Paths and Edge-Connectivity in Graphs

HARUKO OKAMURA

Faculty of Engineering, Osaka City University, Osaka 558, Japan

Communicated by the Editors

Received December 20, 1983; revised June 14, 1984

DEDICATED TO PROFESSOR HIROSI NAGAO ON HIS 60TH BIRTHDAY

Mader proved that for every k-edge-connected graph G ($k \geq 4$), there exists a path joining two given vertices such that the subgraph obtained from G by deleting the edges of the path is $(k-2)$-edge-connected. A generalization of this and a sufficient condition for existence of 3, 4, or 5 terminus k edge-disjoint paths in graphs are given. © 1984 Academic Press, Inc.

1. INTRODUCTION

We consider finite undirected graphs passibly with multiple edges but without loops. Let G be a graph and let $V(G)$ and $E(G)$ be the sets of vertices and edges of G, respectively. For two distinct vertices x and y, let $I_{\delta}(x, y)$ be the maximal number of edge-disjoint paths between x and y, and let $I_{\delta}(x, x) = \infty$. For an integer $k \geq 1$, let $\Gamma(G, k)$ be

$$\{X \subseteq V(G) \mid \text{for each } x, y \in X, \lambda_{\delta}(x, y) \geq k\}.$$

Let $(s_1, t_1), ..., (s_k, t_k)$ be pairs of vertices of G. When is the following statement true?

(1.1) There exist edge-disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i, t_i ($1 \leq i \leq k$).

Seymour [7] and Thomassen [8] characterised such graphs when $k = 2$, and Seymour [7] when $|\{s_1, ..., s_k, t_1, ..., t_k\}| = 3$.

For integers $k \geq 1$ and $n \geq 2$, set

$$g(k) = \min\{m \mid \text{if } G \text{ is } m\text{-edge-connected, then (1.1) holds}\},$$

$$\lambda'(k, n) = \min\{m \mid |\{s_1, ..., s_k, t_1, ..., t_k\}| \leq n \text{ and }$$

$$\{s_1, ..., s_k, t_1, ..., t_k\} \in \Gamma(G, m), \text{ then (1.1) holds}\}.$$
\[\lambda(k, n) = \min \{ m \mid \text{if } |\{s_1, \ldots, s_k, t_1, \ldots, t_k\}| \leq n \text{ and } \lambda_G(s_i, t_i) \geq m \ (1 \leq i \leq k), \text{then (1.1) holds} \}, \]

and set

\[\lambda'(k) = \lambda'(k, 2k) = \lambda'(k, m) \ (m > 2k) \quad \text{and} \quad \lambda(k) = \lambda(k, 2k). \]

Then for each \(k \geq 1 \),

\[\lambda'(k, 3) = \lambda(k, 3) \quad \text{and} \quad \lambda(k) \geq \lambda'(k) \geq g(k) \geq k. \]

For \(n \geq 4 \) and even integer \(k \geq 2 \),

\[g(k) > k \quad \text{and} \quad \lambda(k) \geq \lambda(k, n) \geq \lambda'(k, n) > k \]

(see Fig. 1 in which \(k/2 \) represents the number of parallel edges).

Thomassen [8] gave Conjecture 1, and we give Conjecture 2 slightly stronger than Conjecture 1.

CONJECTURE 1. For each integer \(k \geq 1 \),

\[g(k) = \begin{cases} k & \text{if } k \text{ is odd}, \\ k + 1 & \text{if } k \text{ is even}. \end{cases} \]

CONJECTURE 2. For each integer \(k \geq 1 \),

\[\lambda(k) = \begin{cases} k & \text{if } k \text{ is odd}, \\ k + 1 & \text{if } k \text{ is even}. \end{cases} \]

Clearly \(\lambda(1) = 1 \). Cypher [1] proved \(\lambda(2) = 3 \) and \(\lambda(k) \leq k + 2 \) \((k = 3, 4, 5) \), and \(\lambda(3) = 3 \) was announced in [5] and proved in [6] by the author. Enomoto and Saito [2] proved \(g(4) = 5 \), and independently Hirata, Kubota, and Saito [3] proved \(\lambda(4) = 5 \) and \(\lambda(k) \leq 2k - 3 \) \((k \geq 6) \).

![Figure 1](image-url)
The following theorems are useful when we consider the edge-disjoint paths problem.

Theorem 1. Suppose that \(k \geq 4 \) is an integer, \(G \) is a graph, \(\{s, t\} \subseteq T \subseteq V(G) \) and \(T \in \Gamma(G, k) \). Then

1. For each nonseparating edge \(e \) incident to \(s \), there exists a path \(P \) between \(s \) and \(t \) passing through \(e \) such that
 \[
 T \in \Gamma(G - E(P), k - 2) \quad \text{and} \quad \{s, t\} \in \Gamma(G - E(P), k - 1).
 \]

2. For each vertex \(a \in T - \{s, t\} \) of degree less than \(2k \) and for each edge \(f \) incident to \(a \), there exists a path \(P \) between \(s \) and \(t \) not passing through \(a \) such that
 \[
 T \in \Gamma(G - E(P), k - 2), \quad \{s, t, a\} \in \Gamma(G - E(P), k - 1), \quad \{s, a\} \text{ or } \{t, a\} \in \Gamma(G - E(P) - f, k - 1).
 \]

3. For each vertex \(a \) with \(\lambda_G(s, a) < k \), there exists a path \(P \) between \(s \) and \(t \) not passing through \(a \) such that
 \[
 T \in \Gamma(G - E(P), k - 2), \quad \{s, t\} \in \Gamma(G - E(P), k - 1), \quad \text{and for } x = s, t,
 \]
 \[
 \lambda_{G - E(P)}(x, a) - \lambda_G(x, a).
 \]

4. For each nonseparating edges \(e \) and \(e' \) incident to \(s \), there exists a cycle \(C \) passing through \(e \) and \(e' \) such that
 \[
 T \in \Gamma(G - E(C), k - 2).
 \]

(Here \(G - E(P) \) denotes the subgraph obtained from \(G \) by deleting the edges of \(P \).)

Corollary 1. For every \(k \)-edge-connected graph \(G \) \((k \geq 4) \) and for every vertices \(x, y \) of \(G \), there exists a path \(P \) between \(x \) and \(y \) such that \(G - E(P) \) is \((k - 2)\)-edge-connected.

Theorem 1 is a generalization of an unpublished result of Mader given in Corollary 1. Since \(\lambda(3) = 3 \), from Corollary 1 it follows that \(g(4) = 5 \).
Theorem 2. Suppose that $k \geq 4$ and $n \geq 2$ are integers, G is a graph and $T = \{s_1, ..., s_n, t_1, ..., t_n\} \subseteq V(G)$. If $T \in I(G, k)$ and for each $1 \leq i \leq n$,
\[\lambda_G(s_i, t_i) \geq k, \]
then for some $1 \leq j < l \leq n$, there exist disjoint paths P_1 between s_j and t_j and P_2 between s_l and t_l such that
\[\{s_j, t_j\} \in \Gamma \left(G - \bigcup_{i=1}^{2} E(P_i), k - 2 \right) \quad (1 \leq i \leq n). \]

Theorem 3. Suppose that $n \geq 4$ is an integer and $k \geq 3$ is an odd integer. If for each odd integer $1 \leq m \leq k$,
\[\lambda'(m, n) = m, \]
then
\[\lambda(k, n) = k \quad \text{and} \quad \lambda(k + 1, n) = k + 2. \]

From Theorem 3 it follows that $\lambda(4) = 5$.

Theorem 4. Suppose that $k \geq 2$ is an integer, G is a graph, $\{a_1, a_2\} \subseteq T \subseteq V(G)$, $|T| \leq 3$ and $T \in I'(G, k)$. Then there exists a path P between a_1 and a_2 such that $T \in I(G - E(P), k - 1)$.

Theorem 5. Suppose that $k \geq 3$ is an odd integer, G is a graph, $\{a_1, a_2, a_3\} \subseteq T \subseteq V(G)$, $a_2 \neq a_3$ and $T \in I'(G, k)$. Then

1. If $|T| \leq 4$, then there exists a path P between a_1 and a_2 such that $T \in I(G - E(P), k - 1)$.

2. For $m = 2, 3$ if $|T| \leq 4$ and for $m = 3$ if $|T| = 5$ and $k \geq 5$, there exist edge-disjoint paths P_1 between a_1 and a_2 and P_2 between a_1 and a_m such that $T \in I(G - \bigcup_{i=1}^{2} E(P_i), k - 2)$.

Theorem 6. For each integer $k \geq 1$,
\[\lambda(k, 3) = k \quad \text{and} \quad \lambda(k, 4) = \lambda(k, 5) = \begin{cases} k & \text{if } k \text{ is odd}, \\ k + 1 & \text{if } k \text{ is even}. \end{cases} \]

In Theorem 5(2) if $m = 2$ and $|T| = 5$, then the conclusion does not always hold. Figure 2 gives a counterexample with $k = 7$.

When k is odd and $|\{s_1, ..., s_k, t_1, ..., t_k\}| \geq 4$, if for some $1 \leq i \leq k$,
\[\lambda_G(s_i, t_i) < k, \]
then (1.1) does not always hold. Figure 3 gives a counterexample.
Notations and Definitions

Let $X, Y \subseteq V(G)$, $F \subseteq E(G)$, $\{x, y\} \subseteq V(G)$, and $e \in E(G)$. We often denote $\{x\}$ by x and $\{e\}$ by e. The subgraph of G induced by X is denoted by $\langle X \rangle_G$ and the subgraph obtained from G by deleting X (F) is denoted by $G - X$ ($G - F$). We denote by $\partial_G(X, Y)$ the set of edges with one end in X and the other in Y, and $\partial_G(X)$ denotes $\partial_G(X, V(G) - X)$. We denote by $\lambda_G(X, Y)$ the maximal number of edge-disjoint paths with one end in X and the other in Y. We call $\lambda_G(X)$ an n-cut if $\lambda_G(X) = n$ and $\langle X \rangle_G$ and $\langle V(G) - X \rangle_G$ are both connected. An n-cut $\lambda_G(X)$ is called nontrivial if $|X| \geq 2$ and $|V(G) - X| \geq 2$, trivial otherwise. We denote by $d_G(x)$ the degree of x and $N_G(x)$ denotes the set of vertices adjacent to x. We regard a path and a cycle as subgraphs of G. A path $P = P[x, y]$ denotes a path between x and y, and for $x', y' \in V(P)$, $P(x', y')$ denotes a subpath of P between x' and y'.

2. Proof of Theorem 1

For a vertex $w \in V(G)$ and $b, c \in N_G(w)$, we let G^b,c_w be the graph $(V(G), (E(G) \cup e) - \{f, g\})$, where e is a new edge with ends b and c, $f \in \partial_G(w, b)$ and $g \in \partial_G(w, c)$. We require

Lemma 2.1 (Mader [4]). Suppose that w is a nonseparating vertex of a
graph G with $d_G(w) \geq 4$ and with $|N_G(w)| \geq 2$. Then there exist $b, c \in N_G(w)$ such that for each $x, y \in V(G) - w$,

$$\lambda_{G_{w,c}}(x, y) = \lambda_G(x, y).$$

We prove Theorem 1 by induction on $|E(G)|$. If $|T| = 1$, then $s = t$ and the results holds, and so we may assume that $|T| \geq 2$ and $s \neq t$. If G is not 2-connected, then we can deduce the results by using induction on some blocks. Thus we may assume that G is 2-connected.

Case 1. G has a nontrivial k cut $\partial_G(X) = \{e_1, \ldots, e_k\} (X \subseteq V(G))$ separating T.

Let $H (K)$ be the graph obtained from G by contracting $V(G) - X (X)$ to a new vertex $u (v)$. Set $T_H = (X \cap T) \cup u$ and $T_K = (T - X) \cup v$. Let $s \in X$. Note that $\{e_1, \ldots, e_k\}$ is contained in $E(H)$ and also in $E(K)$.

(1) Let $t \in X$. By induction H has a path $P[s, t]$ such that $e \in E(P)$, $T_H \in \Gamma(H - E(P), k - 2)$, and $\{s, t\} \in \Gamma(H - E(P), k - 1)$. If $u \in V(P)$, then P is a required path of G. If $u \notin V(P)$, then we may let $\{e_1, e_2\} \subseteq E(P)$. By induction K has a cycle C such that $\{e_1, e_2\} \subseteq E(C)$ and $T_K \in \Gamma(K - E(C), k - 2)$. Now we can construct a required path of G. Let $t \in V(G) - X$. H has a path $P_1[s, u]$ such that $e \in E(P_1)$, $T_H \in \Gamma(H - E(P_1), k - 2)$ and $\{s, u\} \in \Gamma(H - E(P_1), k - 1)$. We may let $e_1 \in E(P_1)$. K has a path $P_2[v, t]$ such that $e_1 \in E(P_2)$, $T_K \in \Gamma(K - E(P_2), k - 2)$ and $\{v, t\} \in \Gamma(K - E(P_2), k - 1)$. Now we can construct a required path of G.

(2) and (3). If $\{a, t\} \subseteq X$, $a \in X$ and $t \in V(G) - X$, or $\{a, t\} \subseteq V(G) - X$, then we can deduce the results similarly to (1). Let $a \in V(G) - X$ and $t \in X$. By induction for each $1 \leq i \leq k$, H has a path $P_i[s, t]$ such that $u \notin V(P_i)$, $T_H \in \Gamma(H - E(P_i), k - 2)$, $\{s, t, u\} \in \Gamma(H - E(P_i), k - 1)$ and for $x = s$ or t, $\{x, u\} \in \Gamma(H - E(P_i) - e_i, k - 1)$ (say $x = t$ for $i = 1$). Let $a \in T$. K has a path $P[a, v]$ such that $f \in E(P)$, $T_K \in \Gamma(K - E(P), k - 2)$ and $\{a, v\} \in \Gamma(K - E(P), k - 1)$. We may let $e_1 \in E(P)$. Since

$$\lambda_{H - E(P)}(t, u) = k - 1 = \lambda_{K - e_1, f}(v, a),$$

we have

$$\lambda_{G - E(P)}(t, a) = k - 1,$$

and so P_1 is a required path of G.

Let $\lambda_G(s, a) < k$. For some $1 \leq i \leq k$ (say for $i = 1$),

$$\lambda_{K - e_i}(v, a) = \lambda_K(v, a) = \lambda_{G}(t, a) = \lambda_{G}(s, a).$$
Since
\[\lambda_{H-E(P_1)-e_1}(t, u) = k - 1 \quad \text{and} \quad \lambda_{H-E(P_1)-e_1}(v, a) = \lambda_{G}(t, a), \]
we have
\[\lambda_{G-E(P_1)}(t, a) = \lambda_{G}(t, a). \]

Then
\[\lambda_{G-E(P_1)}(s, a) \geq \min\{\lambda_{G-E(P_1)}(s, t), \lambda_{G-E(P_1)}(t, a)\} = \lambda_{G}(s, a), \]
and so \(P_1 \) is a required path of \(G \).

(4) Similar to (1).

Case 2. In (3), \(G \) has a nontrivial \(\lambda_{G}(s, a) - \text{cut} \) \(\partial_{G}(X) \) (\(X \subseteq V(G) \)) separating \(s \) and \(a \).

Let \(s \in X \) and \(a \in V(G) - X \). Since \(\lambda_{G}(s, a) < k \), \(T \subseteq X \). Let \(H \) be the graph obtained from \(G \) by contracting \(V(G) - X \) to \(a \). Then by induction (3) holds in \(H \), and so in \(G \).

Case 3. Case 1 or 2 does not occur.

Let \(T_1 \) be \(T \) for (1), (2), and (4) and \(T \cup a \) for (3). If an edge \(g \) of \(G \) is not incident to any vertex of \(T_1 \), then we can apply induction on \(G - g \). Thus we may assume that each edge is incident to a vertex of \(T_1 \). Let \(x \in V(G) - T_1 \) if such an \(x \) exists. If \(d_{G}(x) \geq 4 \), then by Lemma 2.1 there exist \(b, c \in N_{G}(x) \) such that for each \(y, z \in V(G) - x \),
\[\lambda_{G^{b,c}}(y, z) = \lambda_{G}(y, z). \]

By induction the results hold in \(G^{b,c} \), thus we may let \(d_{G}(x) = 3 \). If \(|N_{G}(x)| = 2 \), then for some \(y \in T, |\partial_{G}(x, y)| = 2 \) and for \(h \in \partial_{G}(x, y) \) with \(h \neq e \), we can apply induction on \(G - h \). Thus we may let \(|N_{G}(x)| = 3 \).

Assume first that \(|T'| = 2 \). Then \(V(G) = T \) for (1), (2), and (4), and so the results follows. For (3)
\[d_{G}(a) = |\partial_{G}(a, s)| + |\partial_{G}(a, t)| + |V(G) - T_1| \]
and
\[d_{G}(s) = |\partial_{G}(s, a)| + |\partial_{G}(s, t)| + |V(G) - T_1|. \]

Since \(d_{G}(a) < k \leq d_{G}(s) \), we have
\[|\partial_{G}(s, t)| > |\partial_{G}(a, t)| \geq 0. \]
Thus the result easily follows.
Let $|T| \geq 3$.

(1) Let $w \in T - \{s, t\}$. By Lemma 2.1 there exist $b, c \in N_G(w)$ such that for each $x, y \in V(G)$,

$$\lambda_{G^b,c}(x, y) = \lambda_G(x, y).$$

Set $G' = G^b,c$ and $T' = T - w$. By induction G' has a path $P'[s, t]$ such that $e \in E(P')$, $T' \in \Gamma(G' - E(P'), k - 2)$ and $\{s, t\} \in \Gamma(G' - E(P'), k - 1)$. Let P_1 be the corresponding path in G.

$T - w \in \Gamma(G - E(P_1), k - 2)$ and $\{s, t\} \in \Gamma(G - E(P_1), k - 1)$.

For a path P of G, let $A(P)$ be

$$\{x \mid x \in V(P) \cap N_G(w), E(P) \cap \partial_G(w, x) \neq \emptyset \text{ or } x \notin T\}.$$

Let $|A(P_1)| \leq 2$. Then in $G - E(P_1)$ there exist $k - 2$ edges g_1, \ldots, g_{k-2} incident to w such that the other end of g_i is in T or adjacent to a vertex of $T - w$ ($1 \leq i \leq k - 2$). Thus

$$\lambda_{G - E(P_1)}(w, T - w) \geq k - 2.$$

Hence $T \in \Gamma(G - E(P_1), k - 2)$, and P_1 is a required path. If $|A(P_1)| \geq 3$, then starting at s along P_1, let x_1 and x_2 be the first and the last vertices of $A(P_1)$, respectively. Let P_2 be the path obtained by combining $P_1(s, x_1), g_1, g_2$ and $P_1(x_2, t)$, where $g_i \in \partial_G(w, x_i)$ ($i = 1, 2$). Then for each $y, z \in V(G)$,

$$\lambda_{G - E(P_2)}(y, z) \geq \lambda_{G - E(P_1)}(y, z).$$

Moreover $|A(P_2)| = 2$. Thus P_2 is a required path.

(2) Let $|T| = 3$. We may let $T = \{s, t, a\}$. If for some $y \in V(G) - T$, $\partial_G(a, y) = \{f\}$, then the path $P[s, t]$ with $E(P) \subseteq \partial_G(y)$ is a required path. We may let $f \in \partial_G(a, x)$ for $x = s$ or t, say $x = s$. If $\partial_G(s, t) \neq \emptyset$, then a path $P[s, t]$ with $|E(P)| = 1$ is a required path. If $\partial_G(s, t) = \emptyset$, then $|V(G)| > |T|$, because $d_G(a) < 2k$ and $\lambda_G(s, t) \geq k$;

$$\lambda_G(a, t) = \lambda_{G - f}(a, t),$$

and so for some $y \in V(G) - T$, the path $P[s, t]$ with $E(P) \subseteq \partial_G(y)$ is a required path. If $|T| \geq 4$, then we choose $w \in T - \{s, t, a\}$ and we can deduce the result similarly as (1).

(3) For some $w \in T - \{s, t\}$, we define G' and T' similarly as in (1). Then G' has a path $P'[s, t]$ such that $a \in V(P')$, $T' \in \Gamma(G - E(P'), k - 2)$, $\{s, t\} \in \Gamma(G - E(P'), k - 1)$ and for $x = s, t$, $\lambda_{G - E(P')}^{x, a}(x, a) = \lambda_G(x, a)$. Let P, be the path of G corresponding to P'. We define $A(P_1)$ similarly as in (1).
Then we may assume $A(P_1) \leq 2$ (see the proof of (1)). If $\partial_G(w, a) = \emptyset$, then the result follows. Let $\partial_G(w, a) \neq \emptyset$. Since

$$|\partial_G(w) - \partial_G(w, a)| + \min(|\partial_G(a) - \partial_G(a, w)|, |\partial_G(a, w)|) \geq k$$

and

$$\lambda_G - E(P_1)(s, a) = \lambda_G(s, a) = d_G(a),$$

we have

$$\lambda_G - E(P_1)(w, T - w) \geq k - 2.$$

Now the result follows.

(4) Similar to (1).

3. PROOF OF THEOREM 2

Lemma 3.1. Suppose that $k \geq 4$ and $n \geq 1$ are integers, G is a graph, $T = \{s_1, ..., s_n, t_1, ..., t_m\} \subseteq V(G)$, $\lambda_G(s_i, t_i) \geq k$ $(1 \leq i \leq n)$, $a \in V(G)$, and $d_G(a) < k$. If for each $X \subseteq V(G)$ such that $\partial_G(X)$ separates $T \cup a$, $|\partial_G(X)| \geq d_G(a)$, then for some $1 \leq j \leq n$, there exists a path $P[s_j, t_j]$ such that $\{s_i, t_i\} \in \Gamma(G - E(P), k - 2)$ $(1 \leq i \leq n)$ and $\lambda_G - E(P)(s_j, a) = d_G(a)$.

Proof. We proceed by induction on $|E(G)|$. If $T \in \Gamma(G, k)$, then from Theorem 1 the result follows, and so we may assume that for some $X \subseteq V(G)$, $\partial_G(X)$ separates T and $|\partial_G(X)| < k$. Choose X with this property such that $|\partial_G(X)|$ is minimum. We may assume that $a \in V(G) - X$ and $T \cap X = \{s_1, ..., s_n, t_1, ..., t_m\}$. Let H be the graph obtained from G by contracting $V(G) - X$ to a new vertex u. By induction for some $1 \leq j \leq m$, H has a path $P[s_j, t_j]$ such that $\{s_i, t_i\} \in \Gamma(H - E(P), k - 2)$ $(1 \leq i \leq m)$ and $\lambda_H - E(P)(s_j, u) = d_H(u)$. It easily follows that $\{s_i, t_i\} \in \Gamma(G - E(P), k - 2)$ $(1 \leq i \leq n)$ and $\lambda_G - E(P)(s_j, a) = d_G(a)$, and so Lemma 3.1 is proved.

Now we prove Theorem 2. Since $T \notin \Gamma(G, k)$, for some $X \subseteq V(G)$, $\partial_G(X)$ separates T and $|\partial_G(X)| < k$. Choose X with this property such that $|\partial_G(X)|$ is minimum. We may assume that

$$T \cap X = \{s_1, ..., s_m, t_1, ..., t_m\} \quad \text{and} \quad T - X = \{s_{m+1}, ..., s_n, t_{m+1}, ..., t_n\}.$$

Let $H(K)$ be the graph obtained from G by contracting $V(G) - X$ (X) to a new vertex $u (v)$. By Lemma 3.1 for some $1 \leq j \leq m$, H has a path $P_1[s_j, t_j]$ such that $\{s_i, t_i\} \in \Gamma(H - E(P_1), k - 2)$ $(1 \leq i \leq m)$ and $\lambda_H - E(P)(s_j, u) = d_H(u)$, and for some $m + 1 \leq l \leq n$, K has a path $P_2[s_l, t_l]$ such that $\{s_i, t_i\} \in \Gamma(K - E(P_2), k - 2)$ $(1 \leq i \leq n)$ and $\lambda_K - E(P)(s_l, a) = d_K(a)$.
HARUKO OKUMA

\(\Gamma(K - E(P_2), k - 2) \) \((m + 1 \leq i \leq n) \) and \(\lambda_{K - E(P_2)}(s_i, v) = d_K(v) \). Now it easily follows that

\[
\{s_i, t_i\} \in \Gamma \left(G - \bigcup_{i=1}^{2} E(P_i), k - 2 \right) \quad (1 \leq i \leq n),
\]

and so Theorem 2 is proved.

\section*{4. Proof of Theorem 3}

For each odd integer \(1 \leq m \leq k \), since \(\lambda'(m, n) = m \), by Theorem 1 it follows that \(\lambda'(m + 1, n) = m + 2 \). Let \(\alpha = \emptyset \) or 1 and \(\beta = 2\alpha \). We prove \(\lambda(k + \alpha, n) = k + \beta \) by induction on \(k \). We may assume \(k + \alpha \geq 4 \). Suppose that \(G \) is a graph, \(T = \{s_1, \ldots, s_{k + \alpha}, t_1, \ldots, t_{k + \alpha}\} \subseteq V(G) \), \(|T| \leq n \) and \(\lambda_o(s_i, t_i) \geq k + \beta \) \((1 \leq i \leq k + \alpha)\). We prove that for \(k + \alpha \) instead of \(k \), (1.1) holds in \(G \). Then Theorem 3 is proved. Since \(\lambda'(k + \alpha, n) = k + \beta \), we may assume that \(T \notin \Gamma(G, k) \). Then by Theorem 2 for some \(1 \leq j < l \leq k + \alpha \), there exist disjoint paths \(P_1[s_j, t_j] \) and \(P_2[s_j, t_j] \) such that \(\{s_i, t_i\} \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k + \beta - 2) \) \((1 \leq i \leq k + \alpha)\). By induction \(\lambda(k + \alpha - 2, n) = k + \beta - 2 \). Hence \(G - \bigcup_{i=1}^{2} E(P_i) \) has edge-disjoint paths \(P_3[s_3, t_3], \ldots, P_{k + \alpha}[s_{k + \alpha}, t_{k + \alpha}] \), and so the result follows.

\section*{5. Proof of Theorem 4}

We proceed by induction on \(|E(G)| \). We may let \(a_1 \neq a_2 \) and \(|T| = 3 \). If \(G \) has a nontrivial \(k \)-cut \(\partial G(X) \) \((X \subseteq V(G)) \) separating \(T \), then we define \(H, K, u, \) and \(v \) similarly as in the proof of Theorem 1. We may let \(|T \cap X| = 2 \). By induction for \(H \) and \((T \cap X) \cup u \) instead of for \(G \) and \(T \), the result holds. Thus the result follows. Hence we may assume that each edge is incident to a vertex of \(T \). If there exists \(x \in V(G) - T \), then we may assume that \(d_G(x) = 3 \) and \(N_o(x) = T \) (see the proof of Theorem 1), and so the path \(P[a_1, a_2] \) with \(E(P) \subseteq \partial_G(x) \) is a required path. If \(V(G) = T \), then the result easily follows.

\section*{6. Proof of Theorem 5}

We call a graph \(G \) elemental for \(V_1 \subseteq V(G) \) if \(V(G) = V_1 \cup V_2 \), \(V_1 \cap V_2 = \emptyset \) and for each \(x \in V_2 \), \(d_G(x) = 3 \), \(|N_o(x)| = 3 \) and \(N_o(x) \subseteq V_1 \). We call a graph \(G \) elemental for \(V_1 \subseteq V(G) \) and an integer \(k \geq 1 \) if \(G \) is elemental for \(V_1 \) and for each \(x \in V_1 \), \(d_G(x) = k \). For integers \(p \geq 0 \) and \(q \geq 0 \), we say that a graph \(G \) is \(G(p, q) \) if \(G \) is elemental for some \(V_1 = \ldots \)
\(\{x_1, x_2, x_3\} \subseteq V(G), |V(G) - V_1| = q, \) and \(|\partial_G(x_i, x_j)| = p \) \((1 \leq i < j \leq 3)\). Let \(G \) be an elemental graph for \(V_1 \subseteq V(G) \). We call a subgraph \(S \) an elemental star if \(V(S) \subseteq V_1, |V(S)| = 2, \) and \(|E(S)| = 1, \) or if for some \(x \in V(G) - V_1, V(S) = N_G(x) \cup x, \) and \(E(S) = \partial_G(x). \)

We require the following lemmas.

Lemma 6.1. Suppose that \(k \geq 3 \) is an integer, \(G \) is an elemental graph for \(T \subseteq V(G) \) and \(k, T \in \Gamma(G, k), G \) has no nontrivial \(k \)-cut separating \(T, \) and that \(S_1, S_2, S_3 \) are elemental stars of \(G. \) If \(V(S_1) \cap V(S_2) \cap V(S_3) = \emptyset, \) then \(T \in \Gamma(G - \bigcup_{i=1}^3 E(S_i), k - 2). \)

Proof. Assume that \(X \subseteq V(G), |X| \leq |V(G) - X|, \) and \(X \) separates \(T. \) Set \(G' = G - \bigcup_{i=1}^3 E(S_i). \) If \(|X| = 1, \) then let \(X = \{x\}. \) Since \(d_G(x) > d_G(x) - 2 = k - 2, \) we have \(|\partial_G(X)| \geq k - 2. \) If \(|X| \geq 2, \) then \(|\partial_G(X)| \geq k + 1, \) and so \(|\partial_G(X)| \geq k - 2. \) Now Lemma 6.1 is proved.

Lemma 6.2. Suppose that \(k \geq 2 \) is an integer, \(G \) is an elemental graph for \(T = \{x_1, x_2, x_3, x_4\} \subseteq V(G) \) and \(k, |T| = 4 \) and \(T \in \Gamma(G, k). \) Then

1. One of the following holds:

 (i) \(\partial_G(x_1, x_2) \neq \emptyset, \partial_G(x_1, x_3) \neq \emptyset, \) or for some \(y \in V(G) - T, N_G(y) = \{x_1, x_2, x_3\}. \)

 (ii) \(k \) is even, \(|\partial_G(x_2, x_3)| = k/2, \) and

 \(|\{y \in V(G) - T \mid N_G(y) = \{x_1, x_1, x_4\}\}| = k/2 \quad (i = 2, 3). \)

2. One of the following holds:

 (i) For each \(1 \leq i < j \leq k, G \) has an elemental star \(S \) containing \(x_i \) and \(x_j. \)

 (ii) \(k \) is even and \(G \) is the graph obtained from four cycle by replacing each edge by \(k/2 \) parallel edges.

3. If \(G \) has no nontrivial \(k \)-cut separating \(T, \) then

 (i) \(\partial_G(x_1, x_2) \neq \emptyset \) or \(G \) has two elemental stars containing \(x_1 \) and \(x_2. \)

 (ii) One of the following holds.

 (a) \(G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_3] \) such that for \(i = 2 \) or \(4, \)

 \[\{x_1, x_3\} \in \Gamma(G - \bigcup_{j=1}^2 E(P_j), k - 1) \text{ and } T \in \Gamma(G - \bigcup_{j=1}^2 E(P_j), k - 2). \]

 (b) For each \(e \in \partial_G(x_3) - \partial_G(x_3, x_2), G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_3] \) such that \(e \in E(P_2) \) and \(T \in \Gamma(G - \bigcup_{i=1}^2 E(P_i), k - 2). \)
Proof. For $1 \leq i, j \leq 4$, set

$$p_{i,j} = |\partial_G(x_i, x_j)|,$$

$$R_i = \{ y \in V(G) - T | N_G(y) = T - x_i \},$$

$$r_i = |R_i|.$$

(1) Assume $p_{1,2} = p_{1,3} = r_4 = 0$. Then

$$d_G(x_1) = k = p_{1,4} + r_2 + r_3,$$

$$d_G(x_4) - k = p_{1,4} + p_{2,4} + p_{3,4} + r_1 + r_2 + r_3.$$

Thus

$$p_{2,4} = p_{3,4} = r_1 = 0.$$

Since $T \in \Gamma(G, k)$, we have

$$|\partial_G(\{x_2, x_3\})| = r_2 + r_3 \geq k.$$

Thus

$$p_{1,4} = 0.$$

By comparing $d_G(x_i)$ with $d_G(x_j)$ for $1 \leq i < j \leq 3$, we have

$$r_2 = r_3 = p_{2,3}.$$

Now (ii) follows.

(2) Assume $p_{1,2} = r_3 = r_4 = 0$. Then by comparing $d_G(x_1) + d_G(x_2)$ with $d_G(x_3) + d_G(x_4)$, we have

$$r_1 = r_2 = p_{3,4} = 0.$$

Now by comparing $d_G(x_i) = k = p_{1,3} + p_{2,3}$ with $d_G(x_i)$ for $i = 1, 2$, we have

$$p_{1,4} = p_{2,3} \quad \text{and} \quad p_{2,4} = p_{1,3}.$$

Moreover,

$$|\partial_G(\{x_1, x_4\})| = p_{1,3} + p_{2,4} = 2p_{1,3} \geq k,$$

$$|\partial_G(\{x_1, x_3\})| = p_{1,4} + p_{2,3} = 2p_{1,4} \geq k.$$

Thus

$$p_{1,3} = p_{2,3} = p_{2,4} = p_{1,4},$$

and so (ii) follows.
(3)(i) We assume \(p_{1,2} = r_4 = 0 \), and then prove \(r_3 \geq 2 \). Since any cut separating \(\{x_1, x_3\} \) and \(\{x_2, x_4\} \) or separating \(\{x_1, x_4\} \) and \(\{x_2, x_3\} \) has more than \(k \) edges, we have

\[
(6.1) \quad p_{1,4} + p_{2,3} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1,
\]

and

\[
(6.2) \quad p_{1,3} + p_{2,4} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1.
\]

By comparing \(d_G(x_3) + d_G(x_4) \) with (6.1) and (6.2), we have

\[
r_3 \geq 2.
\]

(ii) If there exists an \(f \in \partial_G(x_1, x_3) \), then by Theorem 1, \(G \) has a path \(P[x_3, x_2] \) such that \(f \in E(P) \), \(\{x_3, x_2\} \in \Gamma(G - E(P), k - 1) \) and \(T \in \Gamma(G - E(P), k - 2) \), and so (a) follows. Thus we may let

\[
p_{1,3} = p_{1,2} = 0,
\]

then by (1)

\[
r_4 > 0.
\]

If \(r_3 > 0 \), then for \(y_1 \in R_4 \) and \(y_2 \in R_3 \),

\[
\{x_3, x_4\} \in \Gamma \left(G - \bigcup_{i=1}^{2} \partial_G(y_i), k - 1 \right) \quad \text{and} \quad T \in \Gamma \left(G - \bigcup_{i=1}^{2} \partial_G(y_i), k - 2 \right),
\]

and so (a) follows. Thus we may let

\[
r_3 = 0.
\]

Then by (1) and (3)

\[
p_{1,4} > 0 \quad \text{and} \quad r_4 \geq 2.
\]

Let \(y \) be another end of \(e \), then \(y = x_4 \) or \(y \in R_i \) (\(i = 1, 2 \) or 4). In each case (b) easily follows.

Lemma 6.3. Suppose that \(k \geq 3 \) is an odd integer, \(G \) is a graph, \(\{x_1, x_2, x_3\} \subseteq T \subseteq V(G), x_i \neq x_j \) (\(1 \leq i < j \leq 3 \)), \(T \in \Gamma(G, k) \) and \(e \in E(G) \). If one of (i) or (ii) below holds, then for \(m = 2, 3 \), \(G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_m] \) such that \(e \in E(P_1) \cup E(P_2) \) and \(T \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k - 2) \).

(i) \(e \in \partial_G(x_1, x_2) \),

(ii) \(e \in \partial_G(x_1, y) \) for some \(y \in V(G) - T \) with \(d_G(y) = 3 \) and with \(N_G(y) = \{x_1, x_2, x_3\} \).
Assume that (i) holds. By Theorem 1 if \(m = 2 \), then \(G \) has a cycle \(C \) such that \(e \in E(C) \) and \(T \in \Gamma(G - E(C), k - 2) \), and if \(m = 3 \), then \(G \) has a path \(P[x_2, x_3] \) such that \(e \in E(P) \) and \(T \in \Gamma(G - E(P), k - 2) \).

Assume that (ii) holds. We may assume that \(G \) is 2-connected. If \(d_G(x_3) = d > k \), then we replace \(x_3 \) by \(d \) vertices of degree \(k \) (Fig. 4 gives an example with \(d = 8 \) and \(k = 5 \)), producing a new graph \(G' \). In \(G' \) we assign \(x_3 \) on \(N_{G'}(y) \setminus \{x_1, x_2\} \). If the result holds in \(G' \), then clearly the result holds in \(G \), and so we may assume that \(d_G(x_3) = k \). Let \(f \in \partial_G(x_3) - \partial_G(y, x_3) \). By Theorem 1 \(G \) has a path \(P[x_1, x_2] \) such that \(x_3 \notin V(P) \), \(T \in \Gamma(G - E(P), k - 2) \), \(\{x_1, x_2\} \in \Gamma(G - E(P), k - 1) \) and \(\{x_i, x_3\} \in \Gamma(G - E(P) - f, k - 1) \) (\(i = 1 \) or \(2 \)). Then \(y \notin V(P) \), because \(d_G(x_3) = k \) and \(d_G(y) = 3 \). Moreover, \(T \in \Gamma(G - E(P) - y, k - 2) \). Thus the result follows.

Now we prove Theorem 5. We may assume that \(G \) is 2-connected, \(d_G(x) = k \) for each \(x \in T \) (see the proof of Lemma 6.3 and Fig. 4, in this case we can assign \(x \) on any vertex of new \(d_G(x) \) vertices of degree \(k \)) and that \(d_G(y) = 3 \) for each \(y \in V(G) \setminus T \) (see Case 3 in the proof of Theorem 1). We proceed by induction on \(|E(G)| \). If \(|T| < 3 \), then the results follow from Theorem 4. Thus let \(|T| \geq 4 \).

Case 1. \(G \) has a nontrivial \(k \)-cut \(\partial_G(X) = \{e_1, \ldots, e_k\} \) (\(X \subseteq V(G) \)) separating \(T \).

We define \(H, K, u, v, T_U, \) and \(T_K \) similarly as Case 1 in the proof of Theorem 1. If \(|X \cap T| = 1 \), then the results hold in \(K \), and so in \(G \). Thus let \(|X \cap T| \geq 2 \) and \(|T - X| \geq 2 \).

We require the following:

(6.3) **If** \(G \) **has a nontrivial** \(k \)-**cut** \(\partial_G(Y) = \{f_1, \ldots, f_k\} \) (\(Y \subseteq X \)) **separating** \(T \), **then we may assume that** \((X - Y) \cap T \neq \emptyset \).

Proof. Assume \((X - Y) \cap T = \emptyset \). Let \(b_i \) (\(c_i \)) be the end of \(e_i \) (\(f_i \)) in \(V(G) - X \) (\(Y \)) (\(1 \leq i \leq k \)). We may assume that the graph obtained from \(\langle X - Y \rangle_G \) by adding \(b_1, \ldots, b_k, c_1, \ldots, c_k, e_1, \ldots, e_k, f_1, \ldots, f_k \) has edge-disjoint paths \(P_i[b_1, c_1], \ldots, P_k[b_k, c_k] \). Let \(G' \) be the graph obtained from \(G - (X - Y) \) by adding new edges \(g_1, \ldots, g_k \), where \(g_i \) has ends \(b_i \) and \(c_i \).

![Figure 4](image-url)
(1 < i < k). Then |E(G')| < |E(G)|, and the results of Theorem 5 hold in G', and so in G. Now (6.3) is proved.

(6.4) If |X ∩ T| = 2 (|T − X| = 2), then we may assume that H (K) is $G(p, q)$ ($G(p', q')$) for some integers p and q (p' and q').

Proof. Assume |X ∩ T| = 2. If H has a nontrivial k-cut $\partial H(Y)$ ($Y \subseteq V(H) − u$) separating T_H, then by (6.3) $(X − Y) \cap T \neq \emptyset$, and so |T ∩ Y| = 1. Then by taking Y instead of X the results of Theorem 5 hold. Thus we may assume that an end of each edge of H is in T_H. Hence the result easily follows.

We return to the proof of Theorem 5. By Lemma 6.3 we may assume the following.

(6.5) $\partial_G(a_1, a_i) = \emptyset$ ($i = 2, m$) and for each $y \in V(G) − T$, $\{a_1, a_2, a_m\} \not\subseteq N_G(y)$.

Let $a_1 \in X$.

1. Now |X ∩ T| − |T − X| = 2. If $a_2 \in X$, then by (6.4) the result easily follows. Thus let $a_2 \in V(G) − X$. Since $p + q > (k + 1)/2$ and $p' + q' > (k + 1)/2$, for some $1 < i < k$, H has an elemental star S_1 containing a_1 and e_i and K has an elemental star S_2 containing a_2 and e_i. Then $T \in \Gamma(G − \bigcup_{i=1}^2 E(S_i), k − 1)$.

2. Subcase 1.1. $\{a_2, a_m\} \subseteq X$.

H has required paths. If one of them passes through u, then we can deduce the result by using Theorem 1(4) on K.

Subcase 1.2. $\{a_2, a_m\} \subseteq V(G) − X$ and |X ∩ T| = 2.

Set $X ∩ T = \{a_1, a_s\}$. If |T| = 4, then a_4 does not exist. By (6.4) H is $G(p, q)$. Thus if one of (6.6) or (6.7) below holds, then the result follows.

(6.6) For some $e_i \in \partial_H(u, a_1)$, K has edge-disjoint paths $P_1[v, a_2]$ and $P_2[v, a_m]$ such that $e_i \in E(P_1) \cup E(P_2)$ and $T_x \in \Gamma(K − \bigcup_{i=1}^2 E(P_i), k − 2)$.

(6.7) For some $e_i, e_j \in \partial_H(u) − \partial_H(u, a_1)$, K has edge-disjoint paths $P_1[v, a_2]$ and $P_2[v, a_m]$ such that $\{e_i, e_j\} \subseteq E(P_1) \cup E(P_2)$ and $T_x \in \Gamma(K − \bigcup_{i=1}^2 E(P_i), k − 2)$.

If $p = 0$, then $\partial_H(u, a_1) = \emptyset$, and so (6.7) follows. Thus let $p > 0$. If |T − X| = 2, then by (6.4) K is $G(p', q')$, and so (6.6) follows. Thus let |T − X| = 3 and $m = 3$. Set $T − X = \{a_2, a_3, a_4\}$.
Subcase 1.2.1. K has a nontrivial k-cut $\partial_K(Y)$ $(Y \subseteq V(K) - v)$ separating T_K.

By (6.3) we may let $|Y \cap T_K| = |T_K - Y| = 2$. Let K_1 and K_2 be the graphs obtained from K by contracting Y and $V(K) - Y$ to a vertex respectively. Then similarly as (6.4) K_i is $G(p_i, q_i)$ for some integers p_i and q_i $(i = 1, 2)$. Let M be

$$\{x_1, x_2\} \subseteq V(K) - T_K | \partial_x(x_1, x_2) \neq \emptyset\},$$

and let M' be

$$\{x | \text{for some } N \in M, x \in N\}.$$

For each $N \in M$, $N \cap V(K_i) \neq \emptyset$ $(i = 1, 2)$,

$$d_{K-N}(a_j) = d_{K-N}(v) = k - 1 \quad (j = 2, 3, 4) \quad \text{and} \quad T_K \in \Gamma(K - N, k - 1).$$

If $k = |M|$, then $p_1 = p_2 = 0$ and the result easily follows, and so let $k > |M|$. $K - M'$ is elemental for T_K and $k - |M|$. Assume that $k - |M|$ is even and $K - M'$ is the graph obtained from four cycle by replacing each edge by $(k - |M|)/2$ parallel edges. For each cycle C of $K - M'$ such that $|V(C)| = |E(C)| = 4$, we have $T_K \in \Gamma(G - E(C), k - 2)$. If $\partial(a_1, a_4) \neq \emptyset$, then (6.6) follows, and if not, then by (6.5) a_1 is adjacent to p vertices of M'. If $|M| > 2$, then (6.6) follows. Thus assume $1 \geq |M| \geq p > 1$. Since $(k - |M|)/2 \geq (5 - 1)/2 = 2$, for some $1 \leq i < j \leq k$,

$$\{e_i, e_j\} \subseteq \partial_{K}(u) - \partial_{K}(u, a_s),$$

and K has a four cycle C such that $|V(C)| = |E(C)| = 4$ and $\{e_i, e_j\} \subseteq E(C)$. Hence (6.7) follows.

By Lemma 6.2(2) we may assume that for each two vertices of T_K, $K - M'$ has an elemental star containing them. Set $a_0 = v$, and for $i, j = 0, 2, 3, 4$, set

$$p_{i,j} = |\partial_{K}(a_i, a_j)|, \quad r_i = |x \in V(K) - T_K | N_K(x) = T_K - a_i|.$$

For $i, j = 0, 2, 3, 4$, since $|\partial_{K}(\{a_i, a_j\})| \geq k$,

$$p_{i,j} \leq (k - 1)/2.$$
If $a_4 \in Y$, then (6.6) easily follows, and thus let $T_H - Y = \{a_0, a_4\}$. Since $p_{0,4} \geq |\partial_G(a_1, a_4)| = p > 0$, by Lemma 6.2(1) we have

\[p_{4,2} > 0, \quad p_{4,3} > 0, \quad \text{or} \quad r_0 > 0, \]

and

\[p_{0,2} > 0, \quad p_{0,3} > 0, \quad \text{or} \quad r_4 > 0. \]

If $r_0 > 0$, $r_4 > 0$, $p_{0,2} \cdot p_{3,4} > 0$, or $p_{0,3} \cdot p_{2,4} > 0$, then (6.6) follows (note that K_i is $G(p_1, q_i)$ for $i = 1, 2$). Thus we may assume that

\begin{equation}
\tag{6.8}
p_{0,2} > 0, \quad p_{2,4} > 0 \quad \text{and} \quad r_0 = r_4 = p_{0,3} = p_{3,4} = 0.
\end{equation}

Assume $|M| = 0$. Then

\[d_G(a_3) = p_{2,3} + r_2 \quad \text{and} \quad p_{2,3} \leq (k - 1)/2, \]

and so

\begin{equation}
\tag{6.9}
r_2 \geq (k + 1)/2 = p + 1.
\end{equation}

By comparing $d_G(a_2)$ with $d_G(a_4)$ we have

\[p_{0,2} + p_{2,3} = p_{0,4} + r_2. \]

Thus

\begin{equation}
\tag{6.10}
p_{0,2} > p_{0,4} \geq p.
\end{equation}

From (6.9) and (6.10), (6.7) follows.

Now we may let $|M| > 0$. Since $\{a_2, a_3\} \subseteq Y$, we have

\[|\partial_k(Y)| = k = d_k(a_2) - d_k(a_3) - 2p_{2,3} - |M| = 2k - 2p_{2,3} - |M|, \]

and so

\[2p_{2,3} + |M| = k. \]

Since $d_G(a_3) - k = p_{2,3} + r_2 + |M|$, $r_2 = p_{2,3}$.

Since $d_G(a_3) = 2r_2 + |M|$, $d_G(a_4) = p_{0,4} + p_{2,4} + r_2 + r_3 + |M|$, and $p_{2,4} > 0$ (by (6.8)), we have

\begin{equation}
\tag{6.11}
r_2 \geq a_{0,4} + 1 \geq p + 1.
\end{equation}
By comparing \(d_G(a_2) \) with \(d_G(a_4) \), we have
\[
p_{0,2} = p_{0,4}.
\]
Thus
\[
(6.12) \quad p_{0,2} + |M| \geq p + 1.
\]
From (6.11) and (6.12), (6.7) follows.

Subcase 1.2.2. \(K \) has no nontrivial \(k \)-cut separating \(T_K \).

We may assume that an end of each edge of \(K \) in \(T_K \) and \(K \) is elemental for \(T_K \). The proof is similar as the case \(|M| = 0 \) in the proof of Subcase 1.2.1.

Subcase 1.3. \(\{a_2, a_m\} \subseteq V(G) - X \) and \(|X \cap T| = 3 \).

Now \(m = 3 \). By (6.4) \(K \) is \(G(p', q') \). Set \(X \cap T = \{a_1, a_4, a_5\} \). If \(H \) has a nontrivial \(k \)-cut \(\partial_H(Y) \) \((Y \subseteq V(H) - u) \) separating \(T_H \), then we may let \(|Y \cap T_H| = 2 \). Then for \(Y \) or \(V(G) - Y \) instead of \(X \), Subcase 1.1 or 1.2 occurs. Thus we may assume that this is not the case and \(H \) is elemental for \(T_H \). If either (6.13) or (6.14) holds, then the result follows:

\[
(6.13) \quad \text{For some } e_i \in \partial_K(v) - \bigcup_{i=2}^{3} \partial_K(v, a_i), \text{ } H \text{ has edge-disjoint paths } P_1[a_1, u] \text{ and } P_2[a_1, u] \text{ such that } e_i \in E(P_1) \cup E(P_2) \text{ and } T_H \in \Gamma(H - \bigcup_{i=1}^{2} E(P_i), k - 2).\]

\[
(6.14) \quad \text{For } l = 2 \text{ or } 3 \text{ and for some } e_i \in \partial_K(v, x_i) \text{ and } e_j \in \partial_K(v) - \partial_K(v, x_i), \text{ } H \text{ has edge-disjoint paths } P_1[a_1, u] \text{ and } P_2[a_1, u] \text{ such that } \{e_i, e_j\} \subseteq E(P_1) \cup E(P_2) \text{ and } T_H \in \Gamma\left(H - \bigcup_{i=1}^{2} E(P_i), k - 2\right).\]

Set \(a_0 = u \) and for \(i, j = 0, 1, 4, 5, \) set
\[
p_{i,j} = |\partial_H(a_1, a_j)|,
\]
\[
R_i = |x \in V(H) - T_H | N_H(x) = T_H - a_i|,
\]
\[
r_i = |R_i|.
\]
By (6.5) \(p_{0,1} = 0 \).

Assume \(p_{1,4} = p_{1,5} = 0 \). If \(r_0 \leq (k - 1)/2 \), then
\[
r_4 + r_5 = d_G(a_4) - r_0 \geq (k + 1)/2 \geq p' + 1,
\]
and so (6.13) or (6.14) follows. Thus let \(r_0 \geq (k + 1)/2 \). Since \(d_G(a_0) = p_{0,4} + p_{0,5} + r_1 + r_4 + r_5 \) and \(d_G(a_5) = p_{0,5} + p_{4,5} + r_0 + r_1 + r_4 \), we have
\[
p_{0,4} + r_5 = p_{4,5} + r_0.
\]
Hence

\[d_\alpha(a_4) = k \geq p_{0,4} + r_o + r_s \geq 2r_0 > k, \]

a contradiction.

Now we may let \(p_{1,i} > 0 \) for \(i = 4 \) or \(5 \), say \(i = 4 \). Since \(p_{0,1} = 0 \) and by Lemma 6.2(3), we have

\[r_4 + r_s \geq 2. \]

For each \(x \in R_4 \cup R_5 \), if \(x \) is adjacent to a vertex of \(V(K) - T_K \) in \(G \), then (6.13) follows, thus assume that \(\partial_\alpha(x, a_i) \neq \emptyset \) (\(i = 2 \) or \(3 \)). For each \(x, y \in R_4 \cup R_5 \), if \(\partial_\alpha(x, a_2) \neq \emptyset \) and \(\partial_\alpha(y, a_3) \neq \emptyset \), then (6.14) follows, thus assume that for \(i = 2 \) or \(3 \), \(\partial_\alpha(x, a_i) = \partial_\alpha(y, a_i) = \emptyset \), say \(i = 3 \), and that \(r_4 + r_s \leq p' \).

Assume \(r_4 > 0 \). For some \(e_i \in \partial_K(v) - \partial_K(v, a_2) \), \(e_i \) is incident to \(a_4 \) or a vertex of \(R_1 \) in \(G \), because

\[p' + q' \geq (k + 1)/2 > p_{0,5}. \]

Thus (6.14) follows.

Now we may assume that \(r_4 = 0 \), \(r_s > 0 \), and \(p_{1,5} = 0 \). Thus \(p_{0,1} = p_{1,5} = r_4 = 0 \), contrary to Lemma 6.2(1).

Subcase 1.4. \(a_2 \in X \) and \(a_m \in V(G) - X \).

Now \(m = 3 \).

Subcase 1.4.1. \(|X \cap T| = 2 \).

By (6.4) \(H = G(p, q) \), and by (6.5) \(p = 0 \). Since \(|T_K| \leq 4 \), by induction \(K \) has a path \(P[v, a_2] \) such that \(T_K \in \Gamma(K - E(P), k - 1) \). Let \(e_i \in E(P) \). \(H \) has an elemental star \(S_1 \) containing \(a_1 \) and \(e_1 \). Let \(S_2 \) be another elemental star of \(H \). Then \(T_H \in \Gamma(H - \bigcup_{i=1}^k E(S_i), k - 2) \), and so the result follows.

Subcase 1.4.2. \(|X \cap T| = 3 \) and \(|T - X| = 2 \).

Assume that \(H \) has a nontrivial \(k \)-cut \(\partial_H(Y) = \{f_1, \ldots, f_k\} \) (\(Y \subseteq V(H) - u \)) separating \(T_H \). Then we may assume that \(|Y \cap T_H| = 2, a_2 \in Y \) and \(a_1 \in X - Y \). Let \(H_1 (H_2) \) be the graph obtained from \(H \) by contracting \(V(H) - Y (Y) \) to a new vertex \(u_i (u_2) \). Then similarly as (6.4) \(H_i \) is \(G(p_i, q_i) \) for some integers \(p_i \) and \(q_i \) (\(i = 1, 2 \)). If \(p_2 = 0 \), then the result easily follows. If \(p_2 > 0 \), then we may let \(\{f_1, e_1\} \subseteq \partial_\alpha(a_1) \) and we can easily deduce the result.

Now we may assume that \(H \) has no nontrivial \(k \)-cut separating \(T_H \) and \(H \) is elemental for \(T_H \). Set \(X \cap T = \{a_1, a_2, u, a_4\} \) and \(T - X = \{a_3, a_5\} \). For \(a_1, a_2, u, a_4 \) instead of \(x_1, x_2, x_3, x_4 \), (a) or (b) of Lemma 6.2(3) holds. If (a) holds, then the result easily follows, thus assume that (b) holds. Since

\[|\partial_H(u) - \partial_H(u, a_2)| \geq (k + 1)/2 \quad \text{and} \quad p' + q' \geq (k + 1)/2, \]

for some \(1 \leq i \leq k \),

\[e_i \in \partial_H(u) - \partial_H(u, a_2) \quad \text{and} \quad e_i \in \partial_K(v) - \partial_K(v, a_3), \]

and so the result follows.
Case 2. G has no nontrivial k-cut separating T.

We may assume that G is elemental for T. If $|T| = 4$, then by Lemma 6.1 the result follows. Thus let $|T| = 5$ and $m = 3$. Set $T = \{a_1, a_2, a_3, a_4, a_5\}$ and for $1 \leq i, j, l \leq 5$, set

$$p_{i,j} = |\partial_G(a_i, a_j)|,$$

$$R(i,j,l) = \{x \in V(G) - T| N_G(x) = \{a_i, a_j, a_l\}\},$$

$$r(i,j,l) = |R(i,j,l)|.$$

We require

(6.15) For each distinct $1 \leq i, j, l \leq 5$, G has an elemental star containing $\{a_i, a_j\}$ or $\{a_i, a_l\}$.

Proof. Assume that each elemental star of G does not contain $\{a_1, a_2\}$ nor $\{a_2, a_3\}$. Then

$$d_G(a_1) = p_{1,4} + p_{1,5} + r(1,4,5).$$

Since $p_{i,j} \leq (k - 1)/2$ for each i, j, we have $r(1,4,5) > 0$. Let F be the cut of G separating $\{a_1, a_4, a_5\} \cup R(1, 4, 5)$ from the rest of the graph, then

$$|F| \leq d_G(a_4) + d_G(a_5) - (p_{1,4} + p_{1,5} + 2r(1, 4, 5)) < k,$$

a contradiction. Now (6.15) is proved.

We return to the proof of Theorem 5. By (6.5)

$$p_{1,2} = p_{1,3} = r(1, 2, 3) = 0.$$

If $r(1, 2, i) > 0$ and $r(1, 3, j) > 0$ ($i, j = 4$ or 5), then the result follows. Thus and by (6.15) we may assume that

$$r(1, 2, 4) > 0 \quad \text{and} \quad r(1, 3, i) = 0 \quad (i = 4, 5).$$

By (6.15)

$$p_{i,5} + r(i, 5, 2) + r(i, 5, 4) > 0 \quad (i = 1, 3).$$

If $p_{1,5} > 0$, $p_{3,5} > 0$, $r(1, 5, 2) \cdot r(3, 5, 4) > 0$, or $r(1, 5, 4) \cdot r(3, 5, 2) > 0$, then by Lemma 6.1 the result follows. Thus we may assume that for $(i,j) = (2,4)$ or $(4,2)$,

$$p_{1,5} = p_{3,5} = 0, \quad r(1, 5, i) = r(3, 5, i) = 0,$$
and
\[r(1, 5, j) \cdot r(3, 5, j) > 0. \]

Assume \(r(1, 5, 2) = r(3, 5, 2) = 0 \). Then
\[d_G(x_1) = p_{1,4} + r(1, 2, 4) + r(1, 4, 5), \]
and
\[d_G(x_4) \geq p_{1,4} + r(1, 2, 4) + r(1, 4, 5) + r(3, 4, 5) > k, \]
a contradiction. Thus
\[r(1, 5, 4) = r(3, 5, 4) = 0. \]
Since \(r(1, 2, 5) > 0 \), by the same argument we have
\[\rho_{1,4} = \rho_{3,4} = 0. \]
Thus
\[d_G(x_1) = r(1, 2, 4) + r(1, 2, 5) \]
and
\[d_G(x_2) \geq r(1, 2, 4) + r(1, 2, 5) + r(2, 3, 5) > k, \]
a contradiction.

7. Proof of Theorem 6

Suppose that \(k \geq 1 \) is an integer, \(G \) is a graph, \(T = \{s_1, \ldots, s_k, t_1, \ldots, t_k\} \subseteq V(G) \) and \(T \in \Gamma(G, k) \). We prove that if \(|T| = 3 \), or if \(k \) is odd and \(|T| = 4 \) or \(5 \), then (1.1) holds. We proceed by induction on \(k \).

Assume \(|T| = 3 \). By Theorem 4 \(G \) has a path \(p[s_k, s_k] \) such that \(T \in \Gamma(G - E(P), k - 1) \). By induction for \(k - 1 \), (1.1) holds in \(G - E(P) \), and so for \(k \), (1.1) holds in \(G \).

Assume that \(k \geq 5 \) is odd and \(|T| = 4 \) or \(5 \). For some \(1 \leq i < j \leq k \), if \(|T| = 4 \), then
\[s_i = s_j \text{ or } t_j, \]
and if \(|T| = 5 \), then
\[s_i = s_j \text{ or } t_j \text{ and } \{s_i, t_i\} \neq \{s_j, t_j\}. \]
say for \(i = k - 1 \) and \(j = k \). By Theorem 5 \(G \) has edge-disjoint paths
\[P_1[s_{k-1}, t_{k-1}] \text{ and } P_2[s_k, t_k] \]
such that \(T \subseteq I(G - \bigcup_{i=1}^{2} E(P_i), k - 2) \). By
induction for \(k - 2 \), (1.1) holds in \(G - \bigcup_{i=1}^{2} E(P_i) \), and so for \(k \), (1.1) holds
in \(G \).

Thus for each integer \(k \geq 1 \),
\[\lambda'(k, 3) = \lambda(k, 3) = k, \]
and for each odd integer \(k \geq 1 \),
\[\lambda'(k, 4) = \lambda'(k, 5) = k. \]

By Theorem 3 for each odd integer \(k \geq 1 \),
\[\lambda(k, 4) = \lambda(k, 5) = k \quad \text{and} \quad \lambda(k + 1, 4) = \lambda(k + 1, 5) - k + 2. \]

Now Theorem 6 is proved.

REFERENCES

1. A. Cypher, An approach to the \(k \) paths problem, in “Proceedings, 12th Annual ACM
University, 1983.
3. T. Hirata, K. Kubota, and O. Saito, A sufficient condition for a graph to be weakly
(1978), 145–164.
266–269.