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The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food
additive consumption.

The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and
immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunc-
tion in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used
industrial food additives being some of them.

Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and
increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the
aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular
transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played

Industry by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that com-
monly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal perme-
ability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the
autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay
will enhance our knowledge of the common mechanisms associated with autoimmune progression.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The incidence of autoimmune diseases (AD) is increasing world-wide,
mainly in western countries and the role of the environment in AD devel-
opment is gradually becoming clear [1]. Similarly, industrial food process-
ing and food additive consumption is expanding. The recent increased
knowledge on the functions, mechanisms and abnormalities of intestinal
permeability and the specific relationship between some common food
additives and their deleterious effects on the tight-junction, prompted
us to review these observations and put forward the hypothesis that in-
creased intestinal permeability induced by the industrial food additives
explains the observed surge in autoimmune disease.

2. Autoimmune diseases are on the increase

Epidemiological data provide strong evidence of a steady rise in
AD throughout westernized societies over the last three decades
[2]. Multiple sclerosis, type 1 diabetes, inflammatory bowel diseases
(mainly Crohn's disease), systemic lupus erythematosus, primary bili-
ary cirrhosis, myasthenia gravis, autoimmune thyroiditis, hepatitis and
rheumatic diseases, bullous pemphigoid, and celiac disease are several
examples [2-6, Fig. 1, Ref.: 4,7-24]. Fig. 1A shows the cumulative net
fold increases in AD incidence/prevalence worldwide in those countries
where it was reported. Increased folds\year of type 1 diabetes, bullous
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pemphigoid, and autoimmune thyroiditis, of 0.77, 0.35 and 0.24, respec-
tively, were noted [14,18,20]. Type 1 diabetes increased 3-4% per
annum and undiagnosed celiac disease mortality increased 4 fold in
the USA [21,25]. Grouping the ADs to major disease classes, the highest
net increase % per year was noted in the neurological followed by gas-
trointestinal, endocrine, and rheumatic diseases (Fig. 1B). The
geoepidemiological distribution of AD, the world-wide North-south
and West-east gradients in Europe, their relationship to socioeconomic
status, their rapid increase in developed countries and observations in
migrant populations all indicate some form of environmental impact,
rather genetic factors, driving these recent and rapid evolutionary pro-
cesses [1-3]. Among many others, two major environmental factors,
strongly related to socioeconomical status are suspected to driver
these phenomena: infections and nutrition. The present review will
not expand on the debate of the interrelationship between AD and in-
fections [26]. A survey of the recent changes in industrial food additives
processing and the effect of food additives on intestinal permeability,
resulting in increased tight junction leakage, local and systemic immune
stimulation and potentiating AD induction, is presented here.

3. Increased usage of industrial and consumer food additives

The changes in agricultural and industrial practices over the past
decades have increased the world's capacity to provide food through
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Fig. 1. A. The mean net % increase per year of industrial food additives usage and AD incidences and prevalences. B. The mean net % increases of different classes of ADs.

Adapted from: Ref.: [4,7-24].



A. Lerner, T. Matthias / Autoimmunity Reviews 14 (2015) 479-489 481

increased productivity and diversity, decreased seasonal dependency
and seasonal prices [27]. Increased consumption has been facilitated
by rising income, urbanization, food industry marketing, media adver-
tisement and trade liberalization, mainly in developed countries.
Major shifts in dietary patterns are continually occurring, even in basic
staples consumption towards more diversified and industrially proc-
essed food products. Living in westernized countries has a strong impact
on nutritional patterns collectively termed the “Western diet” including
high fat, trans fatty acids, cholesterol, proteins, sugars, salt intake, as
well as frequent consumption of processed and “fast food” [28]. Influ-
enced by this reality, populations of developing countries undergo a
rapid change towards “transition nutrition”. The traditional dietary pat-
tern is gradually being replaced by the Western one [29]. Many studies,
throughout the world, have documented the abovementioned changes,
but only Brazil will be sited as an example. Between 1987-8 and
2002-2003 the contribution of ultra-processed food to total household
energy availability increased from 19.2 to 28% (an increase of 46%),
replacing the intake of unprocessed and minimally processed foods
[30]. This world-wide process is happening in both developing as well
as in developed countries [31,32]. Even today, the transition in nutritional
habits starts in child day care centers [33]. In the first year of life, the per-
centages of adequacy for carbohydrates and sodium were respectively
more than twice and 20 times, higher than that recommended.

The following paragraphs will deal with 7 nutritional ingredients
that are being increasingly added during industrial food processing
and find their way to the market product shelves, impacting human
health.

3.1. Sugars

Sugars are a major additive used in food. Analyzing the calories from
main commodities (kcal/capita/day) in developing countries and China,
the percentage change in 4 decades for sugars was + 127 and + 305
respectively [27]. The mean increase in availability of sugar and sweet-
eners (kcal/person/day) during the last 4 decades, around the Mediterra-
nean and in Central Europe increased 145 and 123% respectively [27].
More so, countries that traditionally had the highest adherence to the
Mediterranean diet (less processed, lower calories, higher fiber) like
Greece, experienced the greatest fall (63%) in the Mediterranean adequa-
cy index, consuming ever increasing amounts of energy-dense and sweet
products. A comparable decrease was depicted in other Mediterranean
countries and in Central Europe [27]. In Asia, sugar consumption has
rapidly increased in lower-middle and upper-middle-income countries,
carbonated soft drinks are the most significant vector for increased
sugar consumption [34].

3.2. Salt

Salt is considered a silent killer since increased consumption is
associated with hypertension, strokes, left ventricular hypertrophy,
renal diseases, obesity, renal stones and stomach cancer. Over consump-
tion of salts is real, spanning multiple populations, ages, gender and
continents.

Sodium intakes around the world are well in excess of physiological
need (i.e. 10-20 mmol/day). Most adult populations have mean sodium
intakes >100 mmol/day, and for many (particularly the Asian countries)
mean intakes are >200 mmol/day. Sodium intakes are commonly
>100 mmol/day in children over 5 years old, and increase with age.
In European and Northern American countries, sodium intake is domi-
nated by sodium added in manufactured foods (approximately 75% of
intake). Cereals and baked goods are the single largest contributor to
dietary sodium intake in UK and US adults. In Japan and China, salt
added at home and in soy sauce remains the largest sources. The salt
content in processed foods can be more than a 100 times higher that
that in similar homemade meals [35].

In Brazil, as mentioned above, infants below the age of 1 year
consume 20 fold the recommended intake of sodium [33]. Based
on these data, the national annual production of petit-Swiss cheese
category, where each 30 g contains 412 mg of sodium, increased
from 10,000 tons in 1992 to 24,000 tons in 2005 [33]. More so, even in
Europe, in South London, salt intake is 66, 73, and 73% above the
maximum daily recommended intake in 5-6, 8-9, and 13-17 year
age-groups, respectively [36]. The estimated sodium intake for the
Brazilian population for processed foods with added salt increased by
3.1% in 6 years when studied in 2008-2009 [37]. In the nutrition transi-
tion parts of the world, like Asia, salt intake is increasing rapidly and
processed baked goods are the main vector [34]. In fact, 80% of con-
sumed salt comes from manufactured products in developed countries
[38]. On the face of it, a voluntary decrease in salt consumption seems
to be an easy policy to implement, but good sense and good health
face the formidable opposing forces of flavor, habit, and culture.

3.3. Emulsifiers

Emulsifiers are a group of substances that concentrate at the inter-
face between oil and water and reduce the surface or interfacial tension,
thereby making the emulsion more stable. In many industries emulsi-
fiers are referred to as “surfactants”, which is an abbreviation of surface
active agents. They can interact with other ingredients like starch, pro-
tein and fat. They are widely used in the bakery, confectionary, dairy,
fat and oil, sauces, butter and margarine, ice cream, cream liqueurs,
meat, coffee, gum, beverages, chocolate and convenient food industries.
As intestinal barriers can inhibit oral drug bioavailability, absorption
enhancers are generally applied. In many cases the surfactants added
to foods are exactly the same as the ones used in pharmaceutics as
absorption enhancers. The most important synthetic surfactants used
in the food industry are: mono-and di-glycerides of fatty acids, sucrose
esters of fatty acids, polyglycerol esters of fatty acids, sodium/calcium
stearoyl-2-lactylate and sorbitan esters of fatty acids. But many others
groups like: lecithins, glycolipids, saponins, fatty alcohols, saturated/
unsaturated/trans fatty acids, proteins, polysaccharides and microbial
surfactants are used in the food and beverage industries [39].

The global food emulsifier market is a promising segment within the
food ingredients market. The food emulsifier market is considered to be
the fastest growing segment of the food additives market due to the
growing trend towards reducing fat content in food products. The emul-
sifier market is largely driven by di-glycerides and derivatives, lecithin,
stearoyl lactylates, and other emulsifiers such as polyglycerol esters
(PGE), polyglycerol polyricinoleate (PGPR), polysorbate and sucrose
esters, however, and many other synthetics as well as natural emulsi-
fiers are expected to gain momentum in the near future. In terms of
application, bakery items have been dominant, although research in
various fields has opened up new avenues for the application of these
substitutes.

The “marketresearch.com/food-emulsifiers-market” report [40]
estimates the market size of the global food emulsifier market in
terms of revenue and volume. According to the published report the
food emulsifier market will grow from an estimated $2.108.9 million
in 2012 to $2.858.6 million by 2018, an increase of 35%. The global
food emulsifier market is expected to reach 933.4 KT by 2018, due to in-
creasing demand for emulsifiers. Di-glyceride & derivatives dominate
the market in terms of volume. In terms of geography, Europe is the
major player, followed by North America, Asia-pacific and the rest of
the world. With the huge market potential and the growing preference
for their use, the market is likely to witness considerable growth in the
years to come.

3.4. Organic solvents

Per definition, a solvent is a liquid capable of dissolving another
substance. The organic solvent chemicals are genuinely dangerous.
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Most of them have warning information on the labels as poisons.
Examples of organic solvents used in industry are: benzene, xylene,
toluene, turpentine, acetone, methyl/ethyl acetates, hexane, ethanol
and several detergents. Several of them are used during industrial
manufacturing processes for extraction/solubilization/cleaning/
disinfection or nanoemulsion fabrication and not normally as food
additives. The use of solvents for extraction of active ingredients or re-
moval of undesirable substances is one of the more common practices
in the food industry. This process generally involves use of commercial
Hexane. It is one of the cheapest organic solvents available. It is estimat-
ed that about 60 million tons of edible oils are produced by Hexane
extraction technology, mainly for soy oil. Many other organic solvents
are considered as food additives mainly as antioxidants, stabilizers,
preservatives, flavoring, etc [41]. Recently, in a meta-analysis, they
were described as risk factors for AD [42]. An entirely novel area is the
use of organic solvents in nanotechnology, creating new molecules,
some of them potentially could be applied to the food industry. For
example, nanocomplexation-assisted solubilization to improve micro-
encapsulation [43]. Time will tell, if the new nanotechnology will
enter the food chain. According to market-reports, the solvent market
is expected to grow at a CAGR of 5.0% over the next five years to reach
$43.4 billion, by 2018. Asia-Pacific, with its flourishing economy and
rapidly expanding industrial sectors, is the leading consumer of solvents
and will experience the highest growth in demand from 2013 to 2018,
after North America [44]. The market experts from Ceresana forecast
the global solvent market to earn revenues of about US$33 billion in
2019. Especially the dynamic economic development in emerging
markets like China, India, Brazil, or Russia will continue to boost
demand for solvents. The market research institute expects worldwide
solvent consumption to increase at an average annual rate of 2.5% over
the next years. Accordingly, the growth rate seen over the last eight
years will be surpassed.

3.5. Gluten

Gluten is the major constituent in wheat, comprising 80%
of the proteins. Wheat is grown on more than 216,000,000 ha
(530,000,000 acres), larger than for any other crop and the world
trade in wheat is greater than that for all other crops combined. Along
with rice, wheat is the world's most favored staple food. In addition to
agronomic adaptability, wheat offers ease of grain storage and ease of
converting grain into flour for making edible, palatable, interesting
and satisfying foods. Wheat is the most important source of carbohy-
drate in a majority of countries [45]. In the 20th century, global wheat
output expanded by about 5-fold, whereby until about 1955 most of
this reflected increases in wheat crop area, with limited (about 20%) in-
creases in crop yields per unit area. Since 1955 however, there has been
a dramatic ten-fold increase in the rate of wheat yield improvement per
year, and this has become the major factor associated with increases in
global wheat production. An average 2.5 tons wheat of was produced on
one hectare of cropland in the world in the first half of 1990s, but this
had increased to about 3 tons in 2009. According to the Australian Bu-
reau of Statistics, the world production of wheat was 679 and
696 million tons in the years 2009-10 and 2011-12, respectively [46].

3.6. Microbial transglutaminase (mTG)

Transglutaminase (EC 2.3.2.13), i.e. protein-glutamine --
glutamyltransferase, belongs to the class of transferases. It cata-
lyzes the formation of an isopeptide bond between the group of
v-carboxamides of glutamine residues (donor) and the first-order
€-amine groups of different compounds, for instance, proteins (acceptors
of an acyl residue).

The development of bread process was an important event for
mankind, resulting in bread becoming a commodity within almost
everyone's reach. Introduction of industrial enzymes in the baking

process has, over the last 14 years, led to the development of a signifi-
cant segment of the industry, as reflected by increased market value
and the growth predictions for the next 6 years. In fact, the value of
the baked goods industrial enzyme market doubled between 2000
and 2010. The prediction for 2015-2020 is an additional increase,
mounting to 144% [47].

Microbial transglutaminase (mTG) occupies a substantial segment
of this market. The application of isolated transglutaminase enzymes
from a microbiological source has allowed for simplification of
certain processes and has provided energy and economic savings.
Thanks to established transgenesis procedures, gene transfer became
possible and the expression of genes gave rise to massive microbial
transglutaminase production. Multiple applications of mTG in the food
industry exist: improvement of meat texture, appearance, hardness
and preservability, increased fish product hardness, improved quality
and texture of milk and dairy products, decreased calories, improved
texture and elasticity of sweet foods, protein film stability and appear-
ance and improve texture and volume in the bakery industry. Applica-
tions of mTG as a biological glue in the biomedical and biotechnology
domains are constantly expanding. This is probably one of the fastest-
growing areas, as reflected by the increasing number of patent applica-
tions filed on mTG. The mTG treated food industry is expanding on a
great scale and mTG is ingested in large amounts in the common West-
ern diet [48-50]. The demand for baked goods, food and beverage
enzymes is forecasted to grow by 0.22 to 0.32 fold per year, between
2000 and 2020 (47). Altogether, a maximum daily intake of mTG
could range up to 15 mg. Dosing for restructuring is about 50-100 mg
of mTG for each kilogram of treated food [51].

3.7. Nanoparticles

Nanotechnology encompasses the understanding and control of
matter at dimensions between 1 and 100 nm. At these dimensions,
materials may acquire unusual physical, chemical and biological proper-
ties and functions that are remarkably different from those observed at
the macro- or microscale. The future implications of nanotechnology are
outstanding as it can offer more solutions to technological problems
than conventional systems. Nanotechnology is a multi-disciplinary field,
which can create materials and devices that can be applied to multiple
domains including foods production and packaging. Nanoemulsions
fabricated from food-grade ingredients are being increasingly utilized in
the food industry to encapsulate, protect, and deliver lipophilic functional
components, such as biologically-active lipids and oil-soluble flavors,
vitamins, preservatives, and nutraceuticals. The small size of the particles
in nanoemulsions means that they have a number of potential advan-
tages over conventional emulsions: higher stability to droplet aggregation
and gravitational separation, high optical clarity, ability to modulate prod-
uct texture, and increased bioavailability of lipophilic components [52].
Oil-in-water nanoemulsions, which consist of oil droplets dispersed with-
in aqueous phase, have the greatest potential for application within the
food industry. Nevertheless, water-in-oil ones are used in some types of
food products. Nano-carrier-based delivery presents an appropriate
choice of protein-based nutrient carriers owing to their property to
protect proteins from degradation by the low pH conditions in the
stomach or by proteolytic enzymes in the gastrointestinal tract, without
affecting their taste or appearance. Additionally, carbohydrates, salts,
lipids, emulsifiers, organic solvents, gluten and mTG are also used during
nanoparticle assembly or for enhanced delivery. Nanomaterials are being
developed to improve the taste, color, uniformity and texture of foods, as
well as in food packaging so as to minimize leakage of CO, from bottles or
kill bacteria (silver nanoparticles embedded in plastic). Nanosensors in
plastic packaging can detect gases given off by food when it is spoiled.
Nanoliposomes can carry nutrients, nutraceuticals, enzymes, food antimi-
crobials and food additives [53].

The total nano-enabled food and beverage packaging market in the
year 2008 was $4.13 billion, and was expected to grow to $7.30 billion
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by 2014, at a CAGR of 11.65% [54]. The Helmut Kaiser Consultancy
Group estimated that the global nanofood market was worth US$5.3
billion in 2005 and had grown to US$20.4 billion by 2010. It predicted
that nanotechnology will be used in 40% of food industries by 2015 [55].

The fold net increases/year of the abovementioned, industrial food
additives actual and forecast sales and consumption during the last
4-6 decades, can be seen in Fig. 1A. The more detailed bars (Fig. 2)
show the past compared to the actual fold increase of consumption or
sales of the various industrial additives, during the last decades, where
the use of industrial enzymes and nanoparticles has surged. The differ-
ential geographical distribution of the net increased % of food additives
is shown in Fig. 3. The use in Europe is ahead of the world average, and
that of USA and Brazil.

4. Intestinal tight junction regulation

Only a single layer of epithelial cells separates the luminal contents
from effector immune cells in the lamina propria and the internal milieu
of the body. Breaching this single layer of epithelium can lead to patho-
logical exposure of the highly immunoreactive subepithelium to the
vast number of foreign antigens in the lumen. The permeability of the
intestinal epithelium depends on the regulation of the mucosal immune
system and intercellular tight junction (TJ). Research carried out over
the last decade has demonstrated that the TJ is composed of a complex
network of proteins, the interaction of which dictates its competency.

Zonulins, occludins, claudins and junctional adhesion molecules are
a few examples that modulate movement of fluid, macromolecules and
leukocytes from intestinal lumen to the blood stream and vice versa. In
addition, these T] proteins are involved in protecting the epithelial cells
of the intestine against colonization by microorganisms. It is now appar-
ent that TJs are dynamic structures that are involved in developmental,
physiological and pathological processes. They regulate the trafficking of
macromolecules between the environment and the host through a barri-
er mechanism. Together with the gut-associated lymphoid tissue and the
neuroendocrine network, the intestinal epithelial barrier, with its inter-
cellular TJs, controls the equilibrium between tolerance and immunity
to non-self antigens. As a result, particular attention is being placed on
better understanding the role of TJ dysfunction in the pathogenesis of
several diseases, particularly AD.

Pathophysiological regulation of tight junctions is influenced
by many factors, including: secretory IgA, enzymes, neuropeptides, neu-
rotransmitters, dietary peptides and lectins, yeast, aerobic and
anaerobic bacteria, parasites, proinflammatory cytokines, free radicals
and regulatory T-cell dysfunction [56]. Given the complexity of
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intracellular structure and function of TJ proteins, it is not surprising
that when affected, the physiological state of epithelial and/or endothe-
lial cells is dramatically changed as well.

TJ dysfunction seems to be a primary defect in AD [57]. Intestinal
permeability is decreased in many AD: Ulcerative colitis, Crohn's dis-
ease, celiac disease, inflammatory joint disease, ankylosing spondylitis,
juvenile onset arthritis, psoriatic arthritis, type 1 diabetes mellitus and
primary biliary cirrhosis. In fact, in addition to genetic predisposition
and exposure to triggering non-self antigens, the loss of protective func-
tion of mucosal barriers that interact with the environment is necessary
for autoimmunity to develop.

5. Commonly ingested food ingredients increase intestinal permeability

The seven food additives and their increased usage, described above,
induce or are associated with increased intestinal permeability:

5.1. Sugars

Glucose is known as an absorption enhancer. It is known that a
major portion of intestinal glucose absorption occurs through tight
junctions and not by saturable transcellular active transport. The
absorption of a significant portion of glucose through tight junctions
requires increased junctional permeability, a very high intraluminal
glucose concentration, and a sufficient osmotic gradient to promote vol-
ume flow [58]. Glucose was found to increase permeability and produce
changes in distribution of the main protein of the tight junction in the
human cell line Caco-2, indicating intercellular leakage. Addition of
luminal glucose to segments of rodent small intestine, mounted in
Ussing chambers caused significant increase in paracellular permeability
to small molecules. The same observation was seen in rats and even
in human [59-61]. Most recently, glucose, as an absorption enhancer,
was shown to increase Caco-2 cell permeability, parallel to abnormal dis-
tribution of T proteins [61]. In fact, Crohn's patients (increased intestinal
permeability) have a higher dietary intake of sucrose and refined carbo-
hydrates, compared to controls [62].

5.2. Salt

The consumption of processed foods containing high amounts of salt
may in part be responsible for the increasing incidence of autoimmune
diseases. In a recent study it was demonstrated that an excess uptake of
salt can affect the innate immune system, in particular macrophage
function, and affects the differentiation of naive CD4+ T cells into

Fig. 2. The net fold % increases/year of the different industrial food additives, actual and forecasted sales and consumption over the last 4-6 decades.

Adapted from: [24,26,28,30,34,37,41-43,47,51,52].
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Fig. 3. The mean net % increases per year of industrial food additives, in various geographical areas.

a greater number of Ty17 cells. High salt concentration, change in
osmolarity, the influence of IL-23 and IL-23 receptor signaling, and the
activation of various enzymes drive the expression of Ty17-associated
cytokines and the formation of the pathogenic Ty17 phenotype. This
immune pathway plays a pivotal role in autoimmune disease [63].
Most recently, increased salt concentrations were shown to drive
neuropathy in a mouse model of multiple sclerosis by induction of
pathogenic Ty17 cells [64].

More so, initiation of Na™-glucose cotransport leads to activation
of NHE3 (a major route of Na™ absorption in the small intestine),
increased phosphorylation of myosin light chain, contraction of the
perijunctional actomyosin ring and ultimately, increased permeability
of intestinal tight junctions [59]. Finally, and most recently, the impor-
tance of the tight junction proteins claudin2 and 15, in paracellular
Na* flow associated nutrient transport was elucidated. Loss of these
claudins leads to death of the mice from malnutrition [65]. Thus,
increased salt consumption is an enhancer of intestinal permeability
through the TJ machinery.

5.3. Emulsifiers and surfactants

Numerous synthetic surfactant food additives have been shown to
increase the intestinal permeability through paracellular and/or trans-
cellular mechanisms and some of these additives were also shown to
inhibit P-glycoprotein. Additionally, based on the general characteristics
of surfactants it can be predicted that they decrease the hydrophobicity
of the mucus layer, which has also been shown to associate with
increased intestinal permeability. Previously, Csaki KF, [lback et al. and
Roberts CL et al., hypothesized that synthetic surfactant food additives
can cause intestinal barrier dysfunction [66-68]. Two hypotheses were
proposed supporting food additive induction of Crohn's disease
|68,69]. They summarized the observations on the deleterious effects
of surfactant additives on the hydrophobic intestinal mucus layer, on
the epithelial cell membranes and on the membranous transport pro-
tein p-glycoprotein. The present review will expand on the emulsifier-
induced alterations in intracellular events causing destabilization of
tight junctions between the Gl epithelial cells, thus increasing intestinal
leakage.

Sucrose monoester fatty acids, major and potent surfactants used in
the food industry, induced actin disbandment and structural separation
of TJ, in Caco-2 cells [ 70]. They showed those effects even at a concentra-
tion of 50 mg/L. Surprisingly, the same surfactant is permitted in infant
milk formulae at concentrations of up to 120 mg/L, bringing the subject
of early life environmental effects on AD induction to the fore [66].
Surface active compounds, like oleic and docosahexaenoic acids, com-
promised the integrity of the intestinal epithelium and enhanced the

paracellular absorption of poorly absorbed hydrophilic substances
[71]. In general, fatty acids like EPA, DHA, yLA, capric and lauric acids
increase TJ] permeability [72]. More recently, Na-cholate, an additional
absorption enhancer was shown to disturb T] protein distribution
resulting in increased Caco-2 inter-cell permeability [61]. Other surfac-
tants, used in pharmaceutical and food industries like: Cremophor EL,
Gelucire 44/14 or sodium taurocholate were found to disrupt the intes-
tinal barrier [73]. Self-microemulsifying systems that are used to
improve drug delivery via a microemulsion achieved by chemical rather
than mechanical means, were found to open the TJ and change the dis-
tribution of ZO-1 and actin [74]. Their food applications are pending.
Similarly, when Caco-2 monolayers are exposed to benzalkonium chlo-
ride and saponin at nontoxic levels, paracellular flux increases [75].

In Japan, a major player in the food industry utilization of emulsi-
fiers, a positive correlation was shown between the annual sales of
emulsifiers for food and beverage production and an increased
incidence of Crohn's disease [68]. It can be summarized that there are
enough scientific observations concerning the emulsifier effects on
breaching the integrity of the T], even at concentrations used in industri-
al food processing.

5.4. Organic solvents

The health hazards associated with organic solvent exposure are
extensively described. However, the present review highlights the
potential risks in using them in the food and beverage industry, in the
face of enhancing TJ permeability. Some nutrients like glutamine and
polyphenols protect T] barrier integrity, in contrast, several organic
solvents used in the food and beverage industries, like alcohol and its
metabolites impair the TJ barriers [63].

Ethanol increases paracellular permeability and induces alterations
in TJ proteins, as shown in Caco-2 cells [76]. Acetaldehyde, dissociates
the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers
resulting in increased permeability [77]. Fermented food and many al-
coholic beverages can also contain significant amounts of acetaldehyde.
Acetaldehyde, derived from mucosal or microbial oxidation of ethanol
and diet, appears to act as a cumulative carcinogen in the upper
digestive tract of humans. In isolated rabbit jejunal mucosa, ethanol en-
hanced the transport of electrolytes and organic substances [78].
Ethanol and methanol were shown to increase permeability and disturb
T] protein arrangement in the Caco-2 model [61].

In a clinical study, paradichlorobenzene, a mothball and toilet
cleaner, was found to induce leucoencephalopathy and deterioration
in multiple sclerosis patients [79,80]. Furthermore, in a recent meta-
analysis, organic solvents were described as risk factors for AD [42].
Exposure to organic solvents was found to be associated with systemic
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sclerosis, primary systemic vasculitis and multiple sclerosis individually
and also with all the ADs evaluated and taken together as a single trait.
The authors concluded that individuals with non-modifiable risk factors
should avoid any exposure to organic solvents in order to avoid increas-
ing their risk of ADs.

5.5. Gluten

Tissue transglutaminase is the autoantigen of celiac disease and glu-
ten is the environmental inducer of the disease [81,82]. Phenotypically,
gluten represents the offending nutrient at the origin of the classical and
the extra intestinal manifestations of the disease [83-85]. Evidence
exists that intestinal barrier defects have a role in initiating celiac
disease [72,86,87]. A number of in vitro studies have confirmed the
cytotoxicity of gluten's main antigen, gliadin. Gliadin has agglutinating
activity, reduces F-actin content, inhibits cell growth, induces apoptosis,
alters redox equilibrium and causes a rearrangement of the cytoskele-
ton through the zonulin pathway and the loss of T] competence in the
gastrointestinal mucosa. When IEC6 and Caco-2 cells are exposed to
gliadin in vitro, interaction between occludin and ZO-1 is compromised
and the cytoskeleton is rearranged, leading to increased monolayer
permeability.

The mechanism for this has been linked to zonulin, known to
modulate TJ. Gliadin induces zonulin release, leading to PKC-mediated
cytoskeletal reorganization. Ex vivo human intestinal samples from
celiac patients in remission also showed zonulin release when exposed
to gliadin, causing cytoskeletal rearrangement and ZO-1 reorganization,
leading to increased permeability. Gliadin causes zonulin release by
binding to the CXCR3 receptor in intestinal cells via a MyD88-
dependent pathway and subsequent transactivation of EGFR by PAR2,
leading to small intestine TJ disassembly. Clinical studies demon-
strated that the expression of CXCR3 and zonulin in the intestinal
mucosa of CD patients is highly elevated. Abnormal increased per-
meability results in substantial exposure of immune cells to gliadin.
The mucosal events become more complex since gliadin binding to
CXCR3 expressed in T cells induces an inflammatory cascade further
augmenting inter-epithelial permeability. Despite alternative intra-
cellular pathways of gluten passage through the apical membranous
CD71 and antigliadin SIgA TJ-independent protected transport, most
probably the TJ abnormalities in CD are the major immunogenic
force driving gluten induced enteropathy. Most recently, a gene ex-
pression study confirmed the involvement of tight junction genes re-
lated to permeability, polarity and cell proliferation in the epithelial
destruction observed in CD. Coexpression patterns of several genes
support the idea of a common regulatory mechanism that seems to
be altered in active CD [88,89].

5.6. Microbial transglutaminase (mTG)

Three reactions are catalyzed by transglutaminase: acyl-transfer
reaction, cross-linking reaction between Gln and Lys residues of pro-
teins or peptides (transamidation) and deamidation [48].

Transglutaminase is an extracellular enzyme and is biosynthesized
by several microbes. It has been isolated from Streptoverticillium
sp. Contrary to human TG, microbial TG is calcium independent, has a
lower molecular weight, has a single structural domain and exhibits a
different reactivity to some food proteins. These characteristics make
mTG a very useful tool for modifying the functionality of proteins in
food products [48,90].

The following are some observations where mTG may increase
intestinal permeability by cross-linking amino acids or protein:

1. If mTG imitates the protective and trophic functions of human TG on
infectious agents and facilitates their survival in the gut lumen, the
tight junction may leak since infections increase intestinal perme-
ability [91].

2. Glutamine and sulfur-containing amino acids regulate Caco-2 cell
tight junction proteins. Deprivation of glutamine (Gln) from cell
culture medium and inhibition of GIn synthetase using methio-
nine sulfoximine, led to significant decreases in transepithelial re-
sistance of Caco-2 cell monolayers and increased permeability
[92]. Also the sulfur-containing amino acids, cystine, cysteine
and methionine enhance epithelial TJ permeability [93]. It can be
speculated that the mTG mediated nonspecific linking of these
amino acids to other molecules can induce a state of depriva-
tion/surplus at the intestinal epithelial level, thus indirectly af-
fecting TJ performance.

3. Cross-linking of different proteins acts as a major modifier of the
physical and chemical properties/secondary and tertiary struc-
ture/antigenicity/and epitope repertoire of the linked complex.
New nutritional immunogenic epitopes are a potential result of
the cross-linking by mTG, presenting potential for T] aberrations.
It should be mentioned that meat products have been found to
contain variable amounts of mTG, indicating that the mTG used
in the food industry finds its way onto the market shelf to be
ingested by the consumers, directly exposing their intestinal
lumen to mTG [94].

4. mTG has emulsifying properties by cross-linking different pro-
teins [95]. The deleterious effects of emulsifiers have been de-
scribed above.

5. mTG has the ability to catalyze lipidation of protein, thus provid-
ing them with emulsifying activity [96]. Moreover, recently mTG
induced cross-linking of various dietary proteins originating
from casein, pork myofibrils, peanut and fish, was shown to im-
prove their emulsifying capacity [95,97]. One wonders if gluten
cross-linked to comparable proteins, will impact on its emulsifying
property, since hydrolyzed gluten by itself improves emulsification,
regardless of mTG treatment [98].

6. A new aspect of mTG usage is in nanoparticle cross-linking [99] or
using the enzyme for designing new luminal delivery systems [100].
There are few limits to the possible usage of mTG in nanotechnology.
The next section will deal with nanoparticles as potential enhancers
of intestinal permeability.

7. Additionally, multiple mTG linked proteins, including bakery products,
are immunogenic to celiac disease patients [101] and most recently we
observed specific anti-mTG and mTG-gliadin neo complex antibodies
only in CD sera and not in healthy controls (personal communication,
unpublished).

5.7. Nanoparticles

Nanoparticles, due to their unique properties and surface character-
istics, can protect drugs from the destructive factors in the GI tract and
can increase the permeability of macromolecules through the gastroin-
testinal barrier [102,52]. However, the question arises as to whether
such advantages to the pharmaceutical industry represent disadvan-
tages to the food and beverage industries. Many recent reports confirm
that nanoparticulate systems with unique properties can increase the
transport of poorly water-soluble compounds across the Gl barrier by
enhancing paracellular transport via opening of the TJ:

There are many reports on the application of nano-based thiolated
chitosan for enhancing permeability, mucoadhesivity and intestinal
absorption of active agents. Permeation studies showed that nano-
particles opened the tight junctions of monolayer Caco-2 cells and
increased paracellular transportation [103]. The signaling mecha-
nism initiating the cascade of disruption of the TJ, was elucidated re-
cently [104]. Nanoparticles composed of chitosan and over sulfated
fucoidan opened the TJ and induced redistribution of ZO-1 T] protein
[105]. Chitosan by itself, a potent paracellular permeation enhancer,
induced clustering of integrin o (V) p (3) along the cell border, F-
actin reorganization and claudin4 down-regulation, eventually
disrupting TJ integrity [106]. Hydrophobic nanoparticles opened the
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TJ in Caco-2 cells and resulted in increased bioavailability of hydrophilic
substance in rats [107]. Nanoparticles prepared by nanoprecipitation
using poly(lactic-co-glycolic acid) as carrier material and surface
modified by methoxy poly(ethylene glycol) and chitosan, were
shown to reduce the distribution of ZO-1 protein, thus impacting
paracellular entry [108]. Very recently, Zhang et al. showed that gob-
let cell-targeting CSK peptide modified nanoparticles strongly opened
epithelial T] via a C-Jun Nh,-terminal kinase-dependent pathway
[109]. Finally, natural polymer, synthetic, polymer and synthetic lipid-
polymer based nanoparticles increased T] permeability in a surface
charge depended way, implicating electrostatic interactions with the
T] proteins [110].

The critical cut-off point for T] mediated transfer has been estimated
to be relatively small (a few nm) under normal circumstances, but
certain nanoparticles such as some surfactants, polymers, chelating
agents and mainly the small size lipid nanoparticles, may increase the
gap dimensions [111].

There are health concerns associated with increasing the oral bio-
availability of bioactive components that exhibit deleterious effects
when consumed at too high levels. If one of these bioactive compo-
nents normally has a very low bioavailability but its absorption by
the human body is increased substantially by encapsulating it within
lipid nanoparticles, then it could exhibit toxic effects that could not
be predicted from data obtained on the same material in microscopic
or macroscopic form. This is particularly true if the bioactive compo-
nent is incorporated into a product that is consumed regularly in
large volumes, such as a soft drink or beverage [111]. In summary,
the small size, high surface area, and high surface energy of nano-
sized lipid particles may lead to effects in the GI tract that are not
predictable from our knowledge on the behavior of micro- or
macro-sized lipids. Nanotechnology usage in the food sector has
been hindered by concerns about the safety of the engineered nano-
particles, as well as ethical, policy, and regulatory issues [112]. Their
safe use in food requires knowledge of their absorption, distribution,
metabolism, excretion and toxicological profiles.

It is practical to study separately the different food additives men-
tioned above, but reality is much more complex since in nanotechnolo-
gy many of the additives can be combined, thus potentially enhancing
their effect on T] permeability. Several examples of these combinations
are: food-grade nanoemulsion using surfactants, salt nanowires, nano-
structured lipid carriers, nanotechnology using organic solvents, sugars
and bacterial enzymes. Many other nutrients or food additives, not
classified in the 7 categories mentioned above, have been shown to in-
crease intestinal permeability: L-alanine, tryptophan, the polysaccharide
chitosan, epigallocatechin galat (polyphenol in green tea) and many
more [113].

6. The hypothesis

The diet of the industrialized and urbanized parts of the world today
is vastly different from what it was even two or three decades ago, with
a whole new range of novel food experiences that come from new
food component sources, new breeds of food plants and food animals,
genetic modifications, chemical ingredients, flavors, preservatives and
new nanotechnologies. Over recent decades, a significant increase in
the incidence of autoimmune diseases in industrialized countries has
led to the postulation that diet is a potential environmental risk factor
for such disorders [63]. Although, causality has not been proven,
increases in the usage of the abovementioned food additives have
paralleled increased incidences and prevalences of AD during the
last decades, as evidenced by Fig. 4A and B (r?> = 0.9829, 0.886,
respectively).

We put forward the hypothesis that modern food additives (such as
sugars, salt, organic solvents, emulsifiers, gluten, microbial TG, and
nanoparticles) increasingly used in the food and beverage industries
are a major environmental factor for AD induction. All the food

ingredients mentioned here abrogate human epithelial barrier function
and increase intestinal permeability through the opened T], resulting
in entry of foreign immunogenic antigens and activation of the autoim-
mune cascade.

7. Potential mechanism of food additive and TJ crosstalk and
autoimmune induction

Molecular mimicry between food ingredients and TJ self-antigen.
Change of immunogenicity following industrial or luminal transfor-
mation of a nutrient, exposing neo-epitopes to the TJ.

Food composition changes the luminal microbiota. Typical abnormal
microbiota composition is allocated to specific AD and infections are
a major driver of TJ increased permeability.

Epigenetics can provide a plausible link between nutritional ingredi-
ents and autoimmunity [114]. Nutrients affect DNA methylation
and histone modification [115]. Glucose, folic acid, vitamin B12,
hydroxibutyrat, threonine, homocysteine, gentistein, polyphenols
and more nutritional factors have been shown to affect epigenetics.
Recent studies have revealed that nutrients and their metabolites
exert an important influence on the epigenome, as they serve as
substrates and/or coenzymes for epigenetic-modifying enzymes
[116]. The multiple genes involved in T] regulation might be affected
by nutrient-epigenetic cross-talk [57,58,114].

The hapten hypothesis proposes that certain chemical products may
react with self-components of the body to generate novel antigenic
molecules. Food additives may combine to self TJ proteins.

The precise mechanisms responsible for the development of
nutrient-induced autoimmune disorders are unknown. Although
many hypotheses for the occurrence of autoimmune phenomena due
to various environmental exposures have been proposed, none of
these is completely supported by direct causal evidence. Additionally,
mechanisms thought to be involved in the initiation of the disease
process might differ from the mechanisms believed to exacerbate or
maintain an established illness.

8. Limitations and biases

Additives were studied separately. In reality food composition is
complex with many inter-nutrient interactions.

Most of the studies were performed in vitro, which is a far distance
from the multicomplex situation in vivo.

Immortalized, epithelial cell-lines of human origin cannot replace the
human small bowel in permeability studies.

Study of multiple food composition, in vivo, in the presence of micro-
biota is more accurate.

Many bioavailability studies originate in the pharmaceutical domain
and data is of little relevance to nutritional.

» The observations presented have stronger associative than cause and
effect relationships.

9. Conclusions

The food and beverage industries are constantly changing and
transforming our food composition through new food processing
technologies. The result is neo-linked, transformed molecules and
delivery systems, representing intestinal mucosal load with altered
physicochemical and immunogenic properties.

Glucose, salt, emulsifiers, organic solvents, gluten, mTG, and nano-
particles are extensively and increasingly used by these industries to
improve the qualities of the food (as claimed by manufacturers and
some consumers). However, all these food additives increase intestinal
permeability by bringing about TJ paracellular transfer. In fact, TJ
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Fig. 4. The parallel net increase % per year in various countries of: A. Food additives usage and B. AD frequencies over the last decades.
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dysfunction is common in multiple AD and the central part played by
the TJ in AD pathogenesis has been extensively described. It is hypothe-
sized that commonly used industrial food additives abrogate human
epithelial barrier function, thus, increasing intestinal permeability
through the opened TJ, resulting in entry of foreign immunogenic anti-
gens and activation of the autoimmune cascade (Fig. 5). Future
research on food additives exposure-intestinal permeability-auto-
immunity interplay will enhance our knowledge of the common
mechanisms associated with AD. As a corollary, individuals with
non-modifiable risk factors (i.e. familial autoimmunity or carrying
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shared autoimmune genes) should consider decreased exposure
to some food additives in order to avoid increasing their risk of
AD. The U.S.A. Food and Drug Administration recently proposed a
revision to the nutrition facts label that must appear on virtually
all packaged foods [117,118]. Further studies on the effects of in-
dustrial food additives on intestinal permeability functions
resulting in enhanced autoimmune, allergic and cancer diseases
will impact on the food industry additive policy, food products la-
beling, consumer awareness, regulatory authorities and public
health implementation.

Autuimmule diseases

Fig. 5. A schematic representation of the sequential steps through which industrial food additives induce autoimmune diseases. Commonly used industrial food additives abrogate human
epithelial barrier function, thus increasing intestinal permeability through the opened TJ, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade.
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Take-home messages

* Incidence of autoimmune diseases and food additive consumption is
increasing.

» Commonly used industial food additives enhance intestinal junction
leakage.

* Glucose, salt, emulsifier, gluten, microbial TG,nanoparticle increase T]
leakage.

* Intestinal entry of foreign antigen activates the autoimmune cascade.
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