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SOME HISTORICAL REMARKS 

Henry John Stephen Smith (1826-1883) was the Savilian Professor of 
Geometry at Oxford, and was regarded as one of the best number theorists of 
his time. His specialties were pure number theory, elliptic functions, and 
certain aspects of geometry. He shared a prize with H. Minkowski for a paper 
which ultimately led to the celebrated Hasse-Minkowski theorem on repre- 
sentations of integers by quadratic forms, and much of his research was 
concerned with quadratic forms in general. He also compiled his now famous 
Report on the Theory of Numbers, which predated L. E. Dickson’s History of 
the Theory of Numbers by three-quarters of a century, and includes much of 
his own original work. The only paper on the Smith normal form (also known 
as the Smith canonical form) that he wrote [On systems of linear indetermi- 
nate equations and congruences, Philos. Trans. Roy. Sot. London 
CLI:293-326 (1861)] was prompted by his interest in finding the general 
solution of diophantine systems of linear equations or congruences. Matrix 
theory per se had not yet developed to any extent, and the numerous 
applications of Smiths canonical form to this subject were yet to come. 
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Typical examples of the types of problems he considered might be to find all 
integral solutions of the system 

13x - 5y + 72 = 12, 

67x + 17y - 8z = 2, 

or to find all solutions of the congruence 

45x + 99y + llz = 7 mod 101. 

The answer to the first is that in terms of an arbitrary integral parameter t, 

x= -34-79t, 

y = 248 + 573t, 

z = 242 + 556t, 

and the answer to the second is that if y and z are taken as arbitrary, then x 
is given by 

x = 18~ + 22 + 63 mod 101. 

These are both derivable by a systematic use of the normal form, a process 
which will be explained later. 

MATRIX EQUIVALENCE AND INVARIANT FACTORS 

The problem underlying the Smith normal form is that of matrix equiva- 
lence, which can be treated in rather general terms. 

Let R be a commutative ring with an identity 1. An element (1 of R is a 
unit if an element b of R exists such that ab = ba = 1. Now let m, n be 
positive integers, and let R, stand for the ring of n X n matrices over R, and 
R for the ring of m X n matrices over R. An element A of R, is 
unmi’Zwd&r or a unit matrix if an element B of R, exists such that 
AB = BA = Z,, where Z, is the identity matrix of order n. The set of 
unimodular matrices of R, will be denoted by Gun, R), and is a multiplica- 
tive group. 
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Now for the definition of equivalence: two elements A, B of R,,, are 
said to be equident (written A N B) if matrices U, V exist such that U 
belongs to GL(m, R), V belongs to GL(n, RI, and B = UAV. This is an 
equivalence relationship which partitions the set R,,, into disjoint equiva- 
lence classes, and the principal problem encountered here is to find a way to 
determine to which equivalence class an element of R,,, belongs. 

In this general setting, the problem is too difficult, and it is necessary to 
make some additional assumptions about the underlying ring R. The usual 
one is to assume that R is a principal ideal domain, but this is unnecessarily 
broad for our purposes, and we shall assume instead that R is one of the 
three rings described below. 

(1) R = Z, the ring of integers. The units here are f 1, and the n X n 
unimodular matrices over H are those of determinant f 1. 

(2) R = F, a field. Any nonzero element of IF is a unit, and the n X n 
unimodular matrices over [F are the nonsingular matrices. 

(3) R = F[ xl, the ring of polynomials in x with coefficients from IF. The 
units (as before) are the nonzero elements of [F, and the n X n unimodular 
matrices over IF are those whose determinant is a nonzero element of IF. 

In order to simplify our discussion we will assume that the matrices under 
consideration are all square (an unimportant restriction). 

It is straightforward that equivalent matrices must have the same rank, 
and Smiths theorem states the following [S, p. 261: 

Every matrix A of R, which is of rank r is equivalent to a diagonal 
matrix D given by 

D = dag(s,, s2 ,..., S,,O ,..., 0), 

where the entries si are different from 0 and form a divisibility sequence; 
that is, 

Furthermore, the si are unique, apart from possible unit multipliers belong- 
ing to R. 

The si [also denoted by si( A)] are known as the invariant fxtors of A, 
and are basic to the problem of determining when two matrices of R, are 
equivalent. The matrix D is then the Smith normal form of A, and is 
denoted by S( A). 
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It follows from Smiths theorem that two matrices of R, are equivalent if 
and only if they are of the same rank and have the same invariant factors. 

It is important to notice that in each of the three cases considered here, 
the ring R is a euclidean ring, so that constructive algorithms exist for the 
determination of the Smith normal form. 

Along with the invariant factors of A, there are two other sets of 
invariants, known as the determinantal divisors of A and the elementary 
divisors of A. These are of eaual imnortance and will be discussed individu- 

DETERMINANTAL DIVISORS 

Let A be any matrix of R,. Let k be any integer such that 1 Q k < n. 

Choose (in all possible (;)’ ways) k row subscripts and k column subscripts, 
and compute all the determinants of the submatrices constructed from these 
choices. Finally, take the greatest common divisor of all of these determi- 
nants. This number will be denoted by dk( A), and is known as the kth 
determinantal divisor of A. Notice that if A is of rank r, then only the first r 
such numbers will be different from zero. For completeness, define d,(A) to 
be 1. Then the relevant criterion [S, p. 281 is that two matrices A, B ofA, are 
equivalent if and only if they have the same determinantal divisors, up to unit 
multipliers. Note that this implies that A and B have the same rank. 

Another characterization for d,(A) is that it is the greatest common 
divisor of the entries in the kth compound of A [3, p. 871. 

Historically, this is the way that Smith approached the problem of a 
canonical form for equivalence. 

The relationship between the determinantal divisors and the invariant 
factors is quite simple: 

dk( A) = sl( A)s,( A) **a sk( A), l,<k<n, 

or written the other way around, 

Sk(A) = 
4(A) 

4-d A) ’ 
l<k<n. 
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ELEMENTARY DIVISORS 

Over the e&dean ring R, unique factorization exists, and so we can talk 
about the primes of R. For example, if R = [F, a field, there are no primes 
(every element is either a unit or 0); if R = Z, the primes have their usual 
meaning; and if R = IF[ xl, the primes are the irreducible polynomials of 
F[ x]. Any one of the invariant factors is then uniquely expressible as the 
product of distinct prime powers. The total set of such prime powers, for all 
of the r invariant factors, is then another invariant. Any such prime power is 
called an elementary divisor. Here, the relevant result is that two matrices of 
R, are equivalent qand only if they have the same elementary divisors [5, p. 
301. 

The simplest (and best-known) situation where the Smith normal form 
comes into play is when R is a field. Since here all nonzero elements of IF are 
units, the nonzero invariant factors are all 1. Hence two matrices A, B of R, 
are equivalent if and only if they have the same rank r. The Smith normal 
form then becomes I, i 0, _r, where I,. is the identity matrix of order r, 
and O,_, is the (n - r) X (n - r) zero matrix. 

For a thorough discussion of this material, see [5, Chapters I and II]. 

SOME INTERESTING FACTS 

Let A, B be nonsingular n X n matrices over R. Then the following 
hold: 

(1) [5, p. 331 sk( AR) is divisible by sk(A) and by sk(B), 1 < k < n. 
(2) 171 d,( AR) is divisible by d,( A)d,(R), 1 Q k < n. If (det A, det 

B) = 1, then 

(3) [5, p. 281 d,_ ,( A)dk+ ,(A) is divisible by d,(Aj2, 1 < k d n - 1, 
where d,(A) = 1. 

(4) s~+~_~(AB) is divisible by si(A)sj(B), 1 < i, j < n, i + j < n + 1. 
This is the simplest of many relationships discovered by R. C. Thompson [lo]. 

(5) [5, p. 331 If (det A, det B) = 1, then S( AR) = S( A)S(B). 
(6) [5, p. 301 Th e prime power divisors of a diagonal matrix are in fact 

the elementary divisors of the matrix. 
(7) [8, 91 If A is an n X n integral matrix, then s,( A)/A is an algebraic 

integer for any nonzero eigenvalue h of A. In the other direction, 
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sr( A)sJ A) *** sk( A) divides the product of any k eigenvalues of A (repe- 
titions allowed), in the sense that the quotient is an algebraic integer, for 
l<k<n. 

(8) [4, Section 3.281 The minimal polynomial of an n X n matrix A is 
s,(A - xl). 

AN APPLICATION TO THE SOLUTION OF LINEAR SYSTEMS 

The first application we mention is to the original purpose behind the 
invention of this concept by Smith; namely, to the solution of systems of 
linear diophantine equations. 

Suppose then that we are given an integral m X n matrix A and an 
integral m X 1 vector b, and we want to find all integral solutions of the 
diophantine system Ax = b. We do this by finding an integral basis for 
the null space of A, and a particular integral solution (if there is one) of the 
system. We first find the Smith normal form S = UAV of A, and replace 
the system by the equivalent system Sy = c, where x = Vy, and c = Ub. 

If the rank of A is r, then 

where D is a nonsingular diagonal T x r matrix. Put c = (c’, c”)‘, y = 
( y ‘, y”jt (t denoting the transpose), where c’ and y ’ are T X 1, and c” and 
y” are (m - r) X 1. Then Sy = c if and only if Dy’ = c’, 0 = c”. Thus the 
system has integral solutions if and only if c” = 0, and D-lc’ is an integral 
vector. Consequently, a particular solution in this case is given by x = 
V(D-‘c’ O)t. It can be shown that the last n - r columns of V are an 
integral basis for the null space of A 161. 

For example, take Ax = b, where 

A= 

1234567 
1010101 
2456111 
1425200 
0011223 

b= 

‘28 
4 

20 
14 
9 
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Then the rank of A is r = 5, the nullity is n - r = 2, and the Smith normal 
form is 

where 

U= 

v= 

and 

1 0 0 0 0 
2 o-1 0 0 
2 0 -1 0 -1 
5 0 -2 -1 -3 

-3 -1 2 0 0 

1 -3 -6 2 - 14 
0 0 0 7 15 
0 1 5 -2 10 
0 0 l-7 - 14 
0 0 0 1 2 
0 0 0 0 0 
0 0 0 0 0 

29 16 
-34 -18 
-23 - 13 

33 18 
-6 -4 

1 0 
0 1 

S(A)=UAV= ; ; , 
( 1 

D = diag(1, 1, 1, 1,2). 

Hence, a particular solution of the system is given by 

x = (D-k’, 0)’ = (-44,53,37,-50, 11,0,0)‘. 

As mentioned above, the last two columns of V form an integral basis for 
the null space of A. 

With obvious modifications, the same procedure can be used to find all 
solutions of the congruence AX = b mod p, where p is a prime. In fact, the 
discussion is quite trivial in this case, since the diagonal matrix D that arises 
is just the r-dimensional identity matrix. 

AN APPLICATION TO PERMUTATION EQUIVALENCE 

Our next application is to permutation equivalence. Although it is a finite 
problem to determine whether or not two matrices are permutation equiva- 
lent (i.e. whether or not one can be derived from the other by applying 
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suitable row and column permutations to it), in practice this is not feasible if 
the matrices are even moderately large. A negative criterion is available from 
the observation that matrices that are permutation equivalent must have the 
same Smith normal form. This is quite a useful criterion, and with it we can 
show, for example, that the following four 16 X 16 Hadamard matrices H,, 
H,, H,, H4, which were produced by Marshall Hall, Jr., and which represent 
(up to permutation equivalence) any 16 X 16 Hadamard matrix, are in fact 
not permutation equivalent, since they are not even equivalent (in the Smith 
sense): 

H,= 

H,= 

I 

\ 

/ 

= 

\ 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 -1 -1 -1 
1 1 1 1 -1 -1 -1 
1 1 -1 -1 1 1 -1 
1 1 -1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 
1 1 -1 -1 -1 -1 1 
1 -1 1 -1 1 -1 1 

1 -1 1 -1 1 -1 1 
1 -1 1 -1 -1 1 -1 
1 -1 1 -1 -1 1 -1 
1 -1 -1 1 1 -1 -1 

1 -1 -1 1 1 -1 -1 
1 -1 -1 1 -1 1 1 

1 -1 -1 1 -1 1 1 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 -1 -1 -1 
1 1 1 1 -1 -1 -1 

1 1 -1 -1 1 1 -1 
1 1 -1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 

1 1 -1 -1 -1 -1 1 
1 -1 1 -1 1 -1 1 

1 -1 1 -1 1 -1 1 
1 -1 1 -1 -1 1 -1 
1 -1 1 -1 -1 1 -1 
1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 

1 -1 -1 1 -1 1 1 

1 1 1 1 1 1 1 1 1 
1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 1 1 1 1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 1 1 
-1 1 1 -1 -1 1 1 -1 -1 
-1 -1 -1 1 1 -1 -1 1 1 

1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 1 1 1 -1 -1 

-1 1 -1 1 -1 1 -1 1 -1 

-1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 1 -1 -1 1 -1 1 
1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 

1 -1 1 1 -1 -1 1 1 -1 
-1 1 -1 -1 1 -1 1 1 -1 

-1 -1 1 1 -1 1 -1 -1 1 

1 1 1 1 1 1 1 1 1 
1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 1 1 1 1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 1 1 1 1 
-1 1 1 -1 -1 1 1 -1 -1 
-1 -1 -1 1 1 -1 -1 1 1 

1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 1 1 1 -1 -1 

-1 1 -1 1 -1 1 -1 1 -1 

-1 -1 1 -1 1 -1 1 -1 1 

1 1 -1 1 -1 -1 1 -1 1 
1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 1 -1 1 1 -1 
1 -1 1 1 -1 1 -1 -1 1 

-1 1 -1 -1 1 1 -1 -1 1 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 J 
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H,= 

H,= 

‘1111111111111111 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

( 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 

11111111111111111 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 

1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

( 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 

The invariant factors of these matrices are given by 

H,: 1,2,2,2,2,4,4,4,4,4,4,8, 8, 8,8, 16, 

H,: 1,2,2,2,2,2,4,4,4,4, 8,8,8,8,8, 16, 

Ha: 1, 2,2,2,2, 2, 2, 4,4, 8, 8, 8, 8,8, 8, 16, 

H4: 1,2,2,2,2,2,2,2,8,8,8,8,8,8,8, 16. 

Looking at these factors, we see, for example, that the number of 2’s in each 
of the four lists is different. Hence our matrices are inequivalent, and 
therefore also permutation inequivalent. 



376 MORRIS NEWMAN 

AN APPLICATION TO ABELIAN GROUP THEORY 

The Smith canonical form is a basic tool of abelian group theory. We 
mention only one possible application. If x is a vector whose entries are 
generators of an abelian group, and if A is an integral matrix (a relation 
matrix) such that the relations among the generators are given by AX = 0 (the 
group of course is written additively), then we can use the Smith form to get 
a canonical set of generators and defining relations. Thus if A = USV, then 
AX = 0 becomes Sy = 0, where the entries of y = Vx are new generators, 
and the new relations are just single power relations. This idea can sometimes 
be used with infinite groups as well. Thus if G is a group, and if it can be 
shown that G/G’ is infinite (G’ being the commutator subgroup of G), then 
certainly G must also be infinite. In any case, the structure of G/G’ can be 
worked out using the Smith form, provided that generators and relations are 
known for G (G/G’ is just G abelianized). 

As an example, let G be the group generated by X, y, z with defining 
relations 

xyx = 23, 

yzy = x3, 

wz = y3. 

In G/G’, the relations and generators (written additively) become 

2x + y - 32 = 0, 

3x - 2y - .z = 0, 

X - 3y + 22 = 0, 

or in matrix form, Au = 0, where 
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Now finding the Smith normal form, we get A = USV, where 

U= [! i i), V= (i -i -:), S=diag(l,7,0). 

Then the canonical generators and relations become 

x 7 
‘=O 

7y’ = 0, 

z ’ unrestricted, 

where 

x ‘=x-3y +22, 

y' = y - 2, 

2 I- 
- 2; 

so that G/G’ is the direct product of a cyclic group of order 7 and an infinite 
cyclic group. Thus certainly the group G is infinite. 

A THEORETICAL APPLICATION 

A very useful result that can be derived from the Smith form is the 
following: Supose that A is an integral n X n matrix such that det A = 1 
mod m, where m is a positive integer. Then an integral n x n matrix B 
exists such that det B = 1 and B = A mod m [5, p. 361. 

Without going into too much detail, this result can be used to exploit 
the connection between the matrix group Gun, Z) and the matrix group 
GL(n, H/m>, where Z/m is the ring of integers modulo m. 

TWO CLASSICAL APPLICATIONS 

Perhaps the best-known application of the Smith form occurs with respect 
to similarity. Suppose that A, B are n X n matrices over an algebraically 
closed field IF, and we want to know whether or not they are similar over lF; 
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i.e., whether or not a nonsingular n X n matrix T exists such that B = TAT-‘. 
Questions on similarity are difficult, but here there is an answer: A and B 
are similar over F if and only if A - xl and B - xl are equivalent over F[ x] 
15, p. 451. 

Another application along these lines is to the proof of the fact that an 
n X n matrix over an algebraically closed field IF can be diagonalized (by a 
similarity of course> if and only if the elementary divisors of A - xl are 
simnle. This will hannen if the minimal polynomial s,( A - xl) of A has no 
replated roots [S, p: 291. 

As an example, choose 

considered as matrices over the field of complex numbers @. Then A and B 
have the same eigenvalues 0, 0, 1, but 

S( A - xl) = diag(1, x, x( r - l)), 

S( B - XI) = diag(l,l, CC”( r - 1)). 

Thus A and B are not similar over @. Also, the elementary divisors of 
A - xl are r, x, and r - 1, while the elementary divisors of B - xl are x2 
and x - 1. Thus A is similar to a diagonal matrix over C, but B is not. 

Many other applications can be given, but perhaps these will suffice. In 
broad terms, the utility of the Smith normal form rests in the fact that the 
problem under consideration is usually reduced to a number of independent 
linear problems. 

POSSIBLE GENERALIZATIONS 

When R = 72, we can replace the group of all units GL(n, Z> by one of 
its subgroups G, and require that the definitions of equivalence use the 
elements of G, instead of all of the elements of GL(n, Z>. Then the formal 
definition would say that two n X n matrices A and B over Z are G- 
equivalent if B = UAV, where U and V belong to G. When G is of finite 
index Z.L in GL(n, Z), it can be shown that the number of G-equivalence 
classes obtained in this fashion for matrices of determinant A is at most /.L~ 
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times the number of ordinary equivalence classes for matrices of determinant 
A. However, the calculation of this number is still in general an open 
question. 

If we change this problem slightly, and work only with matrices that 
belong to Gun, Z> [so that we are asking for the number of G-equivalence 
classes in GL(n, Z> with respect to the elements of G], we have a fundamen- 
tal group-theoretic problem at hand; namely, the double coset decomposition 
of a group with respect to one of its subgroups. 

The difficulties that we encounter by extending the definition of equiva- 
lence are best illustrated by an example due to Shu-Chu Chang [l]. Let 
I = SL(2, Z), and choose G = I’,,< p), the subgroup of I consisting of all 
matrices 

of I? for which c = 0 mod p, where p is a prime. Then G is of index p + 1 
in I, and a complete set of coset representatives (left or right) is given by 

R, = Wk, O<k<p-1, R, = T, 

where 

W= (; ;), T=(; -;). 

Now let A be any integral 2 X 2 matrix of determinant A # 0. Then 
A = USV, where U and V are unimodular matrices, and S = diag(s,, sz> is 
the Smith normal form of A. Here, s1 I s2, and s1s2 = A. Thus S = s1 
diag(1, d), where d = s2/s1. Set M = diag(1, d). By considering II and V 
modulo G, we need only examine the matrices Ri MRj, 0 d i, j < p, for 
equivalence. It turns out that these reduce modulo G to M and TM when 
(p, d) = 1, and to M, TM, MT, and TMT when p I d. These are all in 
disjoint equivalence classes modulo G, and so the number of classes in this 
case is either 2 or 4. The first invariant factor si also enters into this 
description, since each of the matrices above must be multiplied by s1 to 
obtain the class representatives. 

Work on the double coset problem resulted in a number of significant 
results, among which the following purely group-theoretic ones, due to 
Matthew Lazar [2], are perhaps the most interesting: 
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Let Z-I, and K, be normal subgroups of G such that H, K, = K, H, = G. 
Let H and K be subgroups of G of finite index such that H contains H, 
and K contains K,. Let N = H n K, and let x: be any element of G. Then 
(HUH) n( KxK)= NxN. 

Furthermore, assuming the conditions of the previous theorem, let ni 
equal the number of double cosets of (H, H) in G, ns the number of double 
cosets of (K, K) in G, and n3 the number of double cosets of (N, N) in G. 
Then n3 = nina. 

These useful theorems can be used to prove, for example, the following: 

As before, let F = SL(2, B), and let G = F,(m), the subgroup of l? 

consisting of all matrices ; 2 ( 1 for which m I c. Let m = ptlpiz *** pi, be 
the canonical decomposition of m into prime powers. Let f(m) equal the 
number of double cosets of (G, G) in F. Then if m is odd, f(m) equals l-l:= i 
(2ei); and if m is even, f(m) equals (e, + 1) l-l!=, (2ej), where p, = 2. 

Similar formulas for higher dimensional groups [i.e. for subgroups of 
SL(n, Z)] have also been derived. 

Most of the applications have involved the groups l?,,(m). These are of the 
highest interest now, because of their appearance in algebraic geometry, 
modular functions, the proof of Fermat’s theorem, etc. 

We leave the discussion at this point, but the ideas given above are 
currently the subject of intense investigation, 
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