
Information and Computation 208 (2010) 315–326

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Underapproximation for model-checking based on universal circuits

Arie Matsliah a,b, Ofer Strichmanc,∗

a IBM Haifa Research Laboratory, Haifa, Israel
b Faculty of Computer Science, Technion, Haifa, Israel
c Information Systems Engineering, IE, Technion, Haifa, Israel

A R T I C L E I N F O A B S T R A C T

Article history:

Received 9 November 2008

Revised 20 December 2009

Available online 18 January 2010

For two naturalsm, n such thatm < n, we show how to construct a circuit Cwithm inputs

and n outputs, that has the following property: for some 0� k �m, the circuit defines a

k-universal function. This means, informally, that for every subset K of k outputs, every

possible valuation of the variables in K is reachable.

Now consider a circuit M with n inputs that we wish to model-check. Connecting the

inputs of M to the outputs of C gives us a new circuit M′ with m inputs, that its original

inputs have freedom defined by k. This is a very attractive feature for underapproximation

in model-checking: on one hand the combined circuit has a smaller number of inputs, and

on the other hand it is expected to find an error state fast if there is one.

We show a random construction of a k-universal circuit that guarantees that k is very

close tom, with an arbitrarily high probability.We also present a deterministic construction

of such a circuit, but here the value of k is smaller with respect to a fixed value of m. We

report initial experimental results with boundedmodel-checking of industrial designs (the

method is equally applicable to unbounded model-checking and to simulation), which

shows mixed results. An interesting observation, however, is that in 13 out of 17 designs,

settingm to be n/5 is sufficient to detect the bug. This is in contrast to other underapprox-

imation techniques that are based on reducing the number of inputs, which in most cases

cannot detect the bug even withm = n/2.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Experience with model-checking of industrial hardware designs shows that when the model violates a specification,

it is frequently the case that the values of only some of the inputs is important for triggering an erroneous behavior (as

the saying goes: “when it rains – it pours!"). Based on this observation it is appealing to underapproximate the model,

attempting to make it easier to check, yet not eliminating the problematic behavior altogether. In other words, the challenge

is to underapproximate by finding those restrictions that do not prevent all error states from being reached. Designing a fully

automatic model-checking algorithm based on underapproximation that is still sound and complete requires an iterative

process of underapproximation and refinement.

Automatic underapproximation/refinement for model-checking is not nearly as popular as its dual, automated over-

approximation/refinement. An overapproximating abstraction may result in a false negative, accompanied by a spurious

(abstract) counterexample. This counterexample can then be used to guide the refinement process, as in the CEGAR [1–4]

and proof-based [5] frameworks (in the latter only the length of the counterexample is used). All of these works are based

on overapproximation.

∗
Corresponding author.

E-mail addresses: ariem@cs.technion.ac.il (A. Matsliah), ofers@ie.technion.ac.il (O. Strichman).

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.01.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82342955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

316 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

Fig. 1. Since the attached Boolean circuit is k-universal, any assignment on any k out of the n inputs of the original model M, can be achieved under some

assignment on the inputs of M′ .

An underapproximation, on the other hand, may result in a false positive: here, good refinements are harder to achieve,

as there is no equivalent to the counterexample that can guide it. An exception to this rule is in SAT-based Bounded Model-

Checking (BMC), where the unsatisfiable core can guide the refinement: Grumberg et al. [6] used this fact in their work on

underapproximation–refinement for bounded model-checking of multi-process systems. We are only aware of few works

on underapproximations with BDDs (e.g., [7–9]), all of which are based on the size of the BDD (e.g., restricting the growth of

the reachable state-space when the BDD size becomes too large), but none of them are fully automatic and complete.

In this paper we focus on underapproximations that are based on reducing the number of inputs to the model. In theory

this shouldmake themodel easier to solve, at least in theworst-case, since the number of computation paths has exponential

dependency on the number of inputs.1 The most basic technique is to restrict some of the inputs to constants. Such naive

underapproximation, combined with a gradual lifting of these restrictions (typically in a manual manner) is a common

practice in the industry probably from the very first days of industrial model-checking. If no user-guidance is provided,

however, an automated refinement based on some arbitrary order of lifting the restrictions has a small chance to succeed,

unless the bug is ubiquitous enough to be very simple to find. It is enough for one of the inputs necessary for exposing the

error-trace to be falsely restricted, to potentiallymake themodel too big formodel-checking by the time this input is released.

Another option is to combine inputs (arbitrarily) and refining by splitting the combined sets. In Section 2.2 we analyze these

options in more depth.

What is this article about? The current work suggests an underapproximation which reduces the number of inputs

as well, but it is based on adding circuitry to the model, while maintaining a measurable and uniform degree of freedom

to the original inputs. This technique is automatic, easy to combine in an underapproximation–refinement method, and is

applicable to any form of model-checking or simulation, whether it is SAT-based or BDD-based. The technique is inspired by

theoretical constructions of cryptographic circuits, the Pseudo Random Generators (PRGs). These PRGs can expand a short

truly random Boolean sequence into a longer one, which is almost random (more details are given in Section 2). Based on

constructions of these PRGs, we build simple Boolean circuits and prove that they have the universality property as defined

below.

Consider a modelM with n inputs that we wish to model-check. We build a Boolean circuit withm inputs and n outputs,

0 < m < n, which is k-universal. Informally, this means that the circuit implements a function such that any valuation of at

most k outputs can be reached under some assignment to the inputs. We then connect the outputs of C to the inputs of M

(see Fig. 1). The composed model M′ has fewer inputs and underapproximates the original model M. One of the challenges

in such a construction is to guarantee high values of k for a given value ofm. We discuss this question in detail in Section 3.1.

Universality was also used in [11], in the context of simulation. The authors constructed vectors that have a certain degree

of universality and showed that this indeed has a better chance to expose problems in comparison to alterative vector sets of

the same size. The main contribution of this paper is theoretical: we show how to constructM′ and derive lower-bounds on

the value of k as a function ofm. Since the construction is based on a random function, the results are probabilistic. We also

define aweaker version of universality, called (k, ε)-universality, inwhich for only a 1 − ε fraction of the subsets of size k, any

assignment is possible (k-universality corresponds to ε = 0).With this relaxationweprove that for k = max(0, m − log 1
ε·δ),

where δ is the confidence level, the circuit C is (k, ε)-universal with probability at least 1 − δ. For example, with probability

0.99, for 99% of the subsets of size k = max(0, m − 14), any assignment can be achieved.

The main contribution of this article over the earlier proceedings version [12] is a technique for constructing k-universal

circuits deterministically. Such a deterministic construction obviously guarantees a concrete value of k with probability

1. Specifically, the deterministic construction guarantees k-universality with a circuit that has k · �log n� inputs, which is

not as good as the O
(
k ·

⌈
log n

k

⌉)
that is achieved by the random construction, with high probability. In fact it guarantees

more than that: that every combination with up to k ‘1’-s is possible. On the other hand no combination with more than

k ‘1’-s is possible, a restriction that does not exist in the random construction. Our contribution in this direction is so far

only theoretical, however: it is left for future work to implement and compare it with the random construction on real

benchmarks.

In Section 5 we describe our experiments, which attempt to check whether k-universality can be useful in the context of

model-checking. In other words, whether the freedom on the original inputs as guaranteed by this method is indeed helpful

1 In the context of SAT this is less obvious because SAT does not distinguish between inputs and other variables. But the reduction in the number of inputs

implies that it has a smaller upper-bound on the size of the smallest back-door set [10], namely the inputs, which suggest a better upper-bound on the

run-time.

A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326 317

Fig. 2. A 2-universal circuit.

in detecting bugs in real designs, in comparison to other forms of underapproximation that have the same search-space. The

answer is conclusive: it is able to find bugs with far fewer inputs. The results are less conclusive, but still positive, when it

comes to comparing to a run without underapproximation at all. This is probably due to the fact that our construction is

based on a XOR function, which is notoriously hard for SAT solvers. We conclude in Section 6 by pointing to several practical

and theoretical issues in applying this method that are still open.

2. Local universality

2.1. k-universal circuits and upper-bound on k

Let C be a Boolean circuit with m inputs and n outputs, m� n, implementing a corresponding function C : {0, 1}m →
{0, 1}n.
Definition 1 (k-universal functions). The function C is k-universal if for every subset K ⊂ {1, . . . , n} of k outputs and every

partial assignment αK ∈ {0, 1}k on K , there is a full assignment α ∈ {0, 1}m on the inputs of C such that C(α)|K = αK .

In other words, any subset of k output bits can take all 2k possible assignments in a k-universal function C.

Example 1. The following function C : {0, 1}2 → {0, 1}3 is 2-universal, since every two output coordinates have all four

values:

C(00) = 000

C(01) = 011

C(10) = 101

C(11) = 110.

(1)

This function is implemented by the circuit C in Fig. 2.

In Section 3 we present a methods for constructing k-universal circuits.

2.2. Universality of some known underapproximations

Underapproximations based on restricting the inputs can be seen as functions mapping inputs of the restricted model

to inputs of the original model. It is worthwhile to check how universal these functions are. Recall that if the model is

unrestricted, it is n-universal, where n is the number of inputs.

• Underapproximation by restricting a subset of the inputs to constant values. Regardless of the method for choosing these

inputs and their values, or whether it is part of a refinement process or not, it is clear that the underlying set of possible

assignment vectors to the restricted model is not even 1-universal, since there are inputs that cannot have both values.

• Underapproximation by combining inputs. In thismethod the set of inputs is partitioned, and all inputs in the samepartition

class are forced to agree on their value. Regardless of the partitioningmethod, this method guarantees 1-universality, but

not 2-universality, because two inputs in the same partition class cannot have all 4 valuations.

3. The PRG-like construction

The structure of our k-universal circuits, as mentioned earlier, were inspired by constructions of Pseudo Random Gener-

ators. PRG is a circuit that, given a short sequence of truly random bits, outputs a longer sequence of pseudo random bits.

More formally:

318 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

Definition 2 (PRG). Pseudo Random Generator (PRG) is a deterministic polynomial time function G : {0, 1}m → {0, 1}n,
where n > m, such that the following distributions are not distinguishable by circuits of size n:

• Distribution Gn defined as the output of function G on a uniformly selected input in {0, 1}m.
• Distribution Un defined as the uniform distribution on {0, 1}n.

The original motivation for constructing PRG’s was derandomizing probabilistic algorithms.2

In this section we sketch briefly how the original PRG of [13] is constructed, and introduce a slightly different (random)

construction that, as we prove later, provides with arbitrarily high probability, k-universal circuits. The parameter k here

is almost linear in m, with practically small coefficients. Without going into the details, based on a result in [14] it can be

shown that (2k log n� 2m), which means that an upper-bound on k is m − log log n. Hence, the circuit we construct has

nearly optimal parameters.

Definition 3 (System3). A family S = (S1, S2, . . . , Sn) of equally-sized subsets Si ⊂ {1, 2, . . . , m} is a (l, ρ , m, n)-system if

• ∀i, |Si| = l.

• ∀i, j |Si ∩ Sj| � ρ .

Given a Boolean function f : {0, 1}l → {0, 1} and a (l, ρ , m, n)-system S = (S1, S2, . . . , Sn), we construct the circuit C =
C(S, f) as follows:

• IC = {i1, . . . , im} are the inputs of C.

• OC = {o1, . . . , on} are the outputs of C.

• For j ∈ {1, . . . , n},
− Let I(oj) = {ih : h ∈ Sj} be a set of l inputs chosen according to the system S.

− Set oj = f (I(oj)).

In the original paper [13] the existence of systems with “good” parameters is proved, and the PRG’s are constructed based

on these “good” systems using functions f that have some specific cryptographic properties. Further details are given in the

above reference.

Now we define our random systems, based on which we will build k-universal circuits.

Definition 4 (Random system). Let n, m be naturals such that 1�m� n. An (m, n)-random system is a family RS = (S1, S2,
. . . , Sn) of n uniformly chosen random subsets Si ⊂ {1, 2, . . . , m}. Namely, for every 1� i � n (independently of each other),

the set Si is chosen uniformly at random out of all 2m possible subsets of {1, 2, . . . , m}.
Similarly to the previous construction, we build the circuit C = C(RS, f) where we set f to be the XOR function (⊕).

Formally,

• IC = {i1, . . . , im} are the inputs of C.

• OC = {o1, . . . , on} are the outputs of C.

• For j ∈ {1, . . . , n},
− Let I(oj) = {ih : h ∈ Sj} be the randomly chosen set of inputs from RS.

− Set oj = ⊕(I(oj)).

In the following section we prove that with arbitrary high probability these circuits are k-universal for relatively high k.

3.1. Lower-bounds on k

First we prove that if the family RS has certain algebraic properties, then the circuit C that is built from RS is k-universal.

Lemma 1. Let A be an n × m Boolean matrix defined by the family RS. Formally, the entry aij ∈ A is 1 if j ∈ Si and 0 otherwise.

Then if every k rows of A are linearly independent,4 the circuit C = C(RS,⊕) as above is k-universal.

Proof (Of Lemma 1). First notice that the i’th output of C implements a XOR function on the inputs that correspond to the

‘1’ entries of the i’th row in thematrix A. So we can think of C as a linear transformation in field GF(2) (Galois Field), induced

2 For instance, a “perfect” PRGwould be a functionG : {0, 1}log n → {0, 1}n . If we have such a PRG, thenwe can deterministically simulate any probabilistic

algorithm by going over all 2log n = n possible seeds for G, running the probabilistic algorithm and taking the majority vote.
3 In the original terminology this set system is called a Design. We avoid this term to prevent ambiguity.
4 Equivalently, every k rows of A form a full rank matrix.

A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326 319

by multiplying the matrix A with the input vector (recall that addition in GF(2) is equivalent to the XOR operator). In other

words, for every α1α2 · · · αm ∈ {0, 1}m and β1β2 · · · βn ∈ {0, 1}n, C(α1α2 · · · αm) = β1β2 · · · βn if and only if the following

holds:⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1m
a21 a22 . . . a2m
. .
. .
. .

an1 an2 . . . anm

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

α1

α2

...
αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1

β2

.

.

.
βn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Let K = {o1, o2, . . . , ok} ⊂ {1, 2, . . . , n} be an arbitrary set of k outputs, and let βo1βo2 · · · βok be any partial assignment

on K . Notice that for any α1α2 · · · αm the value C(α1α2 · · · αm) restricted to K equals βo1βo2 · · · βok if and only if⎛
⎜⎜⎜⎜⎜⎜⎝

ao11 ao12 . . . ao1m
ao21 ao22 . . . ao2m
. .
. .
. .

aok1 aok2 . . . aokm

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

α1

α2

...
αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

βo1
βo2
.
.
.

βok

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

We denote this restricted k × m matrix by B. Recall that our purpose is to prove that such an assignment α1α2 · · · αm

indeed exists. Here we use the fact that every k rows in A are linearly independent, and thus the matrix B is invertible.

Therefore such an assignment exists, and it can be computed by:

⎛
⎜⎜⎜⎝

α1

α2

...
αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ao11 ao12 . . . ao1m
ao21 ao22 . . . ao2m
. .
. .
. .

aok1 aok2 . . . aokm

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

βo1
βo2
.
.
.

βok

⎞
⎟⎟⎟⎟⎟⎟⎠

. � (4)

The next lemma states that with probability 1 − δ (where δ > 0 is an arbitrary confidence parameter), in the matrix A

defined by the family RS, every k rows are linearly independent.

Lemma 2. Let k > 1 be a natural number and let δ > 0 be a fixed confidence parameter. Set b = m/k and a = n/m. Let RS be a

family of subsets in (m, n)-random system and let A be the underlyingmatrix as above. If the inequality b > log(e · ab(1/δ)1/k) +
1 is satisfied by the above parameters, then with probability at least 1 − δ (over the construction of RS) every k rows in A are

linearly independent.5

Before proving the lemma, we list some known useful inequalities:

(i) Let x1, x2, . . . , xn be non-negative reals. Then
∏n

i=1

(
1 − xi

)
> 1 −∑n

i=1
xi.

(ii)
(
n

k

)
< (en

k
)k.

(iii) Letm, k be naturals such thatm > k. Then
∑k

i=1
2i−m � 2 · 2k−m.

Proof (of Lemma 2).According to the construction of random systems, every row in A is a randomBoolean vector of lengthm.

Let K = {o1, o2, . . . , ok} ⊂ {1, 2, . . . , n} be any sequence of k rows in A. Nowwe define a sequence of “bad” event indicators:

Ij = 1 if and only if the j’th row oj ∈ K is a linear combination of the rows o1, . . . , oj−1. Obviously if (
∑k

j=1 Ij) = 0 then

the rows in K are linearly independent. Note that in every step j, the j − 1 preceding vectors span a linear space of size at

most 2j−1. Since the rows of A are chosen uniformly at random (independently of each other), we have Pr[Ij = 0] � 2m−2j−1

2m
.

Therefore,

Pr

[(k∑
j=1

Ij

)
= 0

]
=

k∏
j=1

2m − 2j−1

2m
(5)

=
k∏

j=1

(1 − 2j−1−m) � 1 −
k∑

j=1

2j−1−m � 1 − 2k−m. (6)

5 e = 2.718... is the Euler constant.

320 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

The last two inequalities follow from (i) and (iii). We can now conclude that

Pr

[(k∑
j=1

Ij

)
> 0

]
� 2k−m. (7)

There are
(
n

k

)
�
(
en
k

)k
possible sets of k rows, and by the Union Bound6 the probability that some set of k rows is not

linearly independent is at most(
en

k

)k

· 2k−m = (eab)k · 2(1−b)k �(eab)k · 2− log(eab(1/δ)1/k)·k = δ. � (8)

Corollary 1. Let C be a circuit based on a family RS of a random system as described above, with parameters m, n. Let k > 1 be a

natural number and set b = m/k and a = n/m. The circuit C is k-universal with probability at least δ, for any δ that satisfies

b > log(e · ab(1/δ)1/k) + 1.

Proof. By Lemma 2 we know that with these parameters, in the underlying matrix A every k rows are linearly independent

with probability 1 − δ or higher. On the other hand, by Lemma 1we know that if every k rows in A are linearly independent,

then the circuit C = C(RS,⊕) is k-universal. �

Based on Corollary 1, it is left to showhowwe construct the underapproximatingmodelM′. The construction is as follows:

• Let {i1, . . . , in}be theprimary inputs ofM. Construct the k-universal circuitC basedona randomsystemRS = (S1, . . . , Sn).• For each j ∈ {1, . . . , n}, connect the j’th input of M to the j’th output of C.

The inputs of the underapproximating model M′ are the m inputs of C.

Understanding the inequality from Corollary 1. It is not immediately clear what is the relation between the universality

parameter k and the other parameters fromCorollary 1.We try to clarify this relation bymaking several realistic assumptions

and simplifications.

First, we can fix the bound δ on failure probability to 1/100 and plug in the values of a and b. This gives us the following

inequality:

m

k
> log

(
e · n

k
1001/k

)
+ 1,

or equivalently,

m > k ·
(
log e + log n − log k + log 100

k
+ 1

)
.

Notice that when k is larger than 8, this is equivalent to

m > k · (log n − log k + 3).

In other words, the universality parameter k can get as large as

m

log n − log k + 3
≈ m

log
(
n
k

) ,
and still, the condition in Corollary 1 will be satisfied.

Since m (the number of inputs) is always larger than the universality parameter k, we can express the bound on the

universality parameter explicitly by replacing k with m on the right hand side, i.e., as long as

k �
m

log n − logm + 3
,

the condition of Corollary 1 is satisfied.

As we demonstrate in our experimental results (see Section 5), in most of the cases the best improvement is achieved

whenm ≈ n
5
, so in this case k is approximately m/6.

Sample values of universality. It is worthwhile to see some values of k given n, m and δ. For instance, for n = 140,m = 70 and

δ = 0.02 we can get k = 10-universality with probability at least 0.98. This means that we can reduce the number of inputs

to the model by half, and still get 10-universality with a very high probability.

6 Union Bound: for a countable set A1 , A2 , A3 , . . . of events, Pr

[⋃
i Ai

]
�
∑

i Pr

[
Ai

]
.

A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326 321

Fig. 3. The value of k for different values of m and n, and a fixed value of δ (0.02).

In general δ has a very small effect on k, hence the probability of success can be made very close to 1. The chart in Fig. 3

refers to a fixed value δ = 0.02. The chart shows the value of k for n = 100, 200, . . . , 500, where m is sampled 9 times for

each value of n, in the range n/10 . . . 9n/10. It is clear from the graph that k is close to linear inm, and that it has a constant

factor of about 5. In fact, the equation b = log(e · ab(1/δ)1/k) + 1 from Lemma 2 implies that k ∼ m
log(n/k)

, which means

that k is linear inm for all practical n.

3.2. A better lower-bound on k for “almost” k-universality

In practice, given n and m the parameter of universality (k) is expected to be significantly higher than what our analytic

lower bound provides. But it is quite challenging to estimate the gap between the lower-bound and the actual values of k,

since checking k universality of a circuit C : {0, 1}m → {0, 1}n is hard for reasonably large n,m and k. But if we slightly relax

our notion of universality we can get much better bounds on k. Formally, let m, n, k and C = C(RS,⊕) be as above. Given a

subset K ⊂ {1, . . . , n} of k outputs, we say that the subset K is covered by C if for all partial assignments αK ∈ {0, 1}k on K ,

there is a full assignment α ∈ {0, 1}m on the inputs of C such that C(α) |K= αK . For any parameter 0 < ε � 1 we can define

a relaxed notion of universality as follows.

Definition 5 ((k, ε)-universality). A circuit C is (k, ε)-universal if at least (1 − ε)
(
n

k

)
subsets K ⊂ {1, . . . , n} of k outputs are

covered by C.

Recall that our previous bounds on k were valid for circuits that cover all
(
n

k

)
subsets K , i.e., (k, 0)-universal circuits. The

following lemmagives another lower-bound on k, which is significantly better than the previous one as long as the parameter

ε is not too small.

Lemma 3. Let m < n be naturals and let C = C(RS,⊕) be a circuit as defined above. Fix 0 < ε, δ � 1 and set k = max(0, m −
log 1

ε·δ). The circuit C is (k, ε)-universal with probability at least 1 − δ.

Consequently, for any 0 < ε < 1 and k �max(0, m − 2 log 1
ε
), the circuit C is (k, ε)-universal with probability at least 1 − ε.

Observe the implication of this result: since m is an absolute upper-bound on k, it means that with a small sacrifice of

universality and confidence we obtain a value close to this theoretical limit. For example, for δ = ε = 0.1 (and m� 7), we

get k = m − 7, i.e., with probability at least 0.9, the circuit C is (max(0, m − 7), 0.1)-universal. Now consider a negligible

sacrifice and failure probability, such as δ = ε = 0.01. In this case we get (k, 0.01)-universality for k = max(0, m − 14).

Proof (of Lemma 3). The proof is a simple application of Markov’s inequality7 on one of the consequences from the proof of

Lemma 2. For every subset K ⊂ {1, 2, . . . , n} of size k, we define XK as a random 0, 1 variable, such that XK = 1 if and only

7 Markov inequality: let X be a random variable assuming only non-negative values. Then for all c > 0, Pr

[
X � c · E[X]

]
� 1

c
.

322 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

if the subset K is not covered by C. Referring to the proof of Lemma 1, the set K is covered by C if and only if the sub-matrix

B that corresponds to K has full rank (otherwise the linear transformation is not injective). Then from the proof of Lemma 2

we have Pr[XK = 1] � 2k−m. Now let

X = ∑
K⊂{1,...,n},|K|=k

XK ,

be the sum of these variables. By linearity of expectation,8

E[X] = ∑
K

E[XK] �
(
n

k

)
· 2k−m, (9)

and by Markov’s inequality,

δ = Pr

[
X � ε ·

(
n

k

)]
= Pr

[
X � ε · 2m−k ·

(
n

k

)
· 2k−m

]
�

1

ε · 2m−k
. (10)

From (10) we derive k �m − log 1
ε·δ . �

4. Constructing universal circuits deterministically

In this section we describe a deterministic method for constructing universal circuits. It has both advantages and disad-

vantages in comparison to the probabilistic method. The advantages are:

• The construction is deterministic, and hence the universality parameter is known in advance and guaranteed.

• The constructed circuit does not use XOR gates and hence is expected to burden the solver less.

The disadvantage is:

• The universality parameter k is smaller than in the random construction, with respect to a similar value ofm. Specifically,

m = k · �log n� rather than m = O(k ·
⌈
log n

k

⌉
) as in the random construction.

The following is a short description of the circuit construction, for a given goal universality value k:

1. The circuit has m = k · �log n� inputs. These inputs are clearly sufficient for generating any combination of k numbers

N0, . . . , Nk−1 in the range 0, . . . , n − 1.

2. Define each output of the circuit Oj for j ∈ {0, . . . , n − 1} as follows:

Oj
.=

k−1∨
i=0

Ni = j. (11)

That is, an output Oj is set to true if and only if one (or more) of the k numbers is set to the value j.

The resulting circuit is k-universal because of the complete freedom in choosing the input numbers N0, . . . , Nk−1. In fact the

circuit allows every valuation of the outputs as long as it does not contain more than k ‘1’-s, and forbids all other valuations.

Thus, what it allows is more than is expected with high probability from the random construction and more than required

by k-universality, but what it forbids implies that more than k-universality is impossible (a restriction that does not exist in

the random construction).

In the rest of this section we formalize this idea.

4.1. Functions that imply universality

For a binary string α ∈ {0, 1}n we denote by |α| the weight of α, i.e., the number of ones in α. We denote by {0, 1}n� k the

set {
α ∈ {0, 1}n : |α| � k

}
.

Let m and n be two natural numbers that satisfy n > m. Given a function f : {0, 1}m → {0, 1}n, we say that f covers all

vectors of weight up to k if the following holds:

{0, 1}n� k ⊆ image(f), (12)

namely, for every α ∈ {0, 1}n� k there exists β ∈ {0, 1}m such that f (β) = α.

8 Linearity of expectation: for any n random variables X1 , . . . , Xn the following holds: E

[∑n
i=1 Xi

]
= ∑n

i=1 E[Xi].

A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326 323

Lemma 4. Any function f : {0, 1}m → {0, 1}n that covers all vectors of weight up to k is in addition k-universal.

Proof. Recall that the definition of k-universality requires that for any subset K ⊂ {0, . . . , n − 1} of k indices, and any

partial assignment α′ ∈ {0, 1}k on the indices in K , there exists β ′ ∈ {0, 1}m such that f (β ′)|K = α′. Now consider the string

α ∈ {0, 1}n that agrees with the partial assignment α′ on the indices in K , and has all zeroes outside of K . Clearly |α| � k,

thus from the definition above we know that there exists β ∈ {0, 1}m such that f (β) = α, and consequently f (β)|K = α′.
�

4.2. Implementing the covering functions

According to Lemma 4, in order to construct k-universal circuits it is enough to construct a circuit Cf which implements

a function f : {0, 1}m → {0, 1}n that covers all vectors of weight up to k. Note that the size of the range of such an f must be

at least
∑k

i=0

(
n

i

)
, and that to generate this many values the parameter mmust satisfy

m� log

(k∑
i=0

(
n

i

))
� log

(
n

k

)
� k(log n − log k). (13)

(the last step is based on the known inequality
(
n

k

)
�(n/k)k).

Isolating k yields:

k �
⌊

m

log n − log k

⌋
. (14)

Recall that we are interested in maximizing the universality parameter k with respect to m and n. This can be done

explicitly by implementing the truth table of any given function f in Disjunctive Normal Form or Conjunctive Normal Form.

But such a construction is highly inefficient, and may result in a circuit of exponential size.

The construction that follows, on the other hand, yields a circuit of size O(n · k · log n) but achieves slightly weaker

universality, i.e.

k = m

�log n� . (15)

Recall that the theoretical upper-bound on the universality parameter is k �m. Thus, for practical values of n this result

is still quite close to the optimum, although not as close as the one achieved from the random construction.

In the following, for any binary string β ∈ {0, 1}� denote by Nβ ∈ {0, . . . , 2� − 1} the natural number whose binary

representation is β (note that this overloads the notation N).

We now set m = k�log n� and define the function fI : {0, 1}m → {0, 1}n that we are going to implement. For any α ∈
{0, 1}m = {0, 1}k�log n� we split α into k parts β0,β2, . . . ,βk−1, each of length �log n�, and set

fI(α) = fI(β0β1 · · · βk−1) = b0b1b2 · · · bn−1, (16)

where for each i ∈ {0, . . . , n − 1}, bi = 1 if and only if for some j, Nβj
= i.

It is easy to verify that the function fI covers all vectors of weight up to k (in fact, the range of fI contains only these

vectors). Therefore, according to Lemma 4, fI is a k-universal function. The only thing left to do is to build a circuit Cf that

implements the function fI . This can be done as follows:

1. Let i be a number in the range {0, . . . , n − 1}. Let S be a vector of �log n� inputs, and let α be a binary string of the same

length, such that Nα = i. For s ∈ S let α(s) be the Boolean value in α corresponding to the input s. Define

s(α)
.=
{
s α(s) = 1

¬s α(s) = 0
. (17)

Let

Ci(S)
.= ∧

s∈S

s(α). (18)

Thus, Ci(S) is a circuit that evaluates to ‘1’ if and only if the valuation of its inputs S correspond to Ni. For example, for

i = 2 (hence α = 10) and S = i0i1, Ci(S) = i0 ∧ ¬i1.

2. Split the inputs {i0, . . . , ik�log n�−1} into S0, S1, . . . , Sk−1, which are k disjoint binary vectors of size �log n� each.

3. For each i ∈ {0, . . . , n − 1}, connect the i’th output of Cf to

Ci
f

.=
k−1∨
j=0

Ci(Sj). (19)

324 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

(PRG)m = ...
n S n/2 n/3 n/5 n/10

1 45 96 66 63 66 63
2 76 173 149 76 72 68
3 76 191 127 77 79 -
4 85 211 170 121 105 140
5 68 61 65 20 592 -
6 68 73 59 14 661 -
7 68 482 308 46 52 -
8 68 122 152 16 90 -
9 64 2101 1915 1966 1654 1208
10 80 1270 1392 1830 1137 -
11 83 2640 2364 2254 1845 -
12 6 8201 7191 - - -
13 60 942 453 432 351 -
14 218 965 735 778 510 396
15 52 1206 - - - -
16 157 953 - - - -
17 68 21503 TO TO TO TO

Fig. 4. Run-times in seconds with the PRG construction. Each row represents a separate hardware design. The second column indicates the number of

inputs in the design n. The column S stands for run-times without any underapproximation.

Example 2. Let n = 4 and k = 2. The circuit thus has 4 outputs, which we denote by O0, . . . , O3, and k · �log n� = 4 inputs,

denoted i0, . . . , i3. The inputs are partitioned from left to right naturally, i.e., S0 = i0i1, S1 = i2i3.

Now define:

O0 = C0(S0) ∨ C0(S1) = (¬i0 ∧ ¬i1) ∨ (¬i2 ∧ ¬i3)
O1 = C1(S0) ∨ C1(S1) = (¬i0 ∧ i1) ∨ (¬i2 ∧ i3)
O2 = C2(S0) ∨ C2(S1) = (i0 ∧ ¬i1) ∨ (i2 ∧ ¬i3)
O3 = C3(S0) ∨ C3(S1) = (i0 ∧ i1) ∨ (i2 ∧ i3).

(20)

The number of gates required to implement every Ci
f is bounded by O(k · �log n�), and the total size of Cf is at most

O(n · k · �log n�), as promised.

In a technical report [15] we show that this construction can be improved further and achieve a ratio m = k · �log(n −
k + 1)�.
5. Experimental results

All experiments reported in this section refer to the random construction. We interfaced our tool with IBM’s model-

checker RuleBase. We experimented with bounded model-checking of 17 different real designs (after RuleBase has applied

numerous optimizations on them in the front-end, hence the relatively small number of inputs) that had previously known

bugs. The tables show our results without an automatic refinement procedure. The reason we are giving the tables in this

form is that we want to show the influence of m on run-time and chances to find the bug with each underapproximation

technique. The tables show run-times in seconds until detecting the bug, for different values ofm, wherem in all techniques

represent the number of inputs to the underapproximatedmodel. A sign ‘-’ denotes that the bugwas not found up to a bound

of 100. ‘TO’ denotes a timeout of 6 h.

The table in Fig. 4 summarizes results with our construction, hencem is the number of inputs to the circuit. The column

S denotes run-time with no underapproximation. It is clear from this table that whilem = n/10 is too low,m = n/5 is high

enough to find the bug in 13 out of 17 cases, and typically in less time comparing to the S column, despite the complexity of

the XOR function in the PRG-like circuit. Thus, our refinement procedure is set to beginwith this value. The last three designs

indicate that there are cases in which underapproximation does not work (in all three methods – see Fig. 5 as well). Since

RuleBase activates various engines in parallel, this is not a serious issue: the contribution of a tool is mainly measured by the

number of wins rather than by the average run-time. This is also the reason it is acceptable that such a method has no value

if the design satisfies the property.

In Fig. 5we show results for the two alternative underapproximations described in Section 2.2. It is clear from these tables

that universality matters: both of these underapproximations need far more inputs than the PRG construction in order to

find the bug. Somewhat surprisingly even in the cases they are able to find the bug, they do so in time comparable or longer

than without underapproximation at all. The reason seems to be that the underapproximation delays the finding of the bug

to deeper cycles, which in general affects negatively the run-time of SAT.

A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326 325

(FIX)m = ... (Group) m = ...
n S n/2 n/3 n/5 n/10 n/2 n/3 n/5 n/10

1 45 96 246 - - - 223 229 227 231
2 76 173 - - - - 361 446 - -
3 76 191 373 - - - 168 317 - -
4 85 211 191 317 - - 306 289 405 -
5 68 61 - - - - 410 - - -
6 68 73 - - - - - - - -
7 68 482 - - - - 561 491 - -
8 68 122 - - - - 113 - - -
9 64 2101 1693 - - - 2150 - - -
10 80 1270 - - - - - - - -
11 83 2640 - - - - - - - -
12 6 8201 - - - - - - - -
13 60 942 1206 - - - 413 407 - -
14 218 965 - - - - 969 1102 - -
15 52 1206 - - - - - - - -
16 157 953 - - - - - - - -
17 68 21503 - - - - TO - - -

Fig. 5. Run-times in seconds when (left) fixing n − m inputs to an arbitrary value and (right) grouping the inputs intom sets, and forcing inputs in the same

set to be equal. The column S stands for run-times without any underapproximation. Here decreasing the number of inputs seems to have less predictable

effect on the run-time of SAT. The run-time can increase, possibly because less inputs imply less satisfying assignments. See Section 2.2 for more details on

these underapproximations.

p =→ 1/2 1/3 1/5 1/10
m = n/2 0 0 0 0

m = n/3 0 0 0 0

m = n/5 0 0 0 0
m = n/10 0 0 0 1

Fig. 6. The accumulative number (over four designs) of cycles by which the shallowest bug is delayed, as a function of the number of inputs m and the

probability p to choose each such input for inclusion in the XOR function. As can be seen in the table. Only in one design, in the most extreme case, the bug

was delayed by one cycle.

To test the impact of m, the number of inputs, and p, the probability to choose to include an input in the XOR function,

we checked four of the designs that happened to still find the error even with m = n/10, with different values of m and p.

The goal was to see by how many cycles the depth of the shallowest bug is delayed by, as a function of these parameters.

The accumulative results appear in Fig. 6. Only in one design, when m was set to 10% of the inputs and p to a probability of

0.1, the error was delayed by one cycle. This confirms our hypothesis, at least with respect to those designs that we checked,

that the values of only few inputs matter for exposing errors in real life designs.

6. Conclusion and future work

Relying on k-universality, wewere able to find errors inmost industrial case-studies thatwe triedwith a number of inputs

as small as one fifth or even one tenth of the original number of inputs. Further, in almost all cases, these errors are found

at their original depth. This empirical evidence matches the common knowledge of practitioners that use model-checking

in an industrial setting: most errors can be exposed regardless of the values of many of the inputs. The construction of

k-universal circuits as proposed in this article can serve as an underapproximating technique that exploits this observation

in an automatic, straight-forward way.

Weproposed twomethods for constructing k-universal circuits, namely the randomanddeterministic constructions, both

of which have their own advantages. The better expected value of k with the random construction suggests that perhaps

the best solution is to derandomize the algorithm in the most brute-force way: build a library of matrices corresponding

to different values of m and n that are known to have good universality values. The question of how to measure the actual

universality of a given circuit is interesting by its own right, and we currently do not know how to check it without explicitly

trying all combinations of values for all sets of k outputs.

There are many other directions in which this research can progress. On the empirical side – first and foremost, the

deterministic construction technique has to be implemented and compared with the random construction. Second, both

constructions have to be evaluatedwith unboundedmodel-checking and simulation. Simulation is insensitive to XOR chains,

which indicates that it might show a stronger influence on the results. Third, the fact that in bounded model-checking the

inputs of each time-frame are represented by different variables can be exploited for reducing the number of inputs m

326 A. Matsliah, O. Strichman / Information and Computation 208 (2010) 315–326

much more. The PRG construction can be attached to the unrolled circuit. This construction will now have m inputs for

0 < m < n · K, where K is the unrolling bound. It is very likely that errors can be found this way with a smaller set of inputs

per cycle.

On the theoretical side – the question of efficient refinement is still open. Our current implementation of refinement is

very naïve, as it simply increasesm. This has a clear disadvantage that it does not rule out combinations of inputs that were

already checked in the previous iteration.We could not find so far a reasonable solution to this problem. Another direction of

research related to refinement is finding a way to guide the circuit construction according to the previous iterations. Perhaps

it is worth while to change the probabilities of various inputs according to the unsatisfiable core of the previous iterations.

Acknowledgments

We thank E. Ben-Sasson, M. Shamis and K. Yorav for useful discussions.

References

[1] R. Kurshan, Computer Aided Verification of Coordinating Processes, Princeton University Press, 1994..
[2] E. Clarke, A. Gupta, O. Strichman, SAT based counterexample-guided abstraction-refinement, IEEE Transactions on Computer Aided Design (TCAD) 23

(7) (2004) 1113–1123.
[3] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, M.Y. Vardi, Multiple-counterexample guided iterative abstraction refinement: an industrial evaluation,

in: Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2003, LNCS, 2003, pp. 176–191.
[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, Journal of the ACM 50 (5) (2003) 752–794.
[5] N. Amla, K. McMillan, Automatic abstraction without counterexamples, in: H. Garavel, J. Hatcliff (Eds.), TACAS’03, vol. 2619, LNCS, 2003.
[6] O. Grumberg, F. Lerda, O. Strichman, M. Theobald, Proof-guided underapproximation-widening for multi-process systems, POPL ’05: Proceedings of

the 32nd ACM SIGPLAN-SIGACT sysposium on Principles of programming languages, ACM Press, 2005, pp. 122–131.
[7] K. Ravi, F. Somenzi, High-density reachability analysis, in: Proceedings of the International Conference on Computer-Aided Design, LNCS 939, Springer-

Verlag, 1995, pp. 154–158.
[8] K. Ravi, F. Somenzi, Hints to accelerate symbolic traversal, in: CHARME’99, LNCS 1703, Springer-Verlag, 1999, pp. 250–264.
[9] S. Barner, O. Grumberg, Combining symmetry reduction and upper-approximation for symbolic model checking, in: 14th International Conference on

Computer Aided Verification (CAV’02), vol. 2404, LNCS, Copenhagen, Denmark, 2002.
[10] R. Williams, C.P. Gomes, B. Selman, Backdoors to typical case complexity, in: IJCAI, 2003, pp. 1173–1178.
[11] A. Hartman, L. Raskin, Problems and algorithms for covering arrays, Discrete Mathematics 284 (2004) 149–156.
[12] A. Matsliah, O. Strichman, Underapproximation for model-checking based on random cryptographic constructions, in: W. Damm, H. Hermanns (Eds.),

Proceedings of the 19th International Conference on Computer Aided Verification (CAV’07), vol. 4590, LNCS, Springer, 2007, pp. 339–351.
[13] N. Nisan, A. Wigderson, Hardness vs randomness, Journal of Computer and System Sciences 49 (1994) 146–167.
[14] G. Seroussi, N. Bshouty, Vector sets for exhaustive testing of logic circuits, in: IEEE Transactions on Information Theory, vol. 34, 1988, pp. 513–522.
[15] A. Matsliah, O. Strichman, Underapproximation for model-checking based on universal circuits (full version), Tech. Rep. IE/IS-2007-07, Technion, 2007.

Available from: <http://ie.technion.ac.il/Labs/TechRep/>.

http://ie.technion.ac.il/Labs/TechRep/

	Introduction
	Local universality
	k-universal circuits and upper-bound on k
	Universality of some known underapproximations

	The PRG-like construction
	Lower-bounds on k
	A better lower-bound on k for ``almost'' k-universality

	Constructing universal circuits deterministically
	Functions that imply universality
	Implementing the covering functions

	Experimental results
	Conclusion and future work
	References

