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Abstract

Bonding with reinforcements can increase the stiffness of elastic layers in the normal direction. The flexibility effect of
the reinforcement on the bonded elastic layers of a circular cross-section subjected to pure bending moment is analyzed
through a theoretical approach. Based on two kinematics assumptions in the elastic layers, the closed-form solutions of
the horizontal displacements in the elastic layers and the reinforcements are solved using the governing equations estab-
lished by stress equilibrium in the elastic layers and the reinforcements. Through these solved displacements, the tilting
stiffness of the bonded elastic layer, the shear stress on the bonding surfaces, and the internal forces of the reinforcements
are derived in closed forms.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A laminated elastomeric bearing consists of elastomeric layers bonded to interleaving reinforcing sheets.
High stiffness of reinforcements restrains the lateral expansion of elastomeric layers and results in higher stiff-
ness than an unbonded elastomeric layer in the vertical direction normal to the layer. By this characteristic, a
laminated elastomeric bearing can provide high vertical rigidity to sustain gravity loading, while still providing
the same horizontal flexibility of an unbonded elastomer.

To determine the compression stiffness of the bearing under vertical force and the tilting stiffness of the
bearing under over-turning moment, the deformation of a single elastomeric layer bonded between reinforce-
ments is analyzed. For the steel-reinforced bearings, the reinforcements can be assumed to be completely rigid.
The compression stiffness and tilting stiffness of a single elastomeric layer bonded between two rigid plates
have been derived for different shapes of bearings. The simplest approach to solve the stiffness is by assuming
the elastomeric layer is an incompressible material (Gent and Lindley, 1959; Gent and Meinecke, 1970; Kelly,
1997). For nearly incompressible materials, such as rubber, the assumption of complete incompressibility
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tends to overestimate the compression stiffness and tilting stiffness of the bonded rubber layer when the shape
factor of the bonded layer (defined as the ratio of the one bonded area to the force-free area) is high. Including
the effect of bulk compressibility can overcome this problem (Chalhoub and Kelly, 1990, 1991; Kelly, 1997).
For the compressible elastic layers, there are several stiffness solutions for different shapes of the bearings
(Lindley, 1979a,b, Koh and Kelly, 1989; Koh and Lim, 2001; Tsai, 2003, 2005; Tsai and Lee, 1998, 1999).
These solutions are suitable for materials of any Poisson’s ratio.

For some laminated elastomeric bearings, such as fiber-reinforced bearings, the reinforcements still have
high stiffness but cannot be assumed to be completely rigid. The in-plane stiffness of the reinforcements must
be considered in the analysis. The compression stiffness and the tilting stiffness of the bearings with incom-
pressible layers and flexible reinforcements are derived for different shapes (Kelly, 1999; Tsai and Kelly,
2001, 2002a,b). For the nearly incompressible elastomeric layers, bulk compressibility is included in the stiff-
ness analysis of fiber-reinforced bearings of the infinite-strip shape (Kelly, 2002; Kelly and Takhirov, 2002).
Recently, the compression stiffness of the bearings with compressible elastic layers of any Poisson’s ratio
and flexible reinforcements is derived for the infinite-strip shape (Tsai, 2004) and the circular shape (Tsai,
2006).

Tilting analyses of circular bearings have been carried out by Tsai and Kelly (2002b), where the elastic layer
is incompressible and the reinforcement is flexible, and by Tsai (2003), where the elastic layer is compressible
but the reinforcement is rigid. In this paper, the tilting stiffness of the circular bearings with compressible elas-
tic layers and flexible reinforcements is derived. The elastic layers adopt two kinematics assumptions: (i) planes
parallel to the reinforcements before deformation remain planar after loading; (ii) lines normal to the rein-
forcements before deformation become parabolic after loading. The flexible reinforcements in the bearing
are assumed to have the same deformation, which implies that every elastic layer in the bearing has the same
tilting stiffness, so only a single elastic layer bonding with flexible reinforcements is analyzed.
2. Governing equations

Fig. 1 shows an elastic layer in a circular bearing, which has a diameter of 2b and a thickness of t. Its top
and bottom surfaces are perfectly bonded to flexible reinforcements of thickness of tf. When a pure bending
moment M is applied to the top and bottom reinforcements that are assumed to remain planar, the two rein-
forcements rotate about the y axis and form an angle /. A cylindrical coordinate system (r,h,z) is established
with the origin at the center of the layer, so that the angle / is symmetric to the r � h plane at z = 0. Denote u,
v and w as the displacements of the elastic layer along the r, h and z directions, respectively, which are assumed
to have the form
θ
φ

Fig. 1. Circular elastic layer bonded between reinforcements under flexure load.
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uðr; h; zÞ ¼ u0ðr; hÞ 1� 4z2

t2

� �
þ u1ðr; hÞ ð1Þ

vðr; h; zÞ ¼ v0ðr; hÞ 1� 4z2

t2

� �
þ v1ðr; hÞ ð2Þ

wðr; h; zÞ ¼ 1

q
zr cos h ð3Þ
where q = t// is the radius of bending curvature. In Eqs. (1) and (2), the terms of u0 and v0 represent the kine-
matics assumption of quadratic-varied displacements and are supplemented by additional displacement u1 and
v1, respectively, which are constant through the thickness and are intended to accommodate the stretch of the
reinforcement. Eq. (3) represents the assumption that planes parallel to the reinforcements remain planar.

For clarification, the following displacement functions are defined
f0ðr; hÞ ¼ u0;r þ
u0

r
þ v0;h

r
ð4Þ

f1ðr; hÞ ¼ u1;r þ
u1

r
þ v1;h

r
ð5Þ

g0ðr; hÞ ¼ v0;r þ
v0

r
� u0;h

r
ð6Þ

g1ðr; hÞ ¼ v1;r þ
v1

r
� u1;h

r
ð7Þ
Substituting the displacement assumption into the equilibrium equations of the elastic layer in the r and h
directions and integrating the resulting equations through the thickness of the layer leads to
u0 ¼
8

t2

2ð1� mÞ
ð1� 2mÞ

2

3
f0;r þ f1;r

� �
� 2

3

g0;h

r
þ

g1;h

r

� �
þ 1

qð1� 2mÞ cos h

� �
ð8Þ

v0 ¼
8

t2

2ð1� mÞ
ð1� 2mÞ

2

3

f0;h

r
þ f1;h

r

� �
þ 2

3
g0;r þ g1;r

� �
� 1

qð1� 2mÞ sin h

� �
ð9Þ
in which m is Poisson’s ratio of the elastic layer. Differentiating the multiplication of r and Eq. (8) with respect
to r and then adding the result to the differentiation of Eq. (9) with respect to h gives
2

3
f0;rr þ

f0;r

r
þ f0;hh

r2
� 6ð1� 2mÞ

t2ð1� mÞ f0

� �
þ f1;rr þ

f1;r

r
þ f1;hh

r2

� �
¼ 0 ð10Þ
Differentiating the multiplication of r and Eq. (9) with respect to r and then subtracting the result from the
differentiation of Eq. (8) with respect to h gives
2

3
g0;rr þ

g0;r

r
þ

g0;hh

r2
� 12

t2
g0

� �
þ g1;rr þ

g1;r

r
þ

g1;hh

r2

� �
¼ 0 ð11Þ
The thickness of the reinforcements is much smaller than the thickness of the elastic layers, so that the
normal and shear forces per unit length in the reinforcement, Nrr, Nhh and Nrh, can be established by the
plane-stress formulae (Tsai and Kelly, 2002b). The equilibrium equations of the reinforcement in the r and
h directions (Tsai and Kelly, 2002b) become
f1;r�
1� mf

2

� �
g1;h

r
¼ �c

ð1� m2
f Þ

2ð1þ mÞ
8

t2
u0 �

1

q
cos h

� �
ð12Þ

f1;h

r
þ 1� mf

2

� �
g1;r ¼ �c

ð1� m2
f Þ

2ð1þ mÞ
8

t2
v0 þ

1

q
sin h

� �
ð13Þ
where mf is the Poisson’s ratio of the reinforcement and c is the stiffness ratio between the elastic layer and the
reinforcement, defined as
c ¼ Et
Ef tf

ð14Þ
with E and Ef being the elastic modulus of the elastic layer and the reinforcement, respectively.
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Differentiating the multiplication of r and Eq. (12) with respect to r and then adding the result to the dif-
ferentiation of Eq. (13) with respect to h yields
f1;rr þ
f1;r

r
þ f1;hh

r2
¼ �c

4ð1� m2
f Þ

t2ð1þ mÞ f0 ð15Þ
Differentiating the multiplication of r and Eq. (13) with respect to r and then subtracting the result from the
differentiation of Eq. (12) with respect to h yields
g1;rr þ
g1;r

r
þ

g1;hh

r2
¼ �c

8ð1þ mfÞ
t2ð1þ mÞ g0 ð16Þ
Substituting Eqs. (15) and (16) into Eqs. (10) and (11), respectively, gives
f0;rrþ
f0;r

r
þ f0;hh

r2
� a2f0 ¼ 0 ð17Þ

g0;rrþ
g0;r

r
þ

g0;hh

r2
� b2g0 ¼ 0 ð18Þ
where a is defined as
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

t2

1� 2m
1� m

þ 1� m2
f

1þ m
c

� �s
ð19Þ
and b is defined as
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

t2
1þ 1þ mf

1þ m
c

� �s
ð20Þ
3. Solution of displacements

The deformation of the elastic layer has the symmetric and anti-symmetric properties as
uðr; h; zÞ ¼ uðr;�h; zÞ ¼ �uðr; p� h; zÞ ð21Þ
vðr; h; zÞ ¼ �vðr;�h; zÞ ¼ vðr; p� h; zÞ ð22Þ
To satisfy the above conditions, the solutions of Eqs. (17) and (18) have the forms
f0ðr; hÞ ¼
b
q

X1
n¼1;3;5;...

AnInðarÞ cos nh ð23Þ

g0ðr; hÞ ¼
b
q

X1
n¼1;3;5;...

BnInðbrÞ sin nh ð24Þ
where In is the modified Bessel function of the first kind of order n; An and Bn are the constants to be
determined.

Substituting Eqs. (23) and (24) into Eqs. (15) and (16), respectively, gives the solutions
f1ðr; hÞ ¼
b
q

X1
n¼1;3;5;...

1

b
Cnrn � aAnInðarÞ

� �
cos nh ð25Þ

g1ðr; hÞ ¼
b
q

X1
n¼1;3;5;...

1

b
Dnrn � bBnInðbrÞ

� �
sin nh ð26Þ
where Cn and Dn are the constants to be determined, a is defined as
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a ¼ 2ð1� mÞð1� m2
f Þc

3½ð1� mÞð1� m2
f Þcþ ð1� 2mÞð1þ mÞ� ð27Þ
and b is defined as
b ¼ 2ð1þ mfÞc
3½ð1þ mfÞcþ ð1þ mÞ� ð28Þ
Substituting Eq. (8) into Eq. (12) and using the solutions in Eqs. (23)–(26) leads to
D1 ¼
2ð1� mÞb
ð1� 2mÞa C1 þ

3mb
ð1� 2mÞ ð29Þ
and, for n = 3,5,7, . . . ,1,
Dn ¼
2ð1� mÞb
ð1� 2mÞa Cn ð30Þ
Substituting Eq. (9) into Eq. (13) obtains the same results as Eqs. (29) and (30).
The solutions displayed in Eqs. (25) and (26) indicate the displacements of the reinforcement can be

expressed as
u1ðr; hÞ ¼
X1

n¼1;3;5;...

uðnÞ1 ðrÞ cos nh ð31Þ

v1ðr; hÞ ¼
X1

n¼1;3;5;...

vðnÞ1 ðrÞ sin nh ð32Þ
where uðnÞ1 and vðnÞ1 represent the amplitudes of the nth term in u1 and v1, respectively. Substituting the above
equations into Eqs. (5) and (7) and applying the solutions in Eqs. (25) and (26) leads to
uðnÞ1;rþ
1

r
uðnÞ1 þ

n
r

vðnÞ1 ¼
1

q
Cnrn � b

q
aAnInðarÞ ð33Þ

vðnÞ1;rþ
1

r
vðnÞ1 þ

n
r

uðnÞ1 ¼
1

q
Dnrn � b

q
bBnInðbrÞ ð34Þ
The summation of Eq. (33) with Eq. (34) and the subtraction of Eq. (33) from Eq. (34) results in the solutions
of uðnÞ1 þ vðnÞ1 and uðnÞ1 � vðnÞ1 , respectively. Combining these results yields
uðnÞ1 ¼ �
b
q

An
a

2a
½Inþ1ðarÞ þ In�1ðarÞ� � b

q
Bn

b
2b
½Inþ1ðbrÞ � In�1ðbrÞ�

þ 1

q
Cn

nþ 2

4ðnþ 1Þ r
nþ1 � 1

q
Dn

n
4ðnþ 1Þ r

nþ1 þ b2

q
F n

1

2
rn�1 ð35Þ

vðnÞ1 ¼ �
b
q

An
a

2a
½Inþ1ðarÞ � In�1ðarÞ� � b

q
Bn

b
2b
½Inþ1ðbrÞ þ In�1ðbrÞ�

� 1

q
Cn

n
4ðnþ 1Þ r

nþ1 þ 1

q
Dn

nþ 2

4ðnþ 1Þ r
nþ1 � b2

q
F n

1

2
rn�1 ð36Þ
where Fn is an integration constant.
The normal force and shear force of the reinforcement vanish at the edge r = b
N rrðb; hÞ ¼ 0;Nrhðb; hÞ ¼ 0 ð37Þ
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which implies
f1ðb; hÞ�ð1� mfÞ
1

b
u1ðb; hÞ þ

1

b
v1;hðb; hÞ

� �
¼ 0 ð38Þ

g1ðb; hÞþ
2

b
u1;hðb; hÞ �

2

b
v1ðb; hÞ ¼ 0 ð39Þ
The normal stress and shear stress of the elastic layer vanish at the edge r = b
rrrðb; h; zÞ ¼ 0; srhðb; h; zÞ ¼ 0 ð40Þ

Integrating the above equations through the thickness of the elastic layer and using Eqs. (38) and (39) leads to
1� m
1� 2m

� �
2

3
f0ðb; hÞ þ

v
1� 2m

� vf

1� vf

� �
f1ðb; hÞ �

2

3

u0ðb; hÞ
b

þ v0ðb; hÞ
b

� �
þ v

1� 2m

� � b
q

cos h ¼ 0 ð41Þ

g0ðb; hÞ þ
2

b
u0;hðb; hÞ �

2

b
v0ðb; hÞ ¼ 0 ð42Þ
The constants for n = 1 can be solved from Eqs. (38), (39), (41) and (42) as
A1 ¼ �
m
K

bbI1ðbbÞ
2I2ðbbÞ � 1

� �
ab

I2ðabÞ ð43Þ

B1 ¼ �
v
K

bb
I2ðbbÞ ð44Þ

C1 ¼ �
m
K

a
ð1� mfÞ
ð1þ mfÞ

abI3ðabÞ
I2ðabÞ þ

abI1ðabÞ
I2ðabÞ

� �
bbI1ðbbÞ
2I2ðbbÞ � 1

� ��
þ b
ð1� mfÞ
ð1þ mfÞ

bbI3ðbbÞ
I2ðbbÞ

�
ð45Þ

D1 ¼ �
m
K

a
2

ð1þ mfÞ
abI3ðabÞ

I2ðabÞ
bbI1ðbbÞ
2I2ðbbÞ � 1

� ��
þ b

2

ð1þ mfÞ
bbI3ðbbÞ

I2ðbbÞ þ
bbI1ðbbÞ

I2ðbbÞ

� ��
ð46Þ
with
K ¼ m� mf

1þ mf

� �
a

abI3ðabÞ
I2ðabÞ þ

2ð1� mÞ
3

abI1ðabÞ
I2ðabÞ

� �
bbI1ðbbÞ
2I2ðbbÞ � 1

� �

þ m� mf

1þ mf

� �
b

bbI3ðbbÞ
I2ðbbÞ �

ð1� 2mÞ
3

bbI1ðbbÞ
I2ðbbÞ

� �
ð47Þ
The constants for n = 3,5,7, . . . solved from Eqs. (30), (38), (39), (41) and (42) are found as
An ¼ Bn ¼ Cn ¼ Dn ¼ F n ¼ 0 ð48Þ

which means that the displacements of the elastic layer and the reinforcement are proportional to cosh or sinh,
and do not contain any higher term of Fourier series. The C1 and D1 solutions in Eqs. (45) and (46) are not
derived from Eq. (29) but can satisfy Eq. (29). The constant F1 is solved by setting u1 = v1 = 0 at r = 0, that is,
uð1Þ1 ð0; hÞ ¼ vð1Þ1 ð0; hÞ ¼ 0 in Eqs. (35) and (36), which gives
F 1 ¼
a
ab

A1 �
b
bb

B1 ð49Þ
From Eqs. (8) and (9), the solution of the displacements in the elastic layer becomes
u0 ¼
b2

q
A1

1

ab
I0ðarÞ � I1ðarÞ

ar

� �
� B1

1

bb
I1ðbrÞ

br

�
þ 1

32S2
C1

2ð1� mÞ
1� 2m

� D1 þ
1

1� 2m

� ��
cos h ð50Þ

v0 ¼ �
b2

q
A1

1

ab
I1ðarÞ

ar
� B1

1

bb
I0ðbrÞ � I1ðbrÞ

br

� ��
þ 1

32S2
C1

2ð1� mÞ
1� 2m

� D1 þ
1

1� 2m

� ��
sin h ð51Þ
in which
S ¼ b
2t

ð52Þ
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Fig. 2. Displacement functions u0 and v0 varied with radial distance.
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is the shape factor of the bonded circular layers. From Eqs. (35) and (36), the solution of the reinforcement
displacements becomes
u1 ¼
b2

q
A1

a
2ab

1� I2ðarÞ � I0ðarÞ½ � þ B1

b
2bb
�1� I2ðbrÞ þ I0ðbrÞ½ �

�
þ 3

8
C1 �

1

8
D1

� �
r2

b2

�
cos h ð53Þ

v1 ¼
b2

q
A1

a
2ab
�1� I2ðarÞ þ I0ðarÞ½ � þ B1

b
2bb

1� I2ðbrÞ þ I0ðbrÞ½ �
�

þ � 1

8
C1 þ

3

8
D1

� �
r2

b2

�
sin h ð54Þ
The displacement functions u0 and v0 represent the bulge deformation in the elastic layers, which are plotted in
Fig. 2 as functions of r/b for S = 20, m = 0.49995, mf = 0.3 and several stiffness ratios c. The figure shows that
the elastic layer bonded with the reinforcements of higher stiffness has larger bulge deformation. The rein-
forcement displacements u1 and v1 are plotted in Fig. 3 as functions of r/b for S = 20, m = 0.49995, mf = 0.3
and several stiffness ratios c, which indicate that the reinforcement has less deformation for the reinforcements
of higher stiffness. The radial displacement u1 of c = 0.01 is very close to that of c = 0.001 in the center part,
but has an obvious difference near the edge.
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Fig. 3. Reinforcement displacements u1 and v1 varied with radial distance.
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4. Tilting stiffness

According to beam theory, the effective tilting stiffness of the elastic layer is defined as
ðEIÞeff ¼ q
Z 2p

0

Z b

0

rzzr2 cos hdr dh ð55Þ
in which rzz is the effective vertical stress defined as
rzz ¼
1

t

Z t=2

�t=2

rzz dz ð56Þ
By using the displacement solution in the last section, the effective vertical stress can be derived as
rzz ¼
b
q

E
m

ð1� 2mÞð1þ mÞ þ ð1� mÞð1� m2
f Þc

� �
2

3
A1I1ðarÞ

�
þ m
ð1� 2mÞð1þ mÞ

1� m
m
þ C1

� �
r
b

�
cos h ð57Þ
For clarification, define the effective bending modulus as Eb = (EI)eff/Ir where Ir = pb4/4 is the moment of iner-
tia of the circular area about the r axis. Substituting Eq. (57) into Eq. (55), the effective bending modulus can
be derived as
Eb

E
¼ 1

1þ m
þ m
ð1þ mÞð1� 2mÞ 1� m

K
ð1� mfÞ
ð1þ mfÞ

b
bbI3ðbbÞ

I2ðbbÞ

�	
þ 1

ð1þ mfÞ
a
abI3ðabÞ

I2ðabÞ þ
4

3

� �
bbI1ðbbÞ

I2ðbbÞ � 2

� ��

ð58Þ
When c tends to zero, the reinforcement becomes rigid; Eqs. (27) and (28) gives a ¼ b ¼ 0. By assigning
these values to Eq. (58), we can obtain the same solution as Tsai (2003) for the tilting stiffness of circular layers
bonded to the rigid reinforcements. When Poisson’s ratio m! 0.5, the asymptotic solution of Eq. (58) is
Eb

E
¼ 4

3
þ 1

3K0

24S2

ða0bÞ2
� 1

ð1þ mfÞ

 !
b0bI1ðb0bÞ

I2ðb0bÞ � 2

� �
a0bI3ða0bÞ

I2ða0bÞ

"

� 3

ð1þ mfÞ
b0

b0bI3ðb0bÞ
I2ðb0bÞ þ

b0bI1ðb0bÞ
I2ðb0bÞ

� ��
ð59Þ
in which
K0 ¼
b0bI1ðb0bÞ

I2ðb0bÞ � 2

� �
1

ð1þ mfÞ
a0bI3ða0bÞ

I2ða0bÞ þ 2

� �
þ 3ð1� mfÞ

2ð1þ mfÞ
b0

b0bI3ðb0bÞ
I2ðb0bÞ ð60Þ

a0b ¼ 4S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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This is the effective bending modulus of the circular layers of incompressible materials interleaving with flex-
ible reinforcements.

The curves of the bending modulus calculated from Eq. (58) for S = 2 and S = 20 are plotted as a function
of m in Fig. 4 and as a function of c in Fig. 5, which indicate that the bending modulus increases with increasing
the Poisson’s ratio of the elastic layer or the stiffness of the reinforcement. For the high shape factor (S = 20),
the bending modulus dramatically increases when m is close to 0.5 and c is close to 0. The solutions of the finite
element method are also plotted in Fig. 4. The finite element model is a bearing of 20 elastic layers. Both ends
of the bearing are free for the lateral deformation. The theoretical solution derived in this paper assumes every
sheet of reinforcement in the bearing has the same deformation, which means that the boundary effect at the
ends of the bearing is neglected and the ideal model of the theoretical solution is a bearing having an infinite
number of elastic layers. Therefore, the finite element solutions have slight deviation from the theoretical
solutions. In Fig. 5(b), the bending modules calculated from Eq. (59) for the incompressible elastic layers
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are compared with the solutions by Tsai and Kelly (2002b), which indicates that the solution by Tsai and Kelly
(2002b) is applicable only when the shape factor is high and the stiffness ratio is low.
5. Stress distribution

The shear stresses in the bonding surface between the elastic layer and the reinforcement, srz(r,h, t/2) and
shz(r,h, t/2), can be derived by using Eqs. (50) and (51), respectively. The bonding shear stress in the radial
direction at h = 0 and the bonding shear stress in the tangential direction at h = p/2 are plotted in Fig. 6
as functions of r/b for S = 20, m = 0.49995, mf = 0.3 and several stiffness ratios c, which indicates that, for
the elastic layer bonded with the reinforcements of lower stiffness, the bonding shear stress in the radial direc-
tion increases more sharply near the boundary, and the bonding shear stress in the tangential direction distrib-
utes more uniformly over the central part.

Using the reinforcement displacements in Eqs. (53) and (54), the in-plane force components in the rein-
forcement are
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The normal forces at h = 0 and the shear force at h = p/2 are plotted in Figs. 7 and 8, respectively, as functions
of r/b for S = 20, m = 0.49995, mf = 0.3 and several stiffness ratios c, which indicate that, for the reinforcement
of lower stiffness, the in-plane forces vary more linearly over the central part.

6. Conclusion

Based on the two kinematics assumptions, i.e. horizontal planes remain planar and vertical lines become
parabolic after deformation, the circular elastic layers interleaving with flexible reinforcements are analyzed
through a theoretical approach to find the closed-form solutions of horizontal displacements in the elastic lay-
ers and reinforcements under a pure bending moment, from which the tilting stiffness can be derived. The dis-
placements in the radial and tangential directions are shown to be proportional to cosh and sinh, respectively,
and not contain any higher term of Fourier series. The analysis has no limitation on Poisson’s ratio and the
reinforcement stiffness, so that the effect of Poisson’s ratio and the reinforcement stiffness can be studied. High
tilting stiffness can be achieved by using high shape factor, high Poisson’s ratio of the elastic layer and high
stiffness of the reinforcement. For the elastic layers of incompressible material, the tilting stiffness is derived
through the asymptotic approach, which provides more accurate solution. The solution of the previous
research, by directly neglecting the bulk compressibility, is accurate only when the shape factor is large and
the reinforcement stiffness is high. The reinforcement flexibility can also affect the shear stress distribution
on the bonding surface between the elastic layer and the reinforcement. For the reinforcements of lower stiff-
ness, the bonding shear stresses have sharper increase in the radial direction near the boundary, but have more
uniform distribution in the tangential direction over the central part.
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