ′

8 f (z)

)]
± 5

2z
, (20)

E± = 1√
f (z)

(ωn − Vt) 1 ± �σ · �p . (21)

Above most matrix elements are proportional to the identity ma-
trix except the last term in (21). To solve the Dirac equation, we 
first need to determine mode functions as eigenfunctions of �σ · �p. 
By using the rotation symmetry, without loss of generality, we can 
take the momentum vector to be �p = {0, 0, ±p}. In this case, mode 
functions are identified with momentum eigenfunctions with an 
eigenvalue, p or −p. Now, we take f 1 and f 1 to be eigenfunctions
L R
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with the eigenvalue p and f 2
L and f 2

R as eigenfunctions with −p. 
Then, (18) and (19) are further simplified to( D− 1 − gY φ

z 1

− gY φ
z 1 D+ 1

)(
f 1(n,±,±)

L

f 2(n,±,±)
L

)

= −
(

E+ 1 0
0 E− 1

)(
f 1(n,±,±)

R

f 2(n,±,±)
R

)
, (22)( D+ 1 gY φ

z 1
gY φ

z 1 D− 1

)(
f 1(n,±,±)

R

f 2(n,±,±)
R

)

=
(

E− 1 0
0 E+ 1

)(
f 1(n,±,±)

L

f 2(n,±,±)
L

)
, (23)

with

E± = 1√
f (z)

(ωn − Vt) ± p . (24)

In order to identify bulk fermionic components with nucleons 
of the dual QFT, let us introduce symmetric or antisymmetric com-
binations of mode functions. Defining the symmetric combination 
[33,36,38,39]

f 1(n,+,±)
L = f 2(n,+,±)

R and f 1(n,+,±)
R = − f 2(n,+,±)

L , (25)

it describes a parity-even state. Inserting this symmetric relation 
into (22) and (23), one can easily check that (22) and (23) are 
reduced to the same matrix equation( D− 1 gY φ

z 1
gY φ

z 1 D+ 1

)(
f 1(n,+,±)

L

f 1(n,+,±)
R

)

=
(−E+ 0

0 E−

)(
f 1(n,+,±)

R

f 1(n,+,±)
L

)
. (26)

For a parity-odd state, we take an antisymmetric combination sat-
isfying

f 1(n,−,±)
L = − f 2(n,−,±)

R and f 1(n,−,±)
R = f 2(n,−,±)

L . (27)

Then, similar to the parity-even case (22) and (23) reach to( D− 1 − gY φ
z 1

− gY φ
z 1 D+ 1

)(
f 1(n,−,±)

L

f 1(n,−,±)
R

)

=
(−E+ 0

0 E−

)(
f 1(n,−,±)

R

f 1(n,−,±)
L

)
. (28)

The parity-even state has lower energy than the parity-odd state. 
In the QCD proton and neutron correspond to the lowest par-
ity-even states. From now on, we concentrate on the lowest res-
onance with n = 1. In this case, mode functions, f 1(1,+,+)

L,R and 
f 1(1,+,−)

L,R , represent proton and neutron respectively. Due to the 
different isospin charge of nucleons, the equation in (26) can be 
further splitted into two cases. Proton with the isospin charge 1/2
is governed by( D− 1 gY φ

z 1
gY φ

z 1 D+ 1

)(
f 1(1,+,+)

L

f 1(1,+,+)
R

)

=
⎛
⎜⎝−

{
1√
f (z)

(
ω − V 0

t +V 3
t

2

)
+ p

}
0

0 1√
f (z)

(
ω − V 0

t +V 3
t

2

)
− p

⎞
⎟⎠

×
(

f 1(1,+,+)
R

f 1(1,+,+)
L

)
, (29)

while for neutron with the isospin charge of −1/2 (26) yields
( D− 1 gY φ
z 1

gY φ
z 1 D+ 1

)(
f 1(1,+,−)

L

f 1(1,+,−)
R

)

=
⎛
⎜⎝−

{
1√
f (z)

(
ω − V 0

t −V 3
t

2

)
+ p

}
0

0 1√
f (z)

(
ω − V 0

t −V 3
t

2

)
− p

⎞
⎟⎠

×
(

f 1(1,+,−)
R

f 1(1,+,−)
L

)
, (30)

where we use ω = ω1 for simplicity. Taking V 0
t = 0, V 3

t = const
and f (z) = 1, above equations reduces to those for nucleons in the 
isospin medium [39]. In the nuclear medium, unlike the isospin 
medium, the energy and mass crucially depends on the medium 
because of the nontrivial radial coordinate dependence in the met-
ric and background gauge fields.

3. Nucleon spectrum in the nuclear medium

At given Q , D , mq and σ , the energy and momentum of nu-
cleons can be determined by solving (29) or (30) together with 
appropriate two boundary conditions. For the well-defined vari-
ation of the fermionic action, (12) should vanish. To do so, we 
impose the following two boundary conditions

f 1(n,±,±)
L (0) = 0 and f 1(n,±,±)

R (zIR) = 0, (31)

which was also used in studying the nucleon mass in the vacuum 
and isospin medium [33,39]. In general, solving the Dirac equation 
with above boundary conditions gives rise to a relation between 
parameters. Inversely, this fact implies that there exists a solution 
only in the case satisfying a specific parameter relation. Further-
more, since the range of z is restricted to 0 ≤ z ≤ zIR in the hard 
wall model, the solution of the Dirac equation has a discrete eigen-
values. This is why we take a discrete energy values, ωn , rather 
than continuous ones in the previous Fourier mode decomposition. 
As a consequence, the parameter relation obtained by solving the 
Dirac equation is nothing but the dispersion relation of nucleon 
because it expresses a discrete energy as a function of the other 
quantities. In this case, the rest mass of nucleon appears in the 
p = 0 limit. In general, the dispersion relation crucially depends 
on properties of the nuclear medium, Q and D . In this section, we 
will investigate how the nucleon’s dispersion relation changes in 
the nuclear medium.

3.1. Dispersion relation in the vacuum

Before studying the nucleon’s spectra in the medium, let’s first 
consider the vacuum with Q = D = 0 in order to get more intu-
itions. In this case, the dual geometry is given by a tAdS space 
and proton and neutron become degenerate. If we further set 
mq = σ = 0, the lowest nucleons with the energy ω are governed 
by

D̄+D̄− f 1
L = −(ω2 − p2) f 1

L ,

D̄−D̄+ f 1
R = −(ω2 − p2) f 1

R , (32)

where D̄+ = ∂z + 1
2z and D̄− = ∂z − 9

2z . Solutions of these equa-
tions depend only the value of ω2 − p2. Suppose that there exists 
a solution at a given value of 

√
ω2 − p2. Denoting this value by 

m0 = √
ω2 − p2, m0 determines the nucleon’s dispersion relation 

uniquely. In this case, nucleons follow the relativistic dispersion 
relation

ω2 = m2
0 + p2. (33)
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Since ω reduces to m0 at p = 0, m0 can be identified with the nu-
cleon’s rest mass. This relativistic dispersion relation is expected 
from the asymptotic symmetry of the tAdS geometry. Since the 
boundary space of tAdS is invariant under boundary Poincare sym-
metry, nucleons defined on this boundary should satisfy the rela-
tivistic dispersion relation. To check this, we numerically solve (32)
for mq = σ = Q = D = 0. Numerical results for the nucleon’s en-
ergy are plotted in Fig. 1(a). The resulting curve is well fitted by 
the following dispersion relation

ω =
√

2.05892 + p2. (34)

This result shows the exact relativistic dispersion relation and indi-
cates that the nucleon’s rest mass in the vacuum without a chiral 
condensate is given by m0 = 2.0589 GeV, which is very larger than 
the real nucleon’s mass. However, as will be shown, the chiral con-
densation can reduce this large mass to the real one.

Now, let us consider the effects of the current quark mass and 
the chiral condensate. The current quark mass breaks the chiral 
symmetry explicitly, while the chiral condensation breaks it spon-
taneously. To distinguish those two effects, let us first turn on the 
current quark mass without the chiral condensate, mq 
= 0 and 
σ = 0. Then, the previous relativistic dispersion relation is slightly 
modified into

ω2 = m2
0 + (

p + gY mq
)2

. (35)

In the p = 0 limit, the current quark mass slightly changes the 
nucleon’s mass into m2 = m2

0 + g2
Y m2

q . In the large momentum 
limit where p � gY mq , however, the modified dispersion relation 
still remains as the relativistic one, ω ∼ p. It was shown that the 
meson’s dispersion relation, regardless of mq and σ , follows the 
similar relativistic form in the high momentum region [29].

If the chiral condensate is also turned on, the nucleon’s disper-
sion relation is totally changed even in the vacuum. In Fig. 1(b), 
the nucleon’s dispersion relation in the vacuum with a chiral con-
densate is depicted. Intriguingly, the obtained dispersion relation 
is well fitted by

ω = 0.9390 + 0.97 p0.979. (36)

As shown in this result, the chiral condensate dramatically reduces 
the nucleon’s mass to the real mass of nucleons, from 2.0589 GeV
to 0.9390 GeV. Another interesting point is that the chiral conden-
sate modifies the momentum dependence in the small momen-
tum limit, from p2 to p0.979. This is the story in vacuum with 
Q = D = 0, where there is no distinct between proton and neu-
tron due to the absence of the isospin interaction.

3.2. Nucleon’s rest mass in the nuclear medium

Now, let us consider nucleons in the nuclear medium. As shown 
in the previous section, the chiral condensate plays a crucial role in 
determining the nucleon spectrum so that from now on we focus 
on the case with mq = 2.38 MeV, σ = (304 MeV)3 and gY = 4.699. 
The rest masses of nucleons are determined from the energy in 
the zero momentum limit. In order see the nuclear density effect 
on the nucleon mass, we first turn off the isospin interaction by 
taking D = 0 but Q 
= 0. In this case, because of absence of the 
isospin interaction with the nuclear medium, proton and neutron 
are still degenerate. In Fig. 2(a), we plot the nucleon’s rest mass 
depending on the nuclear density. In the low density regime below 
a certain critical density, the nucleon mass slowly decreases with 
increasing nuclear density, whereas it rapidly increases in the high 
density region.

In general cases with a nontrivial isospin interaction, masses of 
proton and nucleon are splitted and become non-degenerate like 
the meson’s spectra [28,29]. For D = Q /2 which describes the nu-
clear medium composed of 75% protons and 25% neutrons, the 
density dependence of nucleon’s mass is depicted in Fig. 2(b). In 
the high density regime, the proton mass increases more rapidly 
than the neutron mass. In the high density regime the isospin in-
teraction prefers creation of neutron rather than proton because 
in the nuclear medium with the positive net isospin charge more 
energy cost is required to create proton as expected. In the low 
density region, the proton mass decreases slightly faster than the 
neutron mass unlike the high density case. Another intriguing re-
sult is that nucleon has the lowest mass not at the zero density 
but at a certain critical density.

3.3. Dispersion relations

In the nonzero momentum limit, as mentioned before, the en-
ergy of the nucleon should be related to its momentum in order 
to satisfy the dispersion relation. This dispersion relation usually 
includes information for the interaction between nucleon and the 
background nuclear matter. In this section, after solving (29) and 
(30) with a nonzero momentum, we investigate effects of the nu-
clear density and the isospin interaction on the nucleon’s disper-
sion relations. To do so, it should be noted that, when we describe 
the nuclear medium in the confining phase, there exists an up-
per bound in Q . For example, the deconfinement phase transi-
tion occurs at the critical value Q c , Q c = 0.1679 for α = 1/2 and 
Q c = 0.1615 for α = 1 [28]. Therefore, we should restrict the range 
of Q to 0 ≤ Q < Q c for representing the confining phase. First, we 
pick up Q = 0.1 and α = 0 to see only the nuclear density effect. 
In this case, since D = 0, there is no distinction between proton 
and neutron. The effect of the nuclear density on the nucleon’s 
dispersion relation is plotted in Fig. 3(a), where the background 
nuclear density uplifts the nucleon’s energy. In the small momen-
tum limit, the dispersion relation is fitted by an almost linear curve

ω = 0.9695 + 1.650 p0.999, (37)

where 0.9695 GeV is the rest mass of nucleon at Q = 0.1 and 
D = 0. Fig. 3(b) shows the splitting of the nucleon’s energy when 
we turn on α = 1/2 with Q = 0.1. Similar to the meson case 
[28,29], the isospin interaction breaks the degeneracy of nucleons. 
Comparing it with Fig. 3(a), the isospin interaction increases the 
proton energy slightly, whereas the neutron’s energy decreases.

4. Discussion

In this letter, we have studied the nucleon’s rest mass and 
dispersion relation in the nuclear medium by using the AdS/CFT 
correspondence. To describe the nuclear medium with the flavor 
symmetry of the dual QFT, we introduced bulk gauge fields of 
U (1)2

L × U (1)2
R ⊂ U (2)L × U (2)R . These bulk gauge fields are dual 

to the quark number and isospin operator. In the confining phase, 
since nucleons rather than quarks are fundamental, we rewrote 
bulk gauge fields in terms of nucleon quantities by using the con-
servation of the net quark number, which uniquely determine the 
component ratio of proton and neutron in the nuclear medium.

On this background, we turned on the 5-dimensional fermionic 
fluctuations with mass, ±5/2, and reinterpreted them as 4-dimen-
sional nucleons, which satisfy the 5-dimensional Dirac equation 
together with appropriate two boundary conditions. By solving the 
Dirac equation numerically, we have investigated rest masses and 
dispersion relations of the lowest parity-even states, proton and 
neutron. We found that the chiral condensate is crucial to explain 
the nucleon’s rest mass because it dramatically changes the disper-
sion relation of nucleons unlike meson’s spectra studied in [29]. 
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Fig. 1. The nucleon’s mass in the vacuum (a) for mq = σ = 0 and (b) with mq = 2.38 MeV, σ = (304 MeV)3 and gY = 4.699 which reproduce the correct nucleon’s mass in 
the vacuum.

Fig. 2. The nucleon’s mass spectrum in the nuclear medium. (a) For D = 0, proton and neutron are degenerate. (b) For D = Q /2, the masses of proton and neutron are 
splitted due to the isospin interaction, where the dotted line denotes the nucleon mass for D = 0.

Fig. 3. The nucleon’s dispersion relation in the nuclear medium. (a) The dashed and solid line indicate the dispersion relations in the vacuum and in the nuclear medium 
with the chiral condensate respectively. (b) The isospin interaction splits the degeneracy of nucleons. The energy of proton (neutron) slightly increases (decreases).
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We also showed that in the high nuclear density regime, as ex-
pected, nucleon’s rest mass increases with nuclear density, while 
in the low density regime it decreases unexpectedly. It would be 
interesting to figure out why such an unexpected nucleon’s mass 
spectrum occurs in the low density regime.

We also showed that the number asymmetry between proton 
and neutron causes the mass and energy splitting between pro-
ton and neutron, which are similar to the meson mass splitting 
in the nuclear medium [28] and to the nucleon mass splitting in 
the isospin medium [39]. In the nuclear medium with the relative 
abundances of protons, the isospin interactions makes the proton’s 
rest mass and energy become larger than those of neutron. These 
results would be helpful to understand nucleons in the nuclear 
medium quantitatively and qualitatively because there is no QFT 
tools applicable in the strong coupling regime.
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