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In this paper, we study nonhomogeneous wavelet systems which have close relations
to the fast wavelet transform and homogeneous wavelet systems. We introduce and
characterize a pair of frequency-based nonhomogeneous dual wavelet frames in the
distribution space; the proposed notion enables us to completely separate the perfect
reconstruction property of a wavelet system from its stability property in function
spaces. The results in this paper lead to a natural explanation for the oblique extension
principle, which has been widely used to construct dual wavelet frames from refinable
functions, without any a priori condition on the generating wavelet functions and refinable
functions. A nonhomogeneous wavelet system, which is not necessarily derived from
refinable functions via a multiresolution analysis, not only has a natural multiresolution-
like structure that is closely linked to the fast wavelet transform, but also plays a basic role
in understanding many aspects of wavelet theory. To illustrate the flexibility and generality
of the approach in this paper, we further extend our results to nonstationary wavelets
with real dilation factors and to nonstationary wavelet filter banks having the perfect
reconstruction property.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and motivations

In wavelet analysis, we often use translation, dilation, and modulation of functions. For a function f : R → C, throughout
the paper we shall use the following notation

fλ;k,n(x) := |λ|1/2e−inλx f (λx − k) and fλ;k := fλ;k,0 = |λ|1/2 f (λ · −k), x, λ,k,n ∈ R, (1.1)

where i denotes the imaginary unit. In this paper we shall use d ∈ R\{0} as a dilation factor. In applications, d is often taken
to be a positive integer greater than one, in particular, the simplest case d = 2 is often used.

Classical wavelets are often defined and studied in the time/space domain with the generating wavelet functions belong-
ing to the square integrable function space L2(R). For d ∈ R\{0} and for a subset Ψ of square integrable functions in L2(R),
linked to discretization of a continuous wavelet transform (see [2,9,29,30]), the following homogeneous wavelet system

WS(Ψ ) := {ψd j;k: j ∈ Z, k ∈ Z, ψ ∈ Ψ } (1.2)

is generated by the translation and dilation of the wavelet functions in Ψ and has been extensively studied in the function
space L2(R) in the literature of wavelet analysis. To mention only a few references here, see [1–32]. In this paper, however,
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we shall see that it is more natural to study a nonhomogeneous wavelet system in the frequency domain. It is important
to point out here that the elements in a set S of this paper are not necessarily distinct and h ∈ S in a summation means
that h visits every element (with multiplicity) in S once and only once. For example, for Ψ = {ψ1, . . . ,ψ s}, all the functions
ψ1, . . . ,ψ s are not necessarily distinct and ψ ∈ Ψ in (1.2) means ψ = ψ1, . . . ,ψ s .

Most known classical homogeneous wavelet systems WS(Ψ ) in the literature are often derived from scalar refinable
functions φ or from refinable function vectors �φ = (φ1, . . . , φr)T in L2(R) [2,9,29,30]. Let us recall the definition of a scalar
refinable function here. A function or distribution φ on R is said to be refinable (or d-refinable) if there exists a sequence
a = {a(k)}k∈Z of complex numbers, called the refinement mask or the low-pass filter for the scalar refinable function φ, such
that

φ = |d|
∑
k∈Z

a(k)φ(d · −k) (1.3)

with the above series converging in a proper sense, e.g., in L2(R). Wavelet functions in the generating set Ψ of a homoge-
neous wavelet system WS(Ψ ) are often derived from the refinable function φ by

ψ = |d|
∑
k∈Z

bψ(k)φ(d · −k), ψ ∈ Ψ, (1.4)

where bψ = {bψ(k)}k∈Z are sequences on Z, called wavelet masks or high-pass filters. For the infinite series in (1.3) and (1.4)
to make sense, one often imposes some decay condition on the refinable function φ and wavelet filters a,bψ so that all the
infinite series in (1.3) and (1.4) are well defined in a proper sense. Nevertheless, even for the simplest case of a compactly
supported scalar refinable function (or distribution) φ with a finitely supported mask a, the associated refinable function φ

with mask a does not always belong to L2(R). In fact, it is far from trivial to check whether φ ∈ L2(R) in terms of its mask
a, see [20,21] and references therein for details. One of the motivations of this paper is to study wavelets and framelets
without such stringent conditions on either the generating wavelet functions φ,ψ or their wavelet filters a,bψ for ψ ∈ Ψ .

For f ∈ L1(R), the Fourier transform used in this paper is defined to be f̂ (ξ) := ∫
R

f (x)e−ixξ dx, ξ ∈ R, and can be
naturally extended to square integrable functions and tempered distributions. Under certain assumptions, taking Fourier
transform on both sides of (1.3) and (1.4), one can easily rewrite (1.3) and (1.4) in the frequency domain as follows:

φ̂(dξ) = â(ξ)φ̂(ξ), a.e. ξ ∈ R, (1.5)

and

ψ̂(dξ) = b̂ψ(ξ)φ̂(ξ), a.e. ξ ∈ R, ψ ∈ Ψ, (1.6)

provided that all the 2π -periodic (Lebesgue) measurable functions â(ξ) = ∑
k∈Z a(k)e−ikξ and similarly b̂ψ are properly

defined. In the following, we shall see that it is often more convenient to work with (1.5) and (1.6) in the frequency domain
rather than (1.3) and (1.4) in the time/space domain. If there exist positive real numbers τ and C such that the 2π -periodic
measurable function â satisfies |1− â(ξ)| � C |ξ |τ for almost every ξ ∈ [−π,π ] (this condition is automatically satisfied with
τ = 1 if â is a 2π -periodic trigonometric polynomial with â(0) = 1), for a dilation factor d such that |d| > 1, then it is easy
to see (also cf. Section 3) that one can define a measurable function ϕ such that

ϕ(ξ) :=
∞∏
j=1

â
(
d− jξ

)
, a.e. ξ ∈ R. (1.7)

Regardless of whether ϕ in (1.7) is a square integrable function or not, ϕ is a well-defined measurable function obvi-
ously satisfying the frequency-based refinement equation (1.5) with φ̂ being replaced by ϕ . The function ϕ is called the
(frequency-based) standard refinable function with mask â and dilation d. All the wavelet functions ψ̂ in (1.6) with φ̂ = ϕ are
also well-defined measurable functions provided that all b̂ψ are measurable. This motivates us to study refinable functions
and wavelets in the frequency domain using (1.5) and (1.6) so that we can avoid some technical issues such as the conver-
gence of the infinite series in (1.3) and (1.4) as well as membership in L2(R) of the generating refinable function φ and the
generating wavelet functions ψ ∈ Ψ .

For wavelets derived from refinable functions or refinable function vectors, one of the most important key features of
wavelets and framelets is its associated fast wavelet transform, which is based on the following nonhomogeneous wavelet
system:

WS J (Φ;Ψ ) := {φd J ;k: k ∈ Z, φ ∈ Φ} ∪ {ψd j;k: j � J , k ∈ Z, ψ ∈ Ψ }, (1.8)

where J is an integer, representing the coarsest decomposition (or scale) level of its fast wavelet transform. In fact, a one-
level fast wavelet transform is just a transform between two sets of wavelet coefficients of a given function represented
under two nonhomogeneous wavelet systems at two consecutive scale levels. Naturally, for a multi-level wavelet transform,
there is an underlying sequence of nonhomogeneous wavelet systems at all scale levels, instead of just one single wavelet
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system. For a given WS J0 (Φ;Ψ ) at some scale J0, we shall see in this paper that via the dilation operation it naturally pro-
duces a sequence of nonhomogeneous wavelet systems WS J (Φ;Ψ ) for all integers J with almost all properties preserved.
Consequently, it often suffices to study only one nonhomogeneous wavelet system instead of a sequence of them. This
desirable property of nonhomogeneous wavelet systems is not shared by homogeneous wavelet systems. Furthermore, as
J → −∞, the limit of the sequence {WS J (Φ;Ψ )} J∈Z will naturally lead to a homogeneous wavelet system WS(Ψ ). Hence,
in certain sense, a homogeneous wavelet system could be regarded as the limit system of a sequence of nonhomogeneous
wavelet systems. See Section 3 for more details.

For a homogeneous wavelet system WS(Ψ ) that is derived from a refinable function or a refinable function vector, due
to the absence of a refinable function φ in the system, the homogeneous wavelet system WS(Ψ ) does not automatically
correspond to a fast wavelet transform without ambiguity. In fact, the wavelet functions in Ψ of WS(Ψ ) could be derived
from many other (equivalent) refinable functions, which correspond to different fast wavelet transforms with different sets
of wavelet filters. More precisely, for a 2π -periodic measurable function θ such that θ(ξ) �= 0 for almost every ξ ∈ R, define
ˆ̊φ(ξ) := θ(ξ)φ̂(ξ), then it is evident that ˆ̊φ is also refinable and satisfies

ˆ̊φ(dξ) = [
θ(dξ)â(ξ)/θ(ξ)

] ˆ̊φ(ξ) and ψ̂(dξ) = [
b̂ψ(ξ)/θ(ξ)

] ˆ̊φ(ξ), a.e. ξ ∈ R, ψ ∈ Ψ.

Such a change of generators from a refinable function φ to another equivalent refinable function φ̊ is in fact the key
idea in the oblique extension principle (OEP) in [3,11,12,23] (also see [13,14,19,24–27]) to construct compactly supported
homogeneous wavelet frames WS(Ψ ) in L2(R) with high vanishing moments derived from refinable functions and refinable
function vectors. See [12,23] for a detailed discussion on a fast wavelet transform based on a homogeneous wavelet system
obtained via OEP from refinable function vectors. The effect of the change of generators on its fast wavelet transform is
addressed in [23]. As we shall see in Sections 3 and 4, nonhomogeneous wavelet systems are closely related to nonstationary
wavelets (see [4,7,26]) and are naturally employed in a pair of nonhomogeneous dual wavelet frames in a pair of dual
Sobolev spaces introduced in [27]. Due to these and other considerations, it seems more natural and more important for us
to study nonhomogeneous wavelet systems WS J (Φ;Ψ ) rather than the extensively studied homogeneous wavelet systems
WS(Ψ ). This allows us to understand better many aspects of wavelet theory such as a wavelet filter bank induced by OEP
and its associated wavelets in the function setting without a priori condition on the generating wavelet functions.

Following the standard notation, we denote by D(R) the linear space of all compactly supported C∞ (test) functions
with the usual topology, and D ′(R) denotes the linear space of all distributions, that is, D ′(R) is the dual space of D(R).
By duality, the definition in (1.1) for translation, dilation and modulation can be easily generalized from functions to distri-
butions. Moreover, when f in (1.1) is a square integrable function or more generally a tempered distribution, for λ �= 0, we
have

f̂λ;k,n = e−ikn f̂λ−1;−n,k and f̂λ;k = f̂λ−1;0,k. (1.9)

In this paper, we shall use boldface letters to denote functions/distributions (e.g., f,g,ϕ,ψ,a,b) or sets of functions/dis-
tributions (e.g., Φ,Ψ ) in the frequency domain.

Let Φ and Ψ be two sets of distributions on R. For an integer J and d ∈ R\{0}, we define a frequency-based nonhomoge-
neous wavelet system FWS J (Φ;Ψ ) to be

FWS J (Φ;Ψ ) := {ϕd− J ;0,k: k ∈ Z, ϕ ∈ Φ} ∪ {ψd− j;0,k: j � J , k ∈ Z, ψ ∈ Ψ }. (1.10)

Similarly, a frequency-based homogeneous wavelet system is defined as follows:

FWS(Ψ ) := {ψd j;0,k: j ∈ Z, k ∈ Z, ψ ∈ Ψ }. (1.11)

By (1.9), it is straightforward to see that under the Fourier transform, the images of WS J (Φ;Ψ ) and WS(Ψ ) with Φ,Ψ ⊆
L2(R) are simply FWS J (Φ;Ψ ) and FWS(Ψ ), respectively, where Φ := {φ̂: φ ∈ Φ} and Ψ := {ψ̂: ψ ∈ Ψ }.

For 1 � p � ∞, by Lloc
p (R) we denote the linear space of all measurable functions f such that

∫
K | f |p < ∞ for every

compact subset K of R, with the usual modification for p = ∞ saying that f is essentially bounded over K . Note that
Lloc

1 (R) is just the set of all measurable functions that can be globally identified as distributions. So, Lloc
1 (R) is the most

natural space for us to study wavelets and framelets in the distribution space. For f ∈ L2(R), it is evident that f̂ ∈ L2(R) ⊆
Lloc

2 (R) ⊆ Lloc
1 (R) ⊆ D ′(R). However, a distribution ψ may not be a tempered distribution and therefore, Fourier transform

may not be applied so that ψ = ψ̂ holds for some tempered distribution ψ . Under the setting of tempered distributions on
which the Fourier transform can apply, although all the definitions and results of this paper in the frequency domain could
be equivalently translated into the time/space domain by the inverse Fourier transform on tempered distributions, to avoid
notational complexity and to avoid the a priori underlying assumption that f is a tempered distribution if the notion f̂ is
used, it seems very natural and convenient for us to work in the frequency domain in this paper.

For f ∈ D(R) and ψ ∈ Lloc
1 (R), we shall use the following paring

〈f,ψ〉 :=
∫

f(ξ)ψ(ξ)dξ and 〈ψ, f〉 := 〈f,ψ〉 =
∫

ψ(ξ)f(ξ)dξ. (1.12)
R R
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When f ∈ D(R) and ψ ∈ D ′(R), the duality pairings 〈f,ψ〉 and 〈ψ, f〉 are understood similarly as 〈f,ψ〉 := 〈ψ, f〉 := ψ(f).
Now we are ready to introduce the key notion in this paper. Let

Φ = {
ϕ1, . . . ,ϕr}, Ψ = {

ψ1, . . . ,ψ s} and Φ̃ = {
ϕ̃1

, . . . , ϕ̃r}
, Ψ̃ = {

ψ̃
1
, . . . , ψ̃

s}
(1.13)

be subsets of D ′(R). Let J ∈ Z and d ∈ R\{0}, we say that the pair (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )), where FWS J (Φ;Ψ ) is
defined in (1.10), forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space D ′(R) if the
following identity holds

r∑
�=1

∑
k∈Z

〈
f,ϕ�

d− J ;0,k

〉〈
ϕ̃�

d− J ;0,k,g
〉 + ∞∑

j= J

s∑
�=1

∑
k∈Z

〈
f,ψ�

d− j;0,k

〉〈
ψ̃

�

d− j;0,k,g
〉 = 2π〈f,g〉 ∀f,g ∈ D(R), (1.14)

where the infinite series in (1.14) converge in the following sense:

1. For every f,g ∈ D(R), the following series∑
k∈Z

〈
f,ϕ�

d− J ;0,k

〉〈
ϕ̃�

d− J ;0,k,g
〉

and
∑
k∈Z

〈
f,ψ�′

d− j;0,k

〉〈
ψ̃

�′
d− j;0,k,g

〉
(1.15)

converge absolutely for all integers j � J , � = 1, . . . , r, and �′ = 1, . . . , s.
2. For every f,g ∈ D(R), the following limit exists and

lim
J ′→+∞

(
r∑

�=1

∑
k∈Z

〈
f,ϕ�

d− J ;0,k

〉〈
ϕ̃�

d− J ;0,k,g
〉 + J ′−1∑

j= J

s∑
�=1

∑
k∈Z

〈
f,ψ�

d− j;0,k

〉〈
ψ̃

�

d− j;0,k,g
〉) = 2π〈f,g〉. (1.16)

As we shall discuss in Section 3, the above introduced notion enables us to completely separate the perfect reconstruction
property in (1.14) from its stability property in function spaces. Since the test function space D(R) is dense in many
function spaces, one could extend the perfect reconstruction property (or “wavelet expansion”) in (1.14) to other function
spaces, provided that the involved wavelet systems have stability in these function spaces. Let us give a simple example here
to illustrate this connection for the particular function space L2(R). Let Φ and Ψ in (1.13) be two subsets of distributions in
D ′(R). We shall see in Section 3 that (FWS J (Φ;Ψ ), FWS J (Φ;Ψ )) forms a pair of frequency-based nonhomogeneous dual
wavelet frames in the distribution space, if and only if, Φ,Ψ are subsets of L2(R) and

r∑
�=1

∑
k∈Z

∣∣〈f,ϕ�
d− J ;0,k

〉∣∣2 +
∞∑

j= J

s∑
�=1

∑
k∈Z

∣∣〈f,ψ�
d− j;0,k

〉∣∣2 = 2π‖f‖2
L2(R) ∀f ∈ L2(R). (1.17)

Moreover, when |d| > 1, as a direct consequence of (1.17), one automatically has

∑
j∈Z

s∑
�=1

∑
k∈Z

∣∣〈f,ψ�
d j;0,k

〉∣∣2 = 2π‖f‖2
L2(R) ∀f ∈ L2(R).

Nonhomogeneous wavelet systems also have a close relation to refinable functions and refinable function vectors. Suppose
that 1√

2π
FWS J (Φ;Ψ ) (that is, multiply every element in FWS J (Φ;Ψ ) by the factor 1√

2π
) is an orthonormal basis of L2(R).

Denote �ϕ := (ϕ1, . . . ,ϕr)T . Without assuming in advance that �ϕ is a refinable function vector and all ψ1, . . . ,ψ s are derived
from �ϕ , we can deduce that �ϕ must be a refinable function vector and all ψ1, . . . ,ψ s must be derived from �ϕ via similar
relations as in (1.5) and (1.6). See Section 3 for more details.

To have some rough ideas about our results on nonhomogeneous wavelet systems, here we present two typical results.
The following result is a special case of Theorem 6.

Theorem 1. Let d be an integer such that |d| > 1. Let Φ,Ψ , Φ̃, Ψ̃ in (1.13) be subsets of Lloc
2 (R). Then (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ ))

forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space D ′(R) for some integer J (or for all
integers J ), if and only if, the following three statements hold:

(i) for all integers k ∈ Z,

r∑
�=1

ϕ�(dξ)ϕ̃�(d(ξ + 2πk)
) +

s∑
�=1

ψ�(dξ)ψ̃
�(

d(ξ + 2πk)
) =

r∑
�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk), a.e. ξ ∈ R; (1.18)
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(ii) for all integers k0 ∈ Z\[dZ],
r∑

�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk0) +

s∑
�=1

ψ�(ξ)ψ̃
�
(ξ + 2πk0) = 0, a.e. ξ ∈ R; (1.19)

(iii) the following identity holds in the sense of distributions:

lim
j→+∞

r∑
�=1

ϕ�
(
d− j·)ϕ̃�(d− j·) = 1, (1.20)

more precisely, lim j→+∞
∑r

�=1〈ϕ�(d− j ·)ϕ̃�
(d− j ·), f〉 = 〈1, f〉 for all f ∈ D(R).

In the following, we make some remarks about Theorem 1. We assumed in Theorem 1 that all the generating functions
in Φ,Ψ , Φ̃, Ψ̃ are from the space Lloc

2 (R). Note that Lloc
2 (R) includes the Fourier transforms of all compactly supported

distributions and of all elements in all Sobolev spaces. This assumption on membership in Lloc
2 (R) can be weakened and is

only used to guarantee the absolute convergence of the infinite series in (1.15). See the remark after Lemma 3 in Section 2
for more details on this natural assumption.

If we assume additionally that ϕ�ϕ̃� ∈ L∞(R) for all � = 1, . . . , r and if (1.20) holds for almost every ξ ∈ R, by Lebesgue
dominated convergence theorem, then (1.20) holds in the sense of distributions. If all elements in Φ,Ψ , Φ̃, Ψ̃ are essentially
nonnegative measurable functions, then it is not difficult to verify that the conditions in items (i) and (ii) of Theorem 1 are
equivalent to the following simple conditions:

r∑
�=1

ϕ�(dξ)ϕ̃�
(dξ) +

s∑
�=1

ψ�(dξ)ψ̃
�
(dξ) =

r∑
�=1

ϕ�(ξ)ϕ̃�
(ξ), a.e. ξ ∈ R, (1.21)

and

ϕ�(ξ)ϕ̃�
(ξ + 2πk) = 0 and ψ�′

(ξ)ψ̃
�′
(ξ + 2πk) = 0, a.e. ξ ∈ R,

∀k ∈ Z\{0}, � = 1, . . . , r, �′ = 1, . . . , s. (1.22)

As we shall see in Section 2, items (i) and (ii) of Theorem 1 correspond to a natural multiresolution-like structure, which
is closely linked to a fast wavelet transform. The condition in item (iii) of Theorem 1 is a natural normalization condition
which is related to (1.16).

Comparing with the characterization of a pair of homogeneous dual wavelet frames in the space L2(R) or a homogeneous
orthonormal wavelet basis in L2(R) (e.g., see [10,17,18,28,31,32]), Theorem 1 has several interesting features. Firstly, the
characterization in items (i)–(iii) of Theorem 1 does not involve any infinite series or infinite sums; this is in sharp contrast
to the homogeneous setting in L2(R). Secondly, as we shall see in Section 2, all the involved infinite sums in the proof
of Theorem 1 are in fact finite sums. This allows us to easily generalize Theorem 1 to any real dilation factors and to
nonstationary wavelets, see Sections 2 and 4 for details. Thirdly, we do not require any stability (Bessel) property of the
wavelet systems, while the homogeneous setting in L2(R) needs the stability property to guarantee the convergence of the
involved infinite series. Fourthly, we do not require in Theorem 1 that the generating wavelet functions possess any order of
vanishing moments or smoothness, while all the generating wavelet functions in the homogeneous setting require at least
one vanishing moment. Lastly, from a pair of nonhomogeneous dual wavelet frames in L2(R), we shall see in Section 3
that one can always derive an associated pair of homogeneous dual wavelet frames in L2(R). In fact, most homogeneous
wavelet systems in the literature are derived in such a way. We mention that weak convergence of wavelet expansions
has been characterized in [16] for homogeneous wavelet systems. Similar weak convergence of wavelet expansions that are
related to (1.16) also appeared in the study of homogeneous dual wavelet frames in L2(R) and their frame approximation
properties, for example, see [12,17,18]. We also point out that the approach in this paper can be extended to frequency-
based homogeneous wavelet systems in the distribution space D ′(R\{0}).

The following result generalizes the Oblique Extension Principle (OEP) and naturally connects a wavelet filter bank with
a pair of frequency-based nonhomogeneous dual wavelet frames in D ′(R).

Theorem 2. Let d be an integer such that |d| > 1. Let a, θ1, . . . , θ r,b1, . . . ,bs and ã, θ̃
1
, . . . , θ̃

r
, b̃1, . . . , b̃s be 2π -periodic measurable

functions on R. Suppose that there are measurable functions ϕ, ϕ̃ satisfying

ϕ(dξ) = a(ξ)ϕ(ξ) and ϕ̃(dξ) = ã(ξ)ϕ̃(ξ), a.e. ξ ∈ R. (1.23)

Define Φ,Ψ , Φ̃, Ψ̃ as in (1.13) with

ϕ�(ξ) := θ�(ξ)ϕ(ξ), ϕ̃�
(ξ) := θ̃

�
(ξ)ϕ̃(ξ), � = 1, . . . , r, (1.24)
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and

ψ�(dξ) := b�(ξ)ϕ(ξ), ψ̃
�
(dξ) := b̃�(ξ)ϕ̃(ξ), � = 1, . . . , s. (1.25)

Assume that all the elements in Φ,Ψ , Φ̃, Ψ̃ belong to Lloc
2 (R). Then (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )) forms a pair of frequency-based

nonhomogeneous dual wavelet frames in the distribution space D ′(R) for some integer J (or for all integers J ), if and only if,

lim
j→+∞

Θ
(
d− j·)ϕ(

d− j·)ϕ̃(
d− j·) = 1 in the sense of distributions (1.26)

with

Θ(ξ) :=
r∑

�=1

θ�(ξ)θ̃
�
(ξ), (1.27)

and the following fundamental identities are satisfied:

Θ(dξ)a(ξ)ã(ξ) +
s∑

�=1

b�(ξ)b̃�(ξ) = Θ(ξ), a.e. ξ ∈ σϕ ∩ σϕ̃, (1.28)

and

Θ(dξ)a(ξ)ã
(

ξ + 2πω

d

)
+

s∑
�=1

b�(ξ)b̃�

(
ξ + 2πω

d

)
= 0, a.e. ξ ∈ σϕ ∩

(
σϕ̃ − 2πω

d

)
, (1.29)

for all ω = 1, . . . , |d| − 1, where σϕ̃ − 2πω
d := {ξ − 2πω

d : ξ ∈ σϕ̃} and

σϕ :=
{
ξ ∈ R:

∑
k∈Z

∣∣ϕ(ξ + 2πk)
∣∣ �= 0

}
, σϕ̃ :=

{
ξ ∈ R:

∑
k∈Z

∣∣ϕ̃(ξ + 2πk)
∣∣ �= 0

}
. (1.30)

In particular, if all θ1, . . . , θ r,b1, . . . ,bs, θ̃
1
, . . . , θ̃

r
, b̃1, . . . , b̃s are 2π -periodic measurable functions in Lloc

2 (R) and if there exist
positive real numbers τ and C such that∣∣1 − a(ξ)

∣∣ � C |ξ |τ and
∣∣1 − ã(ξ)

∣∣ � C |ξ |τ , a.e. ξ ∈ [−π,π ], (1.31)

then the frequency-based standard refinable measurable functions ϕ, ϕ̃ with masks a, ã and the dilation factor d, which are defined by

ϕ(ξ) :=
∞∏
j=1

a
(
d− jξ

)
and ϕ̃(ξ) :=

∞∏
j=1

ã
(
d− jξ

)
, (1.32)

are well defined for almost every ξ ∈ R and in fact ϕ, ϕ̃ ∈ Lloc∞ (R). Then all elements in Φ,Ψ , Φ̃, Ψ̃ belong to Lloc
2 (R). Moreover,

(FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )) forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space D ′(R)

for some integer J (or for all integers J ), if and only if, the identities (1.28) and (1.29) are satisfied for all ω = 1, . . . , |d| − 1, and
lim j→+∞ Θ(d− j ·) = 1 in the sense of distributions.

Note that (1.31) is automatically satisfied with τ = 1 if a and ã are 2π -periodic trigonometric polynomials with a(0) =
ã(0) = 1. A similar result to Theorem 2 also holds when ϕ = (ϕ1, . . . ,ϕr)T and ϕ̃ = (ϕ̃1

, . . . , ϕ̃r
)T are refinable measurable

function vectors. The identities in (1.28) and (1.29) with d = 2 and r = 1 are called the oblique extension principle in [12],
provided that all elements in Φ,Ψ , Φ̃, Ψ̃ belong to L2(R) and satisfy some technical conditions to guarantee the Bessel
(stability) property of the homogeneous wavelet systems FWS(Ψ ) and FWS(Ψ̃ ) in the space L2(R) (see [3,11,12,23,31,32]).
In contrast, our results here generally do not require any a priori condition on the generating wavelet functions and provide
a natural explanation for the connection between the perfect reconstruction property induced by OEP in (1.28) and (1.29) in
the discrete filter bank setting to wavelets and framelets in the function setting.

The structure of the paper is as follows. In order to prove Theorems 1 and 2, we shall introduce some auxiliary results
in Section 2. In particular, we shall provide sufficient conditions in Section 2 for the absolute convergence of the infinite
series in (1.15). Then we shall prove Theorems 1 and 2 in Section 2. To explain in more detail about our motivation and
importance for studying frequency-based nonhomogeneous wavelet systems, we shall discuss in Section 3 nonhomogeneous
wavelet systems in various function spaces such as L2(R) and Sobolev spaces, as initiated in [27]. We shall see in Section 3
that under the stability property, a pair of frequency-based nonhomogeneous dual wavelet frames can be naturally extended
from the distribution space to a pair of dual function spaces. In Section 3, we shall also explore the connections between
nonhomogeneous and homogeneous wavelet systems in the space L2(R). To illustrate the flexibility and generality of the
approach in this paper, we further study nonstationary wavelets which are useful in many applications, since nonstationary



336 B. Han / Appl. Comput. Harmon. Anal. 29 (2010) 330–353
wavelet filter banks can be implemented in almost the same way and efficiency as a traditional fast wavelet transform.
However, except a few special cases as discussed in [4,7,26], only few theoretical results on nonstationary wavelets are
available in the literature, probably partially due to the difficulty in guaranteeing the membership of the associated refinable
functions in L2(R) and in establishing the stability property of the nonstationary wavelet systems in L2(R). In Section 4, we
present a complete characterization of a pair of frequency-based nonstationary dual wavelet frames in the distribution space.
Though the statements and notation in Section 4 on nonstationary wavelets seem a little bit more complicated comparing
with the stationary case in Sections 1–3, it is worth our effort to provide a better picture to understand nonstationary
wavelets, since there are few theoretical results on this topic in the literature.

To understand and study wavelet systems in various function spaces, it is our opinion that there are two key fundamental
ingredients to be considered. One ingredient is the notion investigated in this paper of a pair of frequency-based nonhomo-
geneous dual wavelet frames in the distribution space which enables us to completely separate its perfect reconstruction
property from its stability property in function spaces. The other ingredient is the stability issue of nonhomogeneous wavelet
systems in function spaces which we didn’t discuss in this paper but shall be addressed elsewhere.

2. Frequency-based nonhomogeneous wavelet systems in the distribution space

In this section, we study pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. To
prove Theorems 1 and 2, we first present some sufficient conditions for the absolute convergence of the infinite series
in (1.15).

For 1 � p � ∞, by L p(T) we denote the set of all 2π -periodic measurable functions f such that
∫ π
−π | f (x)|p dx < ∞

(with the usual modification for p = ∞).
By the following result, we always have the absolute convergence of the infinite series in (1.15) provided that all the

frequency-based wavelet functions are from the space Lloc
2 (R).

Lemma 3. Let λ be a nonzero real number and let ψ, ψ̃ ∈ Lloc
2 (R). Then for all f,g ∈ D(R),∑

k∈Z

〈f,ψλ;0,k〉〈ψ̃λ;0,k,g〉 = 2π

∫
R

∑
k∈Z

f(ξ)g
(
ξ + 2πλ−1k

)
ψ(λξ)ψ̃(λξ + 2πk)dξ (2.1)

with the series on the left-hand side converging absolutely. Note that the infinite sum on the right-hand side of (2.1) is in fact finite.

Proof. By L∞,c(R) we denote the linear space of all compactly supported measurable functions in L∞(R). Note that D(R) ⊆
L∞,c(R). More generally, we prove (2.1) for f,g ∈ L∞,c(R). Denote

h(ξ) :=
∑
k∈Z

f
(
λ−1(ξ + 2πk)

)
ψ(ξ + 2πk) and h̃(ξ) :=

∑
k∈Z

g
(
λ−1(ξ + 2πk)

)
ψ̃(ξ + 2πk).

Now we show that h, h̃ are well-defined functions in L2(T). In fact, since f ∈ L∞,c(R), f has compact support and therefore,
f is essentially supported inside [−πcf,πcf] for some cf > 0 with cf depending on f. Now it is easy to see that

h(ξ) =
∑

k∈Z, |k|�(1+|λ|cf)/2

f
(
λ−1(ξ + 2πk)

)
ψ(ξ + 2πk), ξ ∈ [−π,π ]. (2.2)

Since ψ ∈ Lloc
2 (R) and f ∈ L∞,c(R), we see that f(λ−1(· + 2πk))ψ(· + 2πk) ∈ L2(R) for every k ∈ Z. Therefore, h is a well-

defined 2π -periodic function in L2(T). Similarly, we have h̃ ∈ L2(T). Note that

〈f,ψλ;0,k〉 = |λ|1/2
∫
R

f(ξ)ψ(λξ)eikλξ dξ = |λ|−1/2
∫
R

f
(
λ−1ξ

)
ψ(ξ)eikξ dξ = |λ|−1/2

π∫
−π

h(ξ)eikξ dξ

and 〈g, ψ̃λ;0,k〉 = |λ|−1/2
∫ π
−π h̃(ξ)eikξ dξ . Since h, h̃ ∈ L2(T), by the Parseval identity, we have

∑
k∈Z

∣∣〈f,ψλ;0,k〉
∣∣2 = 2π |λ|−1

π∫
−π

∣∣h(ξ)
∣∣2

dξ < ∞,
∑
k∈Z

∣∣〈g, ψ̃λ;0,k〉
∣∣2 = 2π |λ|−1

π∫
−π

∣∣h̃(ξ)
∣∣2

dξ < ∞,

and

∑
k∈Z

〈f,ψλ;0,k〉〈ψ̃λ;0,k,g〉 = 2π |λ|−1

π∫
h(ξ)h̃(ξ)dξ
−π
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with the series on the left-hand side converging absolutely. By the finite sum in (2.2), we have

|λ|−1

π∫
−π

h(ξ)h̃(ξ)dξ = |λ|−1
∫
R

f
(
λ−1ξ

)
ψ(ξ) h̃(ξ)dξ =

∫
R

f(ξ)ψ(λξ) h̃(λξ)dξ

=
∫
R

∑
k∈Z

f(ξ)g
(
ξ + 2πλ−1k

)
ψ(λξ)ψ̃(λξ + 2πk)dξ,

which completes the proof. �
The condition ψ, ψ̃ ∈ Lloc

2 (R) in Lemma 3 is only used in this paper to guarantee the identity (2.1). As long as (2.1) holds
for f,g ∈ D(R) and the frequency-based wavelet functions belong to Lloc

1 (R), all the claims in this paper still hold. Note
that Lloc

1 (R) is just the set of all measurable functions that can be globally identified as distributions. So, Lloc
1 (R) is the most

natural and weakest space for us to study wavelets and framelets in the distribution space. The condition ψ, ψ̃ ∈ Lloc
2 (R) in

Lemma 3 could be replaced by other conditions. For example, for every positive integer k, if there exist positive numbers τk
and Ck such that τk > 1/2 and |ψ(ξ)−ψ(ζ )| � Ck|ξ −ζ |τk for all ξ, ζ ∈ [−k,k], then it is not difficult to check by (2.2) that h
with f ∈ D(R) is a 2π -periodic Lipschitz function with some Lipschitz exponent τ > 1/2. By Bernstein Theorem, h has an
absolutely convergent Fourier series. Now for any ψ̃ ∈ Lloc

1 (R), it is easy to prove that (2.1) indeed holds for all f,g ∈ D(R).
Other assumptions could be used to guarantee (2.1). But Lloc

2 (R) is a large space containing the Fourier transforms of all
compactly supported distributions and of all elements in all Sobolev spaces. For simplicity of presentation, we shall stick to
the space Lloc

2 (R) for our discussion of frequency-based wavelets and framelets.

Lemma 4. Let {λ j}∞j= J be a sequence of nonzero real numbers such that lim j→+∞ λ j = 0. Let ϕ j,1, . . . ,ϕ j,r j and ϕ̃ j,1
, . . . , ϕ̃ j,r j be

elements in Lloc
2 (R) with r j ∈ N and j � J . Then

lim
j→+∞

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 = 2π〈f,g〉 ∀f,g ∈ D(R), (2.3)

if and only if,

lim
j→+∞

r j∑
�=1

ϕ j,�(λ j ·)ϕ̃ j,�
(λ j ·) = 1 in the sense of distributions. (2.4)

Proof. By Lemma 3, we have

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 = 2π

∫
R

r j∑
�=1

∑
k∈Z

f(ξ)g
(
ξ + 2πλ−1

j k
)
ϕ j,�(λ jξ)ϕ̃ j,�

(λ jξ + 2πk)dξ. (2.5)

By f,g ∈ D(R), f and g are compactly supported. Since lim j→+∞ λ j = 0, there exists an integer J f,g such that

f(ξ)g(ξ + 2πλ−1
j k) = 0 for all ξ ∈ R, k ∈ Z\{0}, and j � J f,g . That is, for j � max( J , J f,g), (2.5) becomes

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 = 2π

∫
R

f(ξ)g(ξ)

r j∑
�=1

ϕ j,�(λ jξ)ϕ̃ j,�
(λ jξ)dξ. (2.6)

If (2.4) holds in the sense of distributions, then it follows directly from (2.6) that (2.3) holds.
Conversely, we can take g ∈ D(R) such that g takes value one on the support of f, now it follows from (2.3) and (2.6)

that

lim
j→+∞

∫
R

f(ξ)

r j∑
�=1

ϕ j,�(λ jξ)ϕ̃ j,�
(λ jξ)dξ = lim

j→+∞
1

2π

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 = 〈f,g〉 = 〈f,1〉.

Hence, (2.4) holds in the sense of distributions. �
In the next auxiliary result, we shall study a multiresolution-like structure. More precisely, we have the following result.
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Lemma 5. Let λ be a nonzero real number. Let ϕ1, . . . ,ϕr , ψ1, . . . ,ψ s , η1, . . . ,ηt and ϕ̃1
, . . . , ϕ̃r , ψ̃

1
, . . . , ψ̃

s
, η̃1

, . . . , η̃t be elements
in Lloc

2 (R). Then

r∑
�=1

∑
k∈Z

〈
f,ϕ�

1;0,k

〉〈
ϕ̃�

1;0,k,g
〉 + s∑

�=1

∑
k∈Z

〈
f,ψ�

1;0,k

〉〈
ψ̃

�

1;0,k,g
〉 = t∑

�=1

∑
k∈Z

〈
f,η�

λ;0,k

〉〈
η̃�

λ;0,k,g
〉 ∀f,g ∈ D(R), (2.7)

if and only if

Ik
ϕ(ξ) + Ik

ψ (ξ) = Iλk
η (λξ), a.e. ξ ∈ R, ∀k ∈ Z ∩ [

λ−1Z
]
, (2.8)

Ik
ϕ(ξ) + Ik

ψ (ξ) = 0, a.e. ξ ∈ R, ∀k ∈ Z\[λ−1Z
]
, (2.9)

Iλk
η (ξ) = 0, a.e. ξ ∈ R, ∀k ∈ [

λ−1Z
]\Z, (2.10)

where λ−1Z := {λ−1k: k ∈ Z} and Iλk
η (ξ) := ∑t

�=1 η�(ξ)η̃�
(ξ + 2πλk), k ∈ λ−1Z, and

Ik
ϕ(ξ) :=

r∑
�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk), Ik

ψ (ξ) :=
s∑

�=1

ψ�(ξ)ψ̃
�
(ξ + 2πk), k ∈ Z. (2.11)

Proof. By Lemma 3, all the infinite series in (2.7) converge absolutely and (2.7) is equivalent to∫
R

∑
k∈Z

f(ξ)g(ξ + 2πk)
(

Ik
ϕ(ξ) + Ik

ψ (ξ)
)

dξ =
∫
R

∑
k∈[λ−1Z]

f(ξ)g(ξ + 2πk)Iλk
η (λξ)dξ,

which can be easily rewritten as∫
R

∑
k∈Z∩[λ−1Z]

f(ξ)g(ξ + 2πk)
(

Ik
ϕ(ξ) + Ik

ψ (ξ) − Iλk
η (λξ)

)
dξ +

∫
R

∑
k∈Z\[λ−1Z]

f(ξ)g(ξ + 2πk)
(

Ik
ϕ(ξ) + Ik

ψ (ξ)
)

dξ

=
∫
R

∑
k∈[λ−1Z]\Z

f(ξ)g(ξ + 2πk)Iλk
η (λξ)dξ. (2.12)

Sufficiency. If (2.8), (2.9), and (2.10) are satisfied, then it is obvious that (2.12) is true and therefore, (2.7) holds.
Necessity. Denote Λ := Z ∪ [λ−1Z]. For a point x ∈ R, we define dist(x,Λ) := infy∈Λ |x − y|. By (2.7), (2.12) holds. Let

k0 ∈ Z ∩ [λ−1Z] and ξ0 ∈ R be temporarily fixed. Then it is easy to check that ε := π
2 dist(k0,Λ\{k0}) > 0. Consider all

f,g ∈ D(R) such that the support of f is contained inside (ξ0 − ε, ξ0 + ε) and the support of g is contained inside (ξ0 −
2πk0 − ε, ξ0 − 2πk0 + ε). Then it is not difficult to verify that

f(ξ)g(ξ + 2πk) = 0 ∀ξ ∈ R, k ∈ Λ\{k0},
from which we see that (2.12) becomes∫

R

f(ξ)g(ξ + 2πk0)
(

Ik0
ϕ (ξ) + Ik0

ψ (ξ) − Iλk0
η (λξ)

)
dξ = 0 (2.13)

for all f,g ∈ D(R) such that supp f ⊆ (ξ0 − ε, ξ0 + ε) and supp g ⊆ (ξ0 − 2πk0 − ε, ξ0 − 2πk0 + ε). From (2.13), we must have
Ik0
ϕ (ξ) + Ik0

ψ (ξ) − Iλk0
η (λξ) = 0 for almost every ξ ∈ (ξ0 − ε, ξ0 + ε). Thus, (2.8) must be true. (2.9) and (2.10) can be proved

by the same argument. �
Now we have the generalized version of Theorem 1 with a general real dilation factor d.

Theorem 6. Let d be a real number such that |d| > 1. Let Φ,Ψ , Φ̃, Ψ̃ in (1.13) be subsets of Lloc
2 (R). Then (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )),

where FWS J (Φ;Ψ ) is defined in (1.10), forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space
D ′(R) for some integer J (or for all integers J ), if and only if,

lim
j→+∞

r∑
�=1

ϕ�
(
d− j·)ϕ̃�(d− j·) = 1 in the sense of distributions (2.14)

and
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r∑
�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk) +

s∑
�=1

ψ�(ξ)ψ̃
�
(ξ + 2πk) =

r∑
�=1

ϕ�
(
d−1ξ

)
ϕ̃�(d−1(ξ + 2πk)

)
,

a.e. ξ ∈ R, ∀k ∈ Z ∩ [dZ], (2.15)
r∑

�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk) +

s∑
�=1

ψ�(ξ)ψ̃
�
(ξ + 2πk) = 0, a.e. ξ ∈ R, ∀k ∈ Z\[dZ], (2.16)

r∑
�=1

ϕ�(ξ)ϕ̃�(
ξ + 2πd−1k

) = 0, a.e. ξ ∈ R, ∀k ∈ [dZ]\Z. (2.17)

Proof. By the following simple observation, we have

〈fλ;n,k,gλ;n,k〉 = 〈f,g〉 and
〈
fλ;0,0,ψ

�
λ′;n,k

〉 = 〈
f,ψ�

λ′λ−1;n,k

〉
, λ,λ′ ∈ R\{0}, k,n ∈ R. (2.18)

Now it is straightforward to see that for all f,g ∈ D(R),

r∑
�=1

∑
k∈Z

〈
f,ϕ�

d− j;0,k

〉〈
ϕ̃�

d− j;0,k,g
〉 + s∑

�=1

∑
k∈Z

〈
f,ψ�

d− j;0,k

〉〈
ψ̃

�

d− j;0,k,g
〉 = r∑

�=1

∑
k∈Z

〈
f,ϕ�

d− j−1;0,k

〉〈
ϕ̃�

d− j−1;0,k,g
〉
, (2.19)

if and only if, for all f,g ∈ D(R),

r∑
�=1

∑
k∈Z

〈
f,ϕ�

1;0,k

〉〈
ϕ̃�

1;0,k,g
〉 + s∑

�=1

∑
k∈Z

〈
f,ψ�

1;0,k

〉〈
ψ̃

�

1;0,k,g
〉 = r∑

�=1

∑
k∈Z

〈
f,ϕ�

d−1;0,k

〉〈
ϕ̃�

d−1;0,k,g
〉
. (2.20)

Sufficiency. By Lemma 5 with λ = d−1, we see that (2.20) holds and therefore, (2.19) holds for all f,g ∈ D(R) and j ∈ Z.
For J ′ > J , we define

S J ′
J (f,g) :=

r∑
�=1

∑
k∈Z

〈
f,ϕ�

d− J ;0,k

〉〈
ϕ̃�

d− J ;0,k,g
〉 + J ′−1∑

j= J

s∑
�=1

∑
k∈Z

〈
f,ψ�

d− j;0,k

〉〈
ψ̃

�

d− j;0,k,g
〉
. (2.21)

Now by (2.19), we can easily deduce that

S J ′
J (f,g) =

r∑
�=1

∑
k∈Z

〈
f,ϕ�

d− J ′ ;0,k

〉〈
ϕ̃�

d− J ′ ;0,k
,g

〉
. (2.22)

By Lemma 4, it follows from (2.14) that lim J ′→+∞ S J ′
J (f,g) = 2π〈f,g〉 for all f,g ∈ D(R). Hence, (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ ))

forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space D ′(R).
Necessity. By (2.18), we can easily deduce that (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )) forms a pair of frequency-based nonhomo-

geneous dual wavelet frames in the distribution space D ′(R) for some integer J if and only if it is true for all integers J .
Considering the difference between two consecutive integers J and J + 1, we see that (2.19) must hold and therefore, (2.20)
holds. Now by Lemma 5, (2.8), (2.9), and (2.10) hold with η = ϕ and t = r, or equivalently, (2.15), (2.16), and (2.17) hold.

Since (2.19) holds, we deduce that (2.22) holds. By Lemma 4, it follows from our assumption lim J ′→+∞ S J ′
J (f,g) = 2π〈f,g〉

that (2.14) must hold. �
We point out that Theorem 6 and the approach in this paper can be extended to frequency-based homogeneous wavelet

systems in the distribution space D ′(R\{0}), which is the dual space of the test function space D(R\{0}) consisting of all
compactly supported C∞ functions whose supports are contained inside R\{0}. We shall address this issue elsewhere.

Now we are ready to prove Theorems 1 and 2.

Proof of Theorem 1. By Theorem 6 with d being an integer, it suffices to show that (1.18) and (1.19) are equivalent to
the three conditions (2.15), (2.16), and (2.17). Note that [dZ]\Z is the empty set. So, (2.17) with d being an integer is
automatically true. It is evident that (2.16) is equivalent to (1.19). Since d is an integer, we have Z ∩ [dZ] = dZ. Now it is
also easy to see that (1.18) is equivalent to (2.15). This completes the proof. �

We use Theorem 1 to prove Theorem 2 as follows:

Proof of Theorem 2. We prove the first part of Theorem 2 first. By (1.23) and (1.24), we have
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r∑
�=1

ϕ�(dξ)ϕ̃�(d(ξ + 2πk)
) =

r∑
�=1

θ�(dξ)θ̃
�
(dξ)ϕ(dξ)ϕ̃

(
d(ξ + 2πk)

) = ϕ(ξ)ϕ̃(ξ + 2πk)Θ(dξ)a(ξ)ã(ξ)

and similarly by (1.25),

s∑
�=1

ψ�(dξ)ψ̃
�(

d(ξ + 2πk)
) = ϕ(ξ)ϕ̃(ξ + 2πk)

s∑
�=1

b�(ξ)b̃�(ξ)

for all integers k ∈ Z. Now (1.18) is equivalent to

ϕ(ξ)ϕ̃(ξ + 2πk)

(
Θ(dξ)a(ξ)ã(ξ) +

s∑
�=1

b�(ξ)b̃�(ξ)

)
= ϕ(ξ)ϕ̃(ξ + 2πk)Θ(ξ) (2.23)

for all k ∈ Z. Now it is not difficult to deduce that (2.23) is equivalent to (1.28).
Note that any k0 ∈ Z\[dZ] can be uniquely written as k0 = ω + dk for ω ∈ {1, . . . , |d| − 1} and k ∈ Z. Replacing ξ in (1.19)

by dξ , by the same argument, we see that (1.19) is equivalent to

ϕ(ξ)ϕ̃

(
ξ + 2πω

d
+ 2πk

)(
Θ(dξ)a(ξ)ã

(
ξ + 2πω

d

)
+

s∑
�=1

b�(ξ)b̃�

(
ξ + 2πω

d

))
= 0 (2.24)

for all k ∈ Z and ω = 1, . . . , |d|−1. Now it is not difficult to deduce that (2.24) is equivalent to (1.29) with ω = 1, . . . , |d|−1.
We now prove the second part of Theorem 2. Note that (1.31) implies that a, ã ∈ L∞(R) and max(|1 − a(d− jξ)|, |1 −

ã(d− jξ)|) � C |d|−τ j |ξ |τ for all ξ ∈ (−|d| jπ, |d| jπ ]. It is a standard argument to show that both ϕ and ϕ̃ in (1.23) are
well-defined measurable functions in Lloc∞ (R) and

lim
j→+∞

ϕ
(
d− jξ

) = 1 = lim
j→+∞

ϕ̃
(
d− jξ

)
, a.e. ξ ∈ R. (2.25)

In fact, by the same argument as in [22, p. 93] or [26, p. 932], (1.31) also implies that for any ε > 0, there exists c > 0 such
that

1 − ε �
∣∣ϕ(ξ)

∣∣ � 1 + ε and 1 − ε �
∣∣ϕ̃(ξ)

∣∣ � 1 + ε, a.e. ξ ∈ [−c, c]. (2.26)

See the proof of Theorem 16 in Section 4 for more details on proving (2.25) and (2.26). Take ε = 1/2 in (2.26). By the
definition of Θ in (1.27), we conclude that∣∣Θ(

d− jξ
)
ϕ

(
d− jξ

)
ϕ̃

(
d− jξ

)∣∣ � 9

4

∣∣Θ(
d− jξ

)∣∣ � 9
∣∣Θ(

d− jξ
)
ϕ

(
d− jξ

)
ϕ̃

(
d− jξ

)∣∣ (2.27)

for almost every ξ ∈ [−c, c] and for all j � 0. Consequently, by the generalized Lebesgue dominated convergence the-
orem and using (2.25) and (2.27), we can conclude that (1.26) holds in the sense of distributions if and only if
lim j→+∞ Θ(d− j ·) = 1 holds in the sense of distributions.

Since ϕ, ϕ̃ ∈ Lloc∞ (R) and θ1, . . . , θ r,b1, . . . ,bs, θ̃
1
, . . . , θ̃

r
, b̃1, . . . , b̃s ∈ Lloc

2 (R), by the definition in (1.24) and (1.25), it is
evident that all the measurable functions in Φ,Ψ , Φ̃, Ψ̃ belong to the desired space Lloc

2 (R). By what has been proved for
the first part of Theorem 2, the claim in the second part of Theorem 2 holds. �
3. Nonhomogeneous wavelet systems in function spaces and L2(RRR)

In this section, we shall discuss nonhomogeneous wavelet systems in the space L2(R) and other function spaces. We shall
see that a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space plays a basic role in the
study of wavelets and framelets in various function spaces. We shall also discuss the connections between nonhomogeneous
and homogeneous wavelet systems in L2(R).

Let us recall some necessary definitions first. For τ ∈ R, we denote by Hτ (R) the Sobolev space consisting of all tempered
distributions f such that

‖ f ‖2
Hτ (R) := 1

2π

∫
R

∣∣ f̂ (ξ)
∣∣2(

1 + |ξ |2)τ dξ < ∞. (3.1)

Note that H−τ (R) is the dual space of Hτ (R), since f ∈ H−τ (R) can be regarded as a continuous linear functional on
Hτ (R) in the sense of 〈 f , g〉 = 1

2π

∫
R

f̂ (ξ)ĝ(ξ)dξ for g ∈ Hτ (R).
Let d be a nonzero real number and WS J (Φ;Ψ ) be a nonhomogeneous wavelet system defined in (1.8). We define a

normed sequence space bHτ (R) , indexed by the elements of WS J (Φ;Ψ ), with weighted norm as follows:
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∥∥{wh}h∈WS J (Φ;Ψ )

∥∥2
bHτ (R)

:=
∑
φ∈Φ

∑
k∈Z

|d|−2τ J |wφd J ;k |2 +
∞∑

j= J

∑
ψ∈Ψ

∑
k∈Z

|d|−2τ j|wψ
d j ;k |2. (3.2)

For Φ,Ψ ⊆ Hτ (R), we say that WS J (Φ;Ψ ) has stability in Hτ (R) with respect to the normed sequence space bHτ (R) if there
exist positive constants C1 and C2 such that

C1‖ f ‖2
H−τ (R)

�
∥∥{〈 f ,h〉}h∈WS J (Φ;Ψ )

∥∥2
bHτ (R)

� C2‖ f ‖2
H−τ (R)

∀ f ∈ H−τ (R), (3.3)

or more explicitly,

C1‖ f ‖2
H−τ (R)

�
∑
φ∈Φ

∑
k∈Z

|d|−2τ J
∣∣〈 f , φd J ;k〉

∣∣2 +
∞∑

j= J

∑
ψ∈Ψ

∑
k∈Z

|d|−2τ j
∣∣〈 f ,ψd j;k〉

∣∣2 � C2‖ f ‖2
H−τ (R)

. (3.4)

Note that Hτ (R) is a Hilbert space under the inner product

〈 f , g〉Hτ (R) := 1

2π

∫
R

f̂ (ξ)ĝ(ξ)
(
1 + |ξ |2)τ dξ, f , g ∈ Hτ (R).

It was shown in [27, Proposition 2.1] that (3.4) holds for all f ∈ H−τ (R), if and only if,

C1‖g‖2
Hτ (R) �

∑
φ∈Φ

∑
k∈Z

∣∣〈g, |d|−τ J φd J ;k
〉
Hτ (R)

∣∣2 +
∞∑

j= J

∑
ψ∈Ψ

∑
k∈Z

∣∣〈g, |d|−τ jψd j;k
〉
Hτ (R)

∣∣2

� C2‖g‖2
Hτ (R), g ∈ Hτ (R). (3.5)

In other words, that WS J (Φ;Ψ ) has stability in Hτ (R) with respect to bHτ (R) is equivalent to saying that after a proper
renormalization of WS J (Φ;Ψ ),

WSτ
J (Φ;Ψ ) := {|d|−τ J φd J ;k: k ∈ Z, φ ∈ Φ

} ∪ {|d|−τ jψd j;k: j � J , k ∈ Z, ψ ∈ Ψ
}

(3.6)

is a frame in the Hilbert space Hτ (R). For ψ ∈ Hτ (R) and |d| > 1, in the following we show that

A1‖ψ‖2
Hτ (R) �

∥∥|d|−τ jψd j;k
∥∥2

Hτ (R)
� A2‖ψ‖2

Hτ (R) ∀ j � J , k ∈ Z, (3.7)

for some positive constants A1 and A2 depending on d, τ , J and ψ . For τ < 0, to prove (3.7), we further assume that∫
R

∣∣ψ̂(ξ)
∣∣2|ξ |2τ dξ < ∞, (3.8)

which is also a necessary condition for (3.7) to hold. We now prove (3.7). In fact,∥∥|d|−τ jψd j;k
∥∥2

Hτ (R)
= 1

2π

∫
R

∣∣ψ̂(ξ)
∣∣2(

1 + |ξ |2)τ ( |d|−2 j + |ξ |2
1 + |ξ |2

)τ

dξ. (3.9)

Since |d| > 1, it is easy to deduce that

|ξ |2
1 + |ξ |2 � |d|−2 j + |ξ |2

1 + |ξ |2 � |d|−2 J + 1, ∀ j � J , ξ ∈ R. (3.10)

For τ � 0, noting that there exists ε > 0 such that

1

2π

∫
{ζ∈R: |ζ |�ε}

∣∣ψ̂(ξ)
∣∣2(

1 + |ξ |2)τ dξ � 1

2
‖ψ‖2

Hτ (R),

we deduce from (3.9) and (3.10) that (3.7) holds with A1 = (1 + ε−2)−τ /2 and A2 = (|d|−2 J + 1)τ .
For τ < 0, by our assumption in (3.8), there exists ε > 0 such that

1

2π

∫
{ζ∈R: |ζ |�ε}

∣∣ψ̂(ξ)
∣∣2|ξ |2τ dξ � 1

2
‖ψ‖2

Hτ (R).

Now we can easily deduce from (3.9) and (3.10) that (3.7) holds with A1 = (|d|−2 J + 1)τ and A2 = 1
2 + (1 + ε−2)−τ .

Using (3.9) and applying Fatou’s lemma to (3.7) with j → +∞, it is easy to see that (3.8) is a necessary condition for (3.7)
to hold.
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Hence, the weights |d|−τ j in the definition of ‖ · ‖bHτ (R)
is chosen to be the normalization factors of the elements ψd j;k

in the space Hτ (R). The stability property in (3.4), which is equivalent to the frame property in (3.5), characterizes the
Sobolev space H−τ (R). We point out that the characterization of homogeneous Besov spaces by homogeneous framelets
in [1,15] uses nonlinear approximation and is quite different in nature to (3.4) and (3.5).

Now we are ready to recall the definition in [27] on a pair of nonhomogeneous dual wavelet frames in a pair of dual
Sobolev spaces (Hτ (R), H−τ (R)). Let d be the dilation factor. Let

Φ = {
φ1, . . . , φr}, Ψ = {

ψ1, . . . ,ψ s} and Φ̃ = {
φ̃1, . . . , φ̃r}, Ψ̃ = {

ψ̃1, . . . , ψ̃ s} (3.11)

be subsets of tempered distributions. We say that the pair (WS J (Φ;Ψ ),WS J (Φ̃; Ψ̃ )), or more precisely (WSτ
J (Φ;Ψ ),

WS−τ
J (Φ̃; Ψ̃ )), forms a pair of nonhomogeneous dual wavelet frames in a pair of dual Sobolev spaces (Hτ (R), H−τ (R)) if

(1) Φ,Ψ ⊆ Hτ (R) and WS J (Φ;Ψ ) has stability in Hτ (R) with respect to bHτ (R) . That is, WSτ
J (Φ;Ψ ) is a frame in Hτ (R);

(2) Φ̃, Ψ̃ ⊆ H−τ (R) and WS J (Φ̃; Ψ̃ ) has stability in H−τ (R) with respect to bH−τ (R) . That is, WS−τ
J (Φ̃; Ψ̃ ) is a frame in

H−τ (R);
(3) for all f ∈ H−τ (R) and g ∈ Hτ (R), the following identity holds

〈 f , g〉 =
r∑

�=1

∑
k∈Z

〈
f , φ�

d J ;k
〉〈
φ̃�

d J ;k, g
〉 + ∞∑

j= J

s∑
�=1

∑
k∈Z

〈
f ,ψ�

d j;k
〉〈
ψ̃�

d j;k, g
〉

(3.12)

with the series on the right-hand side converging absolutely.

The above definition is introduced in [27]. When τ = 0, since L2(R) = H0(R), it is easy to see that the above definition
of a pair of nonhomogeneous dual wavelet frames in (L2(R), L2(R)) becomes the definition of a pair of nonhomogeneous
dual wavelet frames in L2(R).

Suppose that the pair (WS J (Φ;Ψ ),WS J (Φ̃; Ψ̃ )) forms a pair of nonhomogeneous dual wavelet frames in
(Hτ (R), H−τ (R)). Using (3.12) and the upper stability (that is, the right-hand inequality in (3.4) holds) of the two non-
homogeneous wavelet systems, it is not difficult to see that we have the following representations:

f =
r∑

�=1

∑
k∈Z

〈
f , φ�

d J ;k
〉
φ̃�

d J ;k +
∞∑

j= J

s∑
�=1

∑
k∈Z

〈
f ,ψ�

d j;k
〉
ψ̃�

d j;k, f ∈ H−τ (R),

with the series converging unconditionally in the space H−τ (R), and similarly,

g =
r∑

�=1

∑
k∈Z

〈
g, φ̃�

d J ;k
〉
φ�

d J ;k +
∞∑

j= J

s∑
�=1

∑
k∈Z

〈
g, ψ̃�

d j;k
〉
ψ�

d j;k, g ∈ Hτ (R),

with the series converging unconditionally in the space Hτ (R). See [27] for more details.
Let B be a normed function space and B′ be its dual. For example, for Besov spaces Bτ

p,q(R), (Bτ
p,q(R))′ = B−τ

p′,q′ (R),
where τ ∈ R,1 � p < ∞ and 1 � q < ∞ with 1/p + 1/p′ = 1/q + 1/q′ = 1. Similarly, for Triebel–Lizorkin spaces F τ

p,q(R),

(F τ
p,q(R))′ = F −τ

p′,q′ (R). Replacing Hτ (R) and H−τ (R) by B and B′ , respectively, the notion of a pair of nonhomogeneous

dual wavelet frames can be generalized from a pair of dual Sobolev spaces (Hτ (R), H−τ (R)) to a pair of dual function
spaces (B,B′) by a proper choice of some normed sequence spaces bB and bB′ . We shall not further address this issue
in this paper.

In the rest of this section, we shall use the following notation

Ĥτ (R) := {
f̂ : f ∈ Hτ (R)

}
and ‖ f̂ ‖

Ĥτ (R)
:= ‖ f ‖Hτ (R), f ∈ Hτ (R). (3.13)

By the following result, we see that the notion of a frequency-based nonhomogeneous dual wavelet frames in the dis-
tribution space plays a basic role in the study of pairs of nonhomogeneous dual wavelet frames in a pair of dual function
spaces.

Theorem 7. Let τ ∈ R and d be a nonzero real number. Let Φ,Ψ, Φ̃, Ψ̃ in (3.11) be subsets of tempered distributions. Define

Φ := {φ̂: φ ∈ Φ}, Ψ := {ψ̂: ψ ∈ Ψ }, Φ̃ := { ˆ̃
φ: φ̃ ∈ Φ̃}, Ψ̃ := { ˆ̃

ψ: ψ̃ ∈ Ψ̃ }. (3.14)

Then (WS J (Φ;Ψ ),WS J (Φ̃; Ψ̃ )) forms a pair of nonhomogeneous dual wavelet frames in the pair of dual Sobolev spaces (Hτ (R),

H−τ (R)), if and only if,
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(i) there exists a positive constant C such that∥∥{〈f,h〉}h∈FWS J (Φ;Ψ )

∥∥
bHτ (R)

� C‖f‖
Ĥ−τ (R)

, f ∈ D(R), (3.15)

and ∥∥{〈f, h̃〉}h̃∈FWS J (Φ̃;Ψ̃ )

∥∥
bH−τ (R)

� C‖f‖
Ĥτ (R)

, f ∈ D(R); (3.16)

(ii) the pair (FWS J (Φ;Ψ ), FWS J (Φ̃; Ψ̃ )), which is the image of the pair (WS J (Φ;Ψ ),WS J (Φ̃; Ψ̃ )) under the Fourier transform,
forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space D ′(R).

Proof. For f ∈ Ď(R) := {h: ĥ ∈ D(R)} and g ∈ Hα(R) with α ∈ R, the relation 〈 f , g〉 = 1
2π 〈 f̂ , ĝ〉 holds. Since Ď(R) is

contained in both Hτ (R) and H−τ (R) (or equivalently, D(R) ⊆ Ĥτ (R) and D(R) ⊆ Ĥ−τ (R)), the necessity part is evident.
Hence, it suffices to prove the sufficiency part.

By (3.15), for all f ∈ D(R) and N ∈ N,

∑
ϕ∈Φ

N∑
k=−N

|d|−2τ J
∣∣〈f,ϕd− J ;0,k〉

∣∣2 +
N∑

j= J

∑
ψ∈Ψ

N∑
k=−N

|d|−2τ j
∣∣〈f,ψd− j;0,k〉

∣∣2 � C2‖f‖2
Ĥ−τ (R)

. (3.17)

Using (3.17), we now prove that Φ,Ψ ⊆ Ĥτ (R). By (3.17), for ψ ∈ Ψ , we have |〈f,ψd− J ;0,0〉| � C |d|τ J ‖f‖
Ĥ−τ (R)

for all

f ∈ D(R). Therefore, 〈·,ψd− J ;0,0〉 can be extended into a continuous linear functional on Ĥ−τ (R). Since Ĥτ (R) is the dual

space of Ĥ−τ (R), there exists ψ̊ ∈ Ĥτ (R) such that 〈·,ψd− J ;0,0〉 = 〈·, ψ̊〉. In particular, 〈f,ψd− J ;0,0 − ψ̊〉 = 0 for all f ∈ D(R).

Since ψd− J ;0,0 − ψ̊ is a distribution, we must have ψd− J ;0,0 = ψ̊ in the sense of distributions. By ψ̊ ∈ Ĥτ (R), we deduce

that ψd− J ;0,0 ∈ Ĥτ (R) and therefore, ψ ∈ Ĥτ (R). Consequently, by (3.17), we proved that Φ,Ψ ⊆ Ĥτ (R). In other words, we
proved that Φ,Ψ ⊆ Hτ (R).

Since D(R) is dense in Ĥ−τ (R) and since all 〈·,ϕd− J ;0,k〉,ϕ ∈ Φ and 〈·,ψd− j;0,k〉,ψ ∈ Ψ are continuous linear functionals

on Ĥ−τ (R), we see that (3.17) holds for all f ∈ Ĥ−τ (R) and all N ∈ N. Letting N → +∞ in (3.17) and noting 〈 f , g〉 =
1

2π 〈 f̂ , ĝ〉 for all f ∈ H−τ (R) and g ∈ Hτ (R), we conclude that Φ,Ψ ⊆ Hτ (R) and

r∑
�=1

∑
k∈Z

|d|−2τ J
∣∣〈 f , φ�

d J ;k
〉∣∣2 +

∞∑
j= J

s∑
�=1

∑
k∈Z

|d|−2τ j
∣∣〈 f ,ψ�

d j;k
〉∣∣2 � C2

2π
‖ f ‖2

H−τ (R)
, f ∈ H−τ (R). (3.18)

Similarly, we can show that (3.16) implies Φ̃, Ψ̃ ⊆ H−τ (R) and

r∑
�=1

∑
k∈Z

|d|2τ J
∣∣〈g, φ̃�

d J ;k
〉∣∣2 +

∞∑
j= J

s∑
�=1

∑
k∈Z

|d|2τ j
∣∣〈g, ψ̃�

d j;k
〉∣∣2 � C2

2π
‖g‖2

Hτ (R), g ∈ Hτ (R). (3.19)

Define two operators W : H−τ (R) → bHτ (R) and W̃ : Hτ (R) → bH−τ (R) by

W f := {〈 f ,h〉}h∈WS J (Φ;Ψ )
and W̃ g := {〈g, h̃〉}h̃∈WS J (Φ̃;Ψ̃ )

. (3.20)

Then (3.18) and (3.19) are equivalent to saying that the operators W and W̃ are well-defined bounded linear operators,
more precisely,

‖W f ‖bHτ (R)
� C√

2π
‖ f ‖H−τ (R), ‖W g‖bH−τ (R)

� C√
2π

‖g‖Hτ (R) ∀ f ∈ H−τ (R), g ∈ Hτ (R). (3.21)

By Cauchy–Schwarz inequality, using (3.18) and (3.19), we see that for f ∈ H−τ (R) and g ∈ Hτ (R), the series on the right-
hand side of (3.12) converges absolutely. Now by assumption in item (ii), we see that (3.12) holds for all f , g ∈ Ď(R). In
other words, for f , g ∈ Ď(R),

〈W f ,W̃ g〉 = 〈 f , g〉. (3.22)

Note that Ď(R) is dense in both H−τ (R) and Hτ (R). Now we use a standard argument to show that (3.22) holds for all
f ∈ H−τ (R) and g ∈ Hτ (R). For f ∈ H−τ (R) and g ∈ Hτ (R), there exist two sequences { fn}∞n=1 and {gn}∞n=1 in Ď(R) such
that

lim ‖ fn − f ‖H−τ (R) = 0 and lim ‖gn − g‖Hτ (R) = 0. (3.23)

n→∞ n→∞
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Observe that

〈W f ,W̃ g〉 = 〈
W ( f − fn),W̃ g

〉 + 〈
W fn,W̃ (g − gn)

〉 + 〈W fn,W̃ gn〉.
By fn, gn ∈ Ď(R) and (3.22), we have 〈W fn,W̃ gn〉 = 〈 fn, gn〉. Therefore, we have

〈W f ,W̃ g〉 − 〈 f , g〉 = 〈
W ( f − fn),W̃ g

〉 + 〈
W fn,W̃ (g − gn)

〉 + 〈 fn − f , gn〉 + 〈 f , gn − g〉.
Now by (3.21) and the triangle inequality,∣∣〈W f ,W̃ g〉 − 〈 f , g〉∣∣ �

∣∣〈W ( f − fn),W̃ g
〉∣∣ + ∣∣〈W fn,W̃ (g − gn)

〉∣∣ + ∣∣〈 fn − f , gn〉
∣∣ + ∣∣〈 f , gn − g〉∣∣

� C1
(‖ f − fn‖H−τ (R)‖g‖Hτ (R) + ‖ fn‖H−τ (R)‖g − gn‖Hτ (R)

+ ‖ fn − f ‖H−τ (R)‖gn‖Hτ (R) + ‖ f ‖H−τ (R)‖gn − g‖Hτ (R)

)
,

where C1 := C2

2π + 1. By (3.23), the right-hand side of the above inequality goes to 0 as n → ∞. Consequently, (3.22) holds
for all f ∈ H−τ (R) and g ∈ Hτ (R). That is, (3.12) and item (3) have been verified.

To prove item (1), by (3.22) and (3.21), we have∣∣〈 f , g〉∣∣ = ∣∣〈W f ,W̃ g〉∣∣ � ‖W f ‖bHτ (R)
‖W̃ g‖bH−τ (R)

� C√
2π

‖g‖Hτ (R)‖W f ‖bHτ (R)
.

That is, for f ∈ H−τ (R), the following inequality holds:

‖W f ‖bHτ (R)
�

√
2π

C
sup

g∈Hτ (R)\{0}
|〈 f , g〉|

‖g‖Hτ (R)

=
√

2π

C
‖ f ‖Hτ (R),

where in the last step we used the fact that Hτ (R) is the dual space of H−τ (R). Hence, item (1) holds. Item (2) can be
proved similarly. This completes the proof of the sufficiency part. �

Next, we discuss connections between nonhomogeneous and homogeneous wavelet systems in the particular function
space L2(R). To do so, we need an auxiliary result, which is essentially known in the literature, e.g., see [23, p. 28]. For
completeness, we present a proof here.

Lemma 8. Let d be a real number such that |d| > 1. Let φ ∈ L2(R) such that there exists a positive constant C such that
∑

k∈Z |〈 f , φ(·−
k)〉|2 � C‖ f ‖2

L2(R)
for all f ∈ L2(R) (or equivalently,

∑
k∈Z |φ̂(ξ + 2πk)|2 � C for almost every ξ ∈ R). Then

lim
j→−∞

∑
k∈Z

∣∣〈 f , φd j;k〉
∣∣2 = 0 ∀ f ∈ L2(R). (3.24)

Proof. It suffices to prove the case d > 1, since the negative case d < −1 can be proved similarly. So, we assume d > 1. We
first show that (3.24) holds for all f = χ(t1,t2) with t1 < t2, where χ(t1,t2) denotes the characteristic function of the open
interval (t1, t2). For f = χ(t1,t2) , by Cauchy–Schwarz inequality, we have

∣∣〈 f , φd j;k〉
∣∣2 = d− j

∣∣∣∣ ∫
(d jt1−k,d jt2−k)

φ(x)dx

∣∣∣∣2

� d− j
( ∫

(d jt1−k,d jt2−k)

dx

)( ∫
(d jt1−k,d jt2−k)

∣∣φ(x)
∣∣2

dx

)
.

Since
∫
(d j t1−k,d j t2−k)

dx = d j(t2 − t1), noting that lim j→−∞ d j = 0 by d > 1 and all (d jt1 − k,d jt2 − k), k ∈ Z, are disjoint as
j → −∞, we deduce that∑

k∈Z

∣∣〈 f , φd j;k〉
∣∣2 � |t2 − t1|

∫
⋃

k∈Z
(d jt1−k,d jt2−k)

∣∣φ(x)
∣∣2

dx → 0,

as j → −∞, since φ ∈ L2(R). Consequently, (3.24) holds for all f = χ(t1,t2) . So, (3.24) holds for all f that are finite linear
combinations of characteristic functions of bounded open intervals.

On the other hand, define operators P j : L2(R) → l2(Z) by P j f := {〈 f , φd j;k〉}k∈Z . By P j f = P0 fd− j;0,0, we have

‖P j f ‖2
l2(Z) = ‖P0 fd− j;0,0‖2

l2(Z) � C‖ fd− j;0,0‖2
L2(R) = C‖ f ‖2

L2(R).

When
∑

k∈Z |φ̂(ξ + 2πk)|2 � C for almost every ξ ∈ R, by Lemma 3, we see that
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‖P j f ‖2
l2(Z) = 1

4π2

∑
k∈Z

∣∣〈 f̂ , φ̂d j;k〉
∣∣2 = d j

2π

π∫
−π

∣∣∣∣∑
k∈Z

f̂
(
d j(ξ + 2πk)

)
φ̂(ξ + 2πk)

∣∣∣∣2

dξ

� d j

2π

π∫
−π

(∑
k∈Z

∣∣ f̂
(
d j(ξ + 2πk)

)∣∣2
)(∑

k∈Z

∣∣φ̂(ξ + 2πk)
∣∣2

)
dξ

� C

2π
d j

π∫
−π

∑
k∈Z

∣∣ f̂
(
d j(ξ + 2πk)

)∣∣2
dξ

= C

2π

∫
R

∣∣ f̂ (ξ)
∣∣2

= C‖ f ‖2
L2(R).

Let f ∈ L2(R). For an arbitrary ε > 0, there is g , which is a finite linear combination of characteristic functions of
bounded open intervals, such that ‖ f − g‖L2(R) � ε. Since lim j→−∞ ‖P j g‖l2(Z) = 0, there exists J such that ‖P j g‖l2(Z) � ε
for all j � J . Hence, for all j � J , we have

‖P j f ‖l2(Z) �
∥∥P j( f − g)

∥∥
l2(Z)

+ ‖P j g‖l2(Z) �
√

C‖ f − g‖L2(R) + ‖P j g‖l2(Z) � (
√

C + 1)ε.

Hence, lim j→−∞ ‖P j f ‖l2(Z) = 0. That is, (3.24) holds. �
Theorem 9. Let d be a real number. Let Φ,Ψ, Φ̃, Ψ̃ in (3.11) be subsets of L2(R). Suppose that WS J (Φ;Ψ ), which is defined in (1.8),
is a frame in L2(R) for some integer J , that is, there are positive constants C1 and C2 such that

C1‖ f ‖2
L2(R) �

r∑
�=1

∑
k∈Z

∣∣〈 f , φ�
d J ;k

〉∣∣2 +
∞∑

j= J

s∑
�=1

∑
k∈Z

∣∣〈 f ,ψ�
d j;k

〉∣∣2 � C2‖ f ‖2
L2(R), f ∈ L2(R). (3.25)

Then (3.25) holds for all integers J . If in addition |d| > 1, then WS(Ψ ) must be a frame in L2(R) with the same frame bounds satisfying

C1‖ f ‖2
L2(R) �

∑
j∈Z

s∑
�=1

∑
k∈Z

∣∣〈 f ,ψ�
d j;k

〉∣∣2 � C2‖ f ‖2
L2(R), f ∈ L2(R). (3.26)

If |d| > 1 and the pair (WS J (Φ;Ψ ),WS J (Φ̃, Ψ̃ )) forms a pair of nonhomogeneous dual wavelet frames in (L2(R), L2(R)) for some
integer J , then (WS(Ψ ),WS(Ψ̃ )) forms a pair of homogeneous dual wavelet frames in L2(R), that is, both WS(Ψ ) and WS(Ψ̃ ) are
frames in L2(R), and the following identity holds

〈 f , g〉 =
∑
j∈Z

s∑
�=1

∑
k∈Z

〈
f ,ψ�

d j;k
〉〈
ψ̃�

d j;k, g
〉
, f , g ∈ L2(R), (3.27)

with the series converging absolutely.

Proof. By the simple observation in (2.18), it is easy to see that for all integers J , (3.25) holds with the same constants C1
and C2. In particular, for all J ∈ Z, we have

‖P J f ‖2 :=
r∑

�=1

∑
k∈Z

∣∣〈 f , φ�
d J ;k

〉∣∣2 � C2‖ f ‖2
L2(R).

Since |d| > 1, by Lemma 8, we have lim J→−∞
∑r

�=1
∑

k∈Z |〈 f , φ�
d J ;k〉|2 = 0 for all f ∈ L2(R). Now it is easy to deduce that

(3.26) holds.
To prove the second claim, by what has been proved, both WS(Ψ ) and WS(Ψ̃ ) are frames in L2(R). Note that the pair

(WS J (Φ;Ψ ),WS J (Φ̃, Ψ̃ )) forms a pair of nonhomogeneous dual wavelet frames in (L2(R), L2(R)) for all integers J . Thus,
for all integers J , we have

〈 f , g〉 =
r∑

�=1

∑
k∈Z

〈
f , φ�

d J ;k
〉〈
φ̃�

d J ;k, g
〉 + ∞∑

j= J

s∑
�=1

∑
k∈Z

〈
f ,ψ�

d j;k
〉〈
ψ̃�

d j;k, g
〉
, f , g ∈ L2(R), (3.28)

with the series on the right-hand side converging absolutely. By Lemma 8 again, for f , g ∈ L2(R), we have
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lim
J→−∞

r∑
�=1

∑
k∈Z

〈
f , φ�

d J ;k
〉〈
φ̃�

d J ;k, g
〉 = 0.

Now we see that (3.27) holds. �
As a direct consequence of all the above results, we have

Corollary 10. Let d be a real number such that |d| > 1. Let Φ = {ϕ1, . . . ,ϕr} and Ψ = {ψ1, . . . ,ψ s} be subsets of distributions in
D ′(R). Then the following statements are equivalent:

(1) FWS J (Φ;Ψ ), which is defined in (1.10), is a frequency-based nonhomogeneous tight wavelet frame in L2(R) for some integer J ,
that is, Φ,Ψ ⊆ L2(R) and

r∑
�=1

∑
k∈Z

∣∣〈f,ϕ�
d− J ;0,k

〉∣∣2 +
∞∑

j= J

s∑
�=1

∑
k∈Z

∣∣〈f,ψ�
d− j;0,k

〉∣∣2 = 2π‖f‖2
L2(R) ∀f ∈ L2(R); (3.29)

(2) item (1) is true for all integers J ;
(3) (FWS J (Φ;Ψ ), FWS J (Φ;Ψ )) forms a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space

D ′(R);
(4) Φ,Ψ ⊆ Lloc

2 (R) and (2.14)–(2.17) hold with Φ̃ := Φ and Ψ̃ := Ψ ;

(5) there exist φ1, . . . , φr,ψ1, . . . ,ψ s ∈ L2(R) such that ϕ1 = φ̂1, . . . ,ϕr = φ̂r,ψ1 = ψ̂1, . . . ,ψ s = ψ̂ s , and WS J ({φ1, . . . , φr};
{ψ1, . . . ,ψ s}) is a nonhomogeneous tight wavelet frame in L2(R):

r∑
�=1

∑
k∈Z

∣∣〈 f , φ�
d J ;k

〉∣∣2 +
∞∑

j= J

s∑
�=1

∑
k∈Z

∣∣〈 f ,ψ�
d j;k

〉∣∣2 = ‖ f ‖2
L2(R) ∀ f ∈ L2(R). (3.30)

Moreover, any of the above statements implies that FWS(Ψ ) is a frequency-based homogeneous tight wavelet frame in L2(R), that is,
Ψ ⊆ L2(R) and∑

j∈Z

s∑
�=1

∑
k∈Z

∣∣〈f,ψ�
d j;0,k

〉∣∣2 = 2π‖f‖2
L2(R) ∀f ∈ L2(R). (3.31)

Proof. We first show that if item (3) holds, then (3.15) must be true with C = 2π and τ = 0. Since item (3) holds, by
definition, for all f ∈ D(R), we have

lim
J ′→+∞

(
r∑

�=1

∑
k∈Z

∣∣〈f,ϕ�
d− J ;0,k

〉∣∣2 +
J ′−1∑
j= J

s∑
�=1

∑
k∈Z

∣∣〈f,ψ�
d− j;0,k

〉∣∣2

)
= 2π‖f‖2

L2(R).

Now it is straightforward to see that (3.15) must be true with C = 2π and τ = 0, since ‖ f ‖2
L̂2(R)

= 1
2π ‖f‖2

L2(R)
. Consequently,

by Theorem 7, item (3) implies Φ,Ψ ⊆ L2(R).
Now by Theorem 7, (1), (2), and (3) are equivalent to each other. The equivalence of (3) and (4) is guaranteed by

Theorem 6. The equivalence between (1) and (5) is trivial. (3.31) is a direct consequence of Theorem 9. �
From the following result, we see that there is a natural connection between refinable function vectors and frequency-

based nonhomogeneous orthonormal wavelet bases in L2(R).

Proposition 11. Let d be a nonzero real number. Let Φ and Ψ in (1.13) be subsets of L2(R). Suppose that 1√
2π

FWS J (Φ;Ψ ) is an

orthonormal basis of L2(R) for some integer J (this is equivalent to saying that (3.29) holds with ‖ϕ1‖L2(R) = · · · = ‖ϕr‖L2(R) =
‖ψ1‖L2(R) = · · · = ‖ψ s‖L2(R) = √

2π ). Denote �ϕ := (ϕ1, . . . ,ϕr)T and �ψ := (ψ1, . . . ,ψ s)T . Then there must exist r × r matrix a
and s × r matrix b of 2π -periodic measurable functions in L2(T) such that

�ϕ(dξ) = a(ξ) �ϕ(ξ) and �ψ(dξ) = b(ξ) �ϕ(ξ), a.e. ξ ∈ R. (3.32)

Moreover, if |d| > 1, then 1√
2π

FWS(Ψ ) is also an orthonormal basis of L2(R).

Proof. Note that 1√
2π

FWS J (Φ;Ψ ) is an orthonormal basis of L2(R) if and only if it is an orthonormal basis of L2(R) for

all integers J . Consider the expansion of the elements ϕ�′
d;0,0 and ψ�′

d;0,0 under the orthonormal basis 1√
2π

FWS0(Φ;Ψ ). By

orthogonality, we have
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ϕ�′
d;0,0 = 1

2π

r∑
�=1

∑
k∈Z

〈
ϕ�′

d;0,0,ϕ
�
1;0,k

〉
ϕ�

1;0,k

and

ψ�′
d;0,0 = 1

2π

r∑
�=1

∑
k∈Z

〈
ψ�′

d;0,0,ϕ
�
1;0,k

〉
ϕ�

1;0,k.

Noting that ϕ�′
d;0,0(ξ) = |d|1/2ϕ�′

(dξ) and ϕ�
1;0,k(ξ) = e−ikξϕ�(ξ), we see that (3.32) holds with

[
a(ξ)

]
�′,� = 1

2π
√|d|

∑
k∈Z

〈
ϕ�′

d;0,0,ϕ
�
1;0,k

〉
e−ikξ , �, �′ = 1, . . . , r,

and [
b(ξ)

]
�′,� = 1

2π
√|d|

∑
k∈Z

〈
ψ�′

d;0,0,ϕ
�
1;0,k

〉
e−ikξ , � = 1, . . . , r, �′ = 1, . . . , s,

where [a(ξ)]�′,� denotes the (�′, �)-entry of the matrix a(ξ). Since∑
k∈Z

∣∣〈ϕ�′
d;0,0,ϕ

�
1;0,k

〉∣∣2
< ∞,

all [a]�′,� are well-defined elements in L2(T). Similarly, all [b]�′,� are well-defined elements in L2(T). �
4. Nonstationary dual wavelet frames in the distribution space

All the results in the previous sections have been mainly built on the multiresolution-like structure in (2.19) for sta-
tionary nonhomogeneous wavelet systems. Here stationary means that at scale level j the dilation is d j and the generating
wavelet functions are independent of the scale level j. The result in Lemma 5 characterizing the multiresolution-like struc-
ture in (2.7) makes most proofs in the previous sections relatively simple. Nonhomogeneous wavelet systems are closely
related to nonstationary wavelets, which are useful in many applications since the nonstationary wavelet filter banks can
be implemented in almost the same way and efficiency as a traditional fast wavelet transform. However, except a few spe-
cial cases as discussed in [4,7,26] and some references therein, only few theoretical results on nonstationary wavelets are
available in the literature.

In this section, we shall see that the notion of a pair of frequency-based nonhomogeneous dual wavelet frames in the
distribution space is very flexible and similar results hold in the most general setting of fully nonstationary wavelets. Since
there are few theoretical results on nonstationary wavelets in the literature, it is worth our effort to provide a better picture
to understand them in this section.

Let us first introduce the notion of a pair of frequency-based nonstationary dual wavelet frames in the distribution space.
Let J ∈ Z and {λ j}∞j= J be a sequence of nonzero real numbers. Let

Φ = {
ϕ1, . . . ,ϕr}, Φ̃ = {

ϕ̃1
, . . . , ϕ̃r} (4.1)

and

Ψ j := {
ψ j,1, . . . ,ψ j,s j

}
, Ψ̃

j := {
ψ̃

j,1
, . . . , ψ̃

j,s j } (4.2)

be subsets of distributions in D ′(R) with j � J and s j ∈ N. We say that the pair(
FWS J

(
Φ;{Ψ j}∞

j= J

)
,FWS J

(
Φ̃;{Ψ̃ j}∞

j= J

))
(4.3)

forms a pair of frequency-based nonstationary dual wavelet frames in the distribution space D ′(R) if the following identity holds:

r∑
�=1

∑
k∈Z

〈
f,ϕ�

λ J ;0,k

〉〈
ϕ̃�

λ J ;0,k,g
〉 + ∞∑

j= J

s j∑
�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉 = 2π〈f,g〉 ∀f,g ∈ D(R), (4.4)

where the infinite series in (4.4) converge in the following sense:

1. for every f,g ∈ D(R), all the series
∑

k∈Z〈f,ϕ�
λ J ;0,k〉〈ϕ̃�

λ J ;0,k,g〉 and
∑

k∈Z〈f,ψ j,�′
λ j ;0,k〉〈ψ̃

j,�′
λ j;0,k,g〉 converge absolutely for

every integer j � J , � = 1, . . . , r, and �′ = 1, . . . , s j ;
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2. for every f,g ∈ D(R), the following limit exists and

lim
J ′→+∞

(
r∑

�=1

∑
k∈Z

〈
f,ϕ�

λ J ;0,k

〉〈
ϕ̃�

λ J ;0,k,g
〉 + J ′−1∑

j= J

s j∑
�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉) = 2π〈f,g〉. (4.5)

The stationary nonhomogeneous wavelet systems considered in previous sections correspond to the case that λ j = d− j ,
s j = s, and Ψ j = Ψ for all j � J ; that is, the generating wavelet functions remain stationary (unchanged) at all the scale
levels j.

A pair of frequency-based nonstationary dual wavelet frames in the distribution space D ′(R) can be similarly character-
ized by the following result.

Theorem 12. Let J be an integer and {λ j}∞j= J be a sequence of nonzero real numbers such that lim j→+∞ λ j = 0. Let Φ, Φ̃ in (4.1)

and Ψ j, Ψ̃
j

in (4.2) be subsets of Lloc
2 (R) for all integers j � J . Then the pair in (4.3) forms a pair of frequency-based nonstationary

dual wavelet frames in the distribution space D ′(R), if and only if,

I
λ J k
Φ (λ J ξ) +

∞∑
j= J

I
λ jk

Ψ j (λ jξ) = 0, a.e. ξ ∈ R, k ∈ Λ\{0} (4.6)

(all the above infinite sums are in fact finite, since lim j→+∞ λ jk = 0 for all k ∈ R) and

lim
J ′→+∞

(
I0
Φ(λ J ·) +

J ′−1∑
j= J

I0
Ψ j (λ j ·)

)
= 1 in the sense of distributions, (4.7)

where Λ := ⋃∞
j= J [λ−1

j Z] and

Ik
Φ(ξ) :=

r∑
�=1

ϕ�(ξ)ϕ̃�
(ξ + 2πk), k ∈ Z, and Ik

Φ(ξ) ≡ 0, k ∈ R\Z, (4.8)

and

Ik
Ψ j (ξ) :=

s j∑
�=1

ψ j,�(ξ)ψ̃
j,�

(ξ + 2πk), k ∈ Z, and Ik
Ψ j (ξ) ≡ 0, k ∈ R\Z. (4.9)

Proof. Let f,g ∈ D(R). By Lemma 3, we have

s j∑
�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉 = 2π

∫
R

∑
k∈[λ−1

j Z]
f(ξ)g(ξ + 2πk)I

λ jk

Ψ j (λ jξ)dξ. (4.10)

Since f and g have compact support and lim j→+∞ λ j = 0, we observe that there exists an integer J f,g such that
f(ξ)g(ξ + 2πk) ≡ 0 for all k ∈ [λ−1

j Z]\{0} and j � J f,g . Therefore,

s j∑
�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉 = 2π

∫
R

f(ξ)g(ξ)I0
Ψ j (λ jξ)dξ ∀ j � J f,g. (4.11)

Sufficiency. For J ′ > J , define

S J ′
J (f,g) :=

r∑
�=1

∑
k∈Z

〈
f,ϕ�

λ J ;0,k

〉〈
ϕ̃�

λ J ;0,k,g
〉 + J ′−1∑

j= J

s j∑
�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉
.

Therefore, by (4.10), for J ′ > J , we have

S J ′
J (f,g) = 2π

∫
R

∑
k∈Λ

f(ξ)g(ξ + 2πk)

[
I
λ J k
Φ (λ J ξ) +

J ′−1∑
j= J

I
λ jk

Ψ j (λ jξ)

]
dξ. (4.12)

Now by (4.6), for all J ′ > max( J , J f,g), we deduce that
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S J ′
J (f,g) = 2π

∫
R

f(ξ)g(ξ)

[
I0
Φ(λ J ξ) +

J ′−1∑
j= J

I0
Ψ j (λ jξ)

]
dξ. (4.13)

Now by (4.7) and (4.13), we conclude that lim J ′→+∞ S J ′
J (f,g) = 2π

∫
R

f(ξ)g(ξ)dξ = 2π〈f,g〉.
Necessity. The proof of the necessity part is essentially the same as that of Lemma 5. Since lim j→+∞ λ j = 0, the set Λ is

discrete and closed. For any temporarily fixed ξ ∈ R and k0 ∈ Λ\{0}, it is important to notice that dist(k0,Λ\{k0}) > 0.
Now the same argument as in the proof of Lemma 5 leads to (4.6). Similarly, for any temporarily fixed ξ ∈ R, since
dist(0,Λ\{0}) > 0, by (4.13), the same argument as in the proof of Lemma 5 leads to (4.7). �

For the particular case λ j = d− j , the following result is a direct consequence of Theorem 12.

Corollary 13. Let d be an integer with |d| > 1 and J be an integer. Let Φ, Φ̃ in (4.1) and Ψ j, Ψ̃
j

in (4.2) be subsets of Lloc
2 (R) for all

integers j � J . Then the pair in (4.3), with λ j = d− j for all j � J , forms a pair of frequency-based nonstationary dual wavelet frames
in the distribution space D ′(R), if and only if, for all j0 ∈ N ∪ {0} and k0 ∈ Z\[dZ],

r∑
�=1

ϕ�
(
d j0ξ

)
ϕ̃�(d j0(ξ + 2πk0)

) +
j0∑

j=0

s j+ J∑
�=1

ψ j+ J ,�(d j0− jξ
)
ψ̃

j+ J ,�(
d j0− j(ξ + 2πk0)

) = 0, (4.14)

for almost every ξ ∈ R, and the following limit holds in the sense of distributions:

lim
J ′→+∞

(
r∑

�=1

ϕ�
(
d− J ·)ϕ̃�(d− J ·) +

J ′−1∑
j= J

s j∑
�=1

ψ j,�(d− j·)ψ̃ j,�(
d− j·)) = 1. (4.15)

Proof. Since λ j = d− j , it is evident that (4.7) is just (4.15). Note that Λ = ⋃∞
j= J [d jZ] = d J Z by d ∈ Z. For any k ∈ Λ\{0} =

[d J Z]\{0}, we can write k = d J+ j0 k0 for a unique integer j0 � 0 and a unique k0 ∈ Z\[dZ]. Now it is easy to check that (4.6)
is equivalent to (4.14). �

As another application of Theorem 12, using a similar argument as in the proof of Corollary 10, we have the following
result on frequency-based nonstationary tight wavelet frames in L2(R).

Corollary 14. Let J be an integer and {λ j}∞j= J be a sequence of nonzero real numbers such that lim j→+∞ λ j = 0. Let Φ in (4.1) and

Ψ j in (4.2) be subsets of distributions in D ′(R) for all integers j � J . Then the following statements are equivalent:

1. FWS J (Φ; {Ψ j}∞j= J ) is a frequency-based nonstationary tight wavelet frame in L2(R), that is, Φ,Ψ j ⊆ L2(R) for all j � J and

r∑
�=1

∑
k∈Z

∣∣〈f,ϕ�
λ J ;0,k

〉∣∣2 +
∞∑

j= J

s j∑
�=1

∑
k∈Z

∣∣〈f,ψ j,�
λ j;0,k

〉∣∣2 = 2π‖f‖2
L2(R) ∀f ∈ L2(R); (4.16)

2. the pair (FWS J (Φ; {Ψ j}∞j= J ), FWS J (Φ; {Ψ j}∞j= J )) forms a pair of frequency-based nonstationary dual wavelet frames in the

distribution space D ′(R);

3. Φ,Ψ j ⊆ Lloc
2 (R) and (4.6), (4.7) hold with Φ̃ := Φ and Ψ̃

j := Ψ j for all j � J ;

4. there exist φ1, . . . , φr,ψ j,1, . . . ,ψ j,s j ∈ L2(R) for all j � J such that ϕ1 = φ̂1, . . . ,ϕr = φ̂r,ψ j,1 = ψ̂ j,1, . . . ,ψ j,s j = ψ̂ j,s j for
all j � J , and

r∑
�=1

∑
k∈Z

∣∣〈 f , φ�

λ−1
J ;k

〉∣∣2 +
∞∑

j= J

s j∑
�=1

∑
k∈Z

∣∣〈 f ,ψ j,�

λ−1
j ;k

〉∣∣2 = ‖ f ‖2
L2(R) ∀ f ∈ L2(R). (4.17)

For frequency-based nonstationary wavelets with multiresolution-like structure, we have

Proposition 15. Let J0 be an integer and {λ j}∞j= J0
be a sequence of nonzero real numbers such that lim j→+∞ λ j = 0. For integers

j � J0 , let Ψ j, Ψ̃
j

in (4.2) and

Φ j := {
ϕ j,1, . . . ,ϕ j,r j

}
, Φ̃

j := {
ϕ̃ j,1

, . . . , ϕ̃ j,r j
}

(4.18)

be subsets of Lloc(R). Then
2
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(
FWS J

(
Φ J ;{Ψ j}∞

j= J

)
,FWS J

(
Φ̃

J ;{Ψ̃ j}∞
j= J

))
(4.19)

forms a pair of frequency-based nonstationary dual wavelet frames in the distribution space D ′(R) for every integer J � J0 , if and
only if,

I
λ jk

Φ j (λ jξ) + I
λ jk

Ψ j (λ jξ) = I
λ j+1k

Φ j+1 (λ j+1ξ), a.e. ξ ∈ R, k ∈ [
λ−1

j Z
] ∪ [

λ−1
j+1Z

]
, j � J0, (4.20)

and

lim
j→+∞

r j∑
�=1

ϕ j,�(λ j ·)ϕ̃ j,�
(λ j ·) = 1 in the sense of distributions, (4.21)

where Ik
Ψ j , k ∈ R, are defined in (4.9) and

Ik
Φ j (ξ) :=

r j∑
�=1

ϕ j,�(ξ)ϕ̃ j,�
(ξ + 2πk), k ∈ Z, and Ik

Φ j (ξ) ≡ 0, k ∈ R\Z. (4.22)

Proof. By the same argument as in Theorem 6, we see that the pair in (4.19) forms a pair of frequency-based nonstationary
dual wavelet frames in D ′(R) for all integers J � J0, if and only if,

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 + s j∑

�=1

∑
k∈Z

〈
f,ψ j,�

λ j;0,k

〉〈
ψ̃

j,�
λ j;0,k,g

〉
=

r j+1∑
�=1

∑
k∈Z

〈
f,ϕ j+1,�

λ j+1;0,k

〉〈
ϕ̃ j+1,�

λ j+1;0,k,g
〉
, f,g ∈ D(R), j � J0, (4.23)

and

lim
j→+∞

r j∑
�=1

∑
k∈Z

〈
f,ϕ j,�

λ j;0,k

〉〈
ϕ̃ j,�

λ j;0,k,g
〉 = 2π〈f,g〉, f,g ∈ D(R). (4.24)

By Lemma 5, (4.20) is equivalent to (4.23). By Lemma 4, (4.21) is equivalent to (4.24). �
For a(ξ) = ∑k2

k=k1
a(k)e−ikξ with a(k1)a(k2) �= 0, the degree of a is defined to be deg(a) := max(|k1|, |k2|). We finish this

paper by the following result which connects a nonstationary wavelet filter bank obtained via a generalized nonstationary
oblique extension principle with a pair of frequency-based nonstationary dual wavelet frames in the distribution space.

Theorem 16. Let {d j}∞j=1 be a sequence of nonzero integers such that lim j→+∞
∏ j

n=1 |dn| = ∞. Define λ0 := 1 and λ j :=
(
∏ j

n=1 dn)−1 for all j ∈ N. Let a j and ã j , j ∈ N, be 2π -periodic trigonometric polynomials such that a j(0) = ã j(0) = 1 for all j ∈ N

and

C :=
∞∑
j=1

|λ j|deg
(
a j)∥∥a j

∥∥
L∞(T)

< ∞ and C̃ :=
∞∑
j=1

|λ j|deg
(
ã j)∥∥ã j

∥∥
L∞(T)

< ∞. (4.25)

Define

ϕ j(ξ) :=
∞∏

n=1

a j+n(λ j+nλ
−1
j ξ

)
and ϕ̃ j

(ξ) :=
∞∏

n=1

ã j+n(λ j+nλ
−1
j ξ

)
, ξ ∈ R, j ∈ N ∪ {0}. (4.26)

Then all ϕ j−1 , ϕ̃ j−1 , j ∈ N, are elements in Lloc∞ (R) satisfying

ϕ j−1(d jξ) = a j(ξ)ϕ j(ξ) and ϕ̃ j−1
(d jξ) = ã j(ξ)ϕ̃ j

(ξ), ∀ξ ∈ R, j ∈ N. (4.27)

Let θ j,1, . . . , θ j,r j−1 , b j,1, . . . ,b j,s j−1 and θ̃
j,1

, . . . , θ̃
j,r j−1 , b̃ j,1, . . . , b̃ j,s j−1 with r j−1, s j−1 ∈ N and j ∈ N be 2π -periodic measurable

functions in Lloc
2 (R). Define

ϕ j−1,�(ξ) := θ j,�(ξ)ϕ j−1(ξ) and ϕ̃ j−1,�
(ξ) := θ̃

j,�
(ξ)ϕ̃ j−1

(ξ), j ∈ N, � = 1, . . . , r j−1, (4.28)

ψ j−1,�(d jξ) := b j,�(ξ)ϕ j(ξ) and ψ̃
j−1,�

(d jξ) := b̃ j,�(ξ)ϕ̃ j
(ξ), j ∈ N, � = 1, . . . , s j−1. (4.29)
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Then Φ j, Φ̃
j

in (4.18) and Ψ j, Ψ̃
j

in (4.2) are subsets of Lloc
2 (R) for all j � 0. Moreover, the pair in (4.19) forms a pair of frequency-

based nonstationary dual wavelet frames in D ′(R) for every integer J � 0, if and only if, for all j ∈ N,

Θ j(d jξ)a j(ξ)ã j(ξ) +
s j−1∑
�=1

b j,�(ξ)b̃ j,�(ξ) = Θ j+1(ξ), a.e. ξ ∈ R, (4.30)

Θ j(d jξ)a j(ξ)ã j
(

ξ + 2πω

d j

)
+

s j−1∑
�=1

b j,�(ξ)b̃ j,�
(

ξ + 2πω

d j

)
= 0, a.e. ξ ∈ R, ω ∈ Z\[d jZ], (4.31)

and

lim
j→+∞Θ j+1(λ j ·) = 1 in the sense of distributions, (4.32)

where

Θ j(ξ) :=
r j−1∑
�=1

θ j,�(ξ)θ̃
j,�

(ξ), j ∈ N. (4.33)

Proof. We first establish an inequality on the decay of ϕ j , which plays a critical role in this proof to show (4.21). By
a j(0) = ã j(0) = 1 and Bernstein inequality ‖[a j]′‖L∞(T) � deg(a j)‖[a j]‖L∞(T) ,

∣∣1 − a j(ξ)
∣∣ =

∣∣∣∣∣
ξ∫

0

[
a j]′(ζ )dζ

∣∣∣∣∣ �
∥∥[

a j]′∥∥
L∞(T)

|ξ | � |ξ |deg
(
a j)∥∥a j

∥∥
L∞(T)

, (4.34)

where [a j]′ denotes the derivative of a j . Observe a simple inequality

|z| � e|1−z| ∀z ∈ C. (4.35)

In fact, denote z = reiθ for r � 0 and θ ∈ R. It is easy to prove that e2r � (r + 1)2 for r � 0. Consequently, e2|z| � (r + 1)2 �
r2 − 2r cos θ + 1 = |z − 1|2, which leads to (4.35).

Now for any m1,m2 ∈ N ∪ {+∞} with m1 � m2, by (4.34) and (4.35), we deduce that∣∣∣∣∣
m2∏

n=m1

a j+n(λ j+nξ)

∣∣∣∣∣ � e
∑m2

n=m1
|1−a j+n(λ j+nξ)| � e|ξ |∑m2

n=m1
|λ j+n|deg(a j+n)‖a j+n‖L∞(T) .

Hence, by (4.25), we have∣∣∣∣∣
m2∏

n=m1

a j+n(λ j+nξ)

∣∣∣∣∣ � eC |ξ | ∀ξ ∈ R, m1,m2 ∈ N ∪ {+∞} with m1 � m2. (4.36)

On the other hand, by a similar idea as in [22, p. 93] and [26, p. 932], we have

1 −
m2∏

n=m1

a j+n(λ j+nξ) =
m2∑

m=m1

(
1 − a j+m(λ j+mξ)

)( m2∏
n=m+1

a j+n(λ j+nξ)

)
,

where
∏m2

n=m2+1 := 1. By (4.34) and (4.36), we deduce from the above identity that∣∣∣∣∣1 −
m2∏

n=m1

a j+n(λ j+nξ)

∣∣∣∣∣ � eC |ξ |
m2∑

m=m1

∣∣1 − a j+m(λ j+mξ)
∣∣ � eC |ξ ||ξ |

m2∑
m=m1

|λ j+m|deg
(
a j+m)∥∥a j+m

∥∥
L∞(T)

.

That is, for all m1,m2 ∈ N ∪ {+∞} with m1 � m2, we have∣∣∣∣∣1 −
m2∏

n=m1

a j+n(λ j+nξ)

∣∣∣∣∣ � eC |ξ ||ξ |
j+m2∑

m= j+m1

|λm|deg
(
am)∥∥am

∥∥
L∞(T)

∀ξ ∈ R. (4.37)

The above inequality implies the uniform convergence of
∏∞

n=1 a j+n(λ j+nξ) for ξ on any bounded set. Since ϕ j(λ jξ) =∏∞
n=1 a j+n(λ j+nξ), we conclude from (4.36) that ϕ j ∈ Lloc∞ (R). Since θ j,�,b j,� ∈ Lloc

2 (R), it is evident that all ϕ j,�,ψ j,� are

elements in Lloc(R). Similarly, we can prove ϕ̃ j ∈ Lloc∞ (R) and all ϕ̃ j,�
, ψ̃

j,�
are elements in Lloc(R).
2 2
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Note that ϕ j−1(λ j−1ξ) = a j(λ jξ)ϕ j(λ jξ), that is, ϕ j−1(ξ) = a j(d−1
j ξ)ϕ j(d−1

j ξ). So, (4.27) holds. Also note that

lim j→∞ λ j = 0 and ϕ j−1(ξ) = 0 for at most countably many ξ ∈ R. Note that (4.20) with j being replaced by j − 1 is
equivalent to

r j−1∑
�=1

ϕ j−1,�(d jξ)ϕ̃ j−1,�
(d jξ + 2πd jk + 2πω) +

s j−1∑
�=1

ψ j−1,�(d jξ)ψ̃
j−1,�

(d jξ + 2πd jk + 2πω)

= δ(ω)

r j∑
�=1

ϕ j,�(ξ)ϕ̃ j,�
(

ξ + 2πk + 2πω

d j

)
(4.38)

for all k ∈ Z and ω = 0, . . . , |d j| − 1, where δ(0) = 1 and δ(ω) = 0 for all ω �= 0. Now it is easy to directly verify that (4.30)
and (4.31) are equivalent to (4.20).

We now show that (4.21) is equivalent to (4.32). By

ϕ j(λ jξ) =
∞∏

n=1

a j+n(λ j+nξ)

and (4.37), we have

∣∣1 − ϕ j(λ jξ)
∣∣ � eC |ξ ||ξ |

∞∑
m= j+1

|λm|deg
(
am)∥∥am

∥∥
L∞(T)

, ξ ∈ R, j ∈ N ∪ {0}. (4.39)

By a similar argument, we also have

∣∣1 − ϕ̃ j
(λ jξ)

∣∣ � eC̃ |ξ ||ξ |
∞∑

m= j+1

|λm|deg
(
ãm)∥∥ãm

∥∥
L∞(T)

, ξ ∈ R, j ∈ N ∪ {0}. (4.40)

By (4.25), we infer that

lim
j→+∞

∞∑
m= j+1

|λm|deg
(
am)∥∥am

∥∥
L∞(T)

= 0

and

lim
j→+∞

∞∑
m= j+1

|λm|deg
(
ãm)∥∥ãm

∥∥
L∞(T)

= 0.

By (4.28), we deduce that

r j∑
�=1

ϕ j,�(λ jξ)ϕ̃ j,�
(λ jξ) = Θ j+1(λ jξ)ϕ j(λ jξ)ϕ̃ j

(λ jξ).

Now by (4.39) and (4.40), using Lebesgue dominated convergence theorem, by the same argument as in Theorem 2, we
conclude that (4.21) holds if and only if (4.32) holds. By Proposition 15, the proof is completed. �
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