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It is well known that dominance between strict t-norms is closely related to the
Mulholland inequality, which can be seen as a generalization of the Minkowski inequality.
However, strict t-norms constitute only one part of the class of continuous Archimedean
t-norms, the basic elements from which all continuous t-norms are composed. In this
paper, dominance between continuous Archimedean t-norms is shown to be related
to a generalization of the Mulholland inequality. We provide sufficient and necessary
conditions for its fulfillment.
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1. Introduction

In 1950, Mulholland presented a generalization of the Minkowski inequality, which later on became known as the Mulhol-
land inequality [13]. In the same contribution, he provided a sufficient condition for its fulfillment by a continuous function
that is strictly increasing on its domain. In 1984, Tardiff demonstrated that this inequality plays an essential role in the
investigation of dominance between strict triangular norms (t-norms for short) and provided a different sufficient condi-
tion [24]. In 2002, Jarczyk and Matkowski clarified the relationship between the two sufficient conditions, showing that
Tardiff’s condition implies that of Mulholland [5].

On the other hand, the dominance relation was originally introduced in the framework of probabilistic metric spaces [22]
and was soon abstracted to operations on a partially ordered set (see, e.g. [20]). The dominance relation, in particular
between t-norms, plays a profound role in various topics, such as the construction of Cartesian products of probabilistic
metric and normed spaces [11,20,22], the construction of many-valued equivalence relations [2,3,25] and many-valued order
relations [1], as well as in the preservation of various properties during (dis-)aggregation processes in flexible querying,
preference modelling and computer-assisted assessment [2,4,14,16]. These applications instigated the study of the dominance
relation in the broader context of aggregation operators [12,14,16].

The dominance relation is an interesting mathematical notion per se. As it constitutes a reflexive and antisymmetric
relation on the class of t-norms, and counterexamples for its transitivity were not readily found, it remained an intriguing
open problem [7,18,20,21,24] for more than 20 years whether or not it was an order relation. Only recently the question was
answered to the negative [17,19]. However, due to its relevance in applications, it is still of interest to determine whether
or not the dominance relation establishes an order relation on some subclasses of t-norms. Of particular importance are the
continuous Archimedean t-norms, as they are the basic elements of which all continuous t-norms are composed. Therefore,
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establishing sufficient conditions for dominance between continuous Archimedean t-norms is of interest and constitutes the
main goal of our contribution.

After some brief preliminaries on t-norms, we demonstrate the close relationship between dominance between contin-
uous Archimedean t-norms and a generalization of the Mulholland inequality. A short survey on sufficient conditions for
continuous functions which are strictly increasing on the whole domain is followed by appropriate sufficient and neces-
sary conditions in the more general case. This provides the basis for the investigation of dominance between continuous
Archimedean t-norms in the last section.

2. Continuous Archimedean t-norms

We briefly summarize some basic properties of t-norms for a thorough understanding of this paper (see, e.g. [6–10]).

Definition 1. A t-norm T : [0,1]2 → [0,1] is a binary operation on the unit interval that is commutative, associative, increas-
ing and has 1 as neutral element.

Well-known examples of t-norms are the minimum TM , the product TP and the Łukasiewicz t-norm TL defined by
TM(u, v) = min(u, v), TP(u, v) = u · v and TL(u, v) = max(u + v − 1,0).

Since t-norms are just functions from the unit square to the unit interval, their comparison is done pointwisely: T1 � T2
if T1(u, v) � T2(u, v) for all u, v ∈ [0,1], expressed as “T1 is weaker than T2” or “T2 is stronger than T1.” The minimum TM
is the strongest of all t-norms. Furthermore, it holds that TP � TL .

A continuous t-norm T is Archimedean if and only if for all u ∈ ]0,1[ it holds that T (u, u) < u. The class of continuous
Archimedean t-norms can be partitioned into two subclasses: the class of strict t-norms, which are continuous and strictly
increasing, and the class of nilpotent t-norms, which are continuous and fulfill that for each u ∈ ]0,1[ there exists some n ∈ N

such that

T (u, . . . , u︸ ︷︷ ︸
n times

) = 0.

The product TP is strict, whereas the Łukasiewicz t-norm TL is nilpotent.
Note that for a strict t-norm T it holds that T (u, v) > 0 for all u, v ∈ ]0,1], while for a nilpotent t-norm T it holds that

for any u ∈ ]0,1[ there exists some v ∈ ]0,1[ such that T (u, v) = 0 (each u ∈ ]0,1[ is a so-called zero divisor). Therefore, for
a nilpotent t-norm T1 and a strict t-norm T2 it can never hold that T1 � T2.

Of particular interest in the discussion of continuous Archimedean t-norms is the notion of an additive generator.

Definition 2. An additive generator of a continuous Archimedean t-norm T is a continuous, strictly decreasing function
t : [0,1] → [0,∞] which satisfies t(1) = 0 such that for all u, v ∈ [0,1] it holds that

T (u, v) = t(−1)
(
t(u) + t(v)

)
(1)

with

t(−1)(u) = t−1(min
(
t(0), u

))
(2)

the pseudo-inverse of the decreasing function t .

An additive generator is uniquely determined up to a positive multiplicative constant. Any additive generator of a strict
t-norm satisfies t(0) = ∞, while that of a nilpotent t-norm satisfies t(0) < ∞. In the case of strict t-norms, the pseudo-
inverse t(−1) of an additive generator t coincides with its standard inverse t−1. In any case, the following relationships
between an additive generator t and its pseudo-inverse t(−1) hold

t ◦ t(−1)
∣∣
Ran(t) = idRan(t) and t(−1) ◦ t = id[0,1]. (3)

3. Dominance and related inequalities

Just as triangular norms, the dominance relation finds its origin in the field of probabilistic metric spaces [20,22]. It was
originally introduced for associative operations (with common neutral element) on a partially ordered set [20], and has been
further investigated for t-norms [15,17–19,21,24] and aggregation operators [12,14,16]. We state the definition for t-norms
only.

Definition 3. Consider two t-norms T1 and T2. We say that T1 dominates T2 (or T2 is dominated by T1), denoted by
T1 � T2, if for all x, y, u, v ∈ [0,1] it holds that

T1
(
T2(x, y), T2(u, v)

)
� T2

(
T1(x, u), T1(y, v)

)
. (4)
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Note that any t-norm is dominated by itself and by TM . Since all t-norms have neutral element 1, dominance between
two t-norms implies their comparability: T1 � T2 implies T1 � T2. The converse does not hold, not even for strict t-
norms [24]. Since for a nilpotent t-norm T1 and a strict t-norm T2, it cannot hold that T1 � T2, it also cannot hold that
T1 � T2. Therefore, for a continuous Archimedean t-norm T1 and a strict t-norm T2, T1 � T2 implies that also T1 is strict.

The dominance relation between two continuous Archimedean t-norms can be expressed in terms of their generators.
This was shown for strict t-norms in [24] and is generalized below.

Theorem 1. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . Then T1 dominates T2 if
and only if the function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞] fulfills for all a,b, c,d ∈ [0, t2(0)]
h(−1)

(
h(a) + h(c)

) + h(−1)
(
h(b) + h(d)

)
� h(−1)

(
h(a + b) + h(c + d)

)
(5)

with h(−1) : [0,∞] → [0,∞] the pseudo-inverse of the increasing function h, given by h(−1) = t2 ◦ t(−1)
1 .

Proof. The case of two strict t-norms T1 and T2 was treated by Tardiff [24]. Therefore, we suppose that at least one of the
t-norms involved is nilpotent.

Note also that (4) is trivially fulfilled when 0 ∈ {x, y, u, v}. Hence, the verification of (5) can be restricted to a,b, c,d ∈
[0, t2(0)[ only.

(i) Suppose first that T1 � T2. Expressing (4) in terms of generators and applying the decreasing function t2 to both
sides leads to

h(−1)
[
h
(
t2(x) + t2(y)

) + h
(
t2(u) + t2(v)

)]
� t2 ◦ t(−1)

2

[
h(−1)

(
t1(x) + t1(u)

) + h(−1)
(
t1(y) + t1(v)

)]
,

for all x, y, u, v ∈ [0,1]. Consider a,b, c,d ∈ [0, t2(0)], then the continuity of t2 implies the existence of x = t−1
2 (a) = t(−1)

2 (a),

y = t−1
2 (b) = t(−1)

2 (b), u = t−1
2 (c) = t(−1)

2 (c), v = t−1
2 (d) = t(−1)

2 (d). It then follows that

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2

[
h(−1)

(
h(a) + h(c)

) + h(−1)
(
h(b) + h(d)

)]
.

Denote K = h(−1)(h(a) + h(c)) + h(−1)(h(b) + h(d)). If K � t2(0), then

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2 (K ) = t2 ◦ t(−1)
2 ◦ t2(0) = t2(0) � K .

Otherwise, it holds that

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2 (K ) = t2 ◦ t−1
2 (K ) = K .

This shows that (5) is fulfilled for all a,b, c,d ∈ [0, t2(0)].
(ii) Conversely, suppose that h fulfills (5) for all a,b, c,d ∈ [0, t2(0)], then

t2 ◦ t(−1)
1

(
t1 ◦ t(−1)

2 (a) + t1 ◦ t(−1)
2 (c)

) + t2 ◦ t(−1)
1

(
t1 ◦ t(−1)

2 (b) + t1 ◦ t(−1)
2 (d)

)
� t2 ◦ t(−1)

1

(
t1 ◦ t(−1)

2 (a + b) + t1 ◦ t(−1)
2 (c + d)

)
.

Consider x, y, u, v ∈ [0,1] and let a = t2(x), b = t2(y), c = t2(u) and d = t2(v). It then follows that

t2 ◦ t(−1)
1

(
t1(x) + t1(u)

) + t2 ◦ t(−1)
1

(
t1(y) + t1(v)

)
� t2 ◦ t(−1)

1

(
t1 ◦ t(−1)

2

(
t2(x) + t2(y)

) + t1 ◦ t(−1)
2

(
t2(u) + t2(v)

))
.

Applying the decreasing function t(−1)
2 to both sides leads to

T2
(
T1(x, u), T1(y, v)

)
� T1

(
T2(x, y), T2(u, v)

)
.

Hence, T1 dominates T2. �
4. The Mulholland inequality

Using the notations of Theorem 1, if T1 and T2 are strict, then t2(0) = ∞, h is strictly increasing and thus h(−1) = h−1.
Inequality (5) then simplifies to

h−1(h(a) + h(c)
) + h−1(h(b) + h(d)

)
� h−1(h(a + b) + h(c + d)

)
, (6)

for all a,b, c,d ∈ [0,∞[ (the inequality is trivially fulfilled when ∞ ∈ {a,b, c,d}). This inequality is known as the Mulholland
inequality and is a generalization of the Minkowski inequality [13].

It is remarkable that functions h fulfilling (6) have been investigated independently from the context of dominance
[5,13,23,24]. A brief overview of the most important findings is given next.

Proposition 2. (See [13].) Consider a continuous, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h fulfills the
Mulholland inequality (6), then it is convex on ]0,∞[.
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Proposition 3. (See [13].) Consider a continuous, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h is convex on
]0,∞[ and log◦h ◦ exp is convex on ]−∞,∞[, then h fulfills the Mulholland inequality (6).

Proposition 4. (See [24].) Consider a differentiable, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h is convex
on ]0,∞[ and log◦h′ ◦ exp is convex on ]−∞,∞[, then h fulfills the Mulholland inequality (6).

It can be shown that for a continuous function f : [0,∞[ → [0,∞[ such that f (]0,∞[) ⊆ ]0,∞[, it holds that log ◦ f ◦exp
is convex on ]−∞, log(t)[, with t ∈ ]0,∞[, if and only if f fulfills

f (
√

xy ) �
√

f (x) f (y) (7)

for all x, y ∈ ]0, t[. The latter condition is referred to as the geometric convexity of f on ]0, t[ (geo-convexity for short); if
f (0) = 0, then the geo-convexity holds on [0, t[. Moreover, if f is increasing, then the convexity of log◦ f on ]0, t[, called
log-convexity of f , implies its geo-convexity. Jarczyk and Matkowski [5] have investigated the relationship between the
geo-convexity of a function and that of its derivative.

Proposition 5. (See [5].) Consider a differentiable function f : ]0,∞[ → ]0,∞[ such that limx→0 f (x) = 0 and f ′(x) > 0 for all
x ∈ ]0,∞[. If f ′ is geo-convex, then so is f .

Combining the above results leads to the following relationships between the sufficient conditions on h for the fulfillment
of the Mulholland inequality:

h is convex, fulfills h(0) = 0, and . . .

h′ is geo-convex ⇐ h′ is log-convex

⇓
h is geo-convex ⇐ h is log-convex

⇓
h fulfills (6)

5. A generalization of the Mulholland inequality

In this section, we aim at a generalization of the results of Mulholland and Tardiff in order to guarantee their applicability
to the investigation of dominance between two continuous Archimedean t-norms.

5.1. A first sufficient condition

Theorem 6. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0;
(h4) h is convex on ]0, t[;
(h5) h is geo-convex on ]0, t[.

Define the functions g : [0,∞] → [0,∞] and H : [0,∞]2 → [0,∞] by

g(x) :=
{

h−1(x), if x ∈ [0,h(t)],
t, otherwise,

(8)

H(x, y) := g
(
h(x) + h(y)

)
. (9)

Then the following inequality holds for all a,b, c,d ∈ [0,∞]
H(a + b, c + d) � H(a, c) + H(b,d). (10)

Remark 1. Clearly, g is continuous and increasing. Also H is continuous in each argument and increasing. Obviously, it holds
that

H(t, x) = H(x, t) = t, for all x ∈ [0,∞], (11)

H(0, x) = H(x,0) = x, for all x ∈ [0, t]. (12)
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Further, the convexity of h on ]0, t[ is equivalent to the concavity of g on ]0,h(t)[. Since h is increasing and continuous on
[0, t], its convexity on ]0, t[ implies its convexity on [0, t]. As argued before, the geo-convexity of h on ]0, t[ is equivalent to
the convexity of log◦h ◦ exp on ]−∞, log(t)[, which in its turn is equivalent to the concavity of the function log◦ g ◦ exp on
]−∞, log(h(t))[. It is easy to show that in these cases, it also holds that g is concave on ]0,∞[ and log◦ g ◦ exp is concave
on ]−∞,∞[.

Inspired by Mulholland [13], we introduce another function that will be essential in our proof.

Lemma 7. Under the assumptions of Theorem 6, define the function ψ : [0, t] → [0,∞] by

ψ(x) :=
{ h(x)

x , if x > 0,

limy→0+ h(y)
y , if x = 0.

(13)

Then ψ is increasing on [0, t].

Proof. Note that the function ψ is strictly positive on ]0, t] and continuous on [0, t]. Consider 0 < x < x + ε < t , then we
need to show that ψ(x) � ψ(x + ε). Let α = ε

x+ε and β = 1 − α, then the convexity of h on [0, x + ε] implies that

h
(
β(x + ε)

)
� αh(0) + βh(x + ε) = βh(x + ε),

which can be rewritten as h(x) � x
x+ε h(x + ε), and hence ψ(x) � ψ(x + ε). The continuity of ψ then implies that it is

increasing on [0, t]. �
We now turn to the proof of Theorem 6.

Proof of Theorem 6. The proof consists of several cases.

(1) At least one of a,b, c,d belongs to [t,∞].

Since H is increasing, it follows from (11) that H(x, y) = t whenever x � t or y � t . This implies that (10) trivially holds
when one of the arguments is greater than or equal to t .

(2) All of a,b, c,d belong to [0, t[ and a + b < t and c + d < t.

If a = b = 0 or c = d = 0, then (10) holds due to (12). We therefore assume that 0 < a + b as well as 0 < c + d. The proof of
this case is based on the observation that (10) is a consequence of a more general inequality, namely

xψ(a + b) + yψ(c + d) � H(x, y)
h(a + b) + h(c + d)

H(a + b, c + d)
, (14)

for all x, y such that 0 � x � a+b and 0 � y � c+d. Indeed, assume that (14) holds, then expressing it for both (x, y) = (a, c)
and (x, y) = (b,d) and adding side by side leads to

h(a + b) + h(c + d) = aψ(a + b) + cψ(c + d) + bψ(a + b) + dψ(c + d) �
(

H(a, c) + H(b,d)
)h(a + b) + h(c + d)

H(a + b, c + d)
,

which implies (10), since h(a + b) + h(c + d) > 0 and H(a + b, c + d) > 0. We therefore attempt to show (14).
(a) In case x = y = 0, it is trivially fulfilled.
(b) In case x = 0 and y > 0, we need to show that

ψ(c + d) � h(a + b) + h(c + d)

H(a + b, c + d)
.

In case h(a + b) + h(c + d) � h(t), it holds that

h(a + b) + h(c + d)

H(a + b, c + d)
= h(g(h(a + b) + h(c + d)))

H(a + b, c + d)
= ψ

(
H(a + b, c + d)

)
.

Since ψ(c + d) = ψ(H(0, c + d)), the increasingness of H and ψ (see Remark 1 and Lemma 7) imply that ψ(c + d) �
ψ(H(a + b, c + d)) and hence

ψ(c + d) � h(a + b) + h(c + d)
.

H(a + b, c + d)
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In case h(a + b) + h(c + d) > h(t), it holds that H(a + b, c + d) = t = H(t, c + d) and the increasingness of H and ψ imply
again that

ψ(c + d) = ψ
(

H(0, c + d)
)
� ψ

(
H(t, c + d)

) = h(H(t, c + d))

H(t, c + d)
= h(t)

H(a + b, c + d)
<

h(a + b) + h(c + d)

H(a + b, c + d)
.

(c) The case x > 0 and y = 0 is similar to the previous one.
(d) If x > 0, y > 0, and both are such that h(x) + h(y) � h(t), then (14) also trivially holds, since H(x, y) =

H(a + b, c + d) = t , x � a + b, y � c + d and ψ is positive. If h(x) + h(y) < h(t), then we can transform (14) into

xψ(a + b) + yψ(c + d)

H(x, y)
� h(a + b) + h(c + d)

H(a + b, c + d)
= (a + b)ψ(a + b) + (c + d)ψ(c + d)

H(a + b, c + d)
.

It is therefore sufficient to show that the function G : ]0,a + b] × ]0, c + d] → ]0,∞] defined by

G(x, y) := xψ(a + b) + yψ(c + d)

H(x, y)
(15)

attains its maximum at (a + b, c + d). Since h(x) + h(y) < h(t), it holds that H(x, y) = h−1(h(x) + h(y)). This question is
identical to the one positively answered by Mulholland on a subdomain ]0,a + b] × ]0, c + d] of [0,∞[2 [13]. Note that his
way of proving this result initially relies on the existence of the derivative of h, a condition that is later on removed thanks
to the other conditions on h, so that we can conclude that (5) holds whenever all a,b, c,d belong to [0, t[ and a + b < t ,
c + d < t .

(3) All of a,b, c,d belong to [0, t[ and a + b � t or c + d � t.

We first assume that a + b = t and consider the sequence (bn)n∈N with bn := t − a − 1
n . It then holds that a + bn < t , yet

limn→∞ a + bn = a + b = t . However, for any n ∈ N, the previous case implies that

H(a + bn, c + d) � H(a, c) + H(bn,d).

Since H is continuous in each argument, we can further conclude that

H(a + b, c + d) = lim
n→∞ H(a + bn, c + d) � H(a, c) + lim

n→∞ H(bn,d) = H(a, c) + H(b,d).

Next we assume that a + b > t . As a consequence, it holds that

H(a + b, c + d) = H(t, c + d) = H
(
a + (t − a), c + d

) = t

and the increasingness of H implies that

H(a + b, c + d) = H
(
a + (t − a), c + d

)
� H(a, c) + H(t − a,d) � H(a, c) + H(b,d).

The case c + d � t is completely analogous. �
5.2. A second sufficient condition

A careful inspection of the proof of Proposition 5 as provided in [5] shows that it can be generalized as follows.

Lemma 8. Consider a function f : ]0,∞[ → ]0,∞[ with limx→0 f (x) = 0 and such that f is differentiable on [0, t[ with t ∈ ]0,∞[
and f ′(x) > 0 for all x ∈ [0, t]. If f ′ is geo-convex on ]0, t[, then so is f .

Based on this result we can immediately generalize the result of Tardiff [23,24].

Proposition 9. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0;
(h4) h is convex on ]0, t[;
(h6) h is differentiable on ]0, t[ and h′ is geo-convex on ]0, t[.

Define the function g : [0,∞] → [0,∞] by (8) and the function H : [0,∞]2 → [0,∞] by (9). Then the following inequality holds for
all a,b, c,d ∈ [0,∞],

H(a + b, c + d) � H(a, c) + H(b,d).
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5.3. A necessary condition

The convexity of h on ]0,∞[ is a necessary condition for the classical Mulholland inequality to hold, and as such it is
part of each of the known sets of sufficient conditions. A similar observation holds for the generalized Mulholland inequality,
but now the convexity of h on ]0, t[ is a necessary condition.

Proposition 10. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0.

Define the function g : [0,∞] → [0,∞] by (8) and the function H : [0,∞]2 → [0,∞] by (9). If H fulfills (10) for all a,b, c,d ∈ [0,∞],
then h is convex on ]0, t[.

Proof. As the convexity of h on ]0, t[ is equivalent to the concavity of g on ]0,h(t)[, and g is continuous, it suffices to show
that

g

(
x + y

2

)
� 1

2
g(x) + 1

2
g(y),

for all x, y ∈ ]0,h(t)[. Choose arbitrary x, y ∈ ]0,h(t)[ such that x < y and put a = g(x), b = g(
x+y

2 ) − g(x), c = g(
y−x

2 ) and
d = 0. Note that in each of these cases g coincides with h−1 and that a,b, c,d ∈ ]0, t[. We can therefore compute

h(a) + h(c) = x + y

2
,

h(b) + h(d) = h

(
g

(
x + y

2

)
− g(x)

)
,

h(a + b) = x + y

2
,

h(c + d) = y − x

2
.

Since H fulfills (10) it holds that H(a + b, c + d) � H(a, c) + H(b,d), or explicitly

g(y) = g

(
x + y

2
+ y − x

2

)
� g

(
x + y

2

)
+ g

(
x + y

2

)
− g(x) = 2g

(
x + y

2

)
− g(x). �

6. Dominance between continuous Archimedean t-norms

Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 and the corresponding
function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞]. As mentioned in Section 4, if T1 and T2 are strict, then t2(0) = ∞, h is strictly
increasing, h(−1) = h−1 and dominance between T1 and T2 is equivalent to the Mulholland inequality for h. Recall that if
T2 is strict, then T1 � T2 implies that T1 is strict as well. In case T2 is a nilpotent t-norm, T1 might be a strict or nilpotent
t-norm and the parameters of Theorem 6 and Proposition 9 are given by:

(1) If T1 is strict, then h = t1 ◦ t(−1)
2 , g = t2 ◦ t−1

1 = h(−1) , t = t2(0), and h(t) = ∞.

(2) If T1 is nilpotent, then h = t1 ◦ t(−1)
2 , g = t2 ◦ t(−1)

1 = h(−1) , t = t2(0), and h(t) = t1(0).

Note that in any case, h is continuous, strictly increasing on [0, t2(0)] and fulfills h(0) = 0 as well as h(x) = h(t2(0)) = t1(0)

for all x � t2(0). Moreover, it holds that H(x, y) = h(−1)(h(x)+h(y)), in accordance with Theorem 1. As such we can rephrase
Theorem 6 and Proposition 9 as well as Proposition 10 for the dominance between continuous Archimedean t-norms.

Proposition 11. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If the function h =
t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is convex and geo-convex on ]0, t[, then T1 dominates T2 .

Proposition 12. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If the function h =
t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is differentiable and convex on ]0, t2(0)[, and h′ is geo-convex on ]0, t2(0)[, then T1 dominates T2 .

Proposition 13. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If T1 dominates T2 ,
then the function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is convex on ]0, t2(0)[.
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