

available at www.sciencedirect.com

ScienceDirect

EJC SUPPLEMENTS 10, NO. 3 (2012) 67-69

Selective internal radiation therapy for neuroendocrine liver metastases

Lourens Bester*

Interventional Radiology, St. Vincent's Hospital, University of New South Wales, Sydney, Australia

ARTICLE INFO

Keywords: Radioembolisation Liver-directed therapy Selective Internal Radiation Therapy 90Y Yttrium-90 Liver tumours Advanced neuroendocrine tumours NETs

1. Introduction

Liver metastases

Selective internal radiation therapy (SIRT) with yttrium-90 (90Y) microspheres is a promising treatment option for unresectable neuroendocrine tumour liver metastases (NETLM). Liver metastases, which present in 46-93% of patients at time of diagnosis depending of origin of the primary tumour, are a cause of significant mortality and morbidity. For this reason, patients with NETLM require optimal clinical management, using the combined skills of a multidisciplinary team.

The options available can be categorised as follows:

- · Surgical, with or without ablation, e.g. RFA
- Medical, e.g. somatostatin analogues and/or chemo-
- Nuclear medicine, e.g. Peptide Receptor Radionuclide Therapy (PRRT)

E-mail addresses: lbester@stvincents.com.au; lourensb@bigpond.net.au (L. Bester).

- Liver-directed therapies, e.g.
- (a) Transcatheter Arterial bland Embolisation (TAE),
- (b) Transcatheter Arterial Chemoembolisation (TACE)
 - o Conventional TACE
 - o Drug eluting beads (DEB)
- (c) Selective Internal Radiation Therapy (SIRT) with 90Y microspheres

2. Treatment approaches

The treatment approach to NETLM is dictated by the pattern of disease within the liver and beyond.

2.1. Liver metastases without extra-hepatic spread

Morphologically, there are three different patterns of liver metastases:

- (A) Simple Pattern: The metastases are confined to one liver lobe or limited to two adjacent segments. This "simple pattern" occurs in 20-25% of patients and is generally amenable to either:
 - (a) Surgery minor or anatomical resection with or without ablation, e.g. RFA, OR

^{*}Correspondence: Interventional Radiology, St. Vincent's Hospital, University of New South Wales, 390 Victoria Street, Darlinghurst, Sydney 2010, Australia.

Investigator	n	Therapy	ORR	SD	Symp.	PFS	Median survival
Kennedy ²	148 ^a	SIR-Spheres ^b	63.2%	22.7%		nr	70 mo
King ³	34	SIR-Spheres ^b + 5-FU	50%	14.7%	55%	nr	59% at 35.2 mo
Saxena ⁴	48	SIR-Spheres ^b	54%	23%	nr	nr	35 mo
Cao ⁵	58ª	SIR-Spheres ^b + 5-FU	39.2%	27.4%	nr	nr	36 mo
Jahangir ⁶	73 ^a	SIR-Spheres ^b	nr	nr	nr	10.6 mo	55.2 mo
Rhee ⁷	42	⁹⁰ Y microspheres	[92-94%] ^c		nr	nr	22 ^d & 28 ^b mo
Meranze ⁸	10	SIR-Spheres ^b	40%	60%	nr	nr	70% at 28 mo
Jakobs ⁹	25 ^a	SIR-Spheres ^b	20.8%	75%	92%	nr	96% at 12 mo
McGrath ¹⁰	26 ^a	SIR-Spheres ^b	58.3% ^e	33% ^e	2 of 3	nr	69.1% at 17 mo
Kennedy ¹¹	18 a	SIR-Spheres ^b	89% ^e	nr	nr	nr	89% at 27 mo
Coldwell ¹²	84ª	⁹⁰ Y microspheres	67%	33%	80%	nr	nr
Kalinowski ¹	9	SIR-Spheres ^b	67%	33%	↑ QoL	11 mo	57% at 36 mo
Murthy ¹³	8ª	SIR-Spheres ^b	12.5%	50%	nr	nr	14 mo
Paprottka ¹⁴	42 ^a	SIR-Spheres ^b	22.5%	75%	94.7%	nr	95% at 16.2 mo

- (b) Liver-directed therapy if the patient is not fit for surgery.
- (B) Complex Pattern: One major lesion but with smaller satellite lesions contra-laterally. This "complex bilobar pattern" occurs in 10–15% of the cases. Patients are treated with either:
 - (a) Surgery major one-step or two-step resection/ ablation, OR
 - (b) Liver-directed therapy if patients are not fit for surgery.
- (C) Diffuse Pattern: There are diffuse, multifocal liver metastases. This "diffuse pattern" occurs in 60–70% of the cases. Patients with this pattern of disease are unresectable and are generally treated with liverdirected therapy.

2.2. Liver metastases with extra-hepatic spread

Inoperable NETLM with extra-hepatic spread should initially be treated using non-surgical methods (e.g. biotherapy, chemotherapy, PRRT etc.) regardless of the extent of liver disease, and may be combined with liver-directed therapy such as SIRT, as appropriate. Surgical debulking may also be undertaken for selected candidates.

3. SIRT

The following conclusions can be drawn from the literature on SIRT in NETLM (see Table 1):

• Sufficient evidence exists to support the safety and effectiveness of SIRT for unresectable NETLM.

- Statistical significance was achieved when determining overall survival, suggesting that locoregional control of NETLM with SIRT may be of paramount importance for overall survival.
- The incidence of adverse events with SIRT is low, without evidence of treatment-related grade 4 events or radiation-induced liver disease (RILD).
- Overall survival was related to: the extent of tumour involvement, the presence of extrahepatic disease at the time of SIRT, good radiological tumour response (CR+PR), and histological grade of the tumour.

4. Conclusions

SIRT with ⁹⁰Y microspheres is a promising treatment option for unresectable NETLM. Patients with low hepatic tumour burden, well-differentiated tumour and no extrahepatic disease are the best candidates for SIRT.

Conflict of interest statement

The author has received research funding and has received honoraria from SIRTEX MEDICAL Australia and COVIDIEN Australia.

REFERENCES

 Kalinowski M, Dressler M, König A, et al. Selective internal radiotherapy with yttrium-90 microspheres for hepatic metastatic neuroendocrine tumors:

- A prospective single center study. *Digestion* 2009;**79**:137–42.
- 2. Kennedy AS, Dezarn W, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin ⁹⁰Y-microspheres: Early results in 148 patients. *Am J Clin Oncol* 2008;**31**:271–9.
- 3. King J, Quinn R, Glenn D, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. *Cancer* 2008;113:921–9.
- 4. Saxena A, Chua TC, Bester L, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg 2010;251:910–6.
- Cao CQ, Yan TD, Bester L, et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. Br J Surg 2010;97:537–43.
- 6. Jahangir KS, Majoria R, Hagan J, et al. Hepatic artery radioembolization (HARE) in the management of progressive metastatic neuroendocrine tumors (NETs): A survival and biochemical response analysis in geriatric (G) and young (Y) populations. ASCO Annual Meeting; J Clin Oncol 2011;20(Suppl):Abstract e19727.
- Rhee TK, Lewandowski RJ, Liu DM, et al. ⁹⁰Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg 2008;247:1029–35.
- 8. Meranze SG, Bream PR, Grzeszczak E, et al. Phase II clinical trial of yttrium-90 resin microspheres for the treatment of metastatic neuroendocrine tumor. Society of Interventional Radiology 2007; Abstract 422.

- Jakobs TF, Paprottka P, Hoffmann R, et al. 90 Yttrium-radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases. Society of Interventional Radiology (SIR) 35th Annual Scientific Meeting. J Vasc Interven Radiol 2010; 21 (Suppl):S14 Abstract 30.
- McGrath S, Kennedy A, Dezarn W. Resin 90Ymicrosphere radioembolization is effective in controlling hepatic metastases from neuroendocrine primary cancers. Emerging Trends in Radioembolization using Microspheres: Third Annual Clinical Symposium 2007.
- Kennedy A, Dezarn W, McNeillie P, et al. Fractionation, dose selection, and response of hepatic metastases of neuroendocrine tumors after ⁹⁰Y-microsphere brachytherapy. Annual American Brachytherapy Society Meeting 2006; Abstract.
- Coldwell D, Nutting C, Kennedy A. Use of yttrium-90 SIR-Spheres to treat unresectable metastatic neuroendocrine tumors in the liver. World Congress of Gastrointestinal Cancer 2005; Abstract O-002.
- 13. Murthy R, Kamat P, Nunez R, et al. Yttrium-90 microsphere radioembolotherapy of hepatic metastatic neuroendocrine carcinomas after hepatic arterial embolization. J Vasc Interv Radiol 2008;19:145–51.
- 14. Paprottka PM, Hoffmann RT, Haug A, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol 2012;35: 334–42.