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We extend results of K. Lee and M.E. O’Sullivan by showing how
to use Gröbner bases to find the interpolation polynomial for list
decoding a one-point AG code C = CL(r P , D) on any curve X ,
where P is an Fq-rational point on X and D = P1 + P2 + · · · + Pn

is the sum of other Fq-rational points on X . We then define the
generic interpolation polynomial for list decoding such a code.
The generic interpolation polynomial should specialize to the
interpolation polynomial for most received strings. We give an
example of a family of Reed–Solomon 1-error correcting codes for
which a single error can be decoded by a very simple process
involving substituting into the generic interpolation polynomial.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a nonsingular, absolutely irreducible, projective curve of genus g defined over the finite
field Fq . Let C = CL(r P , D) be a one-point algebraic geometry code such that P is an Fq-rational
point on X and D = P1 + P2 + · · · + Pn is the sum of other Fq-rational points on X . V. Guruswami
and M. Sudan [11] gave an algorithm for list decoding C that, given a received string, requires the
computation of an interpolation polynomial. Such a polynomial must vanish to certain multiplicities
at certain points. This naturally gives rise to an ideal in a certain polynomial ring and the optimal
interpolation polynomial can be characterized as an element in this ideal whose leading term is least
with respect to a certain monomial order. This leads to a Gröbner basis approach to the determination
of the interpolation polynomial, an approach that has been taken by H. O’Keeffe and P. Fitzpatrick [17]
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and K. Lee and M. E. O’Sullivan [12,13], among others. A recent survey article by E. Guerrini and
A. Rimoldi [10] discusses Gröbner basis approaches to decoding, including list decoding.

Lee and O’Sullivan gave explicit generators for the above ideal in the case of Reed–Solomon codes
and one-point Hermitian codes. We generalize their results by giving explicit generators for this ideal
for any one-point code as above. It turns out that viewing the one-point code in the context of the
affine variety codes of [6] is very helpful for this purpose. One could proceed to consider modules
over this polynomial ring and use Gröbner bases for modules, as was done by O’Keeffe–Fitzpatrick,
Lee–O’Sullivan, and P. Beelen and K. Brander [3], but we do not pursue that investigation here.

We go on to define a generic interpolation polynomial for C . This involves considering the com-
ponents of a received string as variables instead of field elements. This is similar to the idea of
considering syndromes as variables in the decoding of cyclic codes, an idea that goes back to A. Brin-
ton Cooper [4]. This “Cooper philosophy” has been generalized and improved by several authors –
see the recent papers [16] and [14] and the references cited therein. As an example, we give a fam-
ily of 1-error correcting Reed–Solomon codes for which the generic interpolation polynomial may
be easily computed. Using one of these codes, one can correct a single error by simply substituting
into the generic interpolation polynomial to get the optimal interpolation polynomial for a given re-
ceived string, solving some linear equations to find the “root” of this interpolation polynomial, and
performing some evaluations to get the codeword associated to this root.

We thank William A. Adkins and James Oxley for very helpful conversations and the referees for
their thoughtful comments.

2. List decoding for one-point AG codes

Let X be a nonsingular, absolutely irreducible, projective curve of genus g defined over Fq . Let C =
CL(r P , D) be a one-point AG code such that P is an Fq-rational point on X and D = P1 + P2 +· · ·+ Pn

is the sum of other Fq-rational points on X . We will assume that X is embedded in a projective
space P

s
F̄q

, where F̄q is an algebraic closure of Fq , such that P is the only Fq-rational point on the

hyperplane at infinity. (One way to accomplish this is to embed the curve into a projective space
using a linear system of the form |N P |, with N � 2g + 1.) Then the curve X0 = X \ {P } is an affine
variety V

F̄q
( J ) for an ideal J ⊆ Fq[X1, X2, . . . , Xs].

Put A = Fq[X1, X2, . . . , Xs] and let R = A/ J denote the coordinate ring of X0. Then R is a
Dedekind domain. Let I ⊇ J be an ideal of A such that VFq (I) = {P1, P2, . . . , Pn} = Supp(D). We
note that if D is the sum of all other Fq-rational points on X besides P , then we can take I = J . Put

Iq = I + 〈
Xq

1 − X1, Xq
2 − X2, . . . , Xq

s − Xs
〉

and Rq = A/Iq.

Let Pi = (ai1,ai2, . . . ,ais), i = 1,2, . . . ,n, and let Mi = 〈X1 − ai1, X2 − ai2, . . . , Xs − ais〉, i =
1,2, . . . ,n, denote the corresponding maximal ideals of A. Since Iq contains the polynomials
Xq

i − Xi, i = 1,2, . . . , s, it is an ideal of dimension 0, and we know, from Seidenberg’s Lemma 92
([18]; also see [2]), that it is a radical ideal, V

F̄q
(Iq) = VFq (Iq) = VFq (I), and Iq = ∩n

i=1Mi . It follows
that the ring Rq = A/Iq is an Artin ring of length n and that we have an isomorphism of Fq-vector
spaces

Rq ∼= ⊕n
i=1 A/Mi .

We also have an isomorphism of Fq-vector spaces

φ : Rq → A
n,

f̄ 
→ (
f (P1), f (P2), . . . , f (Pn)

)
,
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where f is any preimage of f̄ in the polynomial ring A and A
n denotes the n-dimensional affine

space over Fq . The vector space L(r P ) may be identified with an Fq-vector subspace L of Rq and the
code C is then the image of L under the evaluation map φ. This amounts to viewing C as an affine
variety code, as in [6] and [7]. A related ring-theoretic viewpoint for evaluation codes is also present
in such articles as Matsumoto [15] and Geil and Pellikaan [8].

Example 1. In the case of the Reed–Solomon code of dimension k over Fq , we have R = Fq[X], I =
〈Xq−1 − 1〉, Iq = I and L = L(kP ) is the subspace with basis {1, x, x2, . . . , xk−1}, where x denotes the
residue class of X in Rq . If we take I = 〈0〉 instead, then Iq = 〈Xq − X〉, V (Iq) = A

1, and, with L as
above, we get the extended Reed–Solomon code of dimension k.

In [6], we considered the decoding problem for affine variety codes. Under the assumption that
there is a unique codeword within a given distance of a received string, we used Gröbner bases
to solve equations arising from the syndrome of the received string. We also applied the “Cooper
philosophy” (see [4] and [16]) to consider “universal” error locators obtained by treating syndromes
as variables. These ideas were improved upon by Marcolla, Orsini, and Sala [14].

Here, we instead consider the problem of using a Gröbner basis to determine an interpolation
polynomial for list decoding of a one-point AG code as above. Our work generalizes results of Lee and
O’Sullivan [12,13] in the cases of Reed–Solomon codes and one-point Hermitian codes.

The first thing we need to do is to associate a polynomial to each n-tuple in A
n . Fix polynomials

H1, H2, . . . , Hn in A such that Hi(P j) = δi j . One way to do this would be to take

Hi(X1, X2, . . . , Xs) =
s∏

j=1

[
1 − (X j − aij)

q−1]. (1)

In an application, one would like to find polynomials that have this property and have “small” degrees.
Lee and O’Sullivan [13] give a formula in the Hermitian curve case for polynomials that have this
property and have smaller degrees than the above Hi . Let hi denote the residue class in R of Hi for
i = 1,2, . . . ,n. Following Lee and O’Sullivan, for v = (v1, v2, . . . , vn) ∈ A

n , define

H v =
n∑

i=1

vi Hi

and let hv denote the residue class of H v in R . Note that H v(Pi) = vi for i = 1,2, . . . ,n.
Now, fix an n-tuple v = (v1, v2, . . . , vn) ∈ A

n , which should be thought of as a received string. Put
Piv = (ai1,ai2, . . . ,ais, vi) for i = 1,2, . . . ,n. Let Miv = 〈X1 − ai1, X2 − ai2, . . . , Xs − ais, Z − vi〉 denote
the maximal ideal in A[Z ] corresponding to Piv for i = 1,2, . . . ,n.

Proposition 2.

Iq + 〈Z − H v〉 = ∩n
i=1Miv .

Proof. If f (X1, . . . , Xs) ∈ Iq , then f (Piv) = f (Pi) = 0 for i = 1,2, . . . ,n. Also, Z(Piv ) = H v(Piv) =
vi for i = 1,2, . . . ,n. Hence, we have Iq + 〈Z − H v〉 ⊆ ∩n

i=1Miv . For the opposite inclusion, suppose
f (X1, . . . , Xs, Z) ∈ ∩n

i=1Miv . Consider a lexicographic order on A[Z ] with Z greater than the Xi ’s and
divide f by Z − H v to get f = u(Z − H v) + r, with u ∈ A[Z ] and r ∈ A. Now, evaluate both sides at
Piv . Since f ∈ ∩n

i=1Miv , we have f (Piv) = 0. Since H v(Piv) = H v(Pi) = vi , we have (Z − H v )(Piv) = 0.
Hence r(Piv) = r(Pi) = 0 for i = 1,2, . . . ,n. Therefore, r ∈ Iq , since Iq is a radical ideal. �
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Let x1, x2, . . . , xs denote the respective residue classes of X1, X2, . . . , Xs in R . The maximal ideal
Miv in A[Z ] then corresponds to the maximal ideal Miv = 〈x1 − ai1, . . . , xs − ai s, Z − vi〉 in the ring
R[Z ]. It follows from the above proposition that in R[Z ] we have

(I/ J )R[Z ] + 〈
xq

1 − x1, xq
2 − x2, . . . , xq

s − xs, Z − hv
〉 = ∩n

i=1Miv .

Put

Īm,v = (
(I/ J )R[Z ] + 〈

xq
1 − x1, xq

2 − x2, . . . , xq
s − xs, Z − hv

〉)m
.

Remark 3. In [13], the authors deal with one-point codes on the Hermitian curve Y q + Y = Xq+1

over the field Fq2 and they consider the ideal 〈xq2 − x, Z − hv〉m . In this case, we have I = J =
〈Y q + Y − Xq+1〉 and notice that Y q2 − Y ∈ 〈Y q + Y − Xq+1, Xq2 − X〉 since

Y q2 − Y = (
Y q + Y − Xq+1)q − (

Y q + Y − Xq+1) + Xq(Xq2 − X
)
.

It follows that in this case the ideal that they consider is the same as our ideal Īm,v .

Corollary 4. For any positive integer m,

Īm,v = ∩n
i=1M

m
iv .

Proof. From [1, Prop. 1.10], we know that the intersection of pairwise comaximal ideals equals the
product of these ideals. It follows that

∩n
i=1M

m
iv =

n∏
i=1

M
m
iv =

(
n∏

i=1

Miv

)m

= (∩n
i=1Miv

)m = Īm,v . �

It then follows from the Chinese Remainder Theorem that we have an isomorphism of rings

R[Z ]/ Īm,v
∼=−→

n∏
i=1

R[Z ]/M
m
iv . (2)

We need the following lemma about ideals.

Lemma 5. Let S be a commutative ring with identity and let A, B, and C be ideals of S. If B and C are
comaximal, then A + (B ∩ C) = (A + B) ∩ (A + C).

Proof. Since A + B ⊇ A, the modular law implies that

(A + B) ∩ (A + C) = A + (
(A + B) ∩ C

)
.

Since B and C are comaximal, so are A + B and C. Therefore,

A + (
(A + B) ∩ C

) = A + (A + B)C = A + AC + BC = A + BC = A + B ∩ C. �
Now, let ψ ∈ L. Let c = (c1, c2, . . . , cn) = φ(ψ) denote the corresponding codeword of C(r P , D).

Let δ denote the Hamming distance between v and c. The following result generalizes Lemma 4
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of [13]. Our proof does not involve power series or the Weierstrass Preparation Theorem, which were
employed in [13].

Proposition 6. The dimension of

R[Z ]/(〈Z − ψ〉 + Īm,v
)

as an Fq-vector space is m(n − δ).

Proof. By Corollary 4 and successive applications of Lemma 5, we have

〈Z − ψ〉 + Īm,v = ∩n
i=1

(〈Z − ψ〉 + M
m
iv

)
.

It then follows from the Chinese Remainder Theorem that we have an isomorphism

R[Z ]/(〈Z − ψ〉 + Īm,v
) ∼=−→

n∏
i=1

R[Z ]/(〈Z − ψ〉 + M
m
iv

)
. (3)

Notice that the value of Z − ψ at the point Piv is vi − ci . There are two cases to consider. If vi �= ci ,
then Z −ψ does not belong to Miv . So, in this case, 〈Z −ψ〉+ M

m
iv is all of R[Z ] and the corresponding

factor in the product in (3) is zero.
On the other hand, if vi = ci , then we claim that

R[Z ]/(〈Z − ψ〉 + M
m
iv

) ∼= R/M
m
i ,

where Mi = 〈x1 − ai1, x2 − ai2, . . . , xs − ais〉 = Miv ∩ R is the maximal ideal of R corresponding to the
point Pi, i = 1,2, . . . ,n. Consider the ring homomorphism Θ : R[Z ] −→ R/M

m
i that is the composition

of the ring homomorphism Ψ from R[Z ] to R that takes Z to ψ (and is the identity on R) and the
canonical homomorphism from R to R/M

m
i . Obviously, Θ is onto, so we need to see that Ker(Θ) is

〈Z −ψ〉+ M
m
iv . Notice that Ψ (Z − vi) = ψ − vi , which vanishes at Pi since ci = vi . Hence, Ψ (Z − vi) ∈

Mi . It is then easy to see that Ψ (〈Z −ψ〉+ M
m
iv) ⊆ M

m
i and hence 〈Z −ψ〉+ M

m
iv ⊆ Ker(Θ). Conversely,

assume g(Z) ∈ Ker(Θ). By taking a preimage of g(Z) in A[Z ], dividing by Z − ψ0, where ψ0 denotes
a preimage of ψ in A, as in the proof of Proposition 2, and then taking residue classes in R , we
may write g(Z) = s(Z)(Z − ψ) + ϕ , where s(Z) ∈ R[Z ] and ϕ ∈ R . Then Ψ (g(Z)) = ϕ and, since
g(Z) ∈ Ker(Θ), we have that ϕ ∈ M

m
i . It follows that g(Z) ∈ 〈Z − ψ〉 + M

m
iv .

Now, the Artin local ring R/M
m
i is isomorphic to RMi

/M
m
i RMi

, where RMi
denotes the localization

of R at Mi . Since R is a Dedekind domain, the local ring RMi
is a discrete valuation ring, and its

residue field is Fq . Therefore, R/M
m
i has dimension m as an Fq-vector space. It then follows from (3)

that the dimension of R[Z ]/(〈Z − ψ〉 + Īm,v) as an Fq-vector space is m(n − δ). �
We are now ready to generalize Theorem 6 of [13]. Our proof is virtually identical, but we include

it for the sake of completeness. Let νP denote the valuation at the point P . If ψ is a nonzero element
of R , then the order of the pole of ψ at P is −νP (ψ) = dimFq (R/〈ψ〉) (cf. Lemma 5 of [13]). Given

p(Z) = ρl Z l + · · · + ρ1 Z + ρ0 ∈ R[Z ], define degr(p(Z)), the r-weighted degree of p(Z), by

degr
(

p(Z)
) = max

0� j�l

(−νP (ρ j) + r j
)
.
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Theorem 7. Assume that p(Z) ∈ Īm,v has positive degree in Z . Put μ = degr(p(Z)). Let c = φ(ψ) be a code-
word of C(r P , D) such that the Hamming distance δ between c and v satisfies δ < n − (μ/m). Then ψ is a
root of p(Z); i.e., p(ψ) = 0.

Proof. Assume that p(ψ) �= 0. Since ψ ∈ L, we have μ = degr(p(Z)) � −νP (p(ψ)) = dimFq R/〈p(ψ)〉.
Now, it is easy to see that R/〈p(ψ)〉 is isomorphic to R[Z ]/〈p(Z), Z − ψ〉. Hence, using the fact that
p(Z) ∈ Īm,v , we have

μ � dimFq R[Z ]/〈p(Z), Z − ψ
〉

� dimFq R[Z ]/(〈Z − ψ〉 + Īm,v
) = m(n − δ).

Therefore, if m(n − δ) > μ, we must have p(ψ) = 0. �
Notice that because of the estimates used in the proof of Theorem 7, we may have p(ψ) = 0 even

if δ � n − (μ/m).
From now on, we will assume we are in one of the following two cases: (1) the divisor D is the

sum of all rational points except for the point at infinity and, thus, we can assume I = J ; or (2)
m = 1. To apply Theorem 7 we can take a weighted monomial order on A[Z ] such that the weight
of Xi is −νP (xi) for i = 1,2, . . . , s, the weight of Z is r, and where we break ties by lexicographic
order with Z the greatest variable. (We want Z to be the greatest variable so that our interpolation
polynomial will have small powers of Z .) We then find the reduced Gröbner basis of the ideal I +
〈Xq

1 − X1, . . . , Xq
s − Xs, Z − H v〉m with respect to this order. From Theorem 7, the best choice for our

interpolation polynomial is the residue class in R[Z ] of the least element in this Gröbner basis that
has positive degree in Z . Let Q m,v(Z) denote the least element in this Gröbner basis that has positive
degree in Z , and let Q m,v denote the residue class of Q m,v(Z) in R[Z ]. By slight abuse of language,
we will refer to both Q m,v(Z) and Q m,v(Z) as “the interpolation polynomial.”

Example 8. We consider the curve Y 4 + Y = X5 over the field F4 (not over the field F16, where
this would be a Hermitian curve). There is a single point P at infinity and four other rational points:
P1 = (0,0), P2 = (0,1), P3 = (0,α), and P4 = (0,α2), where α2 +α+1 = 0. Let C = CL(5P , D), where
D = P1 + P2 + P3 + P4. The vector space L(5P ) is identified with the F4-subspace of Rq generated by
1 and y, a generator matrix for C is

[
1 1 1 1
0 1 α α2

]
,

and C is a (4,2,3) code over F4.
For our polynomials Hi , we can take H1 = 1 − Y 3, H2 = 1 − (Y − 1)3, H3 = 1 − (Y − α)3, and

H4 = 1 − (Y − α2)3. These polynomials do not contain the unnecessary factor (1 − X) that would be
present if one used (1).

Notice that, in this example, our ideal Īm,v is not the same as the ideal 〈x4 −x, Z −hv 〉m considered
in [13]. Indeed, if we take hv = 0, then the F4-vector space dimension of R[Z ]/ Ī1,v = F4[X, Y ]/Iq is 4,
corresponding to the four rational points in the affine plane, while the F4-vector space dimension of
R[Z ]/〈x4 − x, Z〉 = F4[X, Y , Z ]/〈Y 4 + Y − X5, X4 − X, Z〉 is 16.

Let the received string be v = (1,0,1,α). Then H v = αY 3 + α2Y 2 + 1. Now, we have νP (x) = −4
and νP (y) = −5. We then consider the weighted order on F4[X, Y , Z ] where the weight of X is 4,
the weight of Y is 5, the weight of Z is 5 (since our code uses L(5P )), and where we break ties using
a lexicographic order with Z > Y > X . If we take m = 2, then we need to find a Gröbner basis for the
ideal

〈
Y 4 + Y − X5〉 + 〈

X4 − X, Y 4 − Y , Z − H v
〉2
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with respect to this order. We can use Macaulay2 [9] and the following commands:

k=GF(ZZ/2[a]/(a^2+a+1));
R=k[X,Y,Z,MonomialOrder=>{Weights=>{4,5,5},RevLex}];
H=(1-Y^3)+(1-(Y-a)^3)+a*(1-(Y-a^2)^3);
B=ideal(Y^4+Y-X^5)+(ideal(X^4-X,Y^4-Y,Z-H))^2;
G=gens gb B.

We find that the least element in the reduced Gröbner basis with positive degree in Z is Q 2,v =
(XY + αX)Z + XY 2 + α2 XY + αX . The interpolation polynomial in R[Z ] is then (xy + αx)Z + xy2 +
α2xy + αx. Even though the r-weighted degree of this polynomial is μ = 14 and n − (μ/m) = −3,
a check shows that the root in R of this polynomial is Z = y +1. Thus, we decode v as c = φ(y +1) =
(1,0,α2,α), which is the correct nearest neighbor decoding. Actually, in this example, we can take
m = 1. Doing that, the superfluous factor of x in the previous polynomial is removed, our interpolation
polynomial turns out to be (y + α)Z + y2 + α2 y + α, and again the root in R is Z = y + 1. We did
the calculation in the m = 2 case here to illustrate the case when m > 1.

If we put a limit on the size of the list of codewords that may be found in our list decoding,
then, as in Lee and O’Sullivan [12,13], it may be possible to use Gröbner bases for modules instead
of Gröbner bases for ideals. Specifically, if we desire no more than l possible codewords in the list
corresponding to a given received string, then we can limit the degree in Z of our interpolation
polynomial to at most l. Then, instead of viewing the interpolation polynomial as an element in R[Z ],
we can view it as an element in the free R-module R[Z ]l = ⊕l

j=0 R Z j . Assume l � m. Put Īm,v,l =
Īm,v ∩ R[Z ]l . Then it is not hard to see, as in Proposition 7 of [13], that Īm,v,l is generated as an
R-module by

(Z − hv)
a

s∏
i=1

(
xq

i − xi
)bi

, where 0 � a � m,

s∑
i=1

bi = m − a, and bi � 0,

Za−m(Z − hv)
m, where m < a � l.

In [13], Lee and O’Sullivan made essential use of the facts that they were dealing with a plane
curve and that Y q − Y was a power of X in constructing their algorithm. It is not clear if their
algorithm can be generalized to the case of an arbitrary curve and we will not pursue this problem
here. We note that P. Beelen and K. Brander [3] have also given a module-theoretic algorithm for
computing an interpolation polynomial for a large class of plane curves (Miura–Kamiya curves).

3. Generic interpolation polynomial

We now apply “the Cooper philosophy” and “replace” the n-tuple v = (v1, v2, . . . , vn) by an
n-tuple of variables t = (t1, t2, . . . , tn). So, instead of working over the field Fq , we will work over the
field Fq(t1, t2, . . . , tn). The idea is to obtain a polynomial in Z with coefficients in R(t1, t2, . . . , tn) that
will specialize to give the interpolation polynomial in R[Z ] for most received strings (v1, v2, . . . , vn)

when we substitute ti = vi, i = 1,2, . . . ,n.
We keep the same notation as in the previous section and we assume throughout that either I = J

or m = 1. Let At denote the ring Fq(t1, t2, . . . , tn)[X1, X2, . . . , Xs]. Put Ht = t1 H1 + t2 H2 + · · · + tn Hn .
Let ht denote the residue class of Ht in R(t1, t2, . . . , tn). Define the ideal Im,t in At[Z ] by

Im,t = I At[Z ] + 〈
Xq

1 − X1, Xq
2 − X2, . . . , Xq

s − Xs, Z − Ht
〉m

.

Definition 9. Put the same weighted monomial order on At[Z ] as we put on A[Z ] in the previous
section. Let Qm,t(Z) denote the least element in the reduced Gröbner basis of the ideal Im,t that has
positive degree in Z . We call Qm,t the mth generic interpolation polynomial for the code C .
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This polynomial may depend on the choice of the Hi ’s and the representation of C as an affine
variety code C(I, L).

Theorem 10. There is an algebraic variety W ⊆ A
n such that Qm,t(Z) specializes to Q m,v(Z) for all special-

izations (t1, . . . , tn) 
→ (v1, . . . , vn) ∈ A
n \ W .

Proof. We may assume that the generators of I are monic polynomials. However, note that the lead-
ing term of Z − Ht need not be Z . From the definition of Ht , the leading coefficient of Z − Ht may
be u = u(t1, t2, . . . , tn), an Fq-linear combination of t1, t2, . . . , tn . In that case, the leading coefficient
of some of the generators of Im,t as given above will be a power of u. Dividing by powers of u when
necessary, we can get to a set of monic polynomials

f1, f2, . . . , fΛ ∈ Fq(t1, t2, . . . , tn)[X1, X2, . . . , Xs, Z ]
that generate Im,t . Let g1, g2, . . . , gΓ be the reduced Gröbner basis for Im,t . Then there exist Bγ λ ∈
At[Z ] such that

gγ =
Λ∑

λ=1

Bγ λ fλ,

for γ = 1,2, . . . ,Γ . If W ′ is the affine subvariety of A
n defined by the vanishing of u(t1, . . . , tn) and

all the denominators that appear among the gγ and Bγ λ , then {g1, . . . , gΓ } remains a Gröbner basis
for 〈 f1, . . . , fΛ〉 under all specializations

(t1, . . . , tn) 
→ (v1, . . . , vn) ∈ A
n \ W ′

by [5, pp. 288–289]. Let W ′′ be the subvariety of A
n such that Qm,t(Z) specializes to a polynomial

with positive degree in Z for all specializations (t1, . . . , tn) 
→ (v1, . . . , vn) ∈ A
n \ W ′′ . It then follows

that for specializations (t1, . . . , tn) 
→ (v1, . . . , vn) outside of W = W ′ ∪ W ′′ , the generic interpolation
polynomial specializes to the interpolation polynomial for (v1, . . . , vn). �

While it is clear that the variety W in the above theorem is a proper subvariety of affine n-space
over the algebraic closure of Fq , it is not clear how many of the finite number of points in A

n may
lie in W . We present some examples where the generic interpolation polynomial does specialize to
the interpolation polynomial for “most” received strings.

Example 11. We return to the situation in Example 8 and compute the generic interpolation polyno-
mial when m = 2. With Macaulay2, we can use the following commands:

k=GF(ZZ/2[a]/(a^2+a+1));
K=frac(k[t1,t2,t3,t4]);
R=K[X,Y,Z,MonomialOrder=>{Weights=>{4,5,5},RevLex}];
H=t1*(1-Y^3)+t2*(1-(Y-1)^3)+t3*(1-(Y-a)^3)+t4*(1-(Y-a^2)^3);
B=ideal(Y^4+Y-X^5)+(ideal(X^4-X,Y^4-Y,Z-H))^2;
G=gens gb B.

The least element of the reduced Gröbner basis with positive degree in Z is

Q2,t(Z) =
(

XY + t2 + αt3 + α2t4

t1 + t2 + t3 + t4
X

)
Z + t1t2 + α2t1t3 + αt2t3 + αt1t4 + α2t2t4 + t3t4

t1 + t2 + t3 + t4
XY 2

+ t1t2 + t1t3 + t2t3 + t1t4 + t2t4 + t3t4
XY + t1t2 + αt1t3 + α2t1t4

X .

t1 + t2 + t3 + t4 t1 + t2 + t3 + t4
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When we substitute t1 = 1, t2 = 0, t3 = 1, t4 = α into Q2,t(Z), we obtain the polynomial Q 2,v(Z)

in Example 8. Here, one can see that Q2,t(Z) will specialize to the interpolation polynomial as
long as t1 + t2 + t3 + t4 �= 0. (Again, we can actually use m = 1 here and our generic interpolation
polynomial will be Q1,t(Z) = Q2,t(Z)/X .) We note that for this code, if c = (c1, c2, c3, c4) is any
codeword, then c1 + c2 + c3 + c4 = 0. It follows that if v = (v1, v2, v3, v4) is not a codeword and if
v1 + v2 + v3 + v4 = 0, then the distance from v to any codeword is at least 2. Hence, the generic inter-
polation polynomial here can always be used to correct one error. Note that the generic interpolation
polynomial becomes undefined when one specializes to any codeword.

As one can imagine, it is in general difficult to compute the generic interpolation polynomial. In-
deed, using software like Macaulay2 we have only been able to compute the generic interpolation
polynomial in small examples. It is possible that techniques as in [14] might make the computations
more manageable, or one may be able to extend the algorithms of Lee and O’Sullivan [12,13], or Bee-
len and Brander [3] to work over Fq(t1, t2, . . . , tn) to compute the generic interpolation polynomial in
some cases. The advantage of having the generic interpolation polynomial is that, given most received
words, one could then compute the interpolation polynomial by substitution, thus avoiding the up-
date loop process in other algorithms. We will discuss this further in our final example in which we
give a family of Reed–Solomon codes for which one can compute the generic interpolation polynomial
“by hand.” This is a family of codes of minimum distance 3 and falls into the “special case” m = l = 1
considered in the last section of [12]. An interesting feature of this example is that the finite field
may be arbitrarily large (and, consequently, the code may be arbitrarily long).

Example 12. Assume q � 5. Let C denote the [q − 1,q − 3,3] Reed–Solomon code over Fq . Then
I = 〈Xq−1 − 1〉, J = 〈0〉, L = L((q − 4)P ) is the Fq-subspace of Fq[X] with basis {1, X, . . . , Xq−4}, and
we set m = 1. Denote the nonzero elements of Fq by α1,α2, . . . ,αq−1. Using Lagrange interpolation,
we take

Hi(X) =
q−1∏
k=1
k �=i

(αi − αk)
−1(X − αk)

for i = 1,2, . . . ,q − 1. Put Ht = ∑q−1
i=1 ti Hi . Write

Ht = u0 + u1 X + · · · + uq−2 Xq−2.

Put K = Fq(t1, t2, . . . , tq−1). The ideal I1,t of K [X, Z ] is given by

I1,t = 〈
Xq−1 − 1, Z − Ht

〉
.

Our weighted monomial order assigns a weight of 1 to X and a weight of q − 4 to Z . Notice that
the leading term of Z − Ht is −uq−2 Xq−2. It is not hard to see that the S-polynomial of the two
generators of I1,t then reduces to the polynomial

Q(X, Z) = X Z +
(u2

q−3

uq−2
− uq−4

)
Xq−3 − uq−3

uq−2
Z +

q−4∑
k=1

(
ukuq−3

uq−2
− uk−1

)
Xk + uq−3u0

uq−2
− uq−2.

Indeed, we have Q(X, Z) = uq−2(Xq−1 − 1) + (X − uq−3
uq−2

)(Z − Ht).

We claim that Q(X, Z) is the generic interpolation polynomial. This will follow from the next
proposition. Before giving that result, we consider the number of multiplications in Fq that are needed
to compute the interpolation polynomial from Q(X, Z) once a word is received. We assume that the
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nonzero field elements αi, i = 1,2, . . . ,q −1 have been stored and do not need to be computed. Given
field values ti = vi for i = 1,2, . . . ,q − 1, it then requires O (q) multiplications to compute each of the
ui, i = 1,2, . . . ,q − 2. Notice that in the above formula for Q(X, Z), the same element uq−3/uq−2
appears in every term of the summation. (In particular, one only needs to invert the single element
uq−2.) It follows that all the terms in the polynomial Q(X, Z) may be computed using O (q2) multi-
plications. Step I2 in the algorithm in [12] (with m = 1) also requires O (q2) multiplications. However,
because of the update loop, the algorithm in [12] might require as many as O (q4) multiplications to
compute the interpolation polynomial (although that algorithm might perform better than that in this
specific example).

Proposition 13. There is no nonzero polynomial in I1,t whose leading monomial is in {1, X, X2, . . . , Xq−4,

Z , Xq−3}.

Proof. We first claim that there is no nonzero polynomial solely in X of degree less than q −1 in I1,t .
To see this, consider the homomorphism Ψ : K [X, Z ] → K [X] such that Ψ (X) = X and Ψ (Z) = Ht .
The kernel of this homomorphism is easily seen to be 〈Z − Ht〉 and the image of I1,t under this
homomorphism is 〈Xq−1 − 1〉. The claim then follows since there are no nonzero polynomials of
degree less than q − 1 in 〈Xq−1 − 1〉.

Suppose there is a polynomial in I1,t whose leading monomial is in {1, X, X2, . . . , Xq−4}. Then this
would be a nonzero polynomial solely in X of degree less than q − 1, which is a contradiction. Now
suppose there is a polynomial f (X, Z) ∈ I1,t whose leading monomial is Z . Then

f (X, Z) = aZ + terms in X of degree � q − 4,

for some a ∈ K . But then f (X, Z) − a(Z − Ht) ∈ I1,t is a nonzero polynomial solely in X of degree
less than q − 1, which is a contradiction. Similarly, if there is a polynomial g(X, Z) ∈ I1,t with leading
monomial Xq−3, then g(X, Z) = aXq−3 + b Z + lower terms in X , and g(X, Z) − b(Z − Ht) would be a
nonzero polynomial solely in X of degree less than q − 1. �

By the lemma, the least possible leading monomial of any nonzero polynomial in I1,t is X Z . It fol-
lows that Q(X, Z) is the generic interpolation polynomial. We note that computations with Macaulay2
indicate that the reduced Gröbner basis for I1,t is given by

G =
{

Q(X, Z),
−1

uq−2
(Z − Ht), T (X, Z)

}
,

where T (X, Z) is a polynomial with leading term Z 2 that arises from reducing the S-polynomial of
Q(X, Z) and −1

uq−2
(Z − Ht).

To illustrate this example more explicitly, we consider the [7,5,3] Reed–Solomon code over F8 =
F2(α), where α3 +α + 1 = 0. List the nonzero elements of F8 as Pi = αi = αi for i = 1,2, . . . ,7. Then

H1(X) = αX6 + α2 X5 + α3 X4 + α4 X3 + α5 X2 + α6 X + 1,

H2(X) = α2 X6 + α4 X5 + α6 X4 + αX3 + α3 X2 + α5 X + 1,

H3(X) = α3 X6 + α6 X5 + α2 X4 + α5 X3 + αX2 + α4 X + 1,

H4(X) = α4 X6 + αX5 + α5 X4 + α2 X3 + α6 X2 + α3 X + 1,

H5(X) = α5 X6 + α3 X5 + αX4 + α6 X3 + α4 X2 + α2 X + 1,

H6(X) = α6 X6 + α5 X5 + α4 X4 + α3 X3 + α2 X2 + αX + 1,
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H7(X) = X6 + X5 + X4 + X3 + X2 + X + 1,

Ht(X) = t1 H1 + t2 H2 + t3 H3 + t4 H4 + t5 H5 + t6 H6 + t7 H7

=
6∑

j=0

(
7∑

i=1

tiα
i(7− j)

)
X j .

In particular, u6 = ∑7
i=1 tiα

i . The generic interpolation polynomial in this case is

Q(X, Z) = X Z +
(

u2
5

u6
− u4

)
X5 − u5

u6
Z +

4∑
k=1

(
uku5

u6
− uk−1

)
Xk + u5u0

u6
− u6.

We may use Q(X, Z) to correct one error in a received string (v1, v2, . . . , v7) as long as
∑7

i=1 viα
i �= 0.

Note that, since our code is cyclic with α as one of its roots, if (c1, c2, . . . , c7) is any codeword, then∑7
i=1 ciα

i = 0. It follows that if (v1, v2, . . . , v7) is a received string in which precisely one error has
occurred, then

∑7
i=1 viα

i �= 0.
For example, assume the received string is (α3,α4,α5,0,0,0,0). Substituting these values for the

ti ’s and computing the resulting ui ’s, we find that the generic interpolation polynomial specializes to

Q (X, Z) = X Z + αX5 + α3 Z + α5 X4 + αX3 + α6 X2 + α6 X + α5.

Substituting a4 X4 + a3 X3 + · · · + a0 for Z in the equation Q (X, Z) = 0 and solving for the a j ’s, we
find that the root of Q (X, Z) in F8[X] is

f (X) = αX4 + X3 + X2 + α4 X + α2.

Evaluating f at the points Pi , we decode the received string as the codeword

(
α3,α4,1,0,0,0,0

)
.
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