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Abstract

An operation d on simplicial maps between graphs is introduced and used to character-
ize simplicial maps which can be factored through an arc. The characterization yields a new
technique of showing that some continua are not chainable and allows to prove that span
zero is equivalent to chainability for inverse limits of trees with simplicial bonding maps.
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1. Introduction

By a graph we understand a one-dimensional, finite simplicial complex. If G is
a graph then 7°(G) will denote the set of vertices and &£(G) will denote the set of
edges. By the order of a vertex v we understand the number of edges containing v.
A vertex of order 1 is called an endpoint. Two points belonging to an edge are
called adjacent. A simplicial map of a graph G, into a graph G, is a function from
7(G,) into 7(G,) taking every two adjacent vertices either onto a pair of
adjacent vertices or onto a single vertex. A simplicial map is light if the image of
each edge is nondegenerate.

In this paper the same notation is kept for a graph and for its geometric
realization. We will assume that every graph is a subset of the three-dimensional
Euclidean space and every edge is a straight linear closed segment between its
vertices. In this convention a simplicial map is understood as an actual continuous
mapping (linearly extended to the edges). But it is important to note that a graph,
either abstract or geometric, has a fixed collection of vertices and any change in
this collection changes the graph.
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A graph with a geometric realization homeomorphic to an arc is simply called
an arc. Observe that two arcs are isomorphic if and only if they have the same
number of vertices. A connected graph without a simple closed curve is called a
tree. A tree consisting of three edges having a common vertex is called a simple
triod. A graph with three vertices and three edges is called a simple triangle. If u
and v are two adjacent vertices of a graph, by {u, v) we will denote the edge
between u and v. Additionally, if u and v are two vertices of a tree, by {u, v) we
will denote the arc between u and v.

A continuum is considered here to be a connected and compact metric space. A
continuum is chainable if it is the inverse limit of a sequence of arcs (the bonding
maps are continuous and do not have to be simplicial). A continuum is tree-like if
it is the inverse limit of a sequence of trees. If X is a continuum denote by 7r; and
m, the projections of X X X onto the first and the second components. Let p be
the distance function in X. The surjective span of X, o*(X), is the least upper
bound of all real numbers & for which there is a continuum Z contained in X X X
such that 7,(Z) =X = m,(Z) and p(x, y) > ¢ for each (x, y) € Z. The span of X,
a(X), is defined by the formula o(X)=Sup{c*(A4)| AcX, A+@ connected).
See [6].

In 1964, Lelek proved that a chainable continuum has span zero [5]. It is
unknown whether (surjective) span zero implies chainability [1, Problem #S8].
Several powerful results concerning this and related problems were obtained by
Oversteegen in [10, 11], and jointly by Oversteegen and Tymchatyn in [12-16].
Among other things, they proved that a positive answer to the problem would
complete the classification of homogeneous plane continua [12].

In order to prove that a continuum is chainable one needs to arrange elements
of a (sufficiently fine) open covering into a (coarser) chain. To this end some
combinatorial type of tools seems to be required. Mohler and Oversteegen in [8]
and Oversteegen in [9] considered tree-words (trees with vertices labeled by
letters) and gave some conditions sufficient for reducibility of tree-words to
chain-words. The question of reducibility to chain-words is equivalent to the
question when a simplicial map between graphs can be factored through an arc. In
this paper we introduce an operation d assigning to each simplicial map ¢ between
graphs, a simplicial map d[ ¢] between another pair of graphs. Using this operation
we obtain a characterization of simplicial maps between graphs that can be
factored through an arc. The characterization is then used to prove that surjective
span zero is equivalent to chainability for inverse limits of trees with simplicial
bonding maps. (A similar result, with surjective span replaced by span, was
announced by Oversteegen at the Prague Topological Symposium, Czechoslovakia,
1986. See [10, 11].) The characterization is also used to develop a technique of
showing that some continua are not chainable. As an illustration of the technique
we give a new proof that classic atriodic continua by Ingram [3, 4] and Davis and
Ingram [2], are not chainable. An extension of this technique will be used in {7] to
give an example of an atriodic continuum which is 4-od-like but not triod-like.
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2. Simplicial maps which can be factored through an arc

Definition 2.1. For a graph G, let D(G) denote the graph such that

(i) the set of vertices of D(G) consists of edges of G and

(i) two vertices of D(G) are adjacent if and only if they intersect (as edges of
G).

In particular, in the trivial case, when G contains no edges, D(G) is empty.
Even though 7 (D(G)) = &(G), it will be convenient to have a notation avoiding
confusion between the same object being either a vertex or an edge. Therefore if
v € 7 (D(G)) then by v* we will understand the edge v of the graph G.

Example 2.2. Fig. 1 gives a few examples of the operation D. If the solid black
graph is G, then the dashed line graph is D(G). Vertices of D(G) are located
close to the centers of the corresponding edges of G.

Proposition 2.3. If G is an arc (that is G is a graph and its geometric realization is
homeomorphic to an arc) with n>2 vertices, then D(G) is an arc with n — 1
vertices.

Definition 2.4. Let ¢: G, — G, be a simplicial map between graphs. For every
(closed) edge e € £(G,), let #(e) denote the set of components of ¢~ '(e) which
are mapped by ¢ onto e. Denote by #(¢) the union of all #(e). Let D{(¢, G,) be
the graph such that

(1) the vertices of D(¢, G,) are elements of #(¢), and

(ii) two vertices of D(e, G,) are adjacent if and only if they intersect (as
subgraphs of G)).

Let dl¢]: D(¢, G,) = D(G,) be the map defined by the formula d[¢l(v) = ¢(v)
for every vertex v of D(¢, G).

Every vertex v € 7(D(¢, G,)) is also a subgraph of G,. To avoid confusion we
will denote this subgraph by v*.

Observe that d[¢] may be empty. This will occur for example when G, is a
point.

Fig. 1.
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Example 2.5. Fig. 2 indicates how the operation D can be applied to the Ingram
map [3]. The dashed line graph is the domain of the map while the solid black is

the range and each vertex of the domain is mapped onto the nearest vertex of the
range.

Proposition 2.6. If ¢:G, — G, is a simplicial map, then dl¢] is a light simplicial
map.

Proof. Let v, and v, be two adjacent vertices of D(¢, G,). Note that v;f and v}
intersect. Let e, and e, be the edges of G such that v{* and vy are components
of ¢ (e,) and ¢ ~!(e,), respectively. Since v, # v, and v Nv} # @, we have the
result that e, # e, and e, Ne, # @. Since d[l(v,) is the vertex of D(G,) represent-
ing e;, the vertices d[¢l(v,) and dl¢Kv,) are different and adjacent. O

Proposition 2.7. Let ¢ be a simplicial map of an arc A with n vertices into a graph
G. Then D(p, A) is either the empty set, or a point, or an arc with no more than
n — 1 vertices.

Proof. Let a,, a,,...,a, denote the sequence of consecutive vertices of 4. For an
arbitrary vertex v € D(p, 4), let j(v) be an index such that {a;,,, @;,y+1) CV*
and @({a;,), a,)+1)) is an edge. The proposition follows from the following
observation. If v and w are two different vertices of D(¢, A) then either
w* C{ay, a;,,y) if j(w) <j), or w* c{a;y .1, a, if jw)>jw). O

Definition 2.8. Let ¢ : G, > G, be a simplicial map between graphs. Then d[d[¢]]
will be denoted by d*[¢], and recursively d[d”~'[¢]] will be denoted by d"[¢]. The
domain of d”[¢] will be denoted by D"(¢, G,) and the range by D"(G,).
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d%[¢] : D*(,G) — DX(Gy) d3[¢] : D*(.G|) > D*(Gy)

Fig. 3.

Example 2.9. Fig. 3 indicates further iterations of the operation d applied to the
Ingram map. Like in the previous example the dashed line graph is the domain of
the map while the solid black is the range and each vertex of the domain is
mapped onto the nearest vertex of the range.

Definition 2.10. Let ¢:G, > G, and ¢ :G,— G, be simplicial maps between
graphs. Let dlo, ¢]1: D(¢ ° ¢, G,) = D(¢, G;) be the map such that for every
vertex v of D(¢ ° ¥, G,), dle, #1(v) is the vertex of D(¢, G,) containing (v *).
Let d"[¢, y1: D"(¢ ¢, G,) = D"(¢, G,) denote the map defined by the formula
d"le, yl=dld" 'le], d" e, ¢l

Proposition 2.11. Let ¢:G,— G, and ¥ :G, — G, be simplicial maps between
graphs. Then d"[ o, ] is a simplicial map and d"[¢ ° y1=d"[¢] > d"[¢, ¥].

Proof. Let v be a vertex of D(¢ © ¢, G,). Observe that ¢ o (v) is an edge of G,,.
Denote this edge by e. Let C denote (v *). Since C is a connected subgraph of
G, and ¢(C) = e, we have the result that d[¢, ¢ Xv) is the only vertex of D(¢, G,)
containing C. Observe that each of d{e o ¢}J(v) and dle]e dle, ¥)(v) is the
element of D(G,,) representing e. Now, if v, is a vertex of D(¢ ° ¢, G,) adjacent
to v, then v* and v} intersect, and consequently ¢(v*) and ¢(v{) intersect. It
follows that dle, ¥1(v) and dle, ¥1(v,) are adjacent. So dl¢, ¢] is a simplicial
map. The proof for an arbitrary integer follows by induction. O

Theorem 2.12. Let ¢ : G, = G, be a simplicial map between graphs. Then ¢ can be
factored through an arc if and only if d[¢] can be factored through an arc.

Proof. If ¢ can be factored through an arc, then it follows from Propositions 2.7
and 2.11 that d[¢] can be factored through an arc.
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Note that in order to prove the theorem in the other direction it is sufficient to
prove it in the case when G, is connected. Observe also that the proof is trivial in
the cases when d[¢] is empty or d[¢] maps D(¢, G,) into one point.

Suppose that that there is a nondegenerate arc I, and there are two simplicial
maps &: D(¢, G;) = I and B:1 - D(G) such that d[¢] = o & We may assume
that & maps D(¢, G,) onto I. Let v, v,,...,0, be the vertices of I ordered by
one of the two natural orders on the arc I. Observe also that if for some i,
B(v;)=pB(v,, ), then the vertices v; and v,,, could be identified. So we may
assume that B~(U,-) #ﬁ(uiﬂ) fori=1,...,n—1.Foreachi=1,...,n,let ¢; denote
the edge (B(v))* of G, which corresponds to B(v,). By our assumption ¢; and e, ,
are two different edges. Since B is simplicial ¢; and e,,, intersect at a vertex.
Denote this vertex by w;. Let w, be the vertex of e, different from w, let w, be
the vertex of e, different from w, ;. Let 4 denote theset{i=1,...,nlw,_; #w},
and let B be the complement of A4 in {1,...,n}. For each i € B, let w, be the
vertex of e; different from w;. Let J be an arc which is the union of subarcs J|,
J,,...,J, such that J; is a single edge with vertices s,_; and s, for each i €4, and
J; is the union of two edges with vertices s,_, —s/—s, for each i€ B. Let
B:J = G, be the simplicial map defined by B(s;,)=w, for i =0,...,n, and B(s/) =
w; for i € B. In order to complete the proof we need to define a simplicial map
a:G,—Jsuch that g =8 o a.

Let V; be the set of the vertices v € (G ) which are contained in the union of
vertices of @ '(v;). (Recall that @~ (v,) is a subset of D(¢, G,), and each vertex of
D(¢, G,) is a subgraph of G,.) Observe that 7(G))=V,UV,U --- UV, and
VinV,#@§ if and only if [i—j|<1. Note also that ¢(V;NV,, ) )=w, Let Y,
denote the set ¢ ~'(w;) N V.. For each i € B, let U, denote the set ¥, NV, and let
T, denote the set Y,\ U

Let u be an arbitrary vertex of U, and let ¢ be an arbitrary vertex of 7;. We will
show that u and ¢ are not adjacent. Suppose, to the contrary, that u and ¢ are
adjacent. Let x be the vertex of D(¢, G,) such that u €x* and a(x)=v,,.Since
x* is a component of ¢~ '(e;_ ), w, is a vertex of e;_; and the edge between u and
t is mapped by ¢ onto w;, we have the result that t €x* and consequently ¢ € U,
a contradiction.

Define «: G, —J in the following way: a(v) =s; forie Aand v €Y,, a(v) =5, _,
fori€A and veV\Y, a(v)=s;, for ieB and v € U, av)=s5,_, for i €B and
veT,and a(v) =s; for i € B and v & U; U 7. It can be readily verified that « is a
simplicial map such that p =8 c . O

Theorem 2.13. Let ¢ : G, — G, be a simplicial map between graphs. Then ¢ can be
factored through an arc if and only if there is an integer n such that d"[¢] is empty.

Proof. Suppose that there is an arc I and there are simplicial maps «: G, — I and
B:I— G, such that ¢ =B - @. Let n be the number of vertices of I. By
Proposition 2.7, the map d”[B] is empty. It follows from Proposition 2.11 that
d™"¢] is also empty.
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If d"[¢] is empty, then it can be factored through an arc, and the proof follows
from Theorem 2.12. O

Proposition 2.14. Let ¢:G, — G, be a simplicial map between graphs. Then every
simple triangle contained in D(¢, G|) is mapped by dl¢] onto a simple triangle in
D(Go).

Proof. Let a, b, c € 7 (D(p, G,)) form a simple triangle. Consider the subgraphs
a*, b* and c¢* of G, represented by a, b and c, respectively. If, for instance,
o(a*)=¢(b*), then since a* and b* are components of ¢~ '(¢(a*)) and they
intersect, we have that a* =b* and consequently a =b. So ¢(a*), ¢(b*) and
¢(c*) are three different edges of G,. Since each two of them intersect, ¢(a*),
o(b*) and @(c*) form a simple triangle in D(G,). O

The following proposition follows readily from Proposition 2.14.

Proposition 2.15. Let ¢:G, — G, be a simplicial map between graphs such that
D™(¢, G,) contains a simple triangle for some n. Then D™(¢, G,) contains a simple
triangle for every m = n.

Proposition 2.16. Let ¢ be a simplicial map of a tree G, into a graph G,. Suppose
that there is no simple triangle in D(¢, G,). Then D(¢, G|) is a tree. Moreover, if
every arc contained in G| has at most n vertices then every arc contained in D(¢, G,)
has at most n — 1 vertices.

Proof. Let v;, v,,...0, be a sequence of vertices of D(¢, G,) such that v; and v, ,
are two ends of an edge from &(D(¢, G,)) fori=1,...,k—1,and v;,_; #v,,, for
i=2,...,k—1. To prove the proposition it is enough to show that v, v,,...,v,
are distinct and that & is less than n.

The set (v)* is a subtree of G,. Observe that (v,_)*N(v;, )*=¢ for
i=2,...,k—1, because otherwise v, ,, v; and v, ., would form a simple triangle.
There is a vertex py € (v)*\(v,)*. Foreach i=1,...,k — 1, let p; be a point of
(v)* N (v;, )* such that the arc A; between p,_, and p;, meets (v;,)* at p,.
There is a vertex p, € (v, )*\(v,_)*. Observe that p; #p,,, fori=1,...,k— 1.
Let A, be the arc between p,_, and p,. Since A, is contained in (v, ,)*, we
have that A,NnA,,,={p]) for i=1,...,k — 1. Since G, is a tree, the union of
A, ..., A, is an arc. Denote this arc by 4. Since A has at least k + 1 vertices, k is
less than n. Observe that (v)*NA,,, =0, because 4, ,C(v,,,)* and (v)* N
(v;,,)* = . Since the intersection v;* N A is connected and v, # v, ;, we have the
result that v, #v; for i#j. O

Proposition 2.17. Let ¢ be a simplicial map of a tree G| into a graph G and let
be a map of a tree G, into G,. If D(¢, G,) is a tree then D(¢ < ¢, G,) is a tree.
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Proof. Suppose that D(¢ - ¢, G,) is not a tree. Then by Proposition 2.16, it
contains a simple triangle 7. By Proposition 2.14, d[¢ ° /] maps T onto a simple
triangle. Since dl¢ o w]=dlo]° dle, ¢], dle, $T) is a simple triangle and
D(¢,G,)is not a tree. O

Theorem 2.18. Let G, be a tree such that every arc contained in G, has at most
n + 1 vertices. Let ¢ be a simplicial map of G, into a graph G. Then ¢ cannot be
factored through an arc if and only if D"(¢, G,) contains a simple triangle.

Proof. If D"(¢, G,) contains a simple triangle then, by Proposition 2.15, D"(¢, G,)
contains a simple triangle for every m > n. It follows from Theorem 2.13 that ¢
cannot be factored through an arc.

If D"(¢, G,) does not contain a simple triangle then it follows from Proposition
2.15 that D(¢, G,) does not contain a simple triangle for i =1,...,n. Using n
times Proposition 2.16 we get that D"(¢, G,) is a tree such that every arc
contained in D"(¢, G,) has at most one (n + 1 —n) vertex. Of course, this can
only happen if D"(¢, G,) is either empty or a point. Since d"*![¢] is empty,
Theorem 2.13 implies that ¢ can be factored through an arc. O

3. Inverse limits of trees with simplicial bonding maps.

In this section we use the operation d to prove that surjective span zero is
equivalent to chainability for inverse limits of trees with simplicial bonding maps.
It should be noted here that a similar result, with surjective span replaced by span,
was announced by Oversteegen at the Prague Topological Symposium, Czechoslo-
vakia, 1986. See [10, 11].

Lemma 3.1. Let ¢: G, — G, be a simplicial map between connected graphs. Suppose
that there are two simplicial maps & and B from an arc I onto D(e, G,) such that
dlela(w)) #dleXB(v)) for every vertex v of 7(I) and dle)a(e)) # dlo1(B(e))
for every edge e of &(I). Then there are two simplicial maps a and B from an arc J
onto G, such that ¢(a(v)) # ¢(B(v)) for every vertex v from 7' (J) and p(ale)) +
o(B(e) for every edge e from &(J).

Proof. Let v,, v,,...,v, be the vertices of I ordered by one of the two natural
orders on the arc I. Let A, de1_10te the subgraph (&(v,))* of~G1 represented by
&@(v;) and B, be the subgraph (B(v,))* of G, represented by B(v,).

Claim 1. Let a}, aj, , €7 (A,) and b}, b}, € 7 (B;) be such that ¢(a})# ¢(b})
and o(a] ) # ¢(b], ). Then there is an arc J; with the endvertices c| and c!, ,, and
there are simplicial maps o of J; onto A; and B] of J; onto B, such that a/(c]) = a],
ai(cii) =ai,y, Bi(e) = b/, Bic],) = by, ¢laj(v) # (B/(v)) for every vertex v
from 7°(J}) and ¢(aj(e)) + ¢(B{(e)) for every edge e from &(J)).
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Observe that ¢(A4;) and ¢(B,) are edges from &(G,). Since dlel(a(v)#

dle)(B(v), we have that ¢(A4,)+ ¢(B,). In the case when ¢(A4;) and ¢(B;) are
disjoint the claim is trivial. So we may assume that ¢(A;) and ¢(B;) have a
common vertex p. Let a be the other vertex of ¢(A;) and let b be the other vertex
of ¢(B;). Since ¢(a;, ) # ¢(b/,,), without loss of generality we may assume that
¢(al,,) #p. Since B, is connected, there is an arc J' (possibly degenerate) with
endpoints ¢; and d’, and there is a simplicial map B’ of J' into B; such that
B'(c)=b], ¢(B'(d") =b and ¢(B'(v)) = ¢(b}) for every vertex v € 7(J') differ-
ent from d’. Let o' be the constant map of J' onto a]. Since A; is connected,
there is an arc J” with endpoints d' and d”, and there is a simplicial map a” of
J" onto A; such that a"(d’)=a] and a"(d")) = aj, . Let B” be the constant map
of J” onto B'(d’). There is an arc J" with endpoints d” and ¢/, |, and there is a
simplicial map B” of J” onto B; such that B”(d") = p"(d") and B"(c/, ) =b/, .
Let a” be the constant map of J onto a;, ;. Define J; as the union of J', J” and
J". Define «! as the union of a’, ¢” and «". Finally, let 8; be the union of g’, B”
and B”. It is easy to see that so defined J;/, @/ and B; satisfy the claim.
Claim 2. Let a, € 7' (A,) and b, € 7°(B,) be such that e(a,) # ¢(b,). Then there
is an arc J, with the end vertices c; and c, ,,, and there are simplicial maps o, of J,,
onto A, VA, ., and B, of J, onto B, UB, ., such that a,(c,)=a,, B,(c;)=Db,,
alc,.) €7(A,. ), Bilcrr) EZ (B, ola(v)) # (B (V) for every vertex
v from 7°(J,) and o(a,(e)) # o(B,(e)) for every edge e from &(J,).

Let a be a point of 4, NA,,, and let b be a point of B, NB,, ;. We will
consider the following two cases: ¢(a) # ¢(b) and ¢(a) = ¢(b).

Case 1: ¢(a) # ¢(b). Use Claim 1 with i=k, aj=a,, b/=b;, a;_ ,=a and
b/,,=b. Then use Claim 1 again with i=k+1, a;=a, b/=>b, a;,,=a and
b/,,=>b. Define J, as the union of J; and J/, . Set ¢, =c; and ¢, | =¢;,,.
Define @, as the union of «; and «;_,. Finally, let 8, be the union of 8; and
Bri. 1 It is easy to see that so defined J;, a), and B, satisfy the claim.

Case 2: ¢(a) =¢p(b)=p. Observe that p is a common vertex of the edges
o(AL), (A, ), ¢(B,) and (B, ,). Let a’, a”, b’ and b" denote the other
vertices of the edges ¢(A4,), ¢(A,, ), ¢(B,) and @(B,, ), respectively. Since
dleNa(v,) # dle) B(v,)) and dleXa(v,, ) # dle) B(v, ), we have that a’ # b’
and a” #b". Since dlela(v,, vy, D) #dlelB(vy, v, D), we have that either
a #b" or b’ +a”. Without loss of generality we may assume that b’ #a”. Since
ola,) # o(by), either ¢(a,) =p and ¢(b,) =b" or ¢(a,) =a’ and ¢(b,) = p. Since
B, is connected, there is an arc J' (degenerate if ¢(b,)=b") with endpoints c,
and d’, and there is a simplicial map B8’ of J' into B, such that B'(c,)=Db,,
o(B’(d))=b" and o(B'(1)) = (b, ) for every vertex v € Z'(J’) different from d’.
Let o' be the constant map of J’ onto a,. Since A4, UA, ,, is connected, there is
an arc J” with endpoints d’ and d”, and there is a simplicial map «” of J” onto
A, UA, ., such that a"(d")=a,, a"(d") €7 (A,,,) and ¢(a"(d"))=a". Let B”
be the constant map of J” onto B'(d’). There is an arc J"” with endpoints d” and
Ci+1, and there is a simplicial map " of J” onto B, U B, ., such that B"(d") =
B"(d") and B"(c,; .)€ 7(B,, ) Let a” be the constant map of J” onto a”(d").
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Define J, as the union of J', 7” and J”. Define «, as the union of a’, a” and
. Finally, let B, be the union of B’, 8” and B". 1t is easy to see that so defined
Jk, a, and B, satisfy the claim.

There are points a, € 7(A,) and b, € 7°(B,) such that ¢(a,) # ¢(b,). Use
Claim 2 for k=1 to get J,, a; and B,. Set a, = a(c,) and b, = B,(c,). Use Claim
2 for k=2 to get J,, @, and B,. Continue the procedure to get J,,..

s n 1
as,...,a, ; and B;,...,B,_ . Define J as the union of J,, J,,...,J,_,. Define a
as the union of a,, a,,...,a,_,. Finally, let 8 be the union of B,, B,,...,B,_,. It

is easy to see that so defined J, a« and B satisfy the lemma. O

Theorem 3.2. Let (T,,, ©') be an inverse system of trees with simplicial bonding maps

(T, < T, for n <m). Let X denote the inverse limit llm(T o). Suppose that there

is a positive integer n such that for each integer m >n, the map @' cannot be
factored through an arc. Then the surjective span of X is positive (o *(X) > 0).

Proof. Without loss of generality we may assume that qo{(Y}) =T, for every i <j.
Let a,, and B,, be two simplicial maps from an arc J,, onto 7,,. We will say that
the triple (a,,, B,,, J,) belongs to the class %, if ¢7(a,(v)*¢™(B,(v)) for
every vertex v from #°(J,,) and ¢](a,(e)) # ¢ (B, e)) for every edge e from
&)

Claim 1. .%,, # §§ for m > n.

By Theorem 2.18, there is an integer k such that Dk((p,'l", 7,,) contains a simple
triangle with vertices a, b, c. By Proposition 2.14, d*[¢"1(a), d*[¢™](b) and
d*[¢"Xc) form a simple triangle in D*(T,). Let &, be a simplicial map of an arc I,
with an endpoint p onto D*(¢™, T,) such that &(p)=a. There is a simplicial
map B, of I, into the triangle a, b, ¢ such that d"[(p,’[‘](al(v)) + d*[ @B (v)) for
every vertex v € 7°(I)) and d*[¢ (@ (e)) # d*[ o7 1(B,(e)) for every edge e € £(1,).
Let ﬂz be a simplicial map of an arc I, meeting I, at the common endpoint p
onto D*(¢™, T,,) such that 8,(p) = B,(p). There is a simplicial map &, of I, into
the triangle a, b, ¢ such that d*[¢™ ](az(v)) + d*[o"1(B,(v)) for every vertex
v e 7 (l,) and d"[qp;"](az(e)) #* dk[go,, 1B e)) for every edge e € £(I,). Let 1=1,
UL, d=@& Ud, and B =B, UB,. Observe that I is an arc mapped by & and g
onto D*(¢™, T, ) such that dk[<p,T](a(u)) + d*[ o™ (B(v)) for every vertex v € 77 (1)
and d*[¢"ale)) # d*[¢™1B(e)) for every edge e € £(I). Now, the claim follows
from Lemma 3.1 used k times.

For (a,,, B J,,) €%, consider the set Z, = (a,, X B, XJ, )T, xT,. Let
C,, denote the collection of all such sets Z,,. Observe that (¢}, X 92, XZ;) € C,, for
each j>m and each Z,€C,. Since C, is finite for each m >n, there is a
sequence Z"*!, Zn*2 Z"*3 . such that Z™ € C,, for each m > n, and (¢}, X
©lXZ7))=Z™ for each j>m. Let Z denote the inverse limit lim(Z™, ¢/ X ¢).
Observe that Z is a continuum contained in X X X such that 77-1‘(_2 )=X=m,(2),
where m; and 7, are the projections of X XX onto the first and the second
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components. Denote by ¢, the projection of X onto 7, and let p denote the
distance function on X. For each point (x, y) € Z, we have that ¢,(x) # ¢, (0).
Since Z is compact there is a positive number ¢ such that p(x, y) > ¢ for each
(x,y)eZ Thus o*(X)>e>0. O

Theorem 3.3. Let (T,,, ") be an inverse system of trees with simplicial bonding maps

(Tn‘fle for n <m). Let X denote the inverse limit im(T,, o). Then the following

conditions are equivalent.
(i) X is chainable.
(i) o*(X)=0.
(iii) For every positive integer n there is an integer m > n such that ¢™ can be
factored through an arc.

Proof. The implication (i) = (ii) was proven by Lelek in [5]. The implication
(i1) = (iii) follows from Theorem 3.2. The implication (iii) = (i) is obvious. 0O

4. Lifting of light simplicial maps

In this section we introduce a notion of ultra light simplicial maps and prove
that a factorization through a tree can be lifted through an ultra light map.

Definition 4.1. Let ¢ : G, — G, be a simplicial map between graphs. We say that ¢
is ultra light if it is light and v* is an edge of G, for each v € 7 (D(¢p, G))).

Observe that ¢ is ultra light if and only if it is light and, for each e € &(G,),
each component of ¢ ~'(e) is either a vertex or an edge of G,. Therefore D(p, G,)
can be naturally identified with D(G,).

Proposition 4.2. Suppose ¢ : G, — G, is a simplicial ultra light map between graphs.
Then d [¢]: D(¢, G,) = D(G,) is also ultra light.

Proof. By Proposition 2.6, d[¢] is light. Let b be an edge of D(G,) and let C be a
nondegenerate component of (d[¢])”'(b). Since C is nondegenerate and con-
nected, it contains two adjacent vertices ¢’ and ¢”. We will show that C contains
no other vertices. Note that (c¢’)* and (¢")* are two different edges of G,
intersecting at a common vertex, which will be denoted by v. Denote by v’ and ¢”
the remaining vertices of (¢')* and (c¢")*, respectively. Since ¢ is ultra light o(v"),
¢(v) and @(v") are three different vertices of G,. Let b’ and b” denote the
vertices of D(G,) representing {¢(v'), ¢(v)) and {e(v), (v")), respectively.
Observe that b’ and b” are the vertices of b, diel(c’)=b" and dlelc")=b".
Suppose that C contains a vertex other than ¢’ and ¢”. In this case, without loss of
generality, we may assume that there is a vertex ¢ of C such that ¢’ #¢ #¢” and ¢
is adjacent to c¢’. It means that ¢c* and (¢')* are two intersecting edges of G,.
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Since d[¢] is light, d[¢]l(c) =b" and consequently ¢(c*) = {p(v), p(v")). It fol-
lows that v’ is not a vertex of c¢*, and thus v is the common vertex of ¢* and
(c¢')*. But, then c* U(c”)* is connected and mapped by ¢ onto the edge
(p(v), (v")), which is impossible, because ¢ is ultra light. O

Theorem 4.3. Let G, G, and G, be connected graphs and let T be a tree. Suppose
0:G, =Gy, ¥:G,—> G, A:G, > Tand o:T— G, are simplicial light maps such
that ¢ is ultra light, N(G,) =T and ¢ ° y = o A. Then there is a simplicial map
o' :T— G, such that y =o' ° A.

Proof. First we will prove the following claim.

Claim. Suppose v and v’ are vertices of G, such that M(v)=Muv’"). Then y(v) =
y(v').

Since G, is connected, G, contains an arc 4 with endpoints v and v'. Let n
denote the number of vertices of A. We will prove the claim by induction with
respect to n. Suppose that for each pair of vertices w and w’ of G, such that
Alw) =A(w’) and G, contains an arc B with endpoints w and w' and with less
than n vertices, we have the result that ¢(w)=(w’). If n =1, then v =v’ and
the claim is obvious. If n =2 and (v) # (v'), then (v) and Y(v’) are adjacent
vertices of G,, which is impossible, because @((v))=c(A(1))=0c(AMv')) =
o(p(v’')) and ¢ is light. So we may assume that n > 2. Suppose that there is a
vertex s of A such that v #s+v’ and A(s) =A(v). In this case we have by
induction the result that ¢(v) = (s) and #(s) =¢(v’). So we may assume that
A(s) # A(v) for each vertex s of A different from v and v’. Let u be the vertex of
A adjacent (in A4) to v and let u’ be the vertex of A adjacent (in 4) to v’. Since
n>2 u+v and u' #v. Let B denote the subarc of A joining « and «'. Consider
the points A(u) and A(u’). Note that A(u) # A(v) # A(u’). Since T is a tree and
each of the points A(x) and A(u’) is adjacent to A(v), we have the result that either
AMu) = A(u") or A(v) separates T between A(u) and A(u’). In the last case there
exist a vertex s of B such that A(s) = A(v), which contradicts our assumption. So
Alw) = A(u"), and by the inductive hypothesis we have the result that () = (u’).
Now, suppose that (v) # (v’). Then {(H(v), Yy(u)) and {Y(u'), y(v')) are two
distinct intersecting edges of (, that are mapped by ¢ onto one edge
(o (0)), o (u))) = (o (A1), a(A(u))), a contradiction because ¢ is ultra light.
Hence the claim is true.

Since AM(G,) =T, for each vertex ¢ of T there is a vertex v € 7 (G,) such that
A(v) =t. Define o'(¢) = y(v). To complete the proof it is enough to show that o’
is a simplicial map. Let u and u’ be a pair of adjacent vertices of 7. Since T is a
tree and A(G,) =T, there are two adjacent vertices s and s’ of G, such that
AMs)=u and A(s’) =u’. Using the claim we infer that o'(x) = ¢(s) and o'(u') =
¥(s’), so ¢’(u) and o’'(u') either coincide or are adjacent and consequently o’ is a
simplicial map. D
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5. Factorization through an arc and compositions of map

In this section we will show how to use the operation d to prove that some
inverse limits with simplicial bonding maps are not chainable. In view of Theorem
3.3, it suffices to show that an composition of the bonding maps cannot be factored
through an arc. We do that by applying some iteration of d to the inverse system

and observine that the svstem we get is essentiallv the same as before but one man
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shorter. We illustrate the technique on examples of classic atriodic continua by
Ingram [3, 4], and Davis and Ingram [2]. A similar proof will be used in [7] to get
an example of an atriodic continuum which is simple 4-od-like but not simple
triod-like.

Definition 5.1. We will say that a graph G’ subdivides a graph G if G’ is a graph
obtained from G by adding vertices on some of iis edges. More precisely, G’ is a
graph such that 7 (G)CcZ(G’) and for every edge e € £(G) there is an arc
(e, G') contained in G’ such that

(i) (e, G’) has the same endpoints as e,

() (d,G'Yn(e,G'Y=dne for d, e €&(G) and d # e, and

(iii) every vertex from 2°(G’) belongs to some (e, G') and every edge from
&(G') is an edge of some (e, G').
If v is a vertex of G and e is an edge of G containing v, then by (v, e, G') we
denote the edge of (e, G’) containing v.

Proposition 5.2. If G’ is a graph subdividing a graph G and G’ is a graph
subdividing G', then G" subdivides G.

Definition 5.3. Let ¢ : G|, — G, be a simplicial map between graphs. Let G| be a
graph subdividing G, and let ¢’ be a simplicial map of a graph G subdividing G,
onto Gy. We will say that ¢’ is a subdivision of ¢ maiching G| provided that
¢'(v) = ¢(v) for each vertex v € 7(G,), and for each edge ¢ € £(G,) we have that
— if ¢(e) is degenerate then (e, G}) = e, and
— if ¢(e) is an edge of G, then ¢’ is an isomorphism of (e, G}) onto (¢(e), G{).

Proposition 5.4. Let ¢:G, - G be a simplicial map between graphs. Let G, be a
graph subdividing G . Then there is a subdivision ¢' of ¢ matching G|,. Moreover, ¢’
Is unique up to an isomorphism.

Definition 5.5. Suppose G is a graph and S is a function from %°(G) into the set of
nonempty subsets of £(G). We say that S is an edge selection on G if v is a vertex
of e for each v € Z(G) and each e € S(v).

Suppose G, and G, are graphs, S is an edge selection on G, and ¢ is a
simplicial map from a subdivision G| of G, into G,. We say that ¢ is consistent
on § provided that there is a simplicial isomorphism A from a subdivision H, of
G, onto D(¢, G}) such that
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D (v, e, G c[Mv)]* for each v € Z(G,) and each e € S(v), and
(i) [AM))* c (e, G}) for each e € £(G,) and v € 7 ((e, HN\Z(G).
A will be called a consistency isomorphism.

Example 5.6. We will consider again (see Example 2.5) the Ingram map from [3].
This time it will be important to us that the map takes the extended triod into
itself, or rather, the domain is a subdivision of the range. Let T indicate the
extended triod with its vertices named as in Fig. 4.

Fig. 5 indicates the Ingram map from a tree 7' subdividing T onto 7. We will
denote this map by I. The dashed line graph is the domain of the map while the
solid black is the range and each vertex of the domain is mapped onto the nearest
vertex of the range. Note that I(v,) = v,, I(v,) =I(v,) =I(v,) = v, and 1(v;) = v,.

Let 0:T— T denote the symmetry of T about the axis v, —v;—v,, that is
a(vy) = vy, a(v) =0y, o(vy) =v,, o(v;)=v; and a(v,)=v,. Let I denote the
composition o o [,

Let S be an edge selection on T defined in the following way: S(v,) =
{{vgs v5), (v, v30} and S(v;) consists of all edges of T containing v; for =
1, 2, 3, 4. Observe that both I and [ are consistent on S. Let A and A denote the
consistency isomorphisms for I and I, respectively. Denote the map d[I) o A by I s
and d[i]- A by fl. Fig. 6 indicates I,. As usual, the dashed line graph is the
domain of the map while the solid black is the range and each vertex of the




P. Minc / Topology and its Applications 57 (1994) 1-21 15

domain is mapped onto the nearest vertex of the range. A figure for fl would be
like Fig. 6 reflected about a vertical line.

Again, observe that both I, and I are consistent on S. (Note that <U0, v &
S(vg).) Let A" and X denote the consistency 1somorph1sms for I, and Il, respec-
tively. Denote the map d[,]° A" by I,, and d[I 1o X by I . Fig. 7 indicates I,. A
figure for I, would be like Fig. 7 reflected about a vertical line. Observe that both
I, and I, are ultra light.

Definition 5.7. Suppose that G, and G, are graphs. Let §; and §, be edge
selections on G, and G,, respectively. Let G5 be a subdivision of G, and let
¥ : G, — G, be a simplicial map. We say that ¢ preserves (S|, S,) provided that
@ ¢(v, e, G)) € S(Y(v)) for each v € 7(G,) and each e € S,(v) and

(ii) for each two different edges e, ¢’ € &(G)) intersecting at a common vertex v
we have that either ¢(e) € S,(y(v)) or ¢(e’) € S (H(v)).

Example 58. Let /: 7' > T and [:T’' > T denote the Ingram maps defined in
Example 5.6. Let S be the edge selection defined in the same example. Observe
that both I and I preserve (S, $).
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Lemma 5.9. Suppose G is a graph and G| and G, are trees. Let S| and S, be edge
selections on G, and G, respectively. Let G| be a tree subdividing G, and let G, be
a tree subdividing G,. Suppose ¢:Gy{— Gy and i :GL— G, are light simplicial
maps such that ¢ is consistent on S, and  preserves (S,, S,). Let A;: H = D(¢, G})
be a consistency isomorphism for ¢, where H, is a subdivision of G,. Let ¢' : G; = G
be a simplicial subdivision of  matching G| and let " : H, - H, be a subdivision
of & matching H,. Then ¢ o ' is consistent on S, with a consistency isomorphism
Ay Hy = D(p o ', GY) such that Ay o " =dle, '] ° A,.

Proof. Let v, be a vertex of H,. Denote by v, the point ¢"(v,) € 7°(H,). Let C,
denote [A(v))]* and e denote ¢(C,). Observe that ¢, is an edge of G, and C, is
a component of ¢ !(ey). We will define A,(v,) by considering the cases where
v, € 7°(GS) and v, € Z(H)\ 7 (G)).

Case 1: v, € 7°(G)). In this case v; = y(v,) € Z(G,). We will prove that

(i) there is an edge e} € &(G}) containing v, such that ¢(e)) € S((v)). In case

where v, € 7(G,), let e, be an edge from S,(v,) and let e} = (v,, e,, G}). Since
¢ preserves (S, S,), we have the result that y(e}) € S\(v)).
In case where v, € Z(G,)\ 7(G,), let e, be the edge of G, such that v, is a
vertex of (e,, G5). Let e} and e} be the two edges of (e,, G}) containing v,. Since
¥ preserves (S, S,), we have the result at least one of these two edges, say e}, has
the property that ¢(e5) € S,(v,). Thus (i) holds.

Denote (e}) by e,. Observe that (v,, e;, G}) c[Ar,(v)]*. Since ¢ is light,
o(v,, e;, G)) =e¢,. Let C, be the component of (¢ o ') '(e,) containing v,.
Since ¢'((v,, €3, GY)) = (v, ey, G}), (v,, €3, G;) < C, and therefore e;=
o('(C,). Let A,(v,) be the element of D(¢ ° ', G5) representing C,.

We will prove additionally that if v, € Z(G))\7(G,), then C,C(e;, G U
(e5, G%). Suppose this is not true. Then there are two edges a and b of G}
meeting at a common vertex v such that ¢(v) # v, and (v, a, G5 U (v, b, G5) C
C,. Since ¢ preserves (S, S,), without loss of generality, we may assume that
Yy(a) € §,(y(v)). Since A, is a consistency isomorphism ($(v), ¥(a), G} C
[A(g(v)]*. Observe that '((v, a, G3)) = (¥(v), ¢(a), G)). So ¢'(v, a, G3)) is
an edge contained in both [A,(y(oN]* and [A,(v)]*. It follows that A, (¢y(v)) =
A(v)), a contradiction because A, is an isomorphism and ¢(v) # v,.

Case 2: v,€ 7(H)\7(G)). Let e,€&(G)) be the edge such that v, e
(e,, H,). Observe that y(e,) is an edge of G;. Denote this edge by e;. Since ' is
a subdivision of # matching G|, ' maps (e,, G5) isomorphically onto (e, G{).
Since v, € 7 ((e;, H))\7(G,) and consequently C; =[A(v)]* (e}, G)) there
is exactly one component C, of (")~ '(C,) N (e,, G5) such that '(C,) = C;. We
will show that C, is a component of (¢ o §')"*(e,). Clearly, C, C (¢ ° ") (e,).
Suppose C, is not a component of (¢  ¢')"!(e,). Then there is an edge a € £(G})
meeting e, at a common vertex v such that a # e, and ¢'((v, a, G5)) < C,. Since
v € 7(G5) and v, € Z(HI\7(GY), ¥(v) + ¢'((v,) = v,. Since G, is a tree and
C, is connected, ¢'((v, e,, G5) CC,. Since ¢ preserves (S;, S,), cither ¢(a) €
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S () or Yle,) € S(Y(v)). In either case we have the result that C, = [A,(¢(0))]*
and A,(¢(v)) = A (v,), which is impossible because A; is an isomorphism. Thus C,
is a component of (¢ o ') '(ey). Let A,(v,) be the element of D(¢ © ¢', G})
representing C,.

Clearly, A, is a simplicial map satisfying (i) and (ii) of Definition 5.5 and such
that A, o " =dle, '] o A,. Observe also that v, €[A,(v,)]* for each v, € Gj.
We will prove that A, is an isomorphism.

Let w be an arbitrary vertex of D(¢ ° ', G;) and let e¢” be an edge of G}
contained in w*. There is edge e’ € &(G}) such that e” c(e’, G5). Let U be the
union of [A,(v)]* where v € 7 ((e’, H,)). Since U is connected and it contains the
endpoints of e’, there is ve(e’, H,) such that e” c[A,(v)]*. Observe that
A,(v) =w and thus A, is surjective.

To conclude the proof it remains to show that A, is a bijection. Clearly, it will
be enough to prove that A, restricted to Z°(G) is a bijection. Let ¢ be a vertex of
D(p o ¢', G7) and let C denote the set c*. Suppose that v, and v} are two
different vertices of G; such that A,(v,) =c = A,(v}). Observe that v, € C and
vy, €C. Since ¢ is light and A, is an isomorphism, either ¢(v,)=y(v}) or
[A (@ )* N [A (0] does not contain an edge. Since ¢'(C) C[A,(y(v,))]*
N[A (Y@ N]* and ¢’ is light we have the result that ¢(v,) = ¥(v}). Observe that
v, and v, are not adjacent in G}, because ¢ is light. Since C is connected and G
is a tree, {v,, v3) CC. Let a and b be the two edges of G} contained in {v,, v})
intersecting at some vertex v. Since A,(v) was defined in such a way that either
(v,a, G)) C[A,(W)]* or (v, b, G7) C[A,(v)]*, we have the result that A,(v)=
A,(v,) and consequently A(¢(v)) = A (v,) for each v & (v,, v5) NZ(G}). Since
A, is an isomorphism ¢(v)=¢(v,) for each v e (v, vi) N Z(G,). This is
impossible, because  is light. O

Definition 5.10. Let n be a positive integer and let N denote cither the set
{0, 1,...,n} or the set of all nonnegative integers. Denote by N, the set N\ {0}.
Let Gy, G,, G,,... be a sequence of graphs with N as the set of indices. Let 3 be
a sequence of simplicial maps ¢, ¢,,... such that for each j€N,, ¢; maps a
graph G/ subdividing G; into G, ;. Using inductively Proposition 5.4, we can
define a sequence of simplicial maps ¢, ¥,,... such that ¢, = ¢, and for each
j € N1\ {1}, ¢; subdivides ¢; matching the domain of ¥;_,. For each j € N, denote
by 3; the domain of ;. Set 3, = G,. For every two integers i and j from N such
that i >j, let 3} denote the composition ¢;,, ° --- ° ¢, mapping 3, into X;. We
will say that the inverse system {3, 3!} is generated by the sequence 3.

Let §; be an edge selection on G; for j € N;. We will say that 3 preserves the
sequence S, S,,... if ¢; preserves (S, ,, S;) for each j € N\ {1}.

We say that two inverse (possibly finite) systems {K;, i} and {H,, nj} are
isomorphic if there is a sequence of isomorphisms Ay, A,..., where A i K, H,
such that A; o k;=mj o A, for i>j>0.
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Theorem 5.11. Let n be a positive integer and let N denote either the set {0, 1,..., n}
or the set of all nonnegative integers. Let N, denote the set N\{0}. Let G, be a graph
and let G, G,,... be a sequence of trees with N, as the set of indices. Let S; be an
edge selection on G; for jEN,. Let X be a sequence of simplicial maps ¢, ¢,,...
such that for each j € N,, ¢; maps a graph G| subdividing G, into G,_,. Suppose ¢,
is consistent on S, and 3 preserves the sequence S, S,,.... Let A;: H, - D(¢,, G{)
be a consistency isomorphism for ¢,, where H, is a subdivision of G,. Then the
system {D(2}, 3,), d[ 3}, 211} is isomorphic to the system generated by the sequence
dle]e A, @3, 3,

Proof. For each j €N \{1}, let ¢;: H;—> H,_, be a simplicial subdivision ¢; of
matching H,_,. Let H, denote D(G,) and let ¢, =d[¢,]° A,. Note that the
system {H, ;} is generated by the sequence dl¢,]° Ay, ¢;, ¢35....

Applying Lemma 5.9 repeatedly, we infer that, for each j € N\ {1}, there is a
consistency isomorphism A; of H, onto D(3}, 3) such that A,_, o ;=
d[Eé_l, 2}_1] ° )‘j-

Let A, be the identity on D(G). Observe that the sequence Ay, Ay, As,...
defines an isomorphism between {H,, ¢} and {D(Z}, X)), d[3}, 3!1. O

Example 5.12. Let /:T'— T and [:T’ > T denote the Ingram maps defined here
in Example 5.6. Let 3 be an infinite sequence of simplicial maps ¢, ¢,,... each
of which is either I or I. By {2, 2}} we denote the system generated by 3. Ingram
proved that the inverse limit of 3 has positive span and therefore is not chainable
(see [3, 4]). We will give here an alternate proof of this statement.

First we will prove that for each choice of ¢, ¢,,... we have

Claim. 3§ cannot be factored through an arc.

Clearly, the claim is true if n = 1. Now, suppose that the claim is true for each
sequence of n — 1 maps each of which is either [ or I. In particular, we assume
that the claim is true for the sequence ¢,,..., ¢,.

Let I,, I,, I, I, A, A, A" and A’ be as in Example 5.6. If ¢, =1 then set A, = A,
¢, =1, and A} =X’ Otherwise, if @, — [ thenset A, = A, ¢, =1, and A, = A". Use
Theorem 5.11 to get the result that the system {D(Z}§, 3)), d[3}, Sil7, is
isomorphic to the system generated by the sequence dle;l° Ay, @5, ©3,...,¢,.
Use Theorem 5.11 again to infer that the system {D*(3}, X)), d*[Z], ZiI/, is
isomorphic to the system generated by the sequence dly,] o X, ¢,, ¢3,...,¢,. Let
I' denote the sequence dl,]° Ay, @,, @3,...,¢, and let {I}, I'/}_, denote the
system generated by I

Suppose 37 can be factored through an arc. Then, by Theorem 2.12, d*[3}]
and consequently I'} can be factored through an arc. Since the map I'y = d[¢,] > X}
is either I, or I,, it is ultra light (see Example 5.6). By Theorem 4.3, I'!" can be
factored through an arc. Since the domain of I} is 7, the system {Fj, Fj"}j:1 is
generated by ¢,,..., ¢, and according to our assumption I'j’ cannot be factored
through an arc. This contradiction proves the claim.
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It follows from Theorem 3.3 that the inverse limit of the system {Z, 2}} is not
chainable and has positive span.

Proposition 5.13. Suppose ¢: G| — G, is a simplicial map between graphs. Let G
be a graph subdividing G and let ¢': G| — G be a subdivision of ¢ matching G|).
Then ¢ can be factored through an arc if and only if ¢' can be factored through an
arc.

Proof. Observe that clearly, if ¢ can be factored through an arc, then ¢’ also can
be factored through an arc. Suppose that there is an arc A’ and there are
simplicial maps a’: G{ > A" and B': A"’ > G suchthat B’ ca’'=¢'. Let V={v e
7 (A B'(v) € 7(G,)). Let A denote the graph with V' as its set of vertices such
that two vertices v,, v, € V' are adjacent if the subarc of A’ between v, and v,
does not contain other points of V. Clearly, A4 is an arc. Let 8: 4 - G be such
that B(v) = B'(v) for each v € V. Note that 8 is a simplicial map. Observe that
a'(v) €V for each v € 7(G)). Let a: G, = A4 be such that a(v) = a’(v) for each
v € 7(G,). One can verify that « is a simplicial map and B o a=¢. O

Example 5.14. We will consider here the continuum defined in [2] by Davis and
Ingram. Davis and Ingram showed that the continuum has positive span and
therefore is not chainable. We will give here an alternate proof of this statement.

Let T indicate the extended triod with its vertices named as in Fig. 8.

Fig. 9 indicates the Davis—Ingram map from a tree 7’ subdividing T onto 7.
The map will be denoted here by 8. As usual, the dashed line graph is the domain
of the map while the solid black is the range and each vertex of the domain is
maoped onto the nearest vertex of the range. Note that §(v,) = v,, 8(v,) =wvs,
8(v,) =8(vy) =v, and 8(v;) = 8(vs) = vs.

Q

[BEAY

N Vg4 Vg

O |o---0----0
L 4 o~ ° L)
c----0---0----0----0
Vi Vo V2 V3

Fig. 9.
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Let o : T — T denote the symmetry of T about the axis v,-v,, that is a(v,) = vy,
o) =v,, o(vy) =v,, o(v3)=vs, 0(v) =0, and o(vs) =0v,. Let & denote the
composition o ° 8.

Let S be an edge selection on T defined in the following way: S(v,) = {{v,, v,?,
<U()9 U4>}3 S(Ui) = {(\Uﬁi ’v’1>}s S(Uz) = {(\Ugs U2>}s S(U3) = {(\’{27 U3>}; 5(1’4) =
{{vy, vyy} and S(vs)={{v,, vsy}. Observe that both § and & preserve (S, §).
Observe also that both & and & are consistent on S. Let A and A denote the
consistency isomorphisms for & and §, respectively. Denote the map d[8] - A by
8,, and d[5] > A by 5,. Figs. 10 and 11 indicate (in the usual convention) 8, and 5,
respectively. Note that both §, and 51, are ultra light.

Let 3 be an infinite sequence of simplicial maps ¢,, ¢,,... each of which is
either & or 5. By {3, 3!} we denote the system generated by 3. (If ¢, =8 for each
i=1,2,..., the system {3, 2}} is identical with the one described in [2].) We will
prove for each choice of ¢, ¢,,... we have that

Claim. 3§ cannot be factored through an arc.

Clearly, the claim is true if # = 1. Now, suppose that the claim is true for each
sequence of n — 1 maps each of which is either é or 5. In particular, we assume
that the claim is true for the sequence ¢,,..., ¢,.

If @, =& then set A, = A, otherwise, if ¢, =& then set A, = A. Let I' denote the
sequence dl¢,]° Ay, ¢;, ¢3,..., ¢, and let {I}, I}i}]f’zo denote the system generated
by I'. Use Theorem 5.11 to get the result that the system {D(3, %)), d[ 3§, 3iD.,
is isomorphic to {I}, I} ,.

Suppose 37 can be factored through an arc. Then, by Theorem 2.12, d[ 3] and
consequently I'} can be factored through an arc. Since the map I'y =d[¢;]° A, is
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either 8, or 51, it is ultra light. By Theorem 4.3, I'/' can be factored through an
arc. Since the domain of I'} is a graph subdividing T, the system {I, I/}, is
generated by subdivisions of ¢,,...,¢, and, according to our assumption and
Proposition 5.13, I']* cannot be factored through an arc. This contradiction proves
the claim.

It follows from Theorem 3.3 that the inverse limit of the system {3, 3%} is not
chainable and has positive span.
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