On simplicial maps and chainable continua

Piotr Minc
Division of Mathematics (FAT), Auburn University, Auburn, AL 36849-5310, USA

(Received 8 July 1992; revised 16 March 1993)

Abstract

An operation d on simplicial maps between graphs is introduced and used to characterize simplicial maps which can be factored through an arc. The characterization yields a new technique of showing that some continua are not chainable and allows to prove that span zero is equivalent to chainability for inverse limits of trees with simplicial bonding maps.

Key words: Simplicial maps; Graphs; Factorization through an arc; Continua; Chainability; Span

AMS (MOS) Subj. Class.: 54F15

1. Introduction

By a graph we understand a one-dimensional, finite simplicial complex. If G is a graph then $\mathscr{V}(G)$ will denote the set of vertices and $\mathscr{E}(G)$ will denote the set of edges. By the order of a vertex v we understand the number of edges containing v. A vertex of order 1 is called an endpoint. Two points belonging to an edge are called adjacent. A simplicial map of a graph G_{1} into a graph G_{0} is a function from $\mathscr{V}\left(G_{1}\right)$ into $\mathscr{V}\left(G_{0}\right)$ taking every two adjacent vertices either onto a pair of adjacent vertices or onto a single vertex. A simplicial map is light if the image of each edge is nondegenerate.

In this paper the same notation is kept for a graph and for its geometric realization. We will assume that every graph is a subset of the three-dimensional Euclidean space and every edge is a straight linear closed segment between its vertices. In this convention a simplicial map is understood as an actual continuous mapping (linearly extended to the edges). But it is important to note that a graph, either abstract or geometric, has a fixed collection of vertices and any change in this collection changes the graph.

A graph with a geometric realization homeomorphic to an arc is simply called an arc. Observe that two arcs are isomorphic if and only if they have the same number of vertices. A connected graph without a simple closed curve is called a tree. A tree consisting of three edges having a common vertex is called a simple triod. A graph with three vertices and three edges is called a simple triangle. If u and v are two adjacent vertices of a graph, by $\langle u, v\rangle$ we will denote the edge between u and v. Additionally, if u and v are two vertices of a tree, by $\langle u, v\rangle$ we will denote the arc between u and v.

A continuum is considered here to be a conncctcd and compact metric space. A continuum is chainable if it is the inverse limit of a sequence of arcs (the bonding maps are continuous and do not have to be simplicial). A continuum is tree-like if it is the inverse limit of a sequence of trees. If X is a continuum denote by π_{1} and π_{2} the projections of $X \times X$ onto the first and the second components. Let ρ be the distance function in X. The surjective span of $X, \sigma^{*}(X)$, is the least upper bound of all real numbers ε for which there is a continuum Z contained in $X \times X$ such that $\pi_{1}(Z)=X=\pi_{2}(Z)$ and $\rho(x, y) \geqslant \varepsilon$ for each $(x, y) \in Z$. The span of X, $\sigma(X)$, is defined by the formula $\sigma(X)=\operatorname{Sup}\left\{\sigma^{*}(A) \mid A \subset X, A \neq \emptyset\right.$ connected $\}$. See [6].

In 1964, Lelek proved that a chainable continuum has span zero [5]. It is unknown whether (surjective) span zero implies chainability [1, Problem \#8]. Several powerful results concerning this and related problems were obtained by Oversteegen in [10, 11], and jointly by Oversteegen and Tymchatyn in [12-16]. Among other things, they proved that a positive answer to the problem would complete the classification of homogeneous plane continua [12].

In order to prove that a continuum is chainable one needs to arrange elements of a (sufficiently fine) open covering into a (coarser) chain. To this end some combinatorial type of tools seems to be required. Mohler and Oversteegen in [8] and Oversteegen in [9] considered tree-words (trees with vertices labeled by letters) and gave some conditions sufficient for reducibility of tree-words to chain-words. The question of reducibility to chain-words is equivalent to the question when a simplicial map between graphs can be factored through an arc. In this paper we introduce an operation d assigning to each simplicial map φ between graphs, a simplicial map $d[\varphi]$ between another pair of graphs. Using this operation we obtain a characterization of simplicial maps between graphs that can be factored through an arc. The characterization is then used to prove that surjective span zero is equivalent to chainability for inverse limits of trees with simplicial bonding maps. (A similar result, with surjective span replaced by span, was announced by Oversteegen at the Prague Topological Symposium, Czechoslovakia, 1986. See [10, 11].) The characterization is also used to develop a technique of showing that some continua are not chainable. As an illustration of the technique we give a new proof that classic atriodic continua by Ingram [3, 4] and Davis and Ingram [2], are not chainable. An extension of this technique will be used in [7] to give an example of an atriodic continuum which is 4 -od-like but not triod-like.

2. Simplicial maps which can be factored through an are

Definition 2.1. For a graph G, let $D(G)$ denote the graph such that
(i) the set of vertices of $D(G)$ consists of edges of G and
(ii) two vertices of $D(G)$ are adjacent if and only if they intersect (as edges of G).

In particular, in the trivial case, when G contains no edges, $D(G)$ is empty. Even though $\mathscr{V}(D(G))=\mathscr{E}(G)$, it will be convenient to have a notation avoiding confusion between the same object being either a vertex or an edge. Therefore if $v \in \mathscr{V}(D(G))$ then by v^{*} we will understand the edge v of the graph G.

Example 2.2. Fig. 1 gives a few examples of the operation D. If the solid black graph is G, then the dashed line graph is $D(G)$. Vertices of $D(G)$ are located close to the centers of the corresponding edges of G.

Proposition 2.3. If G is an arc (that is G is a graph and its geometric realization is homeomorphic to an arc) with $n>2$ vertices, then $D(G)$ is an arc with $n-1$ vertices.

Definition 2.4. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. For every (closed) edge $e \in \mathscr{E}\left(G_{0}\right)$, let $\mathscr{K}(e)$ denote the set of components of $\varphi^{-1}(e)$ which are mapped by φ onto e. Denote by $\mathscr{K}(\varphi)$ the union of all $\mathscr{K}(e)$. Let $D\left(\varphi, G_{1}\right)$ be the graph such that
(i) the vertices of $D\left(\varphi, G_{1}\right)$ are elements of $\mathscr{F}(\varphi)$, and
(ii) two vertices of $D\left(\varphi, G_{1}\right)$ are adjacent if and only if they intersect (as subgraphs of G_{1}).

Let $d[\varphi]: D\left(\varphi, G_{1}\right) \rightarrow D\left(G_{0}\right)$ be the map defined by the formula $d[\varphi](v)=\varphi(v)$ for every vertex v of $D\left(\varphi, G_{1}\right)$.

Every vertex $v \in \mathscr{V}\left(D\left(\varphi, G_{1}\right)\right)$ is also a subgraph of G_{1}. To avoid confusion we will denote this subgraph by v^{*}.

Observe that $d[\varphi]$ may be empty. This will occur for example when G_{1} is a point.

Fig. 1.

Fig. 2.

Example 2.5. Fig. 2 indicates how the operation D can be applied to the Ingram map [3]. The dashed line graph is the domain of the map while the solid black is the range and each vertex of the domain is mapped onto the nearest vertex of the range.

Proposition 2.6. If $\varphi: G_{1} \rightarrow G_{0}$ is a simplicial map, then $d[\varphi]$ is a light simplicial map.

Proof. Let v_{1} and v_{2} be two adjacent vertices of $D\left(\varphi, G_{1}\right)$. Note that v_{1}^{*} and v_{1}^{*} intersect. Let e_{1} and e_{2} be the edges of G_{0} such that v_{1}^{*} and v_{2}^{*} are components of $\varphi^{-1}\left(e_{1}\right)$ and $\varphi^{-1}\left(e_{2}\right)$, respectively. Since $v_{1} \neq v_{2}$ and $v_{1}^{*} \cap v_{2}^{*} \neq \emptyset$, we have the result that $e_{1} \neq e_{2}$ and $e_{1} \cap e_{2} \neq \emptyset$. Since $d[\varphi]\left(v_{i}\right)$ is the vertex of $D\left(G_{0}\right)$ representing e_{i}, the vertices $d[\varphi]\left(v_{1}\right)$ and $d[\varphi]\left(v_{2}\right)$ are different and adjacent.

Proposition 2.7. Let φ be a simplicial map of an arc A with n vertices into a graph G. Then $D(\varphi, A)$ is either the empty set, or a point, or an arc with no more than $n-1$ vertices.

Proof. Let $a_{1}, a_{2}, \ldots, a_{n}$ denote the sequence of consecutive vertices of A. For an arbitrary vertex $v \in D(\varphi, A)$, let $j(v)$ be an index such that $\left\langle a_{j(v)}, a_{j(v)+1}\right\rangle \subset v^{*}$ and $\varphi\left(\left\langle a_{j(v)}, a_{j(v)+1}\right\rangle\right)$ is an edge. The proposition follows from the following observation. If v and w are two different vertices of $D(\varphi, A)$ then either $w^{*} \subset\left\langle a_{1}, a_{j(v)}\right\rangle$ if $j(w)<j(v)$, or $w^{*} \subset\left\langle a_{j(v)+1}, a_{n}\right\rangle$ if $j(w)>j(v)$.

Definition 2.8. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Then $d[d[\varphi]]$ will be denoted by $d^{2}[\varphi]$, and recursively $d\left[d^{n-1}[\varphi]\right]$ will be denoted by $d^{n}[\varphi]$. The domain of $d^{n}[\varphi]$ will be denoted by $D^{n}\left(\varphi, G_{1}\right)$ and the range by $D^{n}\left(G_{0}\right)$.

Fig. 3.

Example 2.9. Fig. 3 indicates further iterations of the operation d applied to the Ingram map. Like in the previous example the dashed line graph is the domain of the map while the solid black is the range and each vertex of the domain is mapped onto the nearest vertex of the range.

Definition 2.10. Let $\varphi: G_{1} \rightarrow G_{0}$ and $\psi: G_{2} \rightarrow G_{1}$ be simplicial maps between graphs. Let $d[\varphi, \psi]: D\left(\varphi \circ \psi, G_{2}\right) \rightarrow D\left(\varphi, G_{1}\right)$ be the map such that for every vertex v of $D\left(\varphi \circ \psi, G_{2}\right), d[\varphi, \psi](v)$ is the vertex of $D\left(\varphi, G_{1}\right)$ containing $\psi\left(v^{*}\right)$. Let $d^{n}[\varphi, \psi]: D^{n}\left(\varphi \circ \psi, G_{2}\right) \rightarrow D^{n}\left(\varphi, G_{1}\right)$ denote the map defined by the formula $d^{n}[\varphi, \psi]=d\left[d^{n-1}[\varphi], d^{n-1}[\varphi, \psi]\right]$.

Proposition 2.11. Let $\varphi: G_{1} \rightarrow G_{0}$ and $\psi: G_{2} \rightarrow G_{1}$ be simplicial maps between graphs. Then $d^{n}[\varphi, \psi]$ is a simplicial map and $d^{n}[\varphi \circ \psi]=d^{n}[\varphi] \circ d^{n}[\varphi, \psi]$.

Proof. Let v be a vertex of $D\left(\varphi \circ \psi, G_{2}\right)$. Observe that $\varphi \circ \psi(v)$ is an edge of G_{0}. Denote this edge by e. Let C denote $\psi\left(v^{*}\right)$. Since C is a connected subgraph of G_{1} and $\varphi(C)=e$, we have the result that $d[\varphi, \psi](v)$ is the only vertex of $D\left(\varphi, G_{1}\right)$ containing C. Obscrve that cach of $d[\varphi \circ \psi](v)$ and $d[\varphi] \circ d[\varphi, \psi](v)$ is the element of $D\left(G_{0}\right)$ representing e. Now, if v_{1} is a vertex of $D\left(\varphi \circ \psi, G_{2}\right)$ adjacent to v, then v^{*} and v_{1}^{*} intersect, and consequently $\psi\left(v^{*}\right)$ and $\psi\left(v_{1}^{*}\right)$ intersect. It follows that $d[\varphi, \psi](v)$ and $d[\varphi, \psi]\left(v_{1}\right)$ are adjacent. So $d[\varphi, \psi]$ is a simplicial map. The proof for an arbitrary integer follows by induction.

Theorem 2.12. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Then φ can be factored through an arc if and only if $d[\varphi]$ can be factored through an arc.

Proof. If φ can be factored through an arc, then it follows from Propositions 2.7 and 2.11 that $d[\varphi]$ can be factored through an arc.

Note that in order to prove the theorem in the other direction it is sufficient to prove it in the case when G_{1} is connected. Observe also that the proof is trivial in the cases when $d[\varphi]$ is empty or $d[\varphi]$ maps $D\left(\varphi, G_{1}\right)$ into one point.

Suppose that that there is a nondegenerate arc I, and there are two simplicial maps $\tilde{\alpha}: D\left(\varphi, G_{1}\right) \rightarrow I$ and $\tilde{\beta}: I \rightarrow D\left(G_{0}\right)$ such that $d[\varphi]=\tilde{\beta} \circ \tilde{\alpha}$. We may assume that $\tilde{\boldsymbol{\alpha}}$ maps $D\left(\varphi, G_{1}\right)$ onto I. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of I ordered by one of the two natural orders on the arc I. Observe also that if for some i, $\tilde{\beta}\left(v_{i}\right)=\tilde{\beta}\left(v_{i+1}\right)$, then the vertices v_{i} and v_{i+1} could be identified. So we may assume that $\tilde{\beta}\left(v_{i}\right) \neq \tilde{\beta}\left(v_{i+1}\right)$ for $i=1, \ldots, n-1$. For each $i-1, \ldots, n$, let e_{i} denote the edge $\left(\tilde{\beta}\left(v_{i}\right)^{*}\right.$ of G_{0} which corresponds to $\tilde{\beta}\left(v_{i}\right)$. By our assumption e_{i} and e_{i+1} are two different edges. Since $\tilde{\beta}$ is simplicial e_{i} and e_{i+1} intersect at a vertex. Denote this vertex by w_{i}. Let w_{0} be the vertex of e_{1} different from w_{1}, let w_{n} be the vertex of e_{n} different from w_{n-1}. Let A denote the set $\left\{i=1, \ldots, n \mid w_{i-1} \neq w_{i}\right\}$, and let B be the complement of A in $\{1, \ldots, n\}$. For each $i \in B$, let w_{i}^{\prime} be the vertex of e_{i} different from w_{i}. Let J be an arc which is the union of subarcs J_{1}, J_{2}, \ldots, J_{n} such that J_{i} is a single edge with vertices s_{i-1} and s_{i} for each $i \in A$, and J_{i} is the union of two edges with vertices $s_{i-1}-s_{i}^{\prime}-s_{i}$ for each $i \in B$. Let $\beta: J \rightarrow G_{0}$ be the simplicial map defined by $\beta\left(s_{i}\right)=w_{i}$ for $i=0, \ldots, n$, and $\beta\left(s_{i}^{\prime}\right)=$ w_{i}^{\prime} for $i \in B$. In order to complete the proof we need to define a simplicial map $\alpha: G_{1} \rightarrow J$ such that $\varphi=\beta \circ \alpha$.

Let V_{i} be the set of the vertices $v \in \mathscr{V}\left(G_{1}\right)$ which are contained in the union of vertices of $\tilde{\boldsymbol{\alpha}}^{-1}\left(v_{i}\right)$. (Recall that $\tilde{\alpha}^{-1}\left(v_{i}\right)$ is a subset of $D\left(\varphi, G_{1}\right)$, and each vertex of $D\left(\varphi, G_{1}\right)$ is a subgraph of G_{1}.) Observe that $\mathscr{V}\left(G_{1}\right)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ and $V_{\mathrm{i}} \cap V_{j} \neq \emptyset$ if and only if $|i j| \leqslant 1$. Note also that $\varphi\left(V_{i} \cap V_{i+1}\right)=w_{i}$. Let Y_{i} denote the set $\varphi^{-1}\left(w_{i}\right) \cap V_{i}$. For each $i \in B$, let U_{i} denote the set $V_{i} \cap V_{i+1}$, and let T_{i} denote the set $Y_{i} \backslash U$.

Let u be an arbitrary vertex of U_{i} and let t be an arbitrary vertex of T_{i}. We will show that u and t are not adjacent. Suppose, to the contrary, that u and t are adjacent. Let x be the vertex of $D\left(\varphi, G_{1}\right)$ such that $u \in x^{*}$ and $\tilde{\alpha}(x)=v_{i+1}$. Since x^{*} is a component of $\varphi^{-1}\left(e_{i+1}\right), w_{i}$ is a vertex of e_{i+1} and the edge between u and t is mapped by φ onto w_{i}, we have the result that $t \in x^{*}$ and consequently $t \in U_{i}$, a contradiction.

Define $\alpha: G_{1} \rightarrow J$ in the following way: $\alpha(v)=s_{i}$ for $i \in A$ and $v \in Y_{i}, \alpha(v)=s_{i-1}$ for $i \in A$ and $v \in V_{i} \backslash Y_{i}, \alpha(v)=s_{i}$ for $i \in B$ and $v \in U_{i}, \alpha(v)=s_{i-1}$ for $i \in B$ and $v \in T_{i}$ and $\alpha(v)=s_{i}^{\prime}$ for $i \in B$ and $v \notin U_{i} \cup T_{i}$. It can be readily verified that α is a simplicial map such that $\varphi=\beta \circ \alpha$.
Theorem 2.13. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Then φ can be factored through an arc if and only if there is an integer n such that $d^{n}[\varphi]$ is empty.

Proof. Suppose that there is an arc I and there are simplicial maps $\alpha: G_{1} \rightarrow I$ and $\beta: I \rightarrow G_{0}$ such that $\varphi=\beta \circ \alpha$. Let n be the number of vertices of I. By Proposition 2.7, the map $d^{n}[\beta]$ is empty. It follows from Proposition 2.11 that $d^{n}[\varphi]$ is also empty.

If $d^{n}[\varphi]$ is empty, then it can be factored through an arc, and the proof follows from Theorem 2.12.

Proposition 2.14. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Then every simple triangle contained in $D\left(\varphi, G_{1}\right)$ is mapped by $d[\varphi]$ onto a simple triangle in $D\left(G_{0}\right)$.

Proof. Let $a, b, c \in \mathscr{V}\left(D\left(\varphi, G_{1}\right)\right)$ form a simple triangle. Consider the subgraphs a^{*}, b^{*} and c^{*} of G_{1} represented by a, b and c, respectively. If, for instance, $\varphi\left(a^{*}\right)=\varphi\left(b^{*}\right)$, then since a^{*} and b^{*} are components of $\varphi^{-1}\left(\varphi\left(a^{*}\right)\right)$ and they intersect, we have that $a^{*}-b^{*}$ and consequently $a-b$. So $\varphi\left(a^{*}\right), \varphi\left(b^{*}\right)$ and $\varphi\left(c^{*}\right)$ are three different edges of G_{0}. Since each two of them intersect, $\varphi\left(a^{*}\right)$, $\varphi\left(b^{*}\right)$ and $\varphi\left(c^{*}\right)$ form a simple triangle in $D\left(G_{0}\right)$.

The following proposition follows readily from Proposition 2.14.
Proposition 2.15. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs such that $D^{n}\left(\varphi, G_{1}\right)$ contains a simple triangle for some n. Then $D^{m}\left(\varphi, G_{1}\right)$ contains a simple triangle for every $m \geqslant n$.

Proposition 2.16. Let φ be a simplicial map of a tree G_{1} into a graph G_{0}. Suppose that there is no simple triangle in $D\left(\varphi, G_{1}\right)$. Then $D\left(\varphi, G_{1}\right)$ is a tree. Moreover, if every arc contained in G_{1} has at most n vertices then every arc contained in $D\left(\varphi, G_{1}\right)$ has at most $n-1$ vertices.

Proof. Let $v_{1}, v_{2}, \ldots v_{k}$ be a sequence of vertices of $D\left(\varphi, G_{1}\right)$ such that v_{i} and v_{i+1} are two ends of an edge from $\mathscr{E}\left(D\left(\varphi, G_{1}\right)\right)$ for $i=1, \ldots, k-1$, and $v_{i-1} \neq v_{i+1}$ for $i=2, \ldots, k-1$. To prove the proposition it is enough to show that $v_{1}, v_{2}, \ldots, v_{k}$ are distinct and that k is less than n.

The set $\left(v_{i}\right)^{*}$ is a subtree of G_{1}. Observe that $\left(v_{i-1}\right)^{*} \cap\left(v_{i+1}\right)^{*}=\emptyset$ for $i=2, \ldots, k-1$, because otherwise v_{i-1}, v_{i} and v_{i+1} would form a simple triangle. There is a vertex $p_{0} \in\left(v_{1}\right)^{*} \backslash\left(v_{2}\right)^{*}$. For each $i=1, \ldots, k-1$, let p_{i} be a point of $\left(v_{i}\right)^{*} \cap\left(v_{i+1}\right)^{*}$ such that the arc A_{i} between p_{i-1} and p_{i} meets $\left(v_{i+1}\right)^{*}$ at p_{i}. There is a vertex $p_{k} \in\left(v_{k}\right)^{*} \backslash\left(v_{k-1}\right)^{*}$. Observe that $p_{i} \neq p_{i+1}$ for $i=1, \ldots, k-1$. Let A_{k} be the arc between p_{k-1} and p_{k}. Since A_{i+1} is contained in $\left(v_{i+1}\right)^{*}$, we have that $A_{i} \cap A_{i+1}=\left\{p_{i}\right\}$ for $i=1, \ldots, k-1$. Since G_{1} is a tree, the union of A_{1}, \ldots, A_{k} is an arc. Denote this arc by A. Sincc A has at least $k+1$ vertices, k is less than n. Observe that $\left(v_{i}\right)^{*} \cap A_{i+2}=\emptyset$, because $A_{i+2} \subset\left(v_{i+2}\right)^{*}$ and $\left(v_{i}\right)^{*} \cap$ $\left(v_{i+2}\right)^{*}=\emptyset$. Since the intersection $v_{i}^{*} \cap A$ is connected and $v_{i} \neq v_{i+1}$, we have the result that $v_{i} \neq v_{j}$ for $i \neq j$.

Proposition 2.17. Let φ be a simplicial map of a tree G_{1} into a graph G_{0} and let ψ be a map of a tree G_{2} into G_{1}. If $D\left(\varphi, G_{1}\right)$ is a tree then $D\left(\varphi \circ \psi, G_{2}\right)$ is a tree.

Proof. Suppose that $D\left(\varphi \circ \psi, G_{2}\right)$ is not a tree. Then by Proposition 2.16, it contains a simple triangle T. By Proposition $2.14, d[\varphi \circ \psi]$ maps T onto a simple triangle. Since $d[\varphi \circ \psi]=d[\varphi] \circ d[\varphi, \psi], d[\varphi, \psi](T)$ is a simple triangle and $D\left(\varphi, G_{1}\right)$ is not a tree.

Theorem 2.18. Let G_{1} be a tree such that every arc contained in G_{1} has at most $\mathrm{n}+1$ vertices. Let φ be a simplicial map of G_{1} into a graph G_{0}. Then φ cannot be factored through an arc if and only if $D^{n}\left(\varphi, G_{1}\right)$ contains a simple triangle.

Proof. If $D^{n}\left(\varphi, G_{1}\right)$ contains a simple triangle then, by Proposition $2.15, D^{m}\left(\varphi, G_{1}\right)$ contains a simple triangle for every $m \geqslant n$. It follows from Theorem 2.13 that φ cannot be factored through an arc.

If $D^{n}\left(\varphi, G_{1}\right)$ does not contain a simple triangle then it follows from Proposition 2.15 that $D^{i}\left(\varphi, G_{1}\right)$ does not contain a simple triangle for $i=1, \ldots, n$. Using n times Proposition 2.16 we get that $D^{n}\left(\varphi, G_{1}\right)$ is a tree such that every arc contained in $D^{n}\left(\varphi, G_{1}\right)$ has at most one ($n+1-n$) vertex. Of course, this can only happen if $D^{n}\left(\varphi, G_{1}\right)$ is either empty or a point. Since $d^{n+1}[\varphi]$ is empty, Theorem 2.13 implies that φ can be factored through an arc.

3. Inverse limits of trees with simplicial bonding maps.

In this section we use the operation d to prove that surjective span zero is equivalent to chainability for inverse limits of trees with simplicial bonding maps. It should be noted here that a similar result, with surjective span replaced by span, was announced by Oversteegen at the Prague Topological Symposium, Czechoslovakia, 1986. See [10, 11].

Lemma 3.1. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between connected graphs. Suppose that there are two simplicial maps $\tilde{\alpha}$ and $\tilde{\beta}$ from an arc I onto $D\left(\varphi, G_{1}\right)$ such that $d[\varphi](\tilde{\alpha}(v)) \neq d[\varphi](\tilde{\beta}(v))$ for every vertex v of $\mathscr{V}(I)$ and $d[\varphi](\tilde{\alpha}(e)) \neq d[\varphi](\tilde{\beta}(e))$ for every edge e of $\mathscr{E}(I)$. Then there are two simplicial maps α and β from an arc J onto G_{1} such that $\varphi(\alpha(\nu)) \neq \varphi(\beta(\nu))$ for every vertex v from $\mathscr{V}(J)$ and $\varphi(\alpha(e)) \neq$ $\varphi(\beta(e))$ for every edge e from $\mathscr{E}(J)$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of I ordered by one of the two natural orders on the arc I. Let A_{i} denote the subgraph $\left(\tilde{\alpha}\left(v_{i}\right)\right)^{*}$ of G_{1} represented by $\tilde{\alpha}\left(v_{i}\right)$ and B_{i} be the subgraph $\left(\tilde{\beta}\left(v_{i}\right)\right)^{*}$ of G_{1} represented by $\tilde{\beta}\left(v_{i}\right)$.
Claim 1. Let $a_{i}^{\prime}, a_{i+1}^{\prime} \in \mathscr{V}\left(A_{i}\right)$ and $b_{i}^{\prime}, b_{i+1}^{\prime} \in \mathscr{V}\left(B_{i}\right)$ be such that $\varphi\left(a_{i}^{\prime}\right) \neq \varphi\left(b_{i}^{\prime}\right)$ and $\varphi\left(a_{i+1}^{\prime}\right) \neq \varphi\left(b_{i+1}^{\prime}\right)$. Then there is an arc J_{i}^{\prime} with the endvertices c_{i}^{\prime} and c_{i+1}^{\prime}, and there are simplicial maps α_{i}^{\prime} of J_{i}^{\prime} onto A_{i} and β_{i}^{\prime} of J_{i}^{\prime} onto B_{i} such that $\alpha_{i}^{\prime}\left(c_{i}^{\prime}\right)=a_{i}^{\prime}$, $\alpha_{i}^{\prime}\left(c_{i+1}^{\prime}\right)=a_{i+1}^{\prime}, \beta_{i}^{\prime}\left(c_{i}^{\prime}\right)=b_{i}^{\prime}, \beta_{i}^{\prime}\left(c_{i+1}^{\prime}\right)=b_{i+1}^{\prime}, \varphi\left(\alpha_{i}^{\prime}(v)\right) \neq \varphi\left(\beta_{i}^{\prime}(v)\right)$ for every vertex v from $\mathscr{V}\left(J_{i}^{\prime}\right)$ and $\varphi\left(\alpha_{i}^{\prime}(e)\right) \neq \varphi\left(\beta_{i}^{\prime}(e)\right)$ for every edge e from $\mathscr{E}\left(J_{i}^{\prime}\right)$.

Observe that $\varphi\left(A_{i}\right)$ and $\varphi\left(B_{i}\right)$ are edges from $\mathscr{E}\left(G_{0}\right)$. Since $d[\varphi]\left(\tilde{\boldsymbol{\alpha}}\left(v_{i}\right)\right) \neq$ $d[\varphi]\left(\bar{\beta}\left(v_{i}\right)\right)$, we have that $\varphi\left(A_{i}\right) \neq \varphi\left(B_{i}\right)$. In the case when $\varphi\left(A_{i}\right)$ and $\varphi\left(B_{i}\right)$ are disjoint the claim is trivial. So we may assume that $\varphi\left(A_{i}\right)$ and $\varphi\left(B_{i}\right)$ have a common vertex p. Let a be the other vertex of $\varphi\left(A_{i}\right)$ and let b be the other vertex of $\varphi\left(B_{i}\right)$. Since $\varphi\left(a_{i+1}^{\prime}\right) \neq \varphi\left(b_{i+1}^{\prime}\right)$, without loss of generality we may assume that $\varphi\left(a_{i+1}^{\prime}\right) \neq p$. Since B_{i} is connected, there is an arc J^{\prime} (possibly degenerate) with endpoints c_{i}^{\prime} and d^{\prime}, and there is a simplicial map β^{\prime} of J^{\prime} into B_{i} such that $\beta^{\prime}\left(c_{i}^{\prime}\right)=b_{i}^{\prime}, \varphi\left(\beta^{\prime}\left(d^{\prime}\right)\right)=b$ and $\varphi\left(\beta^{\prime}(v)\right)=\varphi\left(b_{i}^{\prime}\right)$ for every vertex $v \in \mathscr{V}\left(J^{\prime}\right)$ different from d^{\prime}. Let α^{\prime} be the constant map of J^{\prime} onto a_{i}^{\prime}. Since Λ_{i} is connected, there is an $\operatorname{arc} J^{\prime \prime}$ with endpoints d^{\prime} and $d^{\prime \prime}$, and there is a simplicial map $\alpha^{\prime \prime}$ of $J^{\prime \prime}$ onto A_{i} such that $\alpha^{\prime \prime}\left(d^{\prime}\right)=a_{i}^{\prime}$ and $\left.\alpha^{\prime \prime}\left(d^{\prime \prime}\right)\right)=a_{i+1}^{\prime}$. Let $\beta^{\prime \prime}$ be the constant map of $J^{\prime \prime}$ onto $\beta^{\prime}\left(d^{\prime}\right)$. There is an arc $J^{\prime \prime \prime}$ with endpoints $d^{\prime \prime}$ and c_{i+1}^{\prime}, and there is a simplicial map $\beta^{\prime \prime \prime}$ of $J^{\prime \prime \prime}$ onto B_{i} such that $\beta^{\prime \prime \prime}\left(d^{\prime \prime}\right)=\beta^{\prime \prime}\left(d^{\prime \prime}\right)$ and $\beta^{\prime \prime \prime}\left(c_{i+1}^{\prime}\right)=b_{i+1}^{\prime}$. Let $\alpha^{\prime \prime \prime}$ be the constant map of $J^{\prime \prime \prime}$ onto a_{i+1}^{\prime}. Define J_{i}^{\prime} as the union of $J^{\prime}, J^{\prime \prime}$ and $J^{\prime \prime \prime}$. Define α_{i}^{\prime} as the union of $\alpha^{\prime}, \alpha^{\prime \prime}$ and $\alpha^{\prime \prime \prime}$. Finally, let β_{i}^{\prime} be the union of $\beta^{\prime}, \beta^{\prime \prime}$ and $\beta^{\prime \prime \prime}$. It is easy to see that so defined $J_{i}^{\prime}, \alpha_{i}^{\prime}$ and β_{i}^{\prime} satisfy the claim.
Claim 2. Let $a_{k} \in \mathscr{V}\left(A_{k}\right)$ and $b_{k} \in \mathscr{V}\left(B_{k}\right)$ be such that $\varphi\left(a_{k}\right) \neq \varphi\left(b_{k}\right)$. Then there is an arc J_{k} with the end vertices c_{k} and c_{k+1}, and there are simplicial maps α_{k} of J_{k} onto $A_{k} \cup A_{k+1}$ and β_{k} of J_{k} onto $B_{k} \cup B_{k+1}$ such that $\alpha_{k}\left(c_{k}\right)=a_{k}, \beta_{k}\left(c_{k}\right)=b_{k}$, $\alpha_{k}\left(c_{k+1}\right) \in \mathscr{V}\left(A_{k+1}\right), \beta_{k}\left(c_{k+1}\right) \in \mathscr{V}\left(B_{k+1}\right), \varphi\left(\alpha_{k}(v)\right) \neq \varphi\left(\beta_{k}(v)\right)$ for every vertex v from $\mathscr{V}\left(J_{k}\right)$ and $\varphi\left(\alpha_{k}(e)\right) \neq \varphi\left(\beta_{k}(e)\right)$ for every edge e from $\mathscr{E}\left(J_{k}\right)$.

Let a be a point of $A_{k} \cap A_{k+1}$ and let b be a point of $B_{k} \cap B_{k+1}$. We will consider the following two cases: $\varphi(a) \neq \varphi(b)$ and $\varphi(a)=\varphi(b)$.

Case 1: $\varphi(a) \neq \varphi(b)$. Use Claim 1 with $i=k, a_{i}^{\prime}=a_{k}, b_{i}^{\prime}=b_{k}, a_{i+1}^{\prime}=a$ and $b_{i+1}^{\prime}=b$. Then use Claim 1 again with $i=k+1, a_{i}^{\prime}=a, b_{i}^{\prime}=b, a_{i+1}^{\prime}=a$ and $b_{i+1}^{\prime}=b$. Define J_{k} as the union of J_{k}^{\prime} and J_{k+1}^{\prime}. Set $c_{k}=c_{k}^{\prime}$ and $c_{k+1}=c_{k+2}^{\prime}$. Define α_{k} as the union of α_{k}^{\prime} and α_{k+1}^{\prime}. Finally, let β_{k} be the union of β_{k}^{\prime} and β_{k+1}^{\prime}. It is easy to see that so defined J_{k}, α_{k} and β_{k} satisfy the claim.

Case 2: $\varphi(a)=\varphi(b)=p$. Observe that p is a common vertex of the edges $\varphi\left(A_{k}\right), \varphi\left(A_{k+1}\right), \varphi\left(B_{k}\right)$ and $\varphi\left(B_{k+1}\right)$. Let $a^{\prime}, a^{\prime \prime}, b^{\prime}$ and $b^{\prime \prime}$ denote the other vertices of the edges $\varphi\left(A_{k}\right), \varphi\left(A_{k+1}\right), \varphi\left(B_{k}\right)$ and $\varphi\left(B_{k+1}\right)$, respectively. Since $d[\varphi]\left(\tilde{\alpha}\left(v_{k}\right)\right) \neq d[\varphi]\left(\tilde{\beta}\left(v_{k}\right)\right)$ and $d[\varphi]\left(\tilde{\alpha}\left(v_{k+1}\right)\right) \neq d[\varphi]\left(\tilde{\beta}\left(v_{k+1}\right)\right)$, we have that $a^{\prime} \neq b^{\prime}$ and $a^{\prime \prime} \neq b^{\prime \prime}$. Since $d[\varphi]\left(\tilde{\alpha}\left(\left[v_{k}, v_{k+1}\right]\right)\right) \neq d[\varphi]\left(\tilde{\beta}\left(\left[v_{k}, v_{k+1}\right]\right)\right.$, we have that either $a^{\prime} \neq b^{\prime \prime}$ or $b^{\prime} \neq a^{\prime \prime}$. Without loss of generality we may assume that $b^{\prime} \neq a^{\prime \prime}$. Since $\varphi\left(a_{k}\right) \neq \varphi\left(b_{k}\right)$, cither $\varphi\left(a_{k}\right)=p$ and $\varphi\left(b_{k}\right)=b^{\prime}$ or $\varphi\left(a_{k}\right)=a^{\prime}$ and $\varphi\left(b_{k}\right)=p$. Since B_{k} is connected, there is an arc J^{\prime} (degenerate if $\varphi\left(b_{k}\right)=b^{\prime}$) with endpoints c_{k} and d^{\prime}, and there is a simplicial map β^{\prime} of J^{\prime} into B_{k} such that $\beta^{\prime}\left(c_{k}\right)=\mathrm{b}_{k}$, $\varphi\left(\beta^{\prime}\left(d^{\prime}\right)\right)=b^{\prime}$ and $\varphi\left(\beta^{\prime}(v)\right)=\varphi\left(b_{k}\right)$ for every vertex $v \in \mathscr{V}\left(J^{\prime}\right)$ different from d^{\prime}. Let α^{\prime} be the constant map of J^{\prime} onto a_{k}. Since $A_{k} \cup A_{k+1}$ is connected, there is an arc $J^{\prime \prime}$ with endpoints d^{\prime} and $d^{\prime \prime}$, and there is a simplicial map $\alpha^{\prime \prime}$ of $J^{\prime \prime}$ onto $A_{k} \cup A_{k+1}$ such that $\alpha^{\prime \prime}\left(d^{\prime}\right)=a_{k}, \alpha^{\prime \prime}\left(d^{\prime \prime}\right) \in \mathscr{V}\left(A_{k+1}\right)$ and $\varphi\left(\alpha^{\prime \prime}\left(d^{\prime \prime}\right)\right)=a^{\prime \prime}$. Let $\beta^{\prime \prime}$ be the constant map of $J^{\prime \prime}$ onto $\beta^{\prime}\left(d^{\prime}\right)$. There is an arc $J^{\prime \prime \prime}$ with endpoints $d^{\prime \prime}$ and c_{i+1}, and there is a simplicial map $\beta^{\prime \prime \prime}$ of $J^{\prime \prime \prime}$ onto $B_{k} \cup B_{k+1}$ such that $\beta^{\prime \prime \prime}\left(d^{\prime \prime}\right)=$ $\beta^{\prime \prime}\left(d^{\prime \prime}\right)$ and $\beta^{\prime \prime \prime}\left(c_{k+1}\right) \in \mathscr{V}\left(B_{k+1}\right)$. Let $\alpha^{\prime \prime \prime}$ be the constant map of $J^{\prime \prime \prime}$ onto $\alpha^{\prime \prime}\left(d^{\prime \prime}\right)$.

Define J_{k} as the union of $J^{\prime}, J^{\prime \prime}$ and $J^{\prime \prime \prime}$. Define α_{k} as the union of $\alpha^{\prime}, \alpha^{\prime \prime}$ and $\alpha^{\prime \prime \prime}$. Finally, let β_{k} be the union of $\beta^{\prime}, \beta^{\prime \prime}$ and $\beta^{\prime \prime \prime}$. It is easy to see that so defined J_{k}, α_{k} and β_{k} satisfy the claim.

There are points $a_{1} \in \mathscr{V}\left(A_{1}\right)$ and $b_{1} \in \mathscr{V}\left(B_{1}\right)$ such that $\varphi\left(a_{1}\right) \neq \varphi\left(b_{1}\right)$. Use Claim 2 for $k=1$ to get J_{1}, α_{1} and β_{1}. Set $a_{2}=\alpha_{1}\left(c_{2}\right)$ and $b_{2}=\beta_{1}\left(c_{2}\right)$. Use Claim 2 for $k=2$ to get J_{2}, α_{2} and β_{2}. Continue the procedure to get J_{3}, \ldots, J_{n-1}, $\alpha_{3}, \ldots, \alpha_{n-1}$ and $\beta_{3}, \ldots, \beta_{n-1}$. Define J as the union of $J_{1}, J_{2}, \ldots, J_{n-1}$. Define α as the union of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$. Finally, let β be the union of $\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$. It is easy to see that so defined J, α and β satisfy the lemma.

Theorem 3.2. Let $\left(T_{n}, \varphi_{n}^{m}\right)$ be an inverse system of trees with simplicial bonding maps ($T_{n} \stackrel{\varphi_{n}^{m}}{\leftarrow} T_{m}$ for $n<m$). Let X denote the inverse limit $\lim \left(T_{n}, \varphi_{n}^{m}\right.$). Suppose that there is a positive integer n such that for each integer $m^{\leftarrow}>n$, the map φ_{n}^{m} cannot be factored through an arc. Then the surjective span of X is positive $\left(\sigma^{*}(X)>0\right)$.

Proof. Without loss of generality we may assume that $\varphi_{i}^{j}\left(T_{j}\right)=T_{i}$ for every $i<j$. Let α_{m} and β_{m} be two simplicial maps from an arc J_{m} onto T_{m}. We will say that the triple $\left(\alpha_{m}, \beta_{m}, J_{m}\right)$ belongs to the class \mathscr{R}_{m} if $\varphi_{n}^{m}\left(a_{m}(v)\right) \neq \varphi_{n}^{m}\left(\beta_{m}(v)\right)$ for every vertex v from $\mathscr{V}\left(J_{m}\right)$ and $\varphi_{n}^{m}\left(\alpha_{m}(e)\right) \neq \varphi_{n}^{m}\left(\beta_{m}(e)\right)$ for every edge e from $\mathscr{E}\left(J_{m}\right)$.
Claim 1. $\mathscr{K}_{m} \neq \emptyset$ for $m>n$.
By Theorem 2.18, there is an integer k such that $D^{k}\left(\varphi_{n}^{m}, T_{m}\right)$ contains a simple triangle with vertices a, b, c. By Proposition 2.14, $d^{k}\left[\varphi_{n}^{m}\right](a), d^{k}\left[\varphi_{n}^{m}\right](b)$ and $d^{k}\left[\varphi_{n}^{m}\right](c)$ form a simple triangle in $D^{k}\left(T_{n}\right)$. Let $\tilde{\alpha}_{1}$ be a simplicial map of an arc I_{1} with an endpoint p onto $D^{k}\left(\varphi_{n}^{m}, T_{m}\right)$ such that $\tilde{\alpha}_{1}(p)=a$. There is a simplicial map $\tilde{\beta_{1}}$ of I_{1} into the triangle a, b, c such that $d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\alpha}_{1}(v)\right) \neq d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\beta}_{1}(v)\right)$ for every vertex $v \in \mathscr{V}\left(I_{1}\right)$ and $d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\alpha}_{1}(e)\right) \neq d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\beta}_{1}(e)\right)$ for every edge $e \in \mathscr{E}\left(I_{1}\right)$. Let $\tilde{\beta}_{2}$ be a simplicial map of an arc I_{2} meeting I_{1} at the common endpoint p onto $D^{k}\left(\varphi_{n}^{m}, T_{m}\right)$ such that $\tilde{\beta}_{2}(p)=\tilde{\beta}_{1}(p)$. There is a simplicial map $\tilde{\alpha}_{2}$ of I_{1} into the triangle a, b, c such that $d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\alpha}_{2}(v)\right)+d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\beta}_{2}(v)\right)$ for every vertex $v \in \mathscr{V}\left(I_{2}\right)$ and $d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\alpha}_{2}(e)\right) \neq d^{k}\left[\varphi_{n}^{m}\right]\left(\tilde{\beta}_{2}(e)\right)$ for every edge $e \in \mathscr{E}\left(I_{2}\right)$. Let $I=I_{1}$ $\cup I_{2}, \tilde{\alpha}=\tilde{\alpha}_{1} \cup \tilde{\alpha}_{2}$ and $\tilde{\beta}=\tilde{\beta}_{1} \cup \tilde{\beta}_{2}$. Observe that I is an arc mapped by $\tilde{\alpha}$ and $\tilde{\beta}$ onto $D^{k}\left(\varphi_{n}^{m}, T_{m}\right)$ such that $d^{k}\left[\varphi_{n}^{m}\right](\tilde{\alpha}(v)) \neq d^{k}\left[\varphi_{n}^{m}\right](\tilde{\beta}(v))$ for every vertex $v \in \mathscr{V}(I)$ and $\left.d^{k}\left[\varphi_{n}^{m}\right](\tilde{\alpha}(e)) \neq d^{k}\left[\varphi_{n}^{m}\right] \tilde{\beta}(e)\right)$ for every edge $e \in \mathscr{E}(I)$. Now, the claim follows from Lemma 3.1 used k times.

For $\left(\alpha_{m}, \beta_{m}, J_{m}\right) \in \mathscr{K}_{m}$, consider the set $Z_{m}=\left(\alpha_{m} \times \beta_{m}\right)\left(J_{m}\right) \subset T_{m} \times T_{m}$. Let C_{m} denote the collection of all such sets Z_{m}. Observe that $\left(\varphi_{m}^{j} \times \varphi_{m}^{j}\right)\left(Z_{j}\right) \in C_{m}$ for each $j>m$ and each $Z_{j} \in C_{j}$. Since C_{m} is finite for each $m>n$, there is a sequence $Z^{n+1}, Z^{n+2}, Z^{n+3}, \ldots$ such that $Z^{m} \in C_{m}$ for each $m>n$, and ($\varphi_{m}^{j} \times$ $\left.\varphi_{m}^{j}\right)\left(Z^{j}\right)=Z^{m}$ for each $j>m$. Let Z denote the inverse limit $\lim \left(Z^{m}, \varphi_{m}^{j} \times \varphi_{m}^{j}\right)$. Observe that Z is a continuum contained in $X \times X$ such that $\left.\pi_{1} \overleftarrow{(} Z\right)=X=\pi_{2}(Z)$, where π_{1} and π_{2} are the projections of $X \times X$ onto the first and the second
components. Denote by φ_{m} the projection of X onto T_{n} and let ρ denote the distance function on X. For each point $(x, y) \in Z$, we have that $\varphi_{m}(x) \neq \varphi_{m}(v)$. Since Z is compact there is a positive number ε such that $\rho(x, y) \geqslant \varepsilon$ for each $(x, y) \in Z$. Thus $\sigma^{*}(X) \geqslant \varepsilon>0$.

Theorem 3.3. Let $\left(T_{n}, \varphi_{n}^{m}\right)$ be an inverse system of trees with simplicial bonding maps ($T_{n} \stackrel{\varphi_{n}^{m}}{\leftarrow} T_{m}$ for $n<m$). Let X denote the inverse limit $\lim \left(T_{n}, \varphi_{n}^{m}\right.$). Then the following conditions are equivalent.
(i) X is chainable.
(ii) $\sigma^{*}(X)=0$.
(iii) For every positive integer n there is an integer $m>n$ such that φ_{n}^{m} can be factored through an arc.

Proof. The implication (i) \Rightarrow (ii) was proven by Lelek in [5]. The implication (ii) \Rightarrow (iii) follows from Theorem 3.2. The implication (iii) \Rightarrow (i) is obvious.

4. Lifting of light simplicial maps

In this section we introduce a notion of ultra light simplicial maps and prove that a factorization through a tree can be lifted through an ultra light map.

Definition 4.1. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. We say that φ is ultra light if it is light and v^{*} is an edge of G_{1} for each $v \in \mathscr{V}\left(D\left(\varphi, G_{1}\right)\right)$.

Observe that φ is ultra light if and only if it is light and, for each $e \in \mathscr{E}\left(G_{0}\right)$, each component of $\varphi^{-1}(c)$ is either a vertex or an edge of G_{1}. Thereforc $D\left(\varphi, G_{1}\right)$ can be naturally identified with $D\left(G_{1}\right)$.

Proposition 4.2. Suppose $\varphi: G_{1} \rightarrow G_{0}$ is a simplicial ultra light map between graphs. Then $d[\varphi]: D\left(\varphi, G_{1}\right) \rightarrow D\left(G_{0}\right)$ is also ultra light.

Proof. By Proposition 2.6, $d[\varphi]$ is light. Let b be an edge of $D\left(G_{0}\right)$ and let C be a nondegenerate component of $(d[\varphi])^{-1}(b)$. Since C is nondegenerate and connected, it contains two adjacent vertices c^{\prime} and $c^{\prime \prime}$. We will show that C contains no other vertices. Note that $\left(c^{\prime}\right)^{*}$ and $\left(c^{\prime \prime}\right)^{*}$ arc two different edges of G_{1} intersecting at a common vertex, which will be denoted by v. Denote by v^{\prime} and $v^{\prime \prime}$ the remaining vertices of $\left(c^{\prime}\right)^{*}$ and $\left(c^{\prime \prime}\right)^{*}$, respectively. Since φ is ultra light $\varphi\left(v^{\prime}\right)$, $\varphi(v)$ and $\varphi\left(v^{\prime \prime}\right)$ are three different vertices of G_{0}. Let b^{\prime} and $b^{\prime \prime}$ denote the vertices of $D\left(G_{0}\right)$ representing $\left\langle\varphi\left(v^{\prime}\right), \varphi(v)\right\rangle$ and $\left\langle\varphi(v), \varphi\left(v^{\prime \prime}\right)\right\rangle$, respectively. Observe that b^{\prime} and $b^{\prime \prime}$ are the vertices of $b, d[\varphi]\left(c^{\prime}\right)=b^{\prime}$ and $d[\varphi]\left(c^{\prime \prime}\right)=b^{\prime \prime}$. Suppose that C contains a vertex other than c^{\prime} and $c^{\prime \prime}$. In this case, without loss of generality, we may assume that there is a vertex c of C such that $c^{\prime} \neq c \neq c^{\prime \prime}$ and c is adjacent to c^{\prime}. It means that c^{*} and $\left(c^{\prime}\right)^{*}$ are two intersecting edges of G_{1}.

Since $d[\varphi]$ is light, $d[\varphi](c)=b^{\prime \prime}$ and consequently $\varphi\left(c^{*}\right)=\left\langle\varphi(v), \varphi\left(v^{\prime \prime}\right)\right\rangle$. It follows that v^{\prime} is not a vertex of c^{*}, and thus v is the common vertex of c^{*} and $\left(c^{\prime}\right)^{*}$. But, then $c^{*} \cup\left(c^{\prime \prime}\right)^{*}$ is connected and mapped by φ onto the edge $\left\langle\varphi(v), \varphi\left(v^{\prime \prime}\right)\right\rangle$, which is impossible, because φ is ultra light.

Theorem 4.3. Let G_{0}, G_{1} and G_{2} be connected graphs and let T be a tree. Suppose $\varphi: G_{1} \rightarrow G_{0}, \psi: G_{2} \rightarrow G_{1}, \lambda: G_{2} \rightarrow T$ and $\sigma: T \rightarrow G_{0}$ are simplicial light maps such that φ is ultra light, $\lambda\left(G_{2}\right)=T$ and $\varphi \circ \psi=\sigma \circ \lambda$. Then there is a simplicial map $\sigma^{\prime}: T \rightarrow G_{1}$ such that $\psi=\sigma^{\prime} \circ \lambda$.

Proof. First we will prove the following claim.
Claim. Suppose v and v^{\prime} are vertices of G_{2} such that $\lambda(v)=\lambda\left(v^{\prime}\right)$. Then $\psi(v)=$ $\psi\left(v^{\prime}\right)$.

Since G_{2} is connected, G_{2} contains an arc A with endpoints v and v^{\prime}. Let n denote the number of vertices of A. We will prove the claim by induction with respect to n. Suppose that for each pair of vertices w and w^{\prime} of G_{2} such that $\lambda(w)=\lambda\left(w^{\prime}\right)$ and G_{2} contains an arc B with endpoints w and w^{\prime} and with less than n vertices, we have the result that $\psi(w)=\psi\left(w^{\prime}\right)$. If $n=1$, then $v=v^{\prime}$ and the claim is obvious. If $n=2$ and $\psi(v) \neq \psi\left(v^{\prime}\right)$, then $\psi(v)$ and $\psi\left(v^{\prime}\right)$ are adjacent vertices of G_{1}, which is impossible, because $\varphi(\psi(v))=\sigma(\lambda(v))=\sigma\left(\lambda\left(v^{\prime}\right)\right)=$ $\varphi\left(\psi\left(v^{\prime}\right)\right)$ and φ is light. So we may assume that $n>2$. Suppose that there is a vertex s of A such that $v \neq s \neq v^{\prime}$ and $\lambda(s)=\lambda(v)$. In this case we have by induction the result that $\psi(v)=\psi(s)$ and $\psi(s)=\psi\left(v^{\prime}\right)$. So we may assume that $\lambda(s) \neq \lambda(v)$ for each vertex s of A different from v and v^{\prime}. Let u be the vertex of A adjacent (in A) to v and let u^{\prime} be the vertex of A adjacent (in A) to v^{\prime}. Since $n>2, u \neq v^{\prime}$ and $u^{\prime} \neq v$. Let B denote the subarc of A joining u and u^{\prime}. Consider the points $\lambda(u)$ and $\lambda\left(u^{\prime}\right)$. Note that $\lambda(u) \neq \lambda(v) \neq \lambda\left(u^{\prime}\right)$. Since T is a tree and each of the points $\lambda(u)$ and $\lambda\left(u^{\prime}\right)$ is adjacent to $\lambda(v)$, we have the result that either $\lambda(u)=\lambda\left(u^{\prime}\right)$ or $\lambda(v)$ separates T between $\lambda(u)$ and $\lambda\left(u^{\prime}\right)$. In the last case there exist a vertex s of B such that $\lambda(s)=\lambda(v)$, which contradicts our assumption. So $\lambda(u)=\lambda\left(u^{\prime}\right)$, and by the inductive hypothesis we have the result that $\psi(u)=\psi\left(u^{\prime}\right)$. Now, suppose that $\psi(v) \neq \psi\left(v^{\prime}\right)$. Then $\langle\psi(v), \psi(u)\rangle$ and $\left\langle\psi\left(u^{\prime}\right), \psi\left(v^{\prime}\right)\right\rangle$ are two distinct intersecting edges of G_{1} that are mapped by φ onto one edge $\langle\varphi(\psi(v)), \varphi(\psi(u))\rangle=\langle\sigma(\lambda(v)), \sigma(\lambda(u))\rangle$, a contradiction because φ is ultra light. Hence the claim is true.

Since $\lambda\left(G_{2}\right)=T$, for each vertex t of T there is a vertex $v \in \mathscr{V}\left(G_{2}\right)$ such that $\lambda(v)=t$. Define $\sigma^{\prime}(t)=\psi(v)$. To complete the proof it is enough to show that σ^{\prime} is a simplicial map. Let u and u^{\prime} be a pair of adjacent vertices of T. Since T is a tree and $\lambda\left(G_{2}\right)=T$, there are two adjacent vertices s and s^{\prime} of G_{2} such that $\lambda(s)=u$ and $\lambda\left(s^{\prime}\right)=u^{\prime}$. Using the claim we infer that $\sigma^{\prime}(u)=\psi(s)$ and $\sigma^{\prime}\left(u^{\prime}\right)=$ $\psi\left(s^{\prime}\right)$, so $\sigma^{\prime}(u)$ and $\sigma^{\prime}\left(u^{\prime}\right)$ either coincide or are adjacent and consequently σ^{\prime} is a simplicial map.

5. Factorization through an arc and compositions of map

In this section we will show how to use the operation d to prove that some inverse limits with simplicial bonding maps are not chainable. In view of Theorem 3.3, it suffices to show that an composition of the bonding maps cannot be factored through an arc. We do that by applying some iteration of d to the inverse system and observing that the system we get is essentially the same as before but one map shorter. We illustrate the technique on examples of classic atriodic continua by Ingram [3, 4], and Davis and Ingram [2]. A similar proof will be used in [7] to get an example of an atriodic continuum which is simple 4 -od-like but not simple triod-like.

Definition 5.1. We will say that a graph G^{\prime} subdivides a graph G if G^{\prime} is a graph obtained from G by adding vertices on some of its edges. More precisely, G^{\prime} is a graph such that $\mathscr{V}(G) \subset \mathscr{V}\left(G^{\prime}\right)$ and for every edge $e \in \mathscr{E}(G)$ there is an arc (e, G^{\prime}) contained in G^{\prime} such that
(i) $\left(e, G^{\prime}\right)$ has the same endpoints as e,
(ii) $\left(d, G^{\prime}\right) \cap\left(e, G^{\prime}\right)=d \cap e$ for $d, e \in \mathscr{E}(G)$ and $d \neq e$, and
(iii) every vertex from $\mathscr{V}\left(G^{\prime}\right)$ belongs to some (e, G^{\prime}) and every edge from $\mathscr{E}\left(G^{\prime}\right)$ is an edge of some ($\left.e, G^{\prime}\right)$.
If v is a vertex of G and e is an edge of G containing v, then by (v, e, G^{\prime}) we denote the edge of (e, G^{\prime}) containing v.

Proposition 5.2. If G^{\prime} is a graph subdividing a graph G and $G^{\prime \prime}$ is a graph subdividing G^{\prime}, then $G^{\prime \prime}$ subdivides G.

Definition 5.3. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Let G_{0}^{\prime} be a graph subdividing G_{0} and let φ^{\prime} be a simplicial map of a graph G_{1}^{\prime} subdividing G_{1} onto G_{0}^{\prime}. We will say that φ^{\prime} is a subdivision of φ matching G_{0}^{\prime} provided that $\varphi^{\prime}(v)=\varphi(v)$ for each vertex $v \in \mathscr{V}\left(G_{1}\right)$, and for each edge $e \in \mathscr{E}\left(G_{1}\right)$ we have that

- if $\varphi(e)$ is degenerate then $\left(e, G_{1}^{\prime}\right)=e$, and
- if $\varphi(e)$ is an edge of G_{0} then φ^{\prime} is an isomorphism of $\left(e, G_{1}^{\prime}\right)$ onto $\left(\varphi(e), G_{0}^{\prime}\right)$.

Proposition 5.4. Let $\varphi: G_{1} \rightarrow G_{0}$ be a simplicial map between graphs. Let G_{0}^{\prime} be a graph subdividing G_{0}. Then there is a subdivision φ^{\prime} of φ matching G_{0}^{\prime}. Moreover, φ^{\prime} is unique up to an isomorphism.

Definition 5.5. Suppose G is a graph and S is a function from $\mathscr{V}(G)$ into the set of nonempty subsets of $\mathscr{E}(G)$. We say that S is an edge selection on G if v is a vertex of e for each $v \in \mathscr{V}(G)$ and each $e \in S(v)$.

Suppose G_{0} and G_{1} are graphs, S is an edge selection on G_{1} and φ is a simplicial map from a subdivision G_{1}^{\prime} of G_{1} into G_{0}. We say that φ is consistent on S provided that there is a simplicial isomorphism λ from a subdivision H_{1} of G_{1} onto $D\left(\varphi, G_{1}^{\prime}\right)$ such that

Fig. 4.
(i) $\left(v, e, G_{1}^{\prime}\right) \subset[\lambda(v)]^{*}$ for each $v \in \mathscr{V}\left(G_{1}\right)$ and each $e \in S(v)$, and
(ii) $[\lambda(v)]^{*} \subset\left(e, G_{1}^{\prime}\right)$ for each $e \in \mathscr{E}\left(G_{1}\right)$ and $v \in \mathscr{V}\left(\left(e, H_{1}\right)\right) \backslash \mathscr{V}\left(G_{1}\right)$.
λ will be called a consistency isomorphism.
Example 5.6. We will consider again (see Example 2.5) the Ingram map from [3]. This time it will be important to us that the map takes the extended triod into itself, or rather, the domain is a subdivision of the range. Let T indicate the extended triod with its vertices named as in Fig. 4.

Fig. 5 indicates the Ingram map from a tree T^{\prime} subdividing T onto T. We will denote this map by I. The dashed line graph is the domain of the map while the solid black is the range and each vertex of the domain is mapped onto the nearest vertex of the range. Note that $I\left(v_{0}\right)=v_{2}, I\left(v_{1}\right)=I\left(v_{2}\right)=I\left(v_{4}\right)=v_{1}$ and $I\left(v_{3}\right)=v_{4}$.

Let $\sigma: T \rightarrow T$ denote the symmetry of T about the axis $v_{0}-v_{3}-v_{4}$, that is $\sigma\left(v_{0}\right)=v_{0}, \sigma\left(v_{1}\right)=v_{2}, \sigma\left(v_{2}\right)=v_{1}, \sigma\left(v_{3}\right)=v_{3}$ and $\sigma\left(v_{4}\right)=v_{4}$. Let \tilde{I} denote the composition $\sigma \circ I$.

Let S be an edge selection on T defined in the following way: $S\left(v_{0}\right)=$ $\left\{\left\langle v_{0}, v_{2}\right\rangle,\left\langle v_{0}, v_{3}\right\rangle\right\}$ and $S\left(v_{i}\right)$ consists of all edges of T containing v_{i} for $=$ $1,2,3,4$. Observe that both I and \tilde{I} are consistent on S. Let λ and $\tilde{\lambda}$ denote the consistency isomorphisms for I and \tilde{I}, respectively. Denote the map $d[\mathrm{I}] \circ \lambda$ by I_{1}, and $d[\tilde{1}] \circ \tilde{\lambda}$ by \tilde{I}_{1}. Fig. 6 indicates I_{1}. As usual, the dashed line graph is the domain of the map while the solid black is the range and each vertex of the

Fig. 5.

Fig. 6.
domain is mapped onto the nearest vertex of the range. A figure for \tilde{I}_{1} would be like Fig. 6 reflected about a vertical line.

Again, observe that both I_{1} and \tilde{I}_{1} are consistent on S. (Note that $\left\langle v_{0}, v_{1}\right\rangle \notin$ $S\left(v_{0}\right)$.) Let λ^{\prime} and $\tilde{\lambda}^{\prime}$ denote the consistency isomorphisms for I_{1} and \tilde{I}_{1}, respectively. Denote the map $d\left[I_{1}\right] \circ \lambda^{\prime}$ by I_{2}, and $d\left[\tilde{I}_{1}\right] \circ \tilde{\lambda}^{\prime}$ by \tilde{I}_{2}. Fig. 7 indicates I_{2}. A figure for \tilde{I}_{2} would be like Fig. 7 reflected about a vertical line. Observe that both I_{2} and \tilde{I}_{2} are ultra light.

Definition 5.7. Suppose that G_{1} and G_{2} are graphs. Let S_{1} and S_{2} be edge selections on G_{1} and G_{2}, respectively. Let G_{2}^{\prime} be a subdivision of G_{2} and let $\psi: G_{2}^{\prime} \rightarrow G_{1}$ be a simplicial map. We say that ψ preserves $\left(S_{1}, S_{2}\right)$ provided that
(i) $\psi\left(\left(v, e, G_{2}^{\prime}\right)\right) \in S_{1}(\psi(v))$ for each $v \in \mathscr{V}\left(G_{2}\right)$ and each $e \in S_{2}(v)$ and
(ii) for each two different edges $e, e^{\prime} \in \mathscr{E}\left(G_{2}^{\prime}\right)$ intersecting at a common vertex v we have that either $\psi(e) \in S_{1}(\psi(v))$ or $\psi\left(e^{\prime}\right) \in S_{1}(\psi(v))$.

Example 5.8. Let $I: T^{\prime} \rightarrow T$ and $\tilde{I}: T^{\prime} \rightarrow T$ denote the Ingram maps defined in Example 5.6. Let S be the edge selection defined in the same example. Observe that both I and \tilde{I} preserve (S, S).

Fig. 7.

Lemma 5.9. Suppose G_{0} is a graph and G_{1} and G_{2} are trees. Let S_{1} and S_{2} be edge selections on G_{1} and G_{2}, respectively. Let G_{1}^{\prime} be a tree subdividing G_{1} and let G_{2}^{\prime} be a tree subdividing G_{2}. Suppose $\varphi: G_{1}^{\prime} \rightarrow G_{0}$ and $\psi: G_{2}^{\prime} \rightarrow G_{1}$ are light simplicial maps such that φ is consistent on S_{1} and ψ preserves $\left(S_{1}, S_{2}\right)$. Let $\lambda_{1}: H_{1} \rightarrow D\left(\varphi, G_{1}^{\prime}\right)$ be a consistency isomorphism for φ, where H_{1} is a subdivision of G_{1}. Let $\psi^{\prime}: G_{2}^{\prime \prime} \rightarrow G_{1}^{\prime}$ be a simplicial subdivision of ψ matching G_{1}^{\prime} and let $\psi^{\prime \prime}: H_{2} \rightarrow H_{1}$ be a subdivision of ψ matching H_{1}. Then $\varphi \circ \psi^{\prime}$ is consistent on S_{2} with a consistency isomorphism $\lambda_{2}: H_{2} \rightarrow D\left(\varphi \circ \psi^{\prime}, G_{2}^{\prime \prime}\right)$ such that $\lambda_{1} \circ \psi^{\prime \prime}=d\left[\varphi, \psi^{\prime}\right] \circ \lambda_{2}$.

Proof. Let v_{2} be a vertex of H_{2}. Denote by v_{1} the point $\psi^{\prime \prime}\left(v_{2}\right) \in \mathscr{V}\left(H_{1}\right)$. Let C_{1} denote $\left[\lambda_{1}\left(v_{1}\right)\right]^{*}$ and e_{0} denote $\varphi\left(C_{1}\right)$. Observe that e_{0} is an edge of G_{0} and C_{1} is a component of $\varphi^{-1}\left(e_{0}\right)$. We will define $\lambda_{2}\left(v_{2}\right)$ by considering the cases where $v_{2} \in \mathscr{V}\left(G_{2}^{\prime}\right)$ and $v_{2} \in \mathscr{V}\left(H_{2}\right) \backslash \mathscr{V}\left(G_{2}^{\prime}\right)$.

Case 1: $v_{2} \in \mathscr{V}\left(G_{2}^{\prime}\right)$. In this case $v_{1}=\psi\left(v_{2}\right) \in \mathscr{V}\left(G_{1}\right)$. We will prove that
(i) there is an edge $e_{2}^{\prime} \in \mathscr{E}\left(G_{2}^{\prime}\right)$ containing v_{2} such that $\psi\left(e_{2}^{\prime}\right) \in S_{1}\left(v_{1}\right)$. In case where $v_{2} \in \mathscr{V}\left(G_{2}\right)$, let e_{2} be an edge from $S_{2}\left(v_{2}\right)$ and let $e_{2}^{\prime}=\left(v_{2}, e_{2}, G_{2}^{\prime}\right)$. Since ψ preserves $\left(S_{1}, S_{2}\right)$, we have the result that $\psi\left(e_{2}^{\prime}\right) \in S_{1}\left(v_{1}\right)$.
In case where $v_{2} \in \mathscr{V}\left(G_{2}^{\prime}\right) \backslash \mathscr{V}\left(G_{2}\right)$, let e_{2} be the edge of G_{2} such that v_{2} is a vertex of (e_{2}, G_{2}^{\prime}). Let e_{2}^{\prime} and $e_{2}^{\prime \prime}$ be the two edges of (e_{2}, G_{2}^{\prime}) containing v_{2}. Since ψ preserves (S_{1}, S_{2}), we have the result at least one of these two edges, say e_{2}^{\prime}, has the property that $\psi\left(e_{2}^{\prime}\right) \in S_{1}\left(v_{1}\right)$. Thus (i) holds.

Denote $\psi\left(e_{2}^{\prime}\right)$ by e_{1}. Observe that ($\left.v_{1}, e_{1}, G_{1}^{\prime}\right) \subset\left[\lambda_{1}\left(v_{1}\right)\right]^{*}$. Since φ is light, $\varphi\left(\left(v_{1}, e_{1}, G_{1}^{\prime}\right)\right)=e_{0}$. Let C_{2} be the component of $\left(\varphi \circ \psi^{\prime}\right)^{-1}\left(e_{0}\right)$ containing v_{2}. Since $\psi^{\prime}\left(\left(v_{2}, e_{2}^{\prime}, G_{2}^{\prime \prime}\right)\right)=\left(v_{1}, e_{1}, G_{1}^{\prime}\right), \quad\left(v_{2}, e_{2}^{\prime}, G_{2}^{\prime \prime}\right) \subset C_{2}$ and therefore $e_{0}=$ $\varphi\left(\psi^{\prime}\left(C_{2}\right)\right)$. Let $\lambda_{2}\left(v_{2}\right)$ be the element of $D\left(\varphi \circ \psi^{\prime}, G_{2}^{\prime \prime}\right)$ representing C_{2}.

We will prove additionally that if $v_{2} \in \mathscr{V}\left(G_{2}^{\prime}\right) \backslash \mathscr{V}\left(G_{2}\right)$, then $C_{2} \subset\left(e_{2}^{\prime}, G_{2}^{\prime \prime}\right) \cup$ $\left(e_{2}^{\prime \prime}, G_{2}^{\prime \prime}\right.$). Suppose this is not true. Then there are two edges a and b of G_{2}^{\prime} meeting at a common vertex v such that $\psi(v) \neq v_{1}$ and $\left(v, a, G_{2}^{\prime \prime}\right) \cup\left(v, b, G_{2}^{\prime \prime}\right) \subset$ C_{2}. Since ψ preserves (S_{1}, S_{2}), without loss of generality, we may assume that $\psi(a) \in S_{1}(\psi(v))$. Since λ_{1} is a consistency isomorphism $\left(\psi(v), \psi(a), G_{1}^{\prime}\right) \subset$ $\left[\lambda_{1}(\psi(v))\right]^{*}$. Observe that $\psi^{\prime}\left(\left(v, a, G_{2}^{\prime \prime}\right)\right)=\left(\psi(v), \psi(a), G_{1}^{\prime}\right)$. So $\psi^{\prime}\left(\left(v, a, G_{2}^{\prime \prime}\right)\right)$ is an edge contained in both $\left[\lambda_{1}(\psi(v))\right]^{*}$ and $\left[\lambda_{1}\left(v_{1}\right)\right]^{*}$. It follows that $\lambda_{1}(\psi(v))=$ $\lambda_{1}\left(v_{1}\right)$, a contradiction because λ_{1} is an isomorphism and $\psi(v) \neq v_{1}$.

Case 2: $v_{2} \in \mathscr{V}\left(H_{2}\right) \backslash \mathscr{F}\left(G_{2}^{\prime}\right)$. Let $e_{2} \in \mathscr{E}\left(G_{2}^{\prime}\right)$ be the edge such that $v_{2} \in$ (e_{2}, H_{2}). Observe that $\psi\left(e_{2}\right)$ is an edge of G_{1}. Denote this edge by e_{1}. Since ψ^{\prime} is a subdivision of ψ matching $G_{1}^{\prime}, \psi^{\prime}$ maps ($e_{2}, G_{2}^{\prime \prime}$) isomorphically onto (e_{1}, G_{1}^{\prime}). Since $v_{1} \in \mathscr{V}\left(\left(e_{1}, H_{1}\right)\right) \backslash \mathscr{V}\left(G_{1}\right)$ and consequently $C_{1}=\left[\lambda_{1}\left(v_{1}\right)\right]^{*} \subset\left(e_{1}, G_{1}^{\prime}\right)$ there is exactly one component C_{2} of $\left(\psi^{\prime}\right)^{-1}\left(C_{1}\right) \cap\left(e_{2}, G_{2}^{\prime \prime}\right)$ such that $\psi^{\prime}\left(C_{2}\right)=C_{1}$. We will show that C_{2} is a component of $\left(\varphi \circ \psi^{\prime}\right)^{-1}\left(e_{0}\right)$. Clearly, $C_{2} \subset\left(\varphi \circ \psi^{\prime}\right)^{-1}\left(e_{0}\right)$. Suppose C_{2} is not a component of $\left(\varphi \circ \psi^{\prime}\right)^{-1}\left(e_{0}\right)$. Then there is an edge $a \in \mathscr{E}\left(G_{2}^{\prime}\right)$ meeting e_{2} at a common vertex v such that $a \neq e_{2}$ and $\psi^{\prime}\left(\left(v, a, G_{2}^{\prime \prime}\right)\right) \subset C_{1}$. Since $v \in \mathscr{V}\left(G_{2}^{\prime}\right)$ and $v_{2} \in \mathscr{V}\left(H_{2}\right) \backslash \mathscr{V}\left(G_{2}^{\prime}\right), \psi(v) \neq \psi^{\prime}\left(\left(v_{2}\right)=v_{1}\right.$. Since G_{1} is a tree and C_{1} is connected, $\psi^{\prime}\left(\left(v, e_{2}, G_{2}^{\prime \prime}\right)\right) \subset C_{1}$. Since ψ preserves $\left(S_{1}, S_{2}\right)$, either $\psi(a) \in$
$S_{1}(\psi(v))$ or $\psi\left(e_{2}\right) \in S_{1}(\psi(v))$. In either case we have the result that $C_{1}=\left[\lambda_{1}(\psi(v))\right]^{*}$ and $\lambda_{1}(\psi(v))=\lambda_{1}\left(v_{1}\right)$, which is impossible because λ_{1} is an isomorphism. Thus C_{2} is a component of $\left(\varphi \circ \psi^{\prime}\right)^{-1}\left(e_{0}\right)$. Let $\lambda_{2}\left(v_{2}\right)$ be the element of $D\left(\varphi \circ \psi^{\prime}, G_{2}^{\prime}\right)$ representing C_{2}.

Clearly, λ_{2} is a simplicial map satisfying (i) and (ii) of Definition 5.5 and such that $\lambda_{1} \circ \psi^{\prime \prime}=d\left[\varphi, \psi^{\prime}\right] \circ \lambda_{2}$. Observe also that $v_{2} \in\left[\lambda_{2}\left(v_{2}\right)\right]^{*}$ for each $v_{2} \in G_{2}^{\prime}$. We will prove that λ_{2} is an isomorphism.

Let w be an arbitrary vertex of $D\left(\varphi \circ \psi^{\prime}, G_{2}^{\prime \prime}\right)$ and let $e^{\prime \prime}$ be an edge of $G_{2}^{\prime \prime}$ contained in w^{*}. There is edge $e^{\prime} \in \mathscr{E}\left(G_{2}^{\prime}\right)$ such that $e^{\prime \prime} \subset\left(e^{\prime}, G_{2}^{\prime \prime}\right)$. Let U be the union of $\left[\lambda_{2}(v)\right]^{*}$ where $v \in \mathscr{V}^{\prime}\left(\left(e^{\prime}, H_{2}\right)\right)$. Since U is connected and it contains the endpoints of e^{\prime}, there is $v \in\left(e^{\prime}, H_{2}\right)$ such that $e^{\prime \prime} \subset\left[\lambda_{2}(v)\right]^{*}$. Observe that $\lambda_{2}(v)=w$ and thus λ_{2} is surjective.

To conclude the proof it remains to show that λ_{2} is a bijection. Clearly, it will be enough to prove that λ_{2} restricted to $\mathscr{V}\left(G_{2}^{\prime}\right)$ is a bijection. Let c be a vertex of $D\left(\varphi \circ \psi^{\prime}, G_{2}^{\prime \prime}\right)$ and let C denote the set c^{*}. Suppose that v_{2} and v_{2}^{\prime} are two different vertices of G_{2}^{\prime} such that $\lambda_{2}\left(v_{2}\right)=c=\lambda_{2}\left(v_{2}^{\prime}\right)$. Observe that $v_{2} \in C$ and $v_{2}^{\prime} \in C$. Since φ is light and λ_{1} is an isomorphism, either $\psi\left(v_{2}\right)=\psi\left(v_{2}^{\prime}\right)$ or $\left[\lambda_{1}\left(\psi\left(v_{2}\right)\right)\right]^{*} \cap\left[\lambda_{1}\left(\psi\left(v_{2}^{\prime}\right)\right)\right]^{*}$ does not contain an edge. Since $\psi^{\prime}(C) \subset\left[\lambda_{1}\left(\psi\left(v_{2}\right)\right)\right]^{*}$ $\cap\left[\lambda_{1}\left(\psi\left(v_{2}^{\prime}\right)\right)\right]^{*}$ and ψ^{\prime} is light we have the result that $\psi\left(v_{2}\right)=\psi\left(v_{2}^{\prime}\right)$. Observe that v_{2} and v_{2}^{\prime} are not adjacent in G_{2}^{\prime}, because ψ is light. Since C is connected and $G_{2}^{\prime \prime}$ is a tree, $\left\langle v_{2}, v_{2}^{\prime}\right\rangle \subset C$. Let a and b be the two edges of G_{2}^{\prime} contained in $\left\langle v_{2}, v_{2}^{\prime}\right\rangle$ intersccting at some vertex v. Since $\lambda_{2}(v)$ was defined in such a way that either $\left(v, a, G_{2}^{\prime \prime}\right) \subset\left[\lambda_{2}(v)\right]^{*}$ or $\left(v, b, G_{2}^{\prime \prime}\right) \subset\left[\lambda_{2}(v)\right]^{*}$, we have the result that $\lambda_{2}(v)=$ $\lambda_{2}\left(v_{2}\right)$ and consequently $\lambda_{1}(\psi(v))=\lambda_{1}\left(v_{1}\right)$ for each $v \in\left\langle v_{2}, v_{2}^{\prime}\right\rangle \cap \mathscr{V}\left(G_{2}^{\prime}\right)$. Since λ_{1} is an isomorphism $\psi(v)=\psi\left(v_{2}\right)$ for each $v \in\left\langle v_{2}, v_{2}^{\prime}\right\rangle \cap \mathscr{V}\left(G_{2}^{\prime}\right)$. This is impossible, because ψ is light.

Definition 5.10. Let n be a positive integer and let N denote either the set $\{0,1, \ldots, n\}$ or the set of all nonnegative integers. Denote by N_{1} the set $N \backslash\{0\}$. Let $G_{0}, G_{1}, G_{2}, \ldots$ be a sequence of graphs with N as the set of indices. Let Σ be a sequence of simplicial maps $\varphi_{1}, \varphi_{2}, \ldots$ such that for each $j \in N_{1}, \varphi_{j}$ maps a graph G_{j}^{\prime} subdividing G_{j} into G_{j-1}. Using inductively Proposition 5.4, we can define a sequence of simplicial maps $\psi_{1}, \psi_{2}, \ldots$ such that $\psi_{1}=\varphi_{1}$ and for each $j \in N_{1} \backslash\{1\}, \psi_{j}$ subdivides ψ_{j} matching the domain of ψ_{j-1}. For each $j \in N_{1}$, denote by Σ_{j} the domain of ψ_{j}. Set $\Sigma_{0}=G_{0}$. For every two integers i and j from N such that $i>j$, let Σ_{j}^{i} denote the composition $\psi_{j+1} \circ \cdots \circ \psi_{j}$ mapping Σ_{i} into Σ_{j}. We will say that the inverse system $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ is generated by the sequence Σ.

Let S_{j} be an edge selection on G_{j} for $j \in N_{1}$. We will say that Σ preserves the sequence S_{1}, S_{2}, \ldots if φ_{j} preserves (S_{j-1}, S_{j}) for each $j \in N_{1} \backslash\{1\}$.

We say that two inverse (possibly finite) systems $\left\{K_{j}, \kappa_{j}^{i}\right\}$ and $\left\{H_{j}, \eta_{j}^{i}\right\}$ are isomorphic if there is a sequence of isomorphisms $\lambda_{0}, \lambda_{1}, \ldots$, where $\lambda_{j}: K_{j} \rightarrow H_{j}$ such that $\lambda_{j} \circ \kappa_{j}^{i}=\eta_{j}^{i} \circ \lambda_{i}$ for $i>j \geqslant 0$.

Theorem 5.11. Let n be a positive integer and let N denote either the set $\{0,1, \ldots, n\}$ or the set of all nonnegative integers. Let N_{1} denote the set $N \backslash\{0\}$. Let G_{0} be a graph and let G_{1}, G_{2}, \ldots be a sequence of trees with N_{1} as the set of indices. Let S_{j} be an edge selection on G_{j} for $j \in N_{1}$. Let Σ be a sequence of simplicial maps $\varphi_{1}, \varphi_{2}, \ldots$ such that for each $j \in N_{1}, \varphi_{j}$ maps a graph G_{j}^{\prime} subdividing G_{j} into G_{j-1}. Suppose φ_{1} is consistent on S_{1} and Σ preserves the sequence S_{1}, S_{2}, \ldots Let $\lambda_{1}: H_{1} \rightarrow D\left(\varphi_{1}, G_{1}^{\prime}\right)$ be a consistency isomorphism for φ_{1}, where H_{1} is a subdivision of G_{1}. Then the system $\left\{D\left(\Sigma_{0}^{j}, \Sigma_{j}\right), d\left[\Sigma_{0}^{j}, \Sigma_{j}^{i}\right]\right\}$ is isomorphic to the system generated by the sequence $d\left[\varphi_{1}\right] \circ \lambda_{1}, \varphi_{2}, \varphi_{3}, \ldots$

Proof. For each $j \in N_{1} \backslash\{1\}$, let $\psi_{j}: H_{j} \rightarrow H_{j-1}$ be a simplicial subdivision φ_{j} of matching H_{j-1}. Let H_{0} denote $D\left(G_{0}\right)$ and let $\psi_{1}=d\left[\varphi_{1}\right] \circ \lambda_{1}$. Note that the system $\left\{H_{j}, \psi_{j}\right\}$ is generated by the sequence $d\left[\varphi_{1}\right] \circ \lambda_{1}, \varphi_{2}, \varphi_{3}, \ldots$

Applying Lemma 5.9 repeatedly, we infer that, for each $j \in N_{1} \backslash\{1\}$, there is a consistency isomorphism λ_{j} of H_{j} onto $D\left(\Sigma_{0}^{j}, \Sigma_{j}\right)$ such that $\lambda_{j-1} \circ \psi_{j}=$ $d\left[\Sigma_{0}^{j}{ }^{1}, \Sigma_{j-1}^{j}\right] \circ \lambda_{j}$.

Let λ_{0} be the identity on $D\left(G_{0}\right)$. Observe that the sequence $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ defines an isomorphism between $\left\{I_{j}, \psi_{j}\right\}$ and $\left\{D\left(\Sigma_{0}^{j}, \Sigma_{j}\right), d\left[\Sigma_{0}^{j}, \Sigma_{j}^{i}\right]\right\}$.

Example 5.12. Let $I: T^{\prime} \rightarrow T$ and $\tilde{I}: T^{\prime} \rightarrow T$ denote the Ingram maps defined here in Example 5.6. Let Σ be an infinite sequence of simplicial maps $\varphi_{1}, \varphi_{2}, \ldots$ each of which is either I or \tilde{I}. By $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ we denote the system generated by Σ. Ingram proved that the inverse limit of Σ has positive span and therefore is not chainable (see [3, 4]). We will give here an alternate proof of this statement.

First we will prove that for each choice of $\varphi_{1}, \varphi_{2}, \ldots$ we have
Claim. Σ_{0}^{n} cannot be factored through an arc.
Clearly, the claim is true if $n=1$. Now, suppose that the claim is true for each sequence of $n-1$ maps each of which is either I or \tilde{I}. In particular, we assume that the claim is true for the sequence $\varphi_{2}, \ldots, \varphi_{n}$.

Let $I_{1}, \tilde{I}_{1}, I_{2}, \tilde{I}_{2}, \lambda, \tilde{\lambda}, \lambda^{\prime}$ and $\tilde{\lambda}^{\prime}$ be as in Example 5.6. If $\varphi_{1}=I$ then set $\lambda_{1}=\lambda$, $\psi_{1}=I_{1}$ and $\lambda_{1}^{\prime}=\lambda^{\prime}$. Otherwise, if $\varphi_{1}=\tilde{I}$ then set $\lambda_{1}=\tilde{\lambda}, \psi_{1}=\tilde{I}_{1}$ and $\lambda_{1}^{\prime}=\tilde{\lambda}^{\prime}$. Use Theorem 5.11 to get the result that the system $\left\{D\left(\Sigma_{0}^{j}, \Sigma_{j}\right), d\left[\Sigma_{0}^{j}, \Sigma_{j}^{i}\right]\right\}_{j=0}^{n}$ is isomorphic to the system generated by the sequence $d\left[\varphi_{1}\right] \circ \lambda_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$. Use Theorem 5.11 again to infer that the system $\left\{D^{2}\left(\Sigma_{0}^{j}, \Sigma_{j}\right), d^{2}\left[\Sigma_{0}^{j}, \Sigma_{j}^{i}\right]\right\}_{j=0}^{n}$ is isomorphic to the system generated by the sequence $d\left[\psi_{1}\right] \circ \lambda_{1}^{\prime}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$. Lct Γ denote the sequence $d\left[\psi_{1}\right] \circ \lambda_{1}^{\prime}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$ and let $\left\{\Gamma_{j}, \Gamma_{j}^{i}\right\}_{j=0}^{n}$ denote the system generated by Γ.

Suppose Σ_{0}^{n} can be factored through an arc. Then, by Theorem 2.12, $d^{2}\left[\Sigma_{0}^{n}\right]$ and consequently Γ_{0}^{n} can be factored through an arc. Since the map $\Gamma_{0}^{1}=d\left[\psi_{1}\right] \circ \lambda_{1}^{\prime}$ is either I_{2} or \tilde{I}_{2}, it is ultra light (see Example 5.6). By Theorem 4.3, Γ_{1}^{n} can be factored through an arc. Since the domain of Γ_{0}^{1} is T, the system $\left\{\Gamma_{j}, \Gamma_{j}^{i}\right\}_{j=1}^{n}$ is generated by $\varphi_{2}, \ldots, \varphi_{n}$ and according to our assumption Γ_{1}^{n} cannot be factored through an arc. This contradiction proves the claim.

Fig. 8.
It follows from Theorem 3.3 that the inverse limit of the system $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ is not chainable and has positive span.

Proposition 5.13. Suppose $\varphi: G_{1} \rightarrow G_{0}$ is a simplicial map between graphs. Let G_{0}^{\prime} he a graph subdividing G_{0} and let $\varphi^{\prime}: G_{1}^{\prime} \rightarrow G_{0}^{\prime}$ be a subdivision of φ matching G_{0}^{\prime}. Then φ can be factored through an arc if and only if φ^{\prime} can be factored through an arc.

Proof. Observe that clearly, if φ can be factored through an arc, then φ^{\prime} also can be factored through an arc. Suppose that there is an arc A^{\prime} and there are simplicial maps $\alpha^{\prime}: G_{1}^{\prime} \rightarrow A^{\prime}$ and $\beta^{\prime}: A^{\prime} \rightarrow G_{0}^{\prime}$ such that $\beta^{\prime} \circ \alpha^{\prime}=\varphi^{\prime}$. Let $V=\{v \in$ $\left.\mathscr{V}\left(A^{\prime}\right) \mid \beta^{\prime}(v) \in \mathscr{V}\left(G_{0}\right)\right\}$. Let A denote the graph with V as its set of vertices such that two vertices $v_{1}, v_{2} \in V$ are adjacent if the subarc of A^{\prime} between v_{1} and v_{2} does not contain other points of V. Clearly, A is an arc. Let $\beta: A, G_{0}$ be such that $\beta(v)=\beta^{\prime}(v)$ for each $v \in V$. Note that β is a simplicial map. Observe that $\alpha^{\prime}(v) \in V$ for each $v \in \mathscr{V}\left(G_{1}\right)$. Let $\alpha: G_{1} \rightarrow A$ be such that $\alpha(v)=\alpha^{\prime}(v)$ for each $v \in \mathscr{V}\left(G_{1}\right)$. One can verify that α is a simplicial map and $\beta \circ \alpha=\varphi$.

Example 5.14. We will consider here the continuum defined in [2] by Davis and Ingram. Davis and Ingram showed that the continuum has positive span and therefore is not chainable. We will give here an alternate proof of this statement.

Let T indicate the extended triod with its vertices named as in Fig. 8.
Fig. 9 indicates the Davis-Ingram map from a tree T^{\prime} subdividing T onto T. The map will be denoted here by δ. As usual, the dashed line graph is the domain of the map while the solid black is the range and each vertex of the domain is mapped onto the nearest vertex of the range. Note that $\delta\left(v_{0}\right)=v_{2}, \delta\left(v_{1}\right)=v_{3}$, $\delta\left(v_{2}\right)=\delta\left(v_{4}\right)=v_{4}$ and $\delta\left(v_{3}\right)=\delta\left(v_{5}\right)=v_{5}$.

Fig. 9.

Fig. 10.

Let $\sigma: T \rightarrow T$ denote the symmetry of T about the axis $v_{0}-v_{1}$, that is $\sigma\left(v_{0}\right)=v_{0}$, $\sigma\left(v_{1}\right)=v_{1}, \sigma\left(v_{2}\right)=v_{4}, \sigma\left(v_{3}\right)=v_{5}, \sigma\left(v_{4}\right)=v_{2}$ and $\sigma\left(v_{5}\right)=v_{3}$. Let $\tilde{\delta}$ denote the composition $\sigma \circ \delta$.

Let S be an edge selection on T defined in the following way: $S\left(v_{0}\right)=\left\{\left\langle v_{0}, v_{2}\right\rangle\right.$, $\left.\left\langle v_{0}, v_{4}\right\rangle\right\}, \quad S\left(v_{1}\right)=\left\{\left\langle v_{0}, v_{1}\right\rangle\right\}, \quad S\left(v_{2}\right)=\left\{\left\langle v_{0}, v_{2}\right\rangle\right\}, \quad S\left(v_{3}\right)=\left\{\left\langle v_{2}, v_{3}\right\rangle\right\}, \quad S\left(v_{4}\right)=$ $\left\{\left\langle v_{0}, v_{4}\right\rangle\right\}$ and $S\left(v_{5}\right)=\left\{\left\langle v_{4}, v_{5}\right\rangle\right)$. Observe that both δ and $\tilde{\delta}$ preserve (S, S). Observe also that both δ and $\tilde{\delta}$ are consistent on S. Let λ and $\tilde{\lambda}$ denote the consistency isomorphisms for δ and $\tilde{\delta}$, respectively. Denote the map $d[\delta] \circ \lambda$ by δ_{1}, and $d[\tilde{\delta}] \circ \tilde{\lambda}$ by $\tilde{\delta}_{1}$. Figs. 10 and 11 indicate (in the usual convention) δ_{1} and $\tilde{\delta}_{1}$, respectively. Note that both δ_{1} and $\tilde{\delta}_{1}$, are ultra light.

Let Σ be an infinite sequence of simplicial maps $\varphi_{1}, \varphi_{2}, \ldots$ each of which is either δ or $\tilde{\delta}$. By $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ we denote the system generated by Σ. (If $\varphi_{i}=\delta$ for each $i=1,2, \ldots$, the system $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ is identical with the one described in [2].) We will prove for each choice of $\varphi_{1}, \varphi_{2}, \ldots$ we have that

Claim. Σ_{0}^{n} cannot be factored through an arc.
Clearly, the claim is true if $n=1$. Now, suppose that the claim is true for each sequence of $n-1$ maps each of which is either δ or $\tilde{\delta}$. In particular, we assume that the claim is true for the sequence $\varphi_{2}, \ldots, \varphi_{n}$.

If $\varphi_{1}=\delta$ then set $\lambda_{1}=\lambda$, otherwise, if $\varphi_{1}=\tilde{\delta}$ then set $\lambda_{1}=\tilde{\lambda}$. Let Γ denote the sequence $d\left[\varphi_{1}\right] \circ \lambda_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$ and let $\left\{\Gamma_{j}, \Gamma_{j}^{i}\right\}_{j=0}^{n}$ denote the system generated by Γ. Use Theorem 5.11 to get the result that the system $\left\{D\left(\Sigma_{0}^{i}, \Sigma_{j}\right), d\left[\Sigma_{0}^{j}, \Sigma_{j}^{i}\right]\right\}_{j=0}^{n}$ is isomorphic to $\left\{\Gamma_{j}, \Gamma_{j}^{i}\right\}_{j=0}^{n}$.

Suppose Σ_{0}^{n} can be factored through an arc. Then, by Theorem 2.12, $d\left[\Sigma_{0}^{n}\right]$ and consequently Γ_{0}^{n} can be factored through an arc. Since the map $\Gamma_{0}^{1}=d\left[\varphi_{1}\right] \circ \lambda_{1}$ is

Fig. 11.
either δ_{1} or $\tilde{\delta}_{1}$, it is ultra light. By Theorem 4.3, Γ_{1}^{n} can be factored through an arc. Since the domain of Γ_{0}^{1} is a graph subdividing T, the system $\left\{\Gamma_{j}, \Gamma_{j}^{i}\right\}_{j=1}^{n}$ is generated by subdivisions of $\varphi_{2}, \ldots, \varphi_{n}$ and, according to our assumption and Proposition 5.13, Γ_{1}^{n} cannot be factored through an arc. This contradiction proves the claim.

It follows from Theorem 3.3 that the inverse limit of the system $\left\{\Sigma_{j}, \Sigma_{j}^{i}\right\}$ is not chainable and has positive span.

References

[1] H. Cook, W.T. Ingram and A. Lelek, Eleven annotated problems about continua, in: Open Problems in Topology (North-Holland, Amsterdam, 1990) 295-302.
[2] J.F. Davis and W.T. Ingram, An atriodic tree-like continuum with positive span which admits a monotone mapping to a chainable continuum, Fund. Math. 131 (1988) 13-24.
[3] W.T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972) 99-107.
[4] W.T. Ingram, An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span, Fund. Math. 85 (1974) 73-78.
[5] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964) 199-214.
[6] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977) 35-45.
[7] P. Minc, An atriodic simple-4-od-like continuum which is not simple-triod-like, Trans. Amer. Math. Soc. 338 (1993) 537-552.
[8] L. Mohler and L.G. Oversteegen, Reduction and irreducibility for words and tree-words, Fund. Math. 126 (1986) 107-121.
[9] L.G. Oversteegen, On reductions of tree-words to (chain-) words, Houston J. Math. 15 (1989) 121-135.
[10] L.G. Oversteegen, On span zero and chainability of continua, Houston J. Math. 15 (1989) 573-593.
[11] L.G. Oversteegen, Factorization of maps through arcs, Houston J. Math, to appear.
[12] L.G. Oversteegen and E.D. Tymchatyn, Plane strips and the span of continua (I), Houston J. Math. 8 (1982) 129-142.
[13] L.G. Oversteegen and E.D. Tymchatyn, Plane strips and the span of continua (II), Houston J. Math. 10 (1984) 255-266.
[14] L.G. Oversteegen and E.D. Tymchatyn, On span of weakly-chainable continua, Fund. Math. 119 (1983) 151-155.
[15] L.G. Oversteegen and E.D. Tymchatyn, On span and weakly chainable continua, Fund. Math. 122 (1984) 159-174.
[16] L.G. Oversteegen and E.D. Tymchatyn, On span and chainable continua, Fund. Math. 123 (1984) 137-149.

