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Abstract 

An operation d on simplicial maps between graphs is introduced and used to character- 
ize simplicial maps which can be factored through an arc. The characterization yields a new 
technique of showing that some continua are not chainable and allows to prove that span 
zero is equivalent to chainability for inverse limits of trees with simplicial bonding maps. 
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1. Introduction 

By a graph we understand a one-dimensional, finite simplicial complex. If G is 

a graph then ‘Y(G) will denote the set of vertices and 87(G) will denote the set of 

edges. By the order of a vertex u we understand the number of edges containing U. 

A vertex of order 1 is called an endpoint. Two points belonging to an edge are 

called adjacent. A simplicial map of a graph G, into a graph G, is a function from 

YYG,) into Y(G,) taking every two adjacent vertices either onto a pair of 

adjacent vertices or onto a single vertex. A simplicial map is light if the image of 

each edge is nondegenerate. 

In this paper the same notation is kept for a graph and for its geometric 

realization. We will assume that every graph is a subset of the three-dimensional 

Euclidean space and every edge is a straight linear closed segment between its 

vertices. In this convention a simplicial map is understood as an actual continuous 

mapping (linearly extended to the edges). But it is important to note that a graph, 

either abstract or geometric, has a fixed collection of vertices and any change in 

this collection changes the graph. 
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A graph with a geometric realization homeomorphic to an arc is simply called 

an arc. Observe that two arcs are isomorphic if and only if they have the same 

number of vertices. A connected graph without a simple closed curve is called a 

tree. A tree consisting of three edges having a common vertex is called a simple 

triod. A graph with three vertices and three edges is called a simple triangle. If u 

and L’ are two adjacent vertices of a graph, by (u, u) we will denote the edge 

between u and u. Additionally, if u and u are two vertices of a tree, by (u, u) we 

will denote the arc between u and u. 

A continuum is considered here to be a connected and compact metric space. A 

continuum is chainable if it is the inverse limit of a sequence of arcs (the bonding 

maps are continuous and do not have to be simplicial). A continuum is tree-like if 

it is the inverse limit of a sequence of trees. If X is a continuum denote by rTT1 and 

rz the projections of XXX onto the first and the second components. Let p be 

the distance function in X. The subjective span of X, (T*(X), is the least upper 

bound of all real numbers E for which there is a continuum 2 contained in X XX 

such that r,(Z) =X= rr,(Z) and p(x, y) 2 E for each (x, y) E Z. The span of X, 

(T(X), is defined by the formula cr(X> = Sup(a*(A) 1 A cX, A # fl connected). 

See [61. 

In 1964, Lelek proved that a chainable continuum has span zero [5]. It is 

unknown whether (surjective) span zero implies chainability [l, Problem #8]. 

Several powerful results concerning this and related problems were obtained by 

Oversteegen in [lo, 111, and jointly by Oversteegen and Tymchatyn in [12-161. 

Among other things, they proved that a positive answer to the problem would 

complete the classification of homogeneous plane continua [12]. 

In order to prove that a continuum is chainable one needs to arrange elements 

of a (sufficiently fine) open covering into a (coarser) chain. To this end some 

combinatorial type of tools seems to be required. Mohler and Oversteegen in [8] 

and Oversteegen in [9] considered tree-words (trees with vertices labeled by 

letters) and gave some conditions sufficient for reducibility of tree-words to 

chain-words. The question of reducibility to chain-words is equivalent to the 

question when a simplicial map between graphs can be factored through an arc. In 

this paper we introduce an operation d assigning to each simplicial map cp between 

graphs, a simplicial map d[cp] between another pair of graphs. Using this operation 

we obtain a characterization of simplicial maps between graphs that can be 

factored through an arc. The characterization is then used to prove that surjective 

span zero is equivalent to chainability for inverse limits of trees with simplicial 

bonding maps. (A similar result, with surjective span replaced by span, was 

announced by Oversteegen at the Prague Topological Symposium, Czechoslovakia, 

1986. See [lo, 111.) The characterization is also used to develop a technique of 

showing that some continua are not chainable. As an illustration of the technique 

we give a new proof that classic atriodic continua by Ingram [3, 41 and Davis and 

Ingram [2], are not chainable. An extension of this technique will be used in [7] to 

give an example of an atriodic continuum which is 4-od-like but not triod-like. 



P. Mint / Topology and its Applications 57 (1994) 1-21 

2. Simplicial maps which can he factored through an arc 

Definition 2.1. For a graph G, let D(G) denote the graph such that 

(i) the set of vertices of D(G) consists of edges of G and 

(ii) two vertices of D(G) are adjacent if and only if they intersect (as edges of 

G). 

In particular, in the trivial case, when G contains no edges, D(G) is empty. 

Even though v(D(G)) = Z?(G), it will be convenient to have a notation avoiding 

confusion between the same object being either a vertex or an edge. Therefore if 

u E Y”(D(G)) then by U* we will understand the edge u of the graph G. 

Example 2.2. Fig. 1 gives a few examples of the operation D. If the solid black 

graph is G, then the dashed line graph is D(G). Vertices of D(G) are located 

close to the centers of the corresponding edges of G. 

Proposition 2.3. If G is an arc (that is G is a graph and its geometric realization is 

homeomorphic to an arc) with n > 2 vertices, then D(G) is an arc with n - 1 

vertices. 

Definition 2.4. Let 9 : G, + G, be a simplicial map between graphs. For every 

(closed) edge e EZ(GJ, let Z(e) denote the set of components of p-‘(e) which 

are mapped by cp onto e. Denote by Z(cp) the union of all X(e). Let D(q, G,) be 

the graph such that 

(i) the vertices of D(cp, G,) are elements of 233((p), and 

(ii) two vertices of D(cp, G,) are adjacent if and only if they intersect (as 

subgraphs of G i). 

Let d[cp] : D(cp, G,) + D(G,) be the map defined by the formula d[cpl(v) = cp(v) 

for every vertex u of D(cp, G,). 

Every vertex v E z/(D(cp, G,)) is also a subgraph of G,. To avoid confusion we 

will denote this subgraph by v*. 

Observe that d[cp] may be empty. This will occur for example when G, is a 

point. 
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Example 2.5. Fig. 2 indicates how the operation D can be applied to the Ingram 

map [3]. The dashed line graph is the domain of the map while the solid black is 

the range and each vertex of the domain is mapped onto the nearest vertex of the 

range. 

Proposition 2.6. Zf cp : G, + G, is a simplicial map, then d[cp] is a light simplicial 
map. 

Proof. Let ui and u2 be two adjacent vertices of D(cp, G,). Note that UT and UT 

intersect. Let e, and e2 be the edges of G, such that UT and U; are components 

of rp-‘(e,) and rp-‘(e,), respectively. Since ui f u2 and UT n vz Z 1, we have the 

result that e, # e2 and e, n e2 # @. Since d[cpl(vi) is the vertex of D(G,) represent- 

ing ei, the vertices d[cp](v,) and d[cp](v,) are different and adjacent. 0 

Proposition 2.7. Let cp be a simplicial map of an arc A with n vertices into a graph 
G. Then D(cp, A) is either the empty set, or a point, or an arc with no more than 
n - 1 vertices. 

Proof. Let a,, a2,. . ., a,, denote the sequence of consecutive vertices of A. For an 

arbitrary vertex u E D(q, A), let j(u) be an index such that (ajCU), ajc,,j+l) C U* 

and d(aicuj7 aj(u)+l)) is an edge. The proposition follows from the following 

observation. If v and w are two different vertices of D(cp, A) then either 

w* C (a,, ajCuj) if i(w) <j(U), or W* C (aj(u)+l, a,> if j(W) >.KV). q 

Definition 2.8. Let q : G, + G, be a simplicial map between graphs. Then d[d[qll 

will be denoted by d2[(p], and recursively d[d”-l[cpll will be denoted by d”[cpl. The 

domain of d”[cp] will be denoted by D”(cp, G,) and the range by D’YG,). 
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d2[ql : D2(qG,) + D2Go> d3[ql : D3Cp,G,) + D3Go> 

Fig. 3. 

Example 2.9. Fig. 3 indicates further iterations of the operation d applied to the 

Ingram map. Like in the previous example the dashed line graph is the domain of 

the map while the solid black is the range and each vertex of the domain is 

mapped onto the nearest vertex of the range. 

Definition 2.10. Let cp : G, - G, and $I : G, + G, be simplicial maps between 

graphs. Let d[cp, $1: D(cp 0 $, G,) -+ D(cp, G,) be the map such that for every 

vertex u of D(cp 0 ~5, G,), d[cp, 1,%1(u) is the vertex of D(cp, G,) containing ccl(u*>. 

Let d”[cp, +I: D”(cp 0 1+4, G,) + D”(cp, G,) denote the map defined by the formula 

d”[cp, $I= d[d”-‘[cpl, d”-‘[cp, $11. 

Proposition 2.11. Let cp : G, + G, and rC, : G, --f G, be simplicial maps between 
graphs. Then d”[cp, $1 is a simplicial map and d”[cp 0 $I= d”[cpl 0 d”[cp, $1. 

Proof. Let u be a vertex of D(p 0 I+%, G,). Observe that 9 0 $(v) is an edge of G,. 

Denote this edge by e. Let C denote $(v*). Since C is a connected subgraph of 

G, and cp(C> = e, we have the result that d[cp, I)](U) is the only vertex of D(cp, G,) 

containing C. Observe that each of d[cp 0 I,!J](u> and d[cpl 0 d[cp, +bl(u) is the 

element of D(G,) representing e. Now, if u1 is a vertex of D(cp 0 I+!J, G,) adjacent 

to v, then v * and v: intersect, and consequently I)(V *> and $l<vF > intersect. It 

follows that d[cp, 1,4](v) and d[cp, $](v,) are adjacent. So d[cp, $1 is a simplicial 

map. The proof for an arbitrary integer follows by induction. 0 

Theorem 2.12. Let cp : G, + G, be a simplicial map between graphs. Then cp can be 
factored through an arc if and only if d[cp] can be factored through an arc. 

Proof. If cp can be factored through an arc, then it follows from Propositions 2.7 

and 2.11 that d[cp] can be factored through an arc. 
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Note that in order to prove the theorem in the other direction it is sufficient to 

prove it in the case when G, is connected. Observe also that the proof is trivial in 

the cases when d[cp] is empty or d[cp] maps D(cp, G,) into one point. 

Suppose that that there is a nondegenerate arc I, and there are two simplicial 

maps & : D(cp, G,) + Z and 6: Z --) D(G,) such that d[cp] = 6 0 ~5. We may assume 

that & maps D(cp, G,) onto I. Let ur, v*, . . . , v, be the vertices of Z ordered by 

one of the two natural orders on the arc I. Observe also that if for some i, 

&vi) =&vi+r), then the vertices vi and vi+, could be identified. So we may 

assume that &vi) # &vi+,) for i = 1,. . . , n - 1. For each i = 1,. . . , ~1, let e, denote 

the edge (&vi)* of G, which corresponds to p’<v,). By our assumption ei and e,+r 

are two different edges. Since fi is simplicial ei and e,+r intersect at a vertex. 

Denote this vertex by wi. Let wa be the vertex of e, different from wr, let w, be 

the vertex of e, different from wn_r. Let A denote the set {i = 1,. . . , n 1 wi_ 1 # wi), 

and let B be the complement of A in (1,. . . , n}. For each i E B, let wi’ be the 

vertex of ei different from wi. Let .Z be an arc which is the union of subarcs Jr, 

J 2,“‘, J, such that J, is a single edge with vertices si_ 1 and si for each i E A, and 

.Zi is the union of two edges with vertices si_, - s; - s, for each i E B. Let 

/3 : J -+ G, be the simplicial map defined by p(si) = wi for i = 0,. . . , n, and p(si’) = 

wi’ for i E B. In order to complete the proof we need to define a simplicial map 

CX:G, +J such that c+Jo=/~ 0 (Y. 

Let y be the set of the vertices v E T(G,) which are contained in the union of 

vertices of &“-l(vi). (Recall that C’(vi) is a subset of D(cp, G,), and each vertex of 

D(cp, G,) is a subgraph of G,.) Observe that T(G,) = Vr U V, U * *- U V, and 

“,n y#@ if and only if Ii-j1 < 1. Note also that q(y;: K+i)=wi. Let Y, 

denote the set cp-‘(wi) n l$ For each i E B, let ZJ denote the set I/; n v+r, and let 

c denote the set q\ U, 

Let u be an arbitrary vertex of l,$ and let t be an arbitrary vertex of 7;. We will 

show that u and t are not adjacent. Suppose, to the contrary, that u and t are 

adjacent. Let x be the vertex of D(cp, G,) such that u EX* and k(x) = v,+,.Since 

x * is a component of ‘p-r(ei+r), wi is a vertex of ei+r and the edge between u and 

t is mapped by cp onto w,, we have the result that t E x * and consequently t E Ui, 

a contradiction. 

Define (Y : G, + J in the following way: a(v) = si for i EA and v E y, a(v) = si_ 1 

for SEA and v~T/,\y., CX(V)=S~ for iEB and VEQ, a(u)=si_r for DEB and 

v E Ti and a(v) = si’ for i E B and v E q. U I;. It can be readily verified that (Y is a 

simplicial map such that cp = p 0 (Y. 0 

Theorem 2.13. Let cp : G, + G, be a simplicial map between graphs. Then cp can be 

factored through an arc if and only if there is an integer n such that d”[q] is empty. 

Proof. Suppose that there is an arc Z and there are simplicial maps (Y : G, + Z and 

p: I+ G, such that cp = p 0 cz. Let n be the number of vertices of 1. By 

Proposition 2.7, the map d”[/3] is empty. It follows from Proposition 2.11 that 

d”[cpl is also empty. 
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If d”[cp] is empty, then it can be factored through an arc, and the proof follows 

from Theorem 2.12. 0 

Proposition 2.14. Let cp : G, + G, be a simplicial map between graphs. Then every 
simple triangle contained in D(cp, G,) is mapped by d[cpl onto a simple triangle in 

DCG,). 

Proof. Let a, b, c E V(D(q, G,)) form a simple triangle. Consider the subgraphs 

a *, b * and c * of G, represented by a, b and c, respectively. If, for instance, 

cp(a*) = cp(b*), then since a* and b* are components of q-‘(&a*)) and they 

intersect, we have that a* = b * and consequently a = b. So cp(a *), cp(b *) and 

cp(c*) are three different edges of G,. Since each two of them intersect, cp(a *), 
cp(b*) and cp(c*> form a simpIe triangIe in D(G,). •! 

The following proposition follows readily from Proposition 2.14. 

Proposition 2.15. Let cp: G, + G, be a simplicial map between graphs such that 
D”(cp, G,) contains a simple triangle for some n. Then D”(cp, G,) contains a simple 
triangle for every m > n. 

Proposition 2.16. Let cp be a simplicial map of a tree G, into a graph G,. Suppose 
that there is no simple triangle in D(cp, G,). Then D(cp, G,) is a tree. Moreover, if 

every arc contained in G, has at most n vertices then every arc contained in D(cp, G,) 
has at most n - 1 vertices. 

Proof. Let vr, v2,. . . uk be a sequence of vertices of D(cp, G,) such that vi and ui+r 

are two ends of an edge from Z?( D(cp, G,)) for i = 1, . . . , k - 1, and ui_ , Z vi+ I for 

i=2 , . . . , k - 1. To prove the proposition it is enough to show that v,, v2,. . . , vk 

are distinct and that k is less than n. 
The set (v,)* is a subtree of G r. Observe that (ci_r)* n (vi+,)* = @ for 

i=2 , . . . , k - 1, because otherwise vi_,, vi and ci+r would form a simple triangle. 

There is a vertex pO E (v,)*\(v,)*. For each i = 1,. . . , k - 1, let pi be a point of 

(ui)* n(vi+,>* such that the arc Ai between P,_~ and pi meets (vl+r>* at p,. 
There is a vertex pk E (vk)*\(ukP,)*. Observe that pi #P,+~ for i = 1,. . . , k - 1. 

Let A, be the arc between pk _ 1 and pk. Since A, + I is contained in (vi+ ,)*, we 
have that AinA,+l=(pi) for i=l,..., k - 1. Since G, is a tree, the union of 

A I,. . . , A, is an arc. Denote this arc by A. Since A has at least k + 1 vertices, k is 

less than n. Observe that (ui>* nA,+, = @, because Ait c(vitZ)* and (vi>* n 
(vi+,>* = @. Since the intersection v* n A is connected and vi # ui+ ,, we have the 

result that v, # I,) for i #j. 0 

Proposition 2.17. Let q be a simplicial map of a tree G, into a graph G,, and let (I 
be a map of a tree G, into G,. If D(cp, G,) is a tree then D(cp 0 $, G,) is a tree. 
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Proof. Suppose that D(cp 0 $,, G2) is not a tree. Then by Proposition 2.16, it 

contains a simple triangle T. By Proposition 2.14, d[cp 0 $1 maps T onto a simple 

triangle. Since d[q 0 $1 =d[cpl 0 d[cp, $1, d[cp, $1(T) is a simple triangle and 

D(cp,G,) is not a tree. q 

Theorem 2.18. Let G, be a tree such that every arc contained in G, has at most 
n + 1 vertices. Let cp be a simplicial map of G, into a graph G,. Then cp cannot be 
factored through an arc if and only if D”(cp, G,) contains a simple triangle. 

Proof. If D”(q, G,) contains a simple triangle then, by Proposition 2.15, D’Ycp, G,) 
contains a simple triangle for every m 2 n. It follows from Theorem 2.13 that cp 

cannot be factored through an arc. 

If D”(p, G,) does not contain a simple triangle then it follows from Proposition 

2.15 that D’(cp, G,) does not contain a simple triangle for i = 1,. . . , n. Using n 
times Proposition 2.16 we get that D”(cp, G,) is a tree such that every arc 

contained in D”(cp, G,) has at most one (n + 1 -n> vertex. Of course, this can 

only happen if D”(q, G,) is either empty or a point. Since d”+‘[cp] is empty, 

Theorem 2.13 implies that cp can be factored through an arc. q 

3. Inverse limits of trees with simplicial bonding maps. 

In this section we use the operation d to prove that surjective span zero is 

equivalent to chainability for inverse limits of trees with simplicial bonding maps. 

It should be noted here that a similar result, with surjective span replaced by span, 

was announced by Oversteegen at the Prague Topological Symposium, Czechoslo- 

vakia, 1986. See [lo, 111. 

Lemma 3.1. Let cp : G, + G, be a simplicial map between connected graphs. Suppose 
that there are two simplicial maps ~5 and B from an arc I onto D(cp, G,) such that 

d[cplMv>> + d[cpl(&d) f or every vertex v of Y”(Z) and d[cp](&(e)) f d[cpl(&e>) 
for every edge e of 2?(Z). Then there are two simplicial maps (Y and p from an arc J 
onto G, such that cp(o(v>>#cp(~(v)) f or every vertex v from V(J) and cp(cz(e)> # 
&(e>> for every edge e from 8(J). 

Proof. Let vi, v2, . . . , v, be the vertices of Z ordered by one of the two natural 

orders on the arc I. Let Ai denote the subgraph (&(vJ)* of G, represented by 

&(vJ and Bi be the subgraph (&vj)>* of G, represented by &vJ 

Claim 1. Let a:, al,, E Y(Ai) and bi, bi+l E Y”(Bi) be such that cp(a:) z cp(bl) 
and cp( ai+ 1) z cp( bl+ 1). Then there is an arc Jj’ with the endvertices c,! and ci+ 1, and 
there are simplicial maps ai of Ji’ onto Ai and /3,! of Ji’ onto Bi such that cr[(c,!) = ai, 

oI(cI+ 1) = al+ 1, P;<c~!> = b;, /3z!Cc~!+,> = b;+l, cp(cuf(v)) # &l(v)> for every vertex v 
from YXJj’) and cp(cY[(e>) Z &l(e)> for every edge e from 2F(Ji’). 
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Observe that q&4,) and cp(B,) are edges from 8(G,). Since d[cpl(&(ui)) Z 

d[cp](&ui>), we have that cp(A,)#cp(B,). In the case when cp(Ai) and cp(B,) are 

disjoint the claim is trivial. So we may assume that &A,) and cp(B,) have a 

common vertex p. Let a be the other vertex of cp(A,) and let b be the other vertex 

of cp(B,). Since ~(a:+,) f cp(bl+,), without loss of generality we may assume that 

cp(a~+,) #p. Since B, is connected, there is an arc J’ (possibly degenerate) with 

endpoints c~! and d’, and there is a simplicial map p’ of J’ into Bi such that 

p’(c;) = b;, &‘(d’)) = b and &3’(v)) = cp(bi) for every vertex u E V(J’) differ- 

ent from d’. Let (Y’ be the constant map of J’ onto ai. Since Ai is connected, 

there is an arc J” with endpoints d’ and d”, and there is a simplicial map CY” of 

J” onto Ai such that a”(d’> = al and a”(d”)) = a:,,. Let p” be the constant map 

of J” onto P’(d’). There is an arc J”’ with endpoints d” and cI+i, and there is a 

simplicial map p”’ of J”’ onto Bi such that P”‘(d”) = P”(d”) and P”‘(c~+~) = bl,,. 
Let a”’ be the constant map of J”’ onto a:+,. Define J,’ as the union of J’, J” and 

J”‘. Define ai as the union of (Y’, LY” and (Y”‘. Finally, let pi be the union of p’, p” 

and p”‘. It is easy to see that so defined J/, a] and pi! satisfy the claim. 

Claim 2. Let uk E Z/^(A,) and b, E F’XB,) be such that ~(a,) z cp(b,). Then there 
is an arc Jk with the end vertices ck and ck + , , and there are simplicial maps (Ye of Jk 
onto A, u A,, , and Pk of Jk onto B, U B,, 1 such that (Ye = uk, Pk(ck) = b,, 

ak(ck+l) E y(Ak+l)> Pk(ck+l ) E ‘V(Bk+l), cp(a,(v)) f q(Pk(v)) for every vertex 
v from V(J,) and cp(a,(e)) z q@,(e)) for every edge e from Z(J,). 

Let a be a point of A, nA,+, and let b be a point of B, n B,, 1. We will 

consider the following two cases: &a) # p(b) and p(a) = q(b). 
Case 1: q(u) # p(b). Use Claim 1 with i = k, u: =ak, bi = b,, u:+~ = a and 

b’+l = b. Then use Claim 1 again with i = k + 1, al = a, b’ = b, aj,, = a and 

br+ 1 = b. Define Jk as the union of JL and JL+l. Set ck =c; and ck+i =c;+~. 

Define CY~ as the union of (~6 and c~h+i. Finally, let Pk be the union of pi and 

P ;+ i. It is easy to see that so defined Jk, (Ye and Pk satisfy the claim. 

Case 2: q(u) = q(b) = p. Observe that p is a common vertex of the edges 

cp(A,), (P(A~+~), cp(B,) and (P(B~+~). Let a’, a”, b’ and b” denote the other 

vertices of the edges &AA), cp( A,, ,), cp(B,) and p(B, + 1), respectively. Since 
d[ql(&(v,)) z d[cpl(&v,)) and d[pl(~;(v,+,>) f d[qI(&vk+i)), we have that a’ f b’ 

and a” #b”. Since d[cp](&([vk, v~+~])) f d[cpl(&[v,, v,+,I>>, we have that either 
a’ # b” or b’ # a”. Without loss of generality we may assume that b’ f a”. Since 

cp(a,) # q(bk), either ~(a,) =I, and q(bk) = b’ or ~(a,) = a’ and q(bk) =p. Since 
B, is connected, there is an arc J’ (degenerate if cp(b,) = b’) with endpoints ck 

and d’, and there is a simplicial map p’ of J’ into B, such that p’(c,) = b,, 

&‘(d’)) = b’ and cp(p’(v)) = p(b,) for every vertex v E ‘T(J’) different from d’. 
Let (Y’ be the constant map of J’ onto uk. Since A, U Ak+l is connected, there is 

an arc J” with endpoints d’ and d”, and there is a simplicial map (Y” of J” onto 

A, u A,+, such that cx”(d’) = uk, a”(d”) E Y(Ak+l) and cp(a”(d”)) = a”. Let p” 

be the constant map of J” onto P’(d’). There is an arc J”’ with endpoints d” and 

cI+i, and there is a simplicial map p”’ of J”’ onto B, U Bk+l such that p”‘(d”) = 
p”(d”) and p”‘(ck+i) E Y”(B,+,). Let (Y”’ be the constant map of J”’ onto cz”(d”). 
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Define Jk as the union of J’, J” and J”. Define czk as the union of CY’, LY” and 

a”‘. Finally, let Pk be the union of /3’, p” and p”‘. It is easy to see that so defined 

Jk, (Ye and pk satisfy the claim. 

There are points a, E Y”(A,) and b, E Y”(B,) such that cp(a,)#cp(b,I. Use 

Claim 2 for k = 1 to get J,, cq and pi. Set a2 = (or and b, = pl(cz>. Use Claim 

2 for k = 2 to get J,, LY* and &. Continue the procedure to get J,, . . . , JnPl, 

ff3,. . ., LY,_~ and P3,..., p,, _ i. Define J as the union of J,, J2,. . . , J,_ 1. Define (Y 

as the union of (pi, CY*, . . . , CY,_~. Finally, let /3 be the union of pi, &, . . . , p,_ 1. It 

is easy to see that so defined J, (Y and p satisfy the lemma. q 

Theorem 3.2. Let CT,, &‘) be an inverse system of trees with simplicial bonding maps 
m 

CT,‘; T, for n < ml. Let X denote the inverse limit lim(T,, cp,“>. Suppose that there 

is a positive integer n such that for each integer mt> n, the map cp,” cannot be 
factored through an arc. Then the surjective span of X is positive (a *(X> > 0). 

Proof. Without loss of generality we may assume that (~$7;) = T. for every i <j. 
Let (Y, and p, be two simplicial maps from an arc J, onto T,. We will say that 

the triple ((Y,, /3,, J,) belongs to the class zm if cp,“(a,(v)) z cp,“@,(v)) for 

every vertex v from Y(J,) and cp,“(cu,(e)) z cp,“(&,Je>I for every edge e from 

8( J,>. 

Claim 1. Xm f (d for m > n. 

By Theorem 2.18, there is an integer k such that Dk(cp,“, T,) contains a simple 

triangle with vertices a, b, c. By Proposition 2.14, d“[(p,“l(a), dk[cp,“l(b) and 

d“[cp,“](c) form a simple triangle in @CT,>. Let &i be a simplicial map of an arc I, 

with an endpoint p onto ok((p,“, T,) such that G,(p) = a. There is a simplicial 

map 6, of I, into the triangle a, b, c such that dk[(p,“l(&,(v>> z dk[(p~I(~l(v>> for 

every vertex v E V(I,) and dk[cp,“l(&,(e)) z dkI(p~lQ?,(e>) for every edge e E B(Z,I. 

Let 8, be a simplicial map of an arc Z2 meeting I, at the common endpoint p 

onto Dk((p,“, T,) such that &p) = @l(p). There is a simplicial map G2 of I, into 

the triangle a, b, c such that dk[cp,“l(G,(v)> z dk[(p~l<&v>> for every vertex 

u E ‘V(ZJ and dk[(p~]<&,<e>> f dk[cp,“l(&e)) for every edge e E kY(1,). Let I = II. 

uZ2, &=&,u&, and p=@r~&.Observethat Zisanarcmappedby &and p 

onto Dk(cp,“, T,) such that dk[cp,“l(&(v)> # dk[cp,“l(&v)) for every vertex v E V(Z) 

and dk[qo,“l(%e)> + dk[cp,“l&e)> f or every edge e E a(Z). Now, the claim follows 

from Lemma 3.1 used k times. 

For (cY,, p,, J,> E_%&, consider the set Z, = (cy, X P,)(J,> c T, X T,. Let 

C, denote the collection of all such sets Z,. Observe that <pi X cp~>(Zj> E C, for 

each j > m and each Zj E Cj. Since C, is finite for each m > n, there is a 

sequence Zn+‘, Zn+2, Zn+3,. . . such that Z” E C, for each m > n, and (cpi X 

(pi>(Zj) = Z” for each j > m. Let Z denote the inverse limit lim(Z”, cpi X cpi>. 

Observe that Z is a continuum contained in X XX such that r,?Z) =X = 77,(Z), 

where xi and r2 are the projections of XXX onto the first and the second 
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components. Denote by cp, the projection of X onto T, and let p denote the 

distance function on X. For each point (x, y) E Z, we have that q,(x) # q,,Ju). 

Since Z is compact there is a positive number E such that p(x, y) 2 F for each 

(x, y)~Z.Thus a*(X)>&>>. q 

Theorem 3.3. Let CT,, cp,“> be an inverse system of trees with simplicial bonding maps 
VP,” 

(T, + T, for n < m>. Let X denote the inverse limit lim(T,, cp,“). Then the following 

conditions are equivalent. 
(i) X is chainable. 

(ii) v *(X1 = 0. 

(iii) For every positive integer n there is an integer m > n such that cp,” can be 
.factored through an arc. 

Proof. The implication (i) d (ii) was proven by Lelek in [5]. The implication 

(ii) * (iii) follows from Theorem 3.2. The implication (iii> d (i) is obvious. •I 

4. Lifting of light simplicial maps 

In this section we introduce a notion of ultra light simplicial maps and prove 

that a factorization through a tree can be lifted through an ultra light map. 

Definition 4.1. Let q : G, + G, be a simplicial map between graphs. We say that cp 

is ultra light if it is light and v* is an edge of G, for each v E Y(D(cp, G,)). 

Observe that cp is ultra light if and only if it is light and, for each e E &?(G,), 

each component of q-‘(e) is either a vertex or an edge of G,. Therefore D(cp, G,) 

can be naturally identified with D(G,). 

Proposition 4.2. Suppose cp : G, + G, is a simplicial ultra light map between graphs. 
Then d [ql: D(cp, G,) + D(G,) is also ultra light. 

Proof. By Proposition 2.6, d[cpl is light. Let b be an edge of D(G,) and let C be a 

nondegenerate component of (d[cp])-l(b). Since C is nondegenerate and con- 

nected, it contains two adjacent vertices c’ and c”. We will show that C contains 

no other vertices. Note that cc’)* and (c”)* are two different edges of G, 

intersecting at a common vertex, which will be denoted by v. Denote by v’ and U” 

the remaining vertices of cc’)* and cc”)*, respectively. Since cp is ultra light cp(v’>, 

q(v) and cp(u”> are three different vertices of G,. Let b’ and b” denote the 

vertices of D(G,J representing (cp(u’), q(v)) and (cp(v), cp(v”)), respectively. 

Observe that 6’ and b” are the vertices of b, d[cp](c’) = b’ and d[cp](c”) = b”. 
Suppose that C contains a vertex other than c’ and c”. In this case, without loss of 

generality, we may assume that there is a vertex c of C such that c’ # c # c” and c 

is adjacent to c’. It means that c* and cc’>* are two intersecting edges of G,. 
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Since d[cp] is light, d[cp](c) = b” and consequently cp(c*) = (cp(u), cp(v”>). It fol- 

lows that u’ is not a vertex of c*, and thus u is the common vertex of c* and 

cc’)*. But, then c” U Cc”>* is connected and mapped by cp onto the edge 

(cp(v), cp(v”)), which is impossible, because cp is ultra light. 0 

Theorem 4.3. Let G,, G, and G, be connected graphs and let T be a tree. Suppose 
q:G1+Go, $,:Gz+G1, h:G, - T and c : T + G, are simplicial light maps such 
that cp is ultra light, h(G,) = T and cp 0 (I, = u 0 h. Then there is a simplicial map 
u’:T+G1 such that $=a’ 0 h. 

Proof. First we will prove the following claim. 

Claim. Suppose v and v’ are vertices of G, such that A(v) = A(v’). Then 1,4(v) = 

IINV’). 

Since G, is connected, G, contains an arc A with endpoints v and v’. Let n 
denote the number of vertices of A. We will prove the claim by induction with 

respect to n. Suppose that for each pair of vertices w and w’ of G, such that 

h(w) = A(w’) and G, contains an arc B with endpoints w and w’ and with less 

than IZ vertices, we have the result that 1,!4w) = $(w’>. If n = 1, then v = v’ and 

the claim is obvious. If n = 2 and $,(v) # $(v’), then I,/J(v) and 1,4(v’> are adjacent 

vertices of G,, which is impossible, because cp(+(v)> = a(A(v)) = a(A(v’)) = 

cp($(v’)) and cp is light. So we may assume that n > 2. Suppose that there is a 

vertex s of A such that v # s # v ’ and A(s) = A(v). In this case we have by 

induction the result that I)(V) = t)(s) and I)(S) = I,/J(v’>. So we may assume that 

A(s) # A(v) for each vertex s of A different from v and v’. Let u be the vertex of 

A adjacent (in A) to v and let u’ be the vertex of A adjacent (in A) to v’. Since 

II > 2, u # v’ and u’ # v. Let B denote the subarc of A joining u and u’. Consider 

the points A(u) and A(u’). Note that A(u) #A(v) # A(u’). Since T is a tree and 

each of the points A(u) and A(u’) is adjacent to A(v), we have the result that either 

A(u) = A(u’> or A(v) separates T between A(u) and A(u’). In the last case there 

exist a vertex s of B such that A(s) = A(v), which contradicts our assumption. So 

A(u) = Atu’), and by the inductive hypothesis we have the result that +l(u) = I+!&‘>. 

Now, suppose that I)(V) # t+k(v’). Then ($(v), e(u)) and ($(u’>, $(v’)> are two 

distinct intersecting edges of G, that are mapped by cp onto one edge 

(cP(~(u>), cp(rlr(u))) = (a(A(u)), a(A(u))), a contradiction because cp is ultra light. 

Hence the claim is true. 

Since A(G,) = T, for each vertex t of T there is a vertex v E V(G,) such that 

A(v) = t. Define a’(t) = J)(V). To complete the proof it is enough to show that u’ 

is a simplicial map. Let u and u’ be a pair of adjacent vertices of T. Since T is a 

tree and A(G,) = T, there are two adjacent vertices s and s’ of G, such that 

A(s) = u and A(s’) = u’. Using the claim we infer that u’(u) = I/J(S) and a’(~‘> = 

$,(s’), so u’(u) and a’(~‘) either coincide or are adjacent and consequently u’ is a 

simplicial map. 0 
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5. Factorization through an arc and compositions of map 

In this section we will show how to use the operation d to prove that some 

inverse limits with simplicial bonding maps are not chainable. In view of Theorem 

3.3, it suffices to show that an composition of the bonding maps cannot be factored 

through an arc. We do that by applying some iteration of d to the inverse system 

and observing that the system we get is essentially the same as before but one map 

shorter. We illustrate the technique on examples of classic atriodic continua by 

Ingram [3, 41, and Davis and Ingram [2]. A similar proof will be used in [7] to get 

an example of an atriodic continuum which is simple 4-od-like but not simple 

triod-like. 

Definition 5.1. We will say that a graph G’ subdivides a graph G if G’ is a graph 

obtained from G by adding vertices on some of its edges. More precisely, G’ is a 

graph such that V(G) c Y(G’) and for every edge e E Z?(G) there is an arc 

(e, G’) contained in G’ such that 

(i> (e, G’) has the same endpoints as e, 

(ii> Cd, G’) n (e, G’) = d IQ e for d, e E Z?(G) and d # e, and 

(iii) every vertex from Z/(G’) belongs to some (e, G’) and every edge from 

Z$G’) is an edge of some (e, G’). 

If u is a vertex of G and e is an edge of G containing v, then by (v, e, G’) we 

denote th.e edge of (e, G’) containing v. 

Proposition 5.2. If G’ is a graph subdividing a graph G and G” is a graph 
subdividing G’, then G” subdivides G. 

Definition 5.3. Let cp : G, + G, be a simplicial map between graphs. Let GA be a 

graph subdividing G, and let cp’ be a simplicial map of a graph G; subdividing G, 

onto GA. We will say that cp’ is a subdivision of cp matching G;, provided that 

cp’(v> = cp(v) for each vertex u E z’(Gr), and for each edge e E Z?‘(G,) we have that 
_ if cp(e> is degenerate then (e, G;) = e, and 

- if cp(e> is an edge of G, then cp’ is an isomorphism of (e, G;) onto (cp(e), G/J. 

Proposition 5.4. Let cp : G, + G, be a simplicial map between graphs. Let G; be a 
graph subdividing G,. Then there is a subdivision cp’ of cp matching GA. Moreover, cp’ 
is unique up to an isomorphism. 

Definition 5.5. Suppose G is a graph and S is a function from V(G) into the set of 

nonempty subsets of 8(G). We say that S is an edge selection on G if v is a vertex 

of e for each u E V(G) and each e E S(v). 

Suppose G, and G, are graphs, S is an edge selection on G, and cp is a 

simplicial map from a subdivision G; of G, into G,. We say that cp is consistent 

on S provided that there is a simplicial isomorphism A from a subdivision H, of 

G, onto D(cp, Gil such that 
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(i) (u, e, G;) c [A(u)]* for each u E P?G,) and each e E S(u), and 

(ii) [A(U)]* c(e, G;) for each e E 8(G,) and v E Y((e, Hi))\v(Gi). 

h will be called a consistency isomorphism. 

Example 5.6. We will consider again (see Example 2.5) the Ingram map from [3]. 

This time it will be important to us that the map takes the extended triod into 

itself, or rather, the domain is a subdivision of the range. Let T indicate the 

extended triod with its vertices named as in Fig. 4. 

Fig. 5 indicates the Ingram map from a tree T’ subdividing T onto T. We will 

denote this map by I. The dashed line graph is the domain of the map while the 

solid black is the range and each vertex of the domain is mapped onto the nearest 

vertex of the range. Note that Z(U,) = u2, Z(U,) = Z(U,) = Z(U,) = u1 and Z(v,) = uq. 

Let CT : T + T denote the symmetry of T about the axis u,, - us - uq, that is 

(T(vJ = vg, (T(Ui) = v2, a(~,) = vi, a(~,) = u3 and a(~,) = vq. Let Z denote the 

composition fl 0 I. 

Let S be an edge selection on T defined in the following way: S(V,) = 

l(q), u2), (uO, ug)} and S(ui) consists of all edges of T containing ui for = 

1, 2, 3, 4. Observe that both Z and fare consistent on S. Let h and i denote the 

consistency isomorphisms for Z and Z, respectively. Denote the map d[I] 0 h by I,, 

and d[I] 0 ,i by ii. Fig. 6 indicates I,. As usual, the dashed line graph is the 

domain of the map while the solid black is the range and each vertex of the 

Fig. 5 
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domain is mapped onto the 

like Fig. 6 reflected about a 

Again, observe that both 

Fig. 6. 

nearest vertex of the range. A figure for i, would be 

vertical line. 

I, and f1 are consistent on S. (Note that (_u,, ui) @ 

S(U,).) Let A’ and A’ denote the consistency isomorphisms for I, and I,, respec- 

tively. Denote the map d[ Ii] 0 A’ by Z,, and d[ & 1 0 h’ by &. Fig. 7 indicates I,. A 

figure for i2 would be like Fig. 7 reflected about a vertical line. Observe that both 

I2 and & are ultra light. 

Definition 5.7. Suppose that G, and G, are graphs. Let S, and S, be edge 

selections on G, and G,, respectively. Let G; be a subdivision of G, and let 

$ : G; --f G, be a simplicial map. We say that I+!J preserves (S,, S,) provided that 

(i) +((v, e, G;)) E S,(rCr(u)) f or each I! E Y(G,) and each e E S,(U) and 

(ii) for each two different edges e, e’ E HG;) intersecting at a common vertex L’ 

we have that either q(e) E S,(I,!J(U)) or $(e’) E S,(+(U)). 

Example 5.8. Let I: T’ + T and f: T’ + T denote the Ingram maps defined in 

Example 5.6. Let S be the edge selection defined in‘the same example. Observe 

that both I and I’ preserve (S, S). 

“3 

Fig. 7. 
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Lemma 5.9. Suppose G, is a graph and G, and G, are trees. Let S, and S, be edge 
selections on G, and G,, respectively. Let G; be a tree subdividing G, and let Gi be 
a tree subdividing G,. Suppose cp : G; + G, and $I : G; + G, are light simplicial 
maps such that cp is consistent on S, and $ preserves (S,, S,>. Let A, : H, + D(cp, G;) 
be a consistency isomorphism for cp, where H, is a subdivision of G,. Let (J’ : G;’ + G; 

be a simplicial subdivision of +!I matching G; and let $I” : H, *HI be a subdivision 
of q3 matching H,. Then cp 0 $’ is consistent on S, with a consistency isomolphism 
A,: H, * D(cp 0 $‘, G;l> such that A, 0 $” = d[cp, +‘I 0 A,. 

Proof. Let v2 be a vertex of H,. Denote by vi the point I,!J”(v,) E Z/(H,). Let C, 

denote [h,(v,)]* and e, denote cp(C,>. Observe that e, is an edge of G, and C, is 

a component of cp-‘(e,). We will define h,(v,) by considering the cases where 

v2 E v(G;) and v2 E F’IH,)\YXG;). 
Case 1: v2 E Y?G;). In this case vi = t+!~(vJ E V(G,). We will prove that 

(i) there is an edge e; E 8(G;) containing v2 such that $(e;> E S,(v,). In case 

where v2 E Y(G,), let e2 be an edge from S,(vJ and let e; = (vz, e2, G;). Since 

I,/J preserves (S,, S,), we have the result that $(e;) E S,(v,). 

In case where v2 E V(G;)\%‘XG,), let e2 be the edge of G, such that v2 is a 

vertex of (e,, G;). Let e; and e;l be the two edges of (e,, G;> containing u2. Since 

$ preserves (S,, S,), we have the result at least one of these two edges, say e;, has 

the property that $(e;> E S,(v,). Thus (i) holds. 

Denote $(e;) by e,. Observe that (vi, e,, G;) c[A,(v,)l*. Since cp is light, 

cp((vi, e,, G;)) = e,. Let C, be the component of (cp 0 $‘I-‘(e,> containing v2. 

Since $‘((a,, e;, G;‘)) = (vi, e,, G;), (v,, e;, GZ) c C, and therefore e, = 

cp($~‘(C,)). Let h2(v2) be the element of D(cp 0 +‘, G;‘) representing C,. 

We will prove additionally that if v2 E ‘zV(G;)\Y(G,), then C, c <e;, G;> U 
(e;l, G;‘). Suppose this is not true. Then there are two edges a and b of G; 

meeting at a common vertex v such that $(v) Z vi and (v, a, G;‘) U (v, b, G;‘) C 
C,. Since I) preserves (S,, S,>, without loss of generality, we may assume that 

$(a) E S,($(v)). Since A, is a consistency isomorphism (+Hv), Q(a), G;) c 

[A,($(vNl*. Ob serve that $‘((v, a, G,“)) = (1,!4v>, $,(a), G;). So +‘((v, a, Gil) is 

an edge contained in both [A,(+(v))l* and [A,(u,)]*. It follows that h,(rj(v)) = 

A,( v,), a contradiction because A, is an isomorphism and I/J(V) # vi. 

Case 2: v2 E F’XH,)\Y”(G;). Let e2 Ed be the edge such that v2 E 

(e,, Hz). Observe that $(e,> is an edge of G,. Denote this edge by e,. Since I)’ is 

a subdivision of I,!J matching G;, r,Q’ maps (e,, G;‘) isomorphically onto (e,, G;). 

Since vi E Y((e,, H,))\F’(G,) and consequently C, = [A,(v,)l* c(e,, G;) there 

is exactly one component C, of ($‘I-i(C,> r~ (e2, Gi> such that $‘(C,> = C,. We 

will show that C, is a component of (cp 0 @‘I-‘(e,>. Clearly, C, C(cp 0 $‘I-‘(e,>. 
Suppose C, is not a component of (cp 0 $‘l-‘(e,). Then there is an edge a E ZYGi) 
meeting e2 at a common vertex v such that a z e2 and $‘((v, a, G;‘)) c C,. Since 

v E Y(G;) and v2 E F’(H,)\Y”(G;), t/r(v) # I,!J’((v,> = v,. Since G, is a tree and 

C, is connected, $‘((v, e2, G$)) c C,. Since Cc, preserves (S,, SJ, either $(a) E 
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S,(+(u)) or $(e,) E S,(I,!J(U)). In either case we have the result that C, = [A,(I,!J(u>)]* 

and h,(@(u)) = Ai( which is impossible because A, is an isomorphism. Thus C, 

is a component of (cp 0 I/J’)-‘(e,). Let h,(u,) be the element of D(q 0 $‘, G;) 

representing C,. 

Clearly, A, is a simplicial map satisfying (i> and (ii) of Definition 5.5 and such 

that A, 0 $” = d[cp, +‘I 0 A,. Observe also that u2 E [A,(u,)]* for each u2 E G;. 

We will prove that A, is an isomorphism. 

Let w be an arbitrary vertex of D(cp 0 $‘, G;‘) and let e” be an edge of Gi 

contained in w *. There is edge e’ E 8(G;) such that e” c (e’, G;). Let U be the 

union of [A,(u)]* where u E V/((e’, H,)). Since U is connected and it contains the 

endpoints of e’, there is u E (e’, Hz) such that e” c[A2(uII*. Observe that 

A,(u) = w and thus A, is surjective. 

To conclude the proof it remains to show that A, is a bijection. Clearly, it will 

be enough to prove that A, restricted to V(G;) is a bijection. Let c be a vertex of 

D(cp 0 I)‘, G;‘) and let C denote the set c*. Suppose that u2 and u; are two 

different vertices of Gi such that A,(u,) = c = A,(u;). Observe that c’~ E C and 

vi EC. Since cp is light and A, is an isomorphism, either $(u2) = I,$<u;> or 

[Ai(rCl(v,))l* n [A,(+(u;>Il* d oes not contain an edge. Since $‘(C> c [A,(I)(+)>]* 

n[A,(t,!r(u;))l* and +’ is light we have the result that r,!~,(u,) = I)(u;). Observe that 

v2 and vi are not adjacent in G;, because I/J is light. Since C is connected and G;’ 

is a tree, ( u2, u;> c C. Let a and b be the two edges of G; contained in ( c’~, c;) 

intersecting at some vertex u. Since A,(u) was defined in such a way that either 

(~,a, G;‘) c[A2(u>l* or (u, 6, G;‘) c [A,(u)]*, we have the result that A,(u) = 

A,(u,) and consequently A,($(u)) = Ai for each u E (uz, u;> n TXG;). Since 

A, is an isomorphism $(u)= +(c’~) for each u E (u2, u;> n ‘NG;). This is 

impossible, because I) is light. 0 

Definition 5.10. Let II be a positive integer and let N denote either the set 

IO, I , . . . , n) or the set of all nonnegative integers. Denote by Ni the set N\(O). 

Let G,, G,, G,, . . . be a sequence of graphs with N as the set of indices. Let 2 be 

a sequence of simplicial maps cpi, (p2,. . . such that for each j EN,, qj maps a 

graph G; subdividing Gj into G,-i. Using inductively Proposition 5.4, we can 

define a sequence of simplicial maps I,!J~, 1cr2,. . . such that I)J, = cpi and for each 

j E Ni \ { l}, I)~ subdivides $j matching the domain of $j _ 1. For each j E N,, denote 

by ,Zj the domain of (G;. Set 2, = G,. For every two integers i and j from N such 

that i > j, let 2; denote the composition t,!~~+i 0 . . . 0 a,bj mapping Zi into .Xj. We 

will say that the inverse system {Zj, 2;) is generated by the sequence 2. 

Let Sj be an edge selection on Gj for j EN,. We will say that 2 preserves the 

sequence S,, S,, . . . if ‘p, preserves <S,_,, Sj> for each j E N,\(l). 

We say that two inverse (possibly finite) systems {Kj, K;} and {H,, $1 are 

isomorphic if there is a sequence of isomorphisms A,, A,, . . . , where Aj : Kj --) H, 

suchthat Aj 0 ~i=qi 0 Ai for i>j>O. 
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Theorem 5.11. Let II be a positive integer and let N denote either the set (0, 1,. . . , n} 
or the set of all nonnegative integers. Let NI denote the set N\{O}. Let G, be a graph 

and let G,, G,, . . . be a sequence of trees with NI as the set of indices. Let S, be an 
edge selection on G, for j E NI. Let 2 be a sequence of simplicial maps cpl, (p2,. . . 
such that for each j E N,, ‘pj maps a graph G/ subdividing G, into G,_ I. Suppose cp 1 

is consistent on S, and Z: preserves the sequence S,, S,, . . . . Let A, : H, + D(cp,, G;) 
be a consistency isomorphism for cpl, where H, is a subdivision of G 1. Then the 

system (DC-ZX, ~ji>, d[-Z{, -Xjl> . IS tsomorphic to the system generated by the sequence 

dcp,l 0 A,, (~2, (~3,. . . . 

Proof. For each j E N, \ (l}, let lLj : Hj + Hj_ 1 be a simplicial subdivision ‘pj of 

matching H,_,. Let H, denote D(G,) and let $i = d[cp,l 0 A,. Note that the 

system {Hj, ~4~1 is generated by the sequence d[qo,l 0 A,, (p2, (p3,. . . . 

Applying Lemma 5.9 repeatedly, we infer that, for each j E Ni \ (l], there is a 

consistency isomorphism Aj of H, onto D(2$, xjj> such that A,_i 0 *j = 

d[&-‘, XI’_11 0 Aj. 

Let A, be the identity on D(G,). Observe that the sequence A,, A,, A,,... 

defines an isomorphism between (Hj, 1,4~1 and {D(Zi, Xjc,>, d[Zi, Z~ll. 0 

Example 5.12. Let Z : T’ + T and I’: T’ + T denote the Ingram maps defined here 

in Example 5.6. Let ,X be an infinite sequence of simplicial maps cpi, (p2,. . . each 

of which is either Z or f By {Xj, Xjj, we denote the system generated by 2. Ingram 

proved that the inverse limit of _X has positive span and therefore is not chainable 

(see [3, 41). We will give here an alternate proof of this statement. 

First we will prove that for each choice of ‘pi, (p2,. . . we have 

Claim. 20” cannot be factored through an arc. 

Clearly, the claim is true if n = 1. Now, suppose that the claim is true for each 

sequence of n - 1 maps each of which is either Z or Z. In particular, we assume 

that the claim is true for the sequence (p2,. . . , cpn. 
Let I,, ii, Z,, Z2, A, /I, A’ and 2 be as in Example 5.6. If cpi = Z then set A, = A, 

r,Gi = I, and A’, = A’. Otherwise, if ‘pi = I’ then set A, = A, $i = Z, and A’, = 2. Use 

Theorem 5.11 to get the result that the system {0(Xx, ~j), d[Zi, -ZjlI,fGo is 

isomorphic to the system generated by the sequence d[cp,l 0 A,, (p2, (P~,...,(P~. 

Use Theorem 5.11 again to infer that the system (D2(2i, s,,>, d2[ZX, X~II&O is 
isomorphic to the system generated by the sequence d[$,l 0 A;, (p2, (p3,. . . , (Pi. Let 

Z denote the sequence d[til,l 0 A;, (p2, (p3,. .., cp, and let Cc, q?,%O denote the 

system generated by Z. 

Suppose C; can be factored through an arc. Then, by Theorem 2.12, d*[-X,“l 

and consequently Z; can be factored through an arc. Since the map Zd = d[4,1 0 A; 

is either I, or iz, it is ultra light (see Example 5.6). By Theorem 4.3, ZT can be 

factored through an arc. Since the domain of Z’i is T, the system (5, ~?,%i is 

generated by (p2,. . . , cp, and according to our assumption Z; cannot be factored 

through an arc. This contradiction proves the claim. 
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..I.. 
“3 “2 “0 “4 “5 

Fig. 8. 

It follows from Theorem 3.3 that the inverse limit of the system {Z;, Ci} is not 

chainable and has positive span. 

Proposition 5.13. Suppose cp : G, + G, is a simplicial map between graphs. Let GA 
be a graph subdividing G, and let cp’ : G; + Gb be a subdivision of cp matching GA. 
Then 9 can be factored through an arc if and only if cp’ can be factored through an 
arc. 

Proof. Observe that clearly, if cp can be factored through an arc, then cp’ also can 

be factored through an arc. Suppose that there is an arc A’ and there are 

simplicial maps (Y’ : G; +A’ and p’ : A’ + G; such that p’ 0 (Y’ = cp’. Let V= (U E 

Y’XA’) I /3’(u) E Z/^(G,)). Let A denote the graph with V’ as its set of vertices such 

that two vertices vi, c’~ E V are adjacent if the subarc of A’ between vi and ~1~ 

does not contain other points of V. Clearly, A is an arc. Let p : A * G, be such 

that p(u) = p’(v) for each u E V. Note that p is a simplicial map. Observe that 

a’(v) E V for each v E ‘Y/(G,). Let (Y : G, -+A be such that LY(V) = a’(v) for each 

v E ‘VYG,). One can verify that LY is a simplicial map and p 0 (Y = cp. q 

Example 5.14. We will consider here the continuum defined in 121 by Davis and 

Ingram. Davis and Ingram showed that the continuum has positive span and 

therefore is not chainable. We will give here an alternate proof of this statement. 

Let T indicate the extended triod with its vertices named as in Fig. 8. 

Fig. 9 indicates the Davis-Ingram map from a tree T’ subdividing T onto T. 
The map will be denoted here by 6. As usual, the dashed line graph is the domain 

of the map while the solid black is the range and each vertex of the domain is 

mapped onto the nearest vertex of the range. Note that 6(c,) = v2, 6(v,) = c’~, 

6(v,) = 6(v,I = v4 and 6(v,) = 6(v,) = c’~. 

J~+~ . 

o____&__-a__---o._-__o 

“1 “0 “2 “3 

Fig. 9. 
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"1 "0 “2 “3 

Fig. 10. 

Let u : T + T denote the symmetry of T about the axis u,,-ul, that is a(v,> = uO, 

a(~,) = ul, (T(uJ = v4, a(~,> = us, CT(VJ = v2 and a(~,) = vj. Let s’ denote the 

composition (T 0 6. 

Let S be an edge selection on T defined in the following way: S(v,) = {(v,, v2), 

(v,, u,>], S(u,) = {(u,, u,>], S(Q) = {(v,, u,>], S(u,) = {(u,, us>], S(u,) = 

1(%, v4)} and S(v,) = ((u,, v~)]. Observe that both 6 and s’ preserve (S, S). 

Observe also that both 6 and 8 are consistent on S. Let A and /I denote the 

consistency isomorphisms for 6 and 8, respectively. Denote the map d[61 0 A by 

6,, and d[8] 0 h’ by 8,. Figs. 10 and 11 indicate (in the usual convention) 6, and gl, 

respectively. Note that both 6, and gl, are ultra light. 

Let Z be an infinite sequence of simplicial maps cpi, qz,. . . each of which is 

either 6 or 8. By {_Zj, Cj} we denote the system generated by 2. (If cpi = 6 for each 

i=1,2 ,*.., the system {Zj, .cj> is identical with the one described in [21.) We will 

prove for each choice of cpl, (p2,. . . we have that 

Claim. _I?;f cannot be factored through an arc. 

Clearly, the claim is true if II = 1. Now, suppose that the claim is true for each 

sequence of n - 1 maps each of which is either 6 or 8. In particular, we assume 

that the claim is true for the sequence (p2,. . . , yn. 
If cpl = 6 then set A, = A, otherwise, if ‘pl = 6 then set A, = h’. Let r denote the 

sequence dcp,l 0 A,, (p2, (p3,. . . , cpn and let {q, qj&a denote the system generated 

by r. Use Theorem 5.11 to get the result that the system {D<Zh, Xji>, d[&, J$ll~=,, 
is isomorphic to {c., r;i],?O. 

Suppose 2; can be factored through an arc. Then, by Theorem 2.12, d[&l and 

consequently r$ can be factored through an arc. Since the map To = d[cp,l 0 A, is 

;____A . 
o___-+-__----‘&___-0 

“3 “2 “0 “1 

Fig. 11 
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either 6, or $r, it is ultra light. By Theorem 4.3, r; can be factored through an 

arc. Since the domain of rd is a graph subdividing T, the system {rj, r;.i},?r is 

generated by subdivisions of (p2, . . . , ‘p,, and, according to our assumption and 

Proposition 5.13, r;l cannot be factored through an arc. This contradiction proves 

the claim. 

It follows from Theorem 3.3 that the inverse limit of the system {Xj, Zjj> is not 

chainable and has positive span. 
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