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For the Ekpyrotic universe, the entropic mechanisms with minimal couplings, which have been used to 
generate nearly scale invariant primordial perturbations, was proved to be unstable. To overcome this 
difficulty, some non-minimal coupling entropic models were proposed. In this paper we extend these 
studies to the cases where all the scalar fields have non-standard kinetic terms. We first prove that in 
these general cases, without non-minimal couplings the entropic models are still unstable. The condition 
for the stability conflicts with the requirement for achieving scale invariant perturbations. Then we study 
the non-minimal coupling models and show that at least for some simple cases these models are stable 
and able to generate the primordial perturbations consistent with current observations.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflationary universe [1] provides not only solutions to the hori-
zon and flatness problems of the hot big bang cosmology but 
also mechanisms to produce the primordial perturbations which 
seed the large scale structure. Recent observations from the Planck 
satellite [2,3] confirmed that the primordial density perturbation 
is adiabatic, nearly scale-invariant and satisfies Gaussian statistics. 
These results are highly consistent with the predictions of the sim-
ple inflation models.

Even though the success of inflation, there exist alternative 
pictures in the literature. One of which is the Ekpyrotic/Cyclic 
model [4]. In the Ekpyrotic model the universe is assumed to 
have experienced a slow contracting phase (Ekpyrotic phase) be-
fore bouncing to the hot expansion. A slow contraction driven by 
stiff matter (the equation of state w > 1) is needed to explain the 
smoothness and flatness of the universe and to suppress the BKL 
anisotropies [5]. Such stiff matter can be modeled by a scalar field 
with a canonical kinetic term and a negative but steep potential, 
for instance the frequently studied model in which the scalar field 
has a negative exponential potential and is minimally coupled to 
the Einstein’s gravity
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S =
∫

d4x
√

g

[
R

2
+ 1

2
∂μφ∂μφ + V 0 exp(−cφ)

]
, (1)

where V 0 and c are positive constants, and we have used the most 
negative signature for the metric and the unit 8πG = 1. This model 
is invariant under the scale transformation gμν → ω2 gμν, φ →
φ + 2(lnω)/c, here ω is independent of the spacetime. So it has 
a scaling solution in which the equation of state is a constant, 
w = c2/3 − 1, which is larger than one if c >

√
6. The produc-

tions of super-Hubble density perturbations are due to the fact that 
during the contraction the Hubble radius was shrinking and the 
quantum vacuum fluctuations created deep inside it were able to 
cross the Hubble radius to outside regions. However, it was shown 
[6] that the single field Ekpyrotic model (1) cannot produce nearly 
scale-invariant density perturbation, the spectrum of the curvature 
perturbation is strongly blue tilted and ruled out by the observa-
tions.

Currently the best way around this problem is the entropic 
mechanism in which multiple fields are introduced. In the en-
tropic mechanism the scalar perturbations during the Ekpyrotic 
phase are dominated by the entropy (or isocurvature) modes. In 
fact the adiabatic mode during this time is not relevant because 
it has a strongly blue tilted spectrum and is suppressed deeply 
at large scales. Some of the entropy perturbations may have scale 
invariant spectra. The adiabatic perturbation seeds the large scale 
structure is regarded as being converted from the scale invariant 
entropy perturbation at some time later than the Ekpyrotic phase. 
Such a conversion will not change the shape of the spectrum. 
A simple entropic model can be constructed by multi canonical 
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and minimally coupled scalar fields, for example the model of dou-
ble fields with similar negative exponential potentials [7],

S =
∫

d4x
√

g

[
R

2
+ 1

2
∂μφ1∂

μφ1 + 1

2
∂μφ2∂

μφ2

+ V 1 exp(−c1φ1) + V 2 exp(−c2φ2)

]
. (2)

This model also has the scale symmetry gμν → ω2 gμν , φ1 →
φ1 + 2(lnω)/c1, φ2 → φ2 + 2(lnω)/c2 and admits the scaling solu-
tion with w = c2/3 − 1, c2 = c2

1c2
2/(c2

1 + c2
2), which is important for 

the slow contraction. It was shown [7] that with this scaling so-
lution, scale-invariant entropy perturbation can be achieved in the 
limit w � 1, this requires both c1 and c2 are large enough, i.e., 
both scalar fields have steep potentials. However this requirement 
brings new difficulties. First it was pointed out in Refs. [8] that 
the scaling solution is unstable, the entropy direction has a tachy-
onic effective potential. Second the steep potentials results in large 
non-Gaussianity during the Ekpyrotic phase [9–12] and may con-
flict with the observations. In all, when confronting these simple 
entropic models with the observational data, we need to fine tune 
the model parameters and the initial conditions at the beginning 
of the Ekpyrotic phase.

To overcome these difficulties, a new entropic mechanism [13]
was proposed in which the second field is massless but its kinetic 
term has a non-minimal coupling to the first field, for example

S =
∫

d4x
√

g

[
R

2
+ 1

2
∂μφ1∂

μφ1 + V 1 exp(−λφ1)

+ 1

2
exp(−αφ1)∂μφ2∂

μφ2

]
. (3)

In this mechanism the first field φ1 dominates the universe and 
drives the Ekpyrotic contraction. The second field φ2 serves as a 
spectator, it is frozen during the Ekpyrotic phase due to the fric-
tion brought by the non-minimal coupling and always represents 
the entropy direction. But its fluctuation (the entropy perturbation) 
gets amplified. Given above exponential potential and exponential 
coupling, the Ekpyrotic phase is realized by the scaling solution 
with w = λ2/3 − 1, the spectator behaves as a massless field living 
in an effective de Sitter space if λ = α, so that its vacuum fluc-
tuation generates the scale-invariant entropy perturbation. Notice 
that when λ = α, the above action (3) is invariant under the scale 
transformation gμν → ω2 gμν , φ1 → φ1 + 2(lnω)/λ, φ2 → ωφ2 + C
for arbitrary constant C . The adiabatic perturbation generated by 
φ1 has a blue spectrum and can be neglected at large scales. Af-
ter the bounce, the scale-invariant entropy perturbation can be 
converted into the scale-invariant adiabatic perturbation by some 
mechanisms such as the curvaton [14] or modulated preheating 
[15–17]. This is similar to the Conformal [18] universe, pseudo-
Conformal universe [19] and the Galileon Genesis [20] (see also the 
slow expansion scenario for different case [21]). Such non-minimal 
coupling mechanism has some advantages compared with the old 
one. First, the scaling solution is stable and we do not need to fine 
tune the initial condition of the Ekpyrotic phase. Second, it was 
proved in Ref. [22] that the non-Gaussianity is small and consis-
tent with current observations. Third, the requirement w � 1 in 
the old entropic mechanism can be relaxed, we only need w > 1
to suppress the anisotropies, this liberates the model buildings. In 
Ref. [23], the mechanism was studied in more general case where 
the exponential potential and exponential coupling function are re-
placed by more general functions, i.e.,

S =
∫

d4x
√

g

[
R + 1

∂μφ1∂
μφ1 + V (φ1)
2 2
+ 1

2
Ω2(φ1)∂μφ2∂

μφ2

]
. (4)

Note that similar mechanism was considered within the curva-
ton scenario [24] and applied to the non-singular bouncing uni-
verse [25]. Other discussions or applications of this non-minimal 
coupling entropic mechanism can be found in Refs. [26–32].

Up to now all the studies focused on the Ekpyrotic models 
where all the scalar fields have the canonical kinetic terms. In 
this paper we will study the entropic mechanism of the Ekpy-
rotic/Cyclic universe in more general cases where the kinetic terms 
of the multi scalar fields have non-standard forms. In cosmology 
the scalar fields with non-standard kinetic terms had been applied 
to the theories of inflation [33] and dark energy [34]. First we will 
show that even with non-standard kinetic terms, the model with 
minimal coupling is still unstable, this means that the conclusion 
of [8] is robust. Then we will discuss the non-minimal coupling 
model with non-standard kinetic terms.

2. Entropic mechanism with minimal couplings

In this section we will generalize the analysis of [8] to the cases 
where the scalar fields have non-standard kinetic terms. For sim-
plifying the analysis, the model what we consider contains two 
fields with minimal couplings

S =
∫

d4x
√

g

[
R

2
+ K1(X1)

φ2
1

+ K2(X2)

φ2
2

]
, (5)

where Xα = 1/2∂μφα∂μφα , α = 1, 2 and Kα only depends on Xα . 
It is invariant under the scale transformation gμν → ω2 gμν , φα →
ωφα . The scalar field with canonical kinetic term and exponential 
potential can be considered as the case where the function Kα has 
a special form, i.e., for the scalar field with

L = Xψ + V 0 exp(−cψ), (6)

this Lagrangian density can be rewritten as

L = (4/c2)(Xφ + V 0)

φ2
(7)

through the field redefinition ψ = (2/c) ln(cφ/2).
In the spatially flat Friedmann–Robertson–Walker (FRW) uni-

verse,

ds2 = a2(η)ημνdxμdxν, (8)

it is not difficult to get the equations of motion including the Fried-
mann equation from the action (5)

φ′′
α

∂ρα

∂ Xα
+ 2Hφ′

α

(
∂ Pα

∂ Xα
− Xα

∂2 Pα

∂ X2
α

)
= 2a2

φα
ρα,

H2 = a2

3
(ρ1 + ρ2), (9)

where the pressure is Pα = Kα/φ2
α , the energy density is ρα =

2Xα(∂ Pα/∂ Xα) − Pα , and the repeated subscripts do not mean the 
summation here. The primes denote the derivatives with respect to 
the conformal time η and H = a′/a is the reduced Hubble param-
eter. Following Ref. [34], we define the variables

xα = √
Ωα ≥ 0, yα = √

Xα ≥ 0, (10)

where Ωα ≡ ρα/(ρ1 + ρ2) is the density parameter, and for the 
two species universe x1 and x2 are not independent,

x2
1 + x2

2 = 1. (11)
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We can choose the three independent variables x1, y1 and y2 and 
rewrite the equations of motion (9) as

dx1

dN
= 3

2
x1

(
1 − x2

1

)
(w2 − w1),

dyα

dN
= σα2

√
6
√

ρ̃αxα − 3K̇α

K̈α
, (12)

where N = ln a is the e-folding number, K̇α = dKα/dyα , ρ̃α =
−Kα + yα K̇α = ραφ2

α . The notation σα = ±1 represents the sign of 
the combination Hφ′

α/φα , we will consider the plus sign for both 
fields for simplicity. This means φ′

α/φα < 0 because H < 0 dur-
ing the Ekpyrotic phase. The equations of state appeared in above 
equations are expressed as

wα = Kα

ρ̃α
, (13)

and only depend on yα . Furthermore, we have the sound speed for 
each field

c2
sα = K̇α

˙̃ρα

= K̇α

yα K̈α

, (14)

which will be useful in the following discussions.

2.1. Scaling solution

Eqs. (12) can be further rewritten as

dx1

dN
= 3

2
x1

(
1 − x2

1

)
(w2 − w1),

dy1

dN
= 3

2

1 − w1

ṙ1
(x1 − r1),

dy2

dN
= 3

2

1 − w2

ṙ2
(x2 − r2), (15)

here following Ref. [34] we defined the function rα as

rα(yα) = 3K̇α

2
√

6
√

ρ̃α

, (16)

so that its derivative can be expressed as

ṙα = drα
dyα

= 3K̈α

4
√

6
√

ρ̃α

(1 − wα). (17)

There are several critical points obtained from Eqs. (15) for 
which dx1/dN = 0, and dyα/dN = 0. But only the following one 
is of interest for the Ekpyrotic phase,

w1(y10) = w2(y20) = w0, x10 = r1(y10)

≡ r10, x20 = r2(y20) ≡ r20, (18)

where w0, r10 and r20 are constants and of course we have r2
10 +

r2
20 = 1. This critical point corresponds to the solution where both 

fields have the same equation of state and their energy densities 
scales with the same rate. Ekpyrotic phase requires w0 > 1. The 
next step is to investigate whether this solution is stable. To do 
that we should make small perturbations around this solution and 
solve the linear equations for the perturbations. In terms of the 
relation

dwα

dyα
= 2(1 + wα)

1 − wα

ṙα
rα

(
c2

sα − wα

)
, (19)

we obtain the following linear equations around the scaling solu-
tion (18),
d

dN

(
δx1
δy1
δy2

)
=

( 0 B C
D E 0
F 0 E

)(
δx1
δy1
δy2

)
(20)

where the elements of the coefficient matrix are listed below

B = −3(1 + w0)ṙ10

1 − w0
r2

20

(
c2

s1 − w0
)
,

C = 3(1 + w0)ṙ20

1 − w0
r10r20

(
c2

s2 − w0
)
,

D = 3

2

1 − w0

ṙ10
, E = 3

2
(w0 − 1),

F = −3

2

r10

r20

1 − w0

ṙ20
. (21)

The eigenvalues of the coefficient matrix can be obtained by solv-
ing the following equation∣∣∣∣∣
−e B C
D E − e 0
F 0 E − e

∣∣∣∣∣ = 0. (22)

We find that this equation has a very simple form

(e − E)
[
e2 − Ee − (B D + C F )

] = 0. (23)

It has three roots

e = E,
E ± √

E2 + 4(B D + C F )

2
. (24)

In the contracting universe, N decreases, stability of the scaling 
solution requires the real parts of all the eigenvalues are positive. 
So this requires

E > 0 and B D + C F < 0. (25)

In terms of the expressions (21), one obtains the stability condition

1 < w0 < r2
20c2

s1 + r2
10c2

s2, (26)

where we have used r2
10 + r2

20 = 1. This means that given a specific 
model (5), only if the above requirements are satisfied the solution 
(18) is an attractor to support the Ekpyrotic phase.

2.2. Entropy perturbation

Now we consider the primordial perturbations generated in this 
Ekpyrotic model. For this double field model, the perturbations 
are decomposed into the adiabatic and entropy modes. During the 
Ekpyrotic phase the adiabatic perturbation is suppressed on large 
scales, so we will focus on the entropy perturbation. Because the 
whole system has no anisotropic stress at the linear level, it is con-
venience for us to use the conformal Newtonian gauge

ds2 = a2[(1 + 2Φ)dη2 − (1 − 2Φ)δi jdxidx j]. (27)

The linear equations from the energy and momentum conservation 
laws have the following forms [35,36]

δ′
α = (1 + wα)

(
3Φ ′ − k2 vα

) + 3H
(

wα − c2
sα

)
δα

+ 9H2(1 + wα)
(
c2

aα − c2
sα

)
vα,

v ′
α = H

(
3c2

sα − 1
)

vα + c2
sα

1 + wα
δα + Φ, (28)

where vα = δφα/φ′
α and another sound speed (dubbed adiabatic 

sound speed in the literature) c2
aα = p′

α/ρ ′
α = wα − w ′

α/[3H(1 +
wα)] is introduced, which is different from the true sound speed 
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c2
sα for the scalar fields. With these two equations, we may get a 

second order equation

v ′′
α =

[
H

(
3c2

aα − 1
) + 2

c′
sα

csα

]
v ′
α +

[
−c2

sαk2 + 2H
c′

sα

csα

(
1 − 3c2

sα

)
+ 3c2

sα

(
H′ −H2) + 3H2c2

aα −H′ + 6Hcsαc′
sα

]
vα

+ 3c2
sα

(
Φ ′ +HΦ

) + Φ ′ −
(

2
c′

sα

csα
+ 3Hc2

aα

)
Φ. (29)

Consider the scaling solution (18) in which c2
sα are constants and 

w1 = w2 = w0 = const., and the adiabatic sound speed c2
aα =

wα = w0, the above equation has a rather simple form

v ′′
α = H(3w0 − 1)v ′

α + [−c2
sαk2 + 3c2

sα

(
H′ −H2)

+ 3H2 w0 −H′]vα + 3c2
sα

(
Φ ′ +HΦ

)
+ Φ ′ − 3Hw0Φ. (30)

The projections of the field perturbations vα to the adiabatic di-
rection and entropy direction have been done for multi canonical 
scalar fields in Ref. [37]. The generalizations to the non-standard 
scalar fields were discussed, for instances, in Ref. [38]. For the 
models considered in this paper we need only make a slight gener-
alization of the method developed in [37]. The adiabatic direction 
σ at the background is defined to be

σ ′ 2

a2
= 2X1 P X1 + 2X2 P X2 = (ρ1 + P1) + (ρ2 + P2) = ρ + P ,

(31)

where P Xα means the derivative of the total pressure with respect 
to Xα . So

σ ′ 2 = φ′ 2
1 P X1 + φ′ 2

2 P X2 , and

σ ′ = cos θ
√

P X1φ
′
1 + sin θ

√
P X2φ

′
2, (32)

where the angle is

cos θ = φ′
1

√
P X1

σ ′ =
√

ρ1 + P1

ρ + P
,

sin θ = φ′
2

√
P X2

σ ′ =
√

ρ2 + P2

ρ + P
, (33)

both fields are required to satisfy the null energy condition so that 
P Xα ≥ 0. The adiabatic perturbation represents the perturbation 
along the background trajectory

δσ = cos θ
√

P X1δφ1 + sin θ
√

P X2δφ2, (34)

hence

δσ

σ ′ = cos2 θ v1 + sin2 θ v2. (35)

The entropy direction is orthogonal to the adiabatic direction, so 
the entropy perturbation is

δs = cos θ
√

P X2δφ2 − sin θ
√

P X1δφ1 = σ ′ cos θ sin θ(v2 − v1).

(36)

One can check that the entropy perturbation is automatically 
gauge-invariant.

In terms of the projections and the perturbed Einstein equation

Φ ′ +HΦ = −(
H′ −H2)(cos2 θ v1 + sin2 θ v2

)
, (37)
we can obtain the equation of motion for the entropy perturbation 
from Eq. (30)(

δs

σ ′

)′′
= H(3w0 − 1)

(
δs

σ ′

)′
+ [

3H2 w0 −H′

+ (
3H′ − 3H2 − k2)c2

s

]( δs

σ ′

)

+ sin θ cos θk2(c2
s1 − c2

s2

)(δσ

σ ′

)
, (38)

where we have defined the total sound speed

c2
s ≡ c2

s1 sin2 θ + c2
s2 cos2 θ. (39)

We see that even for constant θ , the entropy perturbation is not 
decoupled from the adiabatic perturbation due to the difference of 
the sound speeds of the two scalar fields. With the scaling solu-
tion, we have the following expressions1

H = 2

1 + 3w0

1

η
, H′ = − 2

1 + 3w0

1

η2
, (40)

with these equations and through the definition

u = a
1−3w0

2
δs

σ ′ , (41)

Eq. (38) can be rewritten as

u′′ +
[

c2
s k2 − 2

η2

(
1 − 9c2

s (1 + w0)

(1 + 3w0)2

)]
u

= a
1−3w0

2 sin θ cos θk2(c2
s1 − c2

s2

) δσ

σ ′ . (42)

As mentioned before, the adiabatic perturbation generated dur-
ing the Ekpyrotic phase can be neglected. With this approximation, 
the equation for the entropy perturbation becomes homogeneous, 
and the adiabatic perturbation required by the structure forma-
tion is converted from the entropy perturbation. From the left 
hand side of Eq. (42) we know that the scale invariance of the 
power spectrum of the entropy perturbation can be only achieved 
if 9c2

s (1 + w0)/(1 + 3w0)
2 = 0. Slow roll inflation is one possibility 

because 1 + w0 	 0. Naively there is another possibility in which 
w0 → +∞, however if we take this limit we find that

9c2
s (1 + w0)

(1 + 3w0)2
= 9

c2
s

w0

1 + 1
w0

9 + 6
w0

+ 1
w2

0

→ c2
s

w0
. (43)

For the model we considered in this section, the total sound speed 
is

c2
s = c2

s1 sin2 θ + c2
s2 cos2 θ

= c2
s1

ρ2 + P2

ρ + P
+ c2

s2
ρ1 + P1

ρ + P
= c2

s1r2
20 + c2

s2r2
10. (44)

The stability condition (26) for the scaling solution obtained pre-
viously requires c2

s > w0 and conflicts with the requirement of the 
scale-invariance, i.e., c2

s /w0 → 0. Hence in the Ekpyrotic universe, 
even considering non-standard kinetic terms the minimal coupling 
entropic models are not stable when the requirement of scale in-
variant entropy perturbation is imposed.

1 We have assumed the conformal time η is negative during the Ekpyrotic phase.
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3. The entropic mechanism with non-minimal couplings

Now in this section we will present some considerations on the 
entropic mechanism with non-minimal couplings. This is a gener-
alization of the model proposed in Ref. [13] to the cases where 
the scalar fields have non-standard kinetic terms. Roughly the idea 
is that a non-canonical field with the Lagrangian L = K1(X1)/φ

2
1

dominating the Ekpyrotic universe will render the background evo-
lution satisfying the scaling solution (40) with constant w1 and X1. 
Here the function K1(X1) is assumed to contain a constant term 
so that it includes the normal Ekpyrotic model with a canonical 
kinetic term and an exponential potential as discussed in the first 
paragraph of Section 2. From the Friedmann equation one can ob-
tain φ1 = −haη, where the constant h > 0 if we assume φ1 > 0. 
Within this background, a massless field φ2 non-minimally cou-
pled to φ1 through the action

Sφ2 =
∫

d4x
√

g
1

φ2
1

X2 (45)

will feel that its fluctuations live in an effective de Sitter space, i.e., 
the quadratic action for the perturbation δφ2 is

Sδφ2 = 1

2

∫
d4x

1

h2η2
ημν∂μδφ2∂νδφ2, (46)

where ημν is the Minkowski metric and h can be considered as the 
effective Hubble constant. So that δφ2 will obtain a scale invariant 
power spectrum P1/2

δφ2
= h/2π from the initial Bunch–Davies vac-

uum. This is very similar to the Conformal and pseudo-Conformal 
universe [18–20].

More specifically we will study the following model

S =
∫

d4x
√

g

[
R

2
+ K1(X1)

φ2
1

+ K2(X2)

φα
1

]
, (47)

where the spectator φ2 is shift symmetric but its kinetic term 
is non-minimally coupled to φ1. The parameter α is assumed to 
be positive, if α = 2 the scale symmetry is recovered. More gen-
erally one can think that K2 also depends on higher derivative 
terms like �φ2. In this paper we will not consider this possibil-
ity and leave this to the future work. With the same philosophy 
in Ref. [13], we require the second field has the frozen back-
ground X2 = 0, and both its pressure P2 = K2/φ

α
1 and energy 

density ρ2 = (2X2/φ
α
1 )(dK2/dX2) − K2/φ

α
1 are sufficiently small 

within this background. The first derivative at the frozen point 
(dK2/dX2)|X2=0 must be positive to avoid ghost instability, we will 
denote it as K0. The universe was contracting with the scaling so-
lution

X1 = const., w1 = const., H = 2

1 + 3w1

1

η
, (48)

where w1 only depends on X1 and should be larger than one so 
that the contraction is slow. With these considerations, the back-
ground equation of motion of φ2 is

φ′′
2 +

(
2H− α

φ′
1

φ1

)
φ′

2 = 0. (49)

As mentioned before, φ′
1/φ1 < 0, in terms of the scaling solution 

and the Friedmann equation we obtain that the above equation is

φ′′
2 +

(
α

√
6X1 w1

K1
− 2

)
(−H)φ′

2 = 0. (50)

Because H < 0, one can see that the background of φ2 is in-
deed frozen at φ′ = 0 as long as α

√
6X1 w1/K1 > 2. Since φ2 is 
2
a spectator, it has no contribution to the energy budget, whether 
the scaling solution is stable only depends on the model of φ1. 
In terms of the similar method used in previous section, one can 
show that the scaling solution is indeed stable as long as w1 > 1
and r1 = 1 can be satisfied. The perturbation of the spectator is al-
ways along the entropy direction. The projection angle (33) of the 
perturbations θ = 0 and the entropy perturbation defined in (36)
is δs = √

dK2/dX2φ
−α/2
1 δφ2.

It is straight forwardly to obtain the following quadratic action 
of the perturbation of the spectator δφ2 around the background,

Sδφ2 = K0

2

∫
d4x

a2

φα
1

[
δφ′ 2

2 − c2
s2∂iδφ2∂iδφ2

]
, (51)

where the sound speed is

c2
s2 = K0

K0 + 2X2(d2 K2/dX2
2)|X2=0

= 1. (52)

In terms of the relations φ1 ∝ −aη and H = 2/[(1 + 3w1)η], the 
quadratic action can be rewritten as

Sδφ2 = 1

2

∫
d4xq2ημν∂μδφ2∂νδφ2 (53)

with

q ∝ (−η)1/2−ν and
1

2
− ν = 4 − 3(1 + w1)α

2(1 + 3w1)
. (54)

Defining u = qδφ2, it is easy to find that the Fourier transformation 
of u satisfies the equation

u′′
k +

(
k2 − q′′

q

)
uk = u′′

k +
(

k2 − ν2 − 1/4

η2

)
uk = 0. (55)

With the selection of the Bunch–Davies vacuum at early time 
when k|η| � 1, the solution to the above equation is

uk =
√

−π

2
ηH (1)

ν (−kη), (56)

where H (1)
ν is the first kind Hankel function. At late time when 

the perturbation mode is outside the Hubble radius, i.e., k|η| � 1, 
the mode function asymptotes uk ∼ (−η)1/2(−kη)−ν . So that the 
power spectrum for δφ2 is

Pδφ2 ∼ k3
∣∣∣∣uk

q

∣∣∣∣
2

∼ k3−2ν, (57)

and does not depend on time. Hence the spectral index is

ns = 4 − 2ν = 1 + 3(1 + w1)

1 + 3w1
(2 − α). (58)

At later time this entropy perturbation will convert into the adia-
batic perturbation which was constrained by the observations. The 
conversion will not change the shape of the spectrum. The exact 
scale invariance corresponds to α = 2. Currently the observations 
show that the spectrum has a tiny red tilt [2], this requires the 
parameter α is larger than 2 slightly. Different from the minimal 
coupling case, here the scale invariance has nothing to do with 
the stability condition for the scaling solution, and also we do not 
need the constraint w1 � 1.

Another issue concerns the non-Gaussianities of the primordial 
perturbations. Currently the Planck’s result [3] show that the adia-
batic perturbation has negligible non-Gaussianities. In the model 
considered here, the adiabatic perturbation is converted from 
super-horizon entropy perturbation, so only the local type non-
Gaussianity is significant [39]. The local non-Gaussianity produced 
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in the models with non-standard kinetic terms was studied exten-
sively in the literature. For example in the inflation scenario the 
non-Gaussianity is estimated to be at the order of f N L ∼ O(1/c2

s2)

[39], here f N L is the estimator of non-Gassianity, for the local 
shape it is defined in

ζ = ζG + 3

5
f N L

[
ζ 2

G − 〈
ζ 2

G

〉]
, (59)

where ζ is the curvature perturbation in the real space and ζG is 
the Gaussian curvature perturbation. In our case even though the 
Ekpyrotic phase is quite different from inflation, the fluctuations 
of the spectator field live in an effective de Sitter space, we will 
obtain the same estimation on the level of the non-Gaussianities. 
As we mentioned before c2

s2 = 1 if K2 only depends on X2, so the 
local non-Gaussianity is at most at the order of f N L ∼ O(1). Fur-
thermore, in our case the background of the spectator is frozen 
X2 = 0, the cubic action of δφ2 vanishes and the bispectrum of δφ2
are expected to be negligibly small. Anyway during the Ekpyrotic 
phase no large non-Gaussianity is produced. Another origin of the 
non-Gaussianity in the adiabatic perturbation is the nonlinear pro-
cess which converts the entropy perturbation to the adiabatic per-
turbation after the Ekpyrotic phase. This is model dependent. How-
ever, as long as the conversion is efficient, the resulted non-Gas-
sianity is expected to be at the order of f N L ∼ O (1) as argued in 
[22,23]. So in these models the primordial non-Gaussianities are 
controllable.

A simple example of the non-minimal coupling models can 
be constructed by a polynomial function for the kinetic term of 
the spectator, i.e., K2 = ∑N

n=1 cn Xn
2 . Because K0 = (dK2/dX2)|X2=0

should be positive,2 the coefficient of the first term should be pos-
itive, c1 > 0. Due to the frozen background X2 = 0, the terms with 
higher powers will not affect the background evolution and the 
linear perturbation. Other examples include K2 ∼ exp(λX2) − 1
and K2 ∼ ln(1 + λX2) with λ > 0. One can show that in these 
simple cases we always obtain the sound speed c2

s2 = 1. More com-
plicated models, for example K2 = K2(X2, �φ2), deserve further 
explorations.

All the cases discussed above base on the scaling solution in 
which the equation of state of the universe is a constant during 
the Ekpyrotic phase. This is guaranteed by the function 1/φ2

1 mul-
tiplying to K1(X1) and K2(X2) in the Lagrangian density. Similar 
to the generalization which has been done for the models with 
canonical kinetic terms [23], one can perform a further generaliza-
tion of the non-minimal coupling models studied in this paper to 
the case where the equation of state of the dominating field is not 
a constant. The models have the following action

S =
∫

d4x
√

g

[
R

2
+ P (φ1, X1) + Ω2(φ1)K2(X2)

]
, (60)

where the two functions P (φ1, X1) and Ω(φ1) are arbitrary. As a 
simpler example, we may focus on the models with P (φ1, X1) =
f (φ1)K1(X1).3 So the next purpose is to construct the functions 
f (φ1) and Ω(φ1). The specific construction is model-dependent, 
but we can get the general idea following Ref. [23]. First we should 
have Ω ′/Ω + H > 0 to freeze the spectator φ2, and the scale-
invariance of the entropy perturbation requires aΩ ∝ 1/(−η). As 
in Ref. [23], given the form of time dependence of the fast-roll pa-
rameter ε(η) = (3/2)(1 + w1) we can obtain the functional form 

2 A negative K0 will lead to ghost instability. If K0 = 0 there will be no dynamical 
equation for the perturbation δφ2.

3 One can see that this type of models includes the normal canonical model. 
Given the Lagrangian density of a scalar field ψ with a canonical kinetic term 
L = Xψ − V (ψ), it can be rewritten as L = f (φ)(Xφ − C) through the field re-
definition φ = ∫ √

C/V (ψ)dψ , here f (φ) = V (ψ)/C and C is a constant.
of the conformal Hubble parameter H(η) through the relation 
ε = 1 −H′/H2. Then the scale factor a(η) is obtained by

a(η) = a(ηend)exp

( ηend∫
η

Hdη

)
, (61)

where ηend is the conformal time when the Ekpyrotic phase ends, 
it is convenient to set ηend = −1. After that one gets the time 
dependence of Ω through the requirement Ω(η) ∝ 1/[−a(η)η]. 
Furthermore we can use the relation

w1 = 2ε

3
− 1 = K1

−K1 + 2X1(dK1/dX1)
, (62)

and the Friedmann equation

H2 = a2

3
f (φ1)

(
−K1 + 2X1

dK1

dX1

)
, (63)

to obtain the forms of f (η) and the field φ1(η) as functions of 
time. This process is model-dependent, it depends on the spe-
cific form of the function K1(X1). Once this is known we can 
invert φ1(η) to get η(φ1) and then substitute it into the ob-
tained f (η) and Ω(η) to get the expressions f (φ1) and Ω(φ1). 
With little modification, this construction works equally well for 
the case where the spectral index of the entropy perturbation 
differs from the exact scale-invariance by a constant tilt. After 
the constructions of f (φ1) and Ω(φ1), one must check whether 
the solution (φ1, φ2 = const.) is stable. But this is again model-
dependent.

4. Conclusions

The Ekpyrotic universe as an alternative to inflation should 
provide not only solutions to the problems of the big bang cos-
mology but also a mechanism to generate primordial perturba-
tion for structure formation. Currently the best way to generate 
the primordial perturbations consistent with observations is the 
entropic mechanism. In cases of canonical kinetic terms, the en-
tropic models with minimal couplings encountered the difficulties 
of instability [8] and possible large non-Gaussianities. These dif-
ficulties can be overcome in the models with non-minimal cou-
plings [13,23,24]. In this paper we extended these studies to the 
cases of non-standard kinetic terms. The field models with non-
standard kinetic terms have extensive applications in cosmology 
and are expected from fundamental theories. We first proved 
that in the framework of non-standard kinetic terms, the min-
imal coupling entropic mechanisms are still unstable, the con-
dition of stability conflicts with the requirement for scale in-
variant perturbations. Then we discussed the non-minimal cou-
pling entropic mechanisms. We showed that for some simple 
cases the non-minimal coupling models can be stable and pro-
duce nearly scale invariant and Gaussian primordial perturba-
tions.
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