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Abstract

Two questions about the existence of structured matrices with given linesums and given
zero–nonzero patterns are settled: when is there a symmetric matrix and when is there a skew-
symmetric matrix? The solutions use some ideas from prior treatment of the analogous prob-
lems without structural constraints, but the current results require new conditions and new
methodology.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

An (unsigned)patternis anm-by-n arrayP with entries from{0, ∗}. A realm-by-
n matrix A belongs toP if the nonzero entries ofA appear precisely in the positions
of the∗’s in P.

In [3], a complete solution to the following general problem was given.

(G): Given the m-by-n pattern P, for which pairs of vectorsr ∈ Rm andc ∈ Rn does
there exist a real matrix A, belonging to P, whose row sum vector is r and whose
column sum vector is c?
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We note that analogous problems involving sign patterns, rather than zero–non-
zero patterns, have been studied explicitly in [2], and “weak” versions have appeared
among more general results in [1]. The methods used in those studies differ signifi-
cantly from those in [3] and herein.

If the matrixA of (G) exists, we say thatP strongly allowsrow sumsr and column
sumsc. An m-by-n patternP̃ = (p̃ij ) is subordinateto them-by-n patternP = (pij )

if pij = 0 impliesp̃ij = 0. We say that the patternP weakly allowsrow sumsr and
column sumsc if there is a patternP̃ , subordinate toP, that strongly allows row
sumsr and column sumsc. The (much easier) weak version (G′) of problem (G)
was also resolved in [3]. While [1] likely implies the solution of (G′), it seems that
it encompasses neither the strong problem (G), which was the focus of [3], nor the
strong, structured problems that are the focus of the present work.

It is natural to ask questions analogous to (G) and (G′) when additional structural
conditions are imposed on the realizing matrixA. For example, consider the problem

(S):Given a symmetric n-by-n patternP, for which n-by-1vectors r does there exist a
symmetricn-by-n matrix A belonging to P whose row sum vector(and hence column
sum vector) is r? There is, of course, a weak version (S′) of (S) in whichA is only
required to belong to a pattern subordinate toP.

If a structured version of (G) or (G′) has a solution, it is, of course, a solution
to the unstructured version. It may happen, as we shall see, that the unstructured
version has a solution when the structured version does not. In this case, we seek
additional conditions on the data that guarantee, and are guaranteed by, the existence
of a structured solution. One structure of interest in this paper is symmetry, and we
observe the following. It is not difficult to see that if the problem (G′) has a solution
for the data: symmetricP, r, andc = r, then (S′) has a solution for the sameP and
r; the converse is, of course, trivial. IfA is a solution of (G′), then 1

2(A + AT) is
a solution to (S′). However, because of the possibility of cancellation, it is much
less clear that (G) is so related to (S). In fact, the existence of a solution to (G) for
symmetricP, r, andc = r, does notimply the solvability of (S) for the sameP and
r, as shown by the following example.

Example. Let

P =

0 ∗ ∗

∗ 0 ∗
∗ ∗ 0




andr = [1, 1, 2]T. Then, according to [3], problem (G) withc = r has a solution; in
particular,

A =



0 1
2

1
2

−1
2 0 3

2
3
2

1
2 0



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is a solution for these data. However, becausea12 = −a21, 1
2(A + AT) is not a so-

lution to (S) for these data, and, in fact, it is an easy calculation to see that (S) has
no solution for these data. In every solutionA to (G), a12 = −a21. The solvability
of (S), then, must entail conditions on the pairP andr in addition to the conditions
given in [3] for the solvability of (G). It is a main purpose here to discover and prove
the additional conditions that ensure solvability of (S).

Another natural structural variant upon (G) is the problem (K) in whichA is asked
to be skew-symmetric; thusP must again be symmetric (and with a zero diagonal),
c = −r, and the sum of the entries ofr must be 0. This variant is also treated in the
present work. In both cases we are able to use some of the techniques developed in
[3], but some new ones are required as well; in particular, while the bipartite graph
of P facilitated solution of (G), viewing the problem via the usual undirected graph
of P becomes natural for (S) and (K). This, however, requires some special care in
the case of certain instances of the problem that were previously “reducible”.

Finally, similar to [3], we note that, for given totally nonzerox and y in Rn,
the seemingly more general question of when there is a symmetric or skew-sym-
metric A belonging toP such thatAx = y is actually a special case of our results
here.

2. Background and preliminaries

LetP = (pij ) be anm-by-n pattern. Thebipartite graph of Pis the bipartite graph
G with m “row” vertices r1, r2, . . . , rm, n “column” verticesc1, c2, . . . , cn, and an
edge joiningri to cj if and only if pij = ∗. The patternP is connectedprovided the
graphG is connected.

Thevariable patternof P is them-by-n arrayX obtained fromP by replacing each
* with a subscripted variablexj . The j’s run from 1 tok, no subscript is used twice,
and the numbering proceeds from top to bottom, and within each row from left to
right.

For any positive integerq, we denote byq the set{1, 2, . . . , q}. If M is anym-
by-n array (matrix, pattern, variable pattern) andα ⊂ m andβ ⊂ n, thenM(α, β)

denotes the subarray lying in the rows indexed byα and the columns indexed byβ.
The symbolαc will denote the complement ofα in m, andβc will be the complement
of β in n. M(j) will denote thejth column ofM, andM(j) will denote thejth row
of M.

Definition. The variablexi (or, alternatively, the * inP that corresponds toxi) is
a single star ofX (or P ) with respect toα andβ providedα ⊂ m, β ⊂ n, xi is the
only variable appearing inX(α, βc) and no variables appear inX(αc, β).

The following theorem [3, Theorem 9] is the solution to the general problem (G)
of Section 1.
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Theorem. Let P be an m-by-n connected pattern and supposer ∈ Rm andc ∈ Rn,

with
∑m

j=1 rj = ∑n
k=1 ck. The following are equivalent:

(1) P strongly allows a matrix with row sums r and column sums c.

(2) If P has a single star with respect toα andβ, then
∑

j∈α rj /= ∑
j∈β cj .

Here and throughout the paper, we agree that the sum on the right is 0 ifβ is
empty.

For the problem (S), with which this paper deals, the patternP is n-by-n and
symmetric.

Definition. If P is a symmetricn-by-n pattern, the undirected graph ofP is the
graphH with vertices 1, 2, . . . , n and an (undirected) edge joiningi to j if and only
if pij = pji = ∗.

It can easily be checked thatP is connected (i.e. the bipartite graphG of P is
connected) if and only ifH is connected and contains a cycle of odd edge length
(i.e., an “odd cycle”).

If the m-by-n patternP has bipartite graphG that is not connected, thenP is
permutationequivalent(Q = SPT with SandT permutation matrices) to the direct
sum of connected principal subpatterns. The existence of a solution to (G) is invariant
under permutation equivalence (with the sum vectorsr andc properly permuted).
Thus if (G) is solved for connected patterns, it is easy to solve (G) forP by consider-
ing problems on connected subpatterns. For this reason, results in [3] are stated only
for connected patterns.

The existence of a solution to the symmetric problem (S) is not invariant under
permutation equivalence (symmetry is lost), so we may lose generality by assum-
ing a nonconnectedP to be a direct sum. The existence of a solution to (S) is,
however, invariant under permutationsimilarity (Q = STPS with S a permutation
matrix). Suppose, then, thatP is square and symmetric with bipartite graphG and
undirected graphH. If H is not connected, thenG is not connected and, furthermore,
P is permutation similar to a direct sum of principal subpatterns. Thus we may with-
out loss of generality always assumeH is connected. In the next section, Theorem 2
deals with the case thatP is connected; that is,H is connected and contains an odd
cycle. Theorem 11 considers the case thatP is not connected, butH is, so thatP
is not permutation similar to a direct sum. We have found no simple statement that
combines the two results.

3. The symmetric problem

In considering the symmetric problem (S), it is convenient to define the variable
pattern differently, and to define a “coefficient matrix” ofP differently than was done
in [3]. For purposes of this paper, we make the following definitions.
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Let P be a symmetricn-by-n pattern. Thesymmetric variable pattern of Pis the
n-by-n arrayX obtained fromP by replacing all *’s that are on or above the main
diagonal with variablesxi , numbering from top to bottom and within each row from
left to right, and then replacing each * that is below the main diagonal with the
variable that appears already in the symmetrically placed position.

For example, if

P =



0 ∗ ∗ 0
∗ 0 ∗ 0
∗ ∗ 0 ∗
0 0 ∗ ∗


 ,

then

X =



0 x1 x2 0
x1 0 x3 0
x2 x3 0 x4
0 0 x4 x5


 .

Setting the row sums ofX equal to the entries inr yields a linear system that
has a totally nonzero solution (i.e., a solution in which noxi is 0) if and only if
P allows a symmetric matrix with row sum vectorr. If k is the number of distinct
variables inX, the n-by-k coefficient matrixC = (cij ) of this system is called the
symmetric coefficient matrix of P. We note thatcij = 1 if xj appears in theith row
of X, andcij = 0 otherwise. Ifxs appears in rowsi andj of X, thenC(s) = ei + ej ;
if xs appears as theith diagonal entry inX, thenC(s) = ei . In any case, we label the
edge inH joining vertexi and vertexj with xs . We observe that no two columns of
C are equal.

If there is a symmetric matrixA ∈ P with row sum vectorr, then by [3, Theorem
9] it is necessary that

∑
j∈α rj /= ∑

j∈β rj wheneverP has a single star with respect
toα ⊂ n andβ ⊂ n. An additional necessary condition is illustrated by the following
example:

Let

P =
[
P11 P12
P21 0

]
,

in whichP11 is square, has diagonal entries 0, and contains exactly two stars (neces-
sarily symmetrically placed). Suppose thatP allows a symmetric matrix

A =
[
A11 A12
A21 0

]
,

in whichA11 has the nonzero numbera in the two star positions ofP11, and suppose
the row sum vector ofA is r. Let S denote the sum of the entries inA12, which is
equal to the sum of the entries inA21. If A11 hask rows, then

k∑
i=1

ri = 2a + S /= S =
n∑

i=k+1

ri .

This example shows the necessity of condition (ii) in Theorem 2.
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Definition 1. Let σ ⊂ n. We say thatxi is a double star ofX (or of P) with respect
toσ providedX(σ, σ ) contains the variablexi in two positions and contains no other
variables, andX(σ c, σ c) contains no variables at all.

Theorem 2. Suppose P is an n-by-n connected symmetric pattern and r is inRn.
Then there is a symmetric matrix A in P with row sum vector r if and only if the
following two conditions hold:
(i) If P has a single star with respect toα ⊂ n andβ ⊂ n, then

∑
j∈α rj /= ∑

j∈β rj .
(ii) If P has a double star with respect toσ ⊂ n, then

∑
j∈σ rj /= ∑

j∈σ c rj .

The proof of Theorem 2 requires several lemmas. Throughout the rest of this
section, we assume thatP is a connected symmetricn-by-n pattern,X is its symmetric
variable pattern,H is its undirected graph, andC is its n-by-k symmetric coefficient
matrix.

Lemma 3. Supposexs is an edge in H that lies on a closed path in H that traverses
xs only once, and that has even edge length. If C′ is obtained from the coefficient
matrix C of P by deleting thesth column, thenrank(C′) = rank(C).

Proof. Let s1 = s, and let the closed path be{vt1, xs1, vt2, . . . , vt2w , xs2w , vt1}, so
thatsj /= s1 for j = 2, 3, . . . ,2w. We have

C(s1)= et1 + et2

= (et2 + et3) − (et3 + et4) + (et4 + et5) − · · · + (et2w + et1)

= C(s2) − C(s3) + C(s4) − · · · + C(s2w).

Note that the subscript on the firstti in each parenthesis is even if and only if
that parenthesis is preceded by a+. Hence the last parenthesis is preceded by a+.
HenceC(s1) is a linear combination of the other columns inC, and so rank(C′) =
rank(C). �

Lemma 4. Suppose M is an odd cycle in H, andxs is an edge in H that lies on a
cycle D in H, but does not lie on the cycle M. If C′ is obtained from the symmetric
coefficient matrix C by deleting the sth column, thenrank(C′) = rank(C).

Proof. If D has even length, the conclusion follows by Lemma 3. SupposeD has
odd length.

If M andD have a common vertexvt , consider the closed path that starts atvt ,
traverses the cycleD, then traverses the cycleM, ending atvt . This closed path
has even edge length and traversesxs exactly once, so the conclusion follows from
Lemma 3.
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If M andD do not have a common vertex, there are verticesvt1 of M andvt2 of
D and a pathp from vt1 to vt2 that shares no edges with eitherM or D. In this case,
the path starting atvt1 and followingp, D, p−, andM is a closed path of even edge
length that traversesxs exactly once, so the conclusion follows from Lemma 3.�

Lemma 5. Supposexs is an edge in H incident with a vertex v of degree one. IfC′
is obtained from C by deleting thesth column, thenrank(C′) = rank(C) − 1.

Proof. Rowv of C has 1 in thesth position and 0’s elsewhere, soC(s) is not a linear
combination of the other columns ofC. �

Lemma 6. The rank of the symmetric coefficient matrix C of P is n.

Proof. SinceP is connected,H is connected and contains a cycleM of odd lengths.
Remove fromH an edge that lies on a cycle inH but does not lie onM (if any). Then
remove an edge from the resulting graph that lies on a cycle, but does not lie onM.
Continue this process untilM is the only cycle. The resulting graph,H ′, is connected,
and consists of thes-cycleM, n − s vertices not inM, andn − s edges not inM (more
edges would imply another cycle; fewer would violate connectedness). LetC′ be the
matrix obtained fromC by deleting the columns corresponding to the edges deleted
from H. By Lemma 4, rank(C′) = rank(C). Now further reduceH ′ by removing
consecutively edges incident to vertices of degree one, untilM, together withn − s

isolated vertices, is obtained. Each edge removal corresonds to a deletion of a column
from C′ which, by Lemma 5, reduces the rank by 1. Call the resulting matrixCM .
Sincen − s edges are removed, rank(CM) = rank(C′) − (n − s) = rank(C) − (n −
s). It remains to show that rank(CM) = s, so thats = rank(C) − (n − s); that is,
rank(C) = n.

CM is the symmetric coefficient matrix of ann-by-n symmetric patternPM (ob-
tained fromP by replacing stars with 0’s as edges ofH are removed) whose graph is
thes-cycleM together withn − s isolated vertices. We may assume the symmetric

variable pattern forPM is of the form
[
XM

0

]
, where

XM =




0 x1 0 0 · · · 0 xs

x1 0 x2 0 · · · 0 0

0 x2 0 x3 · · · 0 0

· · ·
· · ·
· · ·

0 0 0 0 · · · 0 xs−1

xs 0 0 0 · · · xs−1 0




.
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Thus the nonzero rows ofCM form thes-by-smatrix

C′
M =




1 0 0 0 · · · 0 1
1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0

· · ·
· · ·
· · ·

0 0 0 0 · · · 1 0
0 0 0 0 · · · 1 1



.

Expanding det(C′
M) by the first row (remember thats is odd), we find det(C′

M) = 2,
so rank(CM) = rank(C′

M) = s, and the lemma is established.�

Lemma 7. If eT
i ∈ RS(C), then there is a positive numberz ∈ {1, 2} and subsetsκ

andλ of n such thatκ ∩ λ = φ and

zeT
i =

∑
j∈κ

C(j) −
∑
j∈λ

C(j).

Proof. Recall thatC is a 0,1 matrix and each column has either one or two 1’s. Also,
no two columns ofC are equal, and rank(C) = n.

Suppose that the unique representation ofeT
i as a linear combination of the rows

of C is

eT
i =

n∑
j=1

yjC(j), yj ’s in R.

We first suppose thatα is the only value ofj for which cji = 1. We construct
the linear combination, and note that, by its uniqueness, all of the choices in the
following construction are forced.

The coefficientyα must be 1; that is, the sequential construction starts with 1C(α).
If there are any 1’s in this vector other than the one in positioni, each must be
“removed” by adding−1 times the only other row that has a 1 in the same column.
This creates a 0 in that position, and the addition of multiples of any new rows will
not change that 0. When all of the 1’s other than that in theith position have been
removed, there may be−1’s in positions that previously had 0. At this point each
nonzero entry other than theith is either−1 or −2. But note that−2 cannot occur,
since it could not be removed by the addition of more terms to the combination.
Each−1 must be removed by adding 1 times the only other row with a 1 in that
position. This other row will not be one that has appeared before in the construction,
and no positions that have been changed from 1 to 0 will be affected. As before, 2
cannot occur in the vector, so all nonzero entries are now 1. If the combination thus
far constructed is noteT

i , it is because there are some 1’s in positions other than the
ith, and we continue the construction. Since all these choices have been forced, and
since the desired linear combination must exist, we will at some point arrive ateT

i ,
and all coefficients used will have been 1 or−1, so the result is obtained withz = 1.
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Now suppose there are two values ofj, α andβ, for which cji = 1. If either of
yα or yβ is 0, we proceed as before to construct the unique linear combination and
find z = 1. We are left with the caseyαyβ /= 0 andyα + yβ = 1. Our construction
of the linear combination begins withyαC(α) + yβC(β). This vector has a 1 in the
ith position, but is noteT

i , since if it were, rowsα andβ of C would be multiples of
each other and we would have rank(C) < n, which is impossible by Lemma 6. If, for
somes /= i, thesth entry wereyα + yβ , theith andsth columns ofC would be equal.
Thus each nonzero entry inyαC(α) + yβC(β), other than the 1 in theith position, is
eitheryα or yβ . We continue the construction by removing eachyα by adding−yα
times a new row to the combination, and then removing any−yα ’s, and so forth as
before. There results a linear combination with 1 in theith position and each other
nonzero position containing either±yβ or ±(yα − yβ). Here we have used the fact
that the absence of duplicate columns inC guarantees that no position other than the
ith can contain±(yα + yβ). We continue by removing any±yβ ’s, leaving only 0’s
and, possibly,±(yα − yβ)’s. There are now two possiblities:
(i) If now some entry is±(yα − yβ), then, since all such entries must be 0, we have

yα = yβ = 1
2, and our construction is complete. In this case, the lemma is proved

with z = 2.
(ii) If, on the other hand, all entries other than theith are 0, we have

eT
i =

∑
j∈A

yαC(j) +
∑
j∈B

yβC(j) +
∑
j∈D

(−yα)C(j) +
∑
j∈E

(−yβ)C(j),

whereA, B, D, andE are pairwise disjoint subsets ofN. We can now reverse the roles
of α andβ to obtain

eT
i =

∑
j∈A

yβC(j) +
∑
j∈B

yαC(j) +
∑
j∈D

(−yβ)C(j) +
∑
j∈E

(−yα)C(j).

SinceyαC(α) + yβC(β) /= eT
i , one ofA, B, D, andE contains an index other than

α andβ. If γ is such an index, the uniqueness of the coefficient ofC(γ ) (because
rank(C) = n) in the expression foreT

i implies thatyα = yβ = 1
2, so againz = 2 and

the lemma is proved. �

Possibility (i) in the proof is illustrated by the symmetric variable pattern

X =




0 x1 x2 x3
x1 0 x4 x5
x2 x4 0 0
x3 x5 0 0


 .

whose undirected graph is connected and contains two 3-cycles. The symmetric co-
efficient matrix is

C =




1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1



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and applying the construction given in the proof, we obtain

eT
1 = yαC(1) + yβC(2) − yαC(3) − yβC(4)

= [yα + yβ 0 yα − yβ yβ − yα 0].
We have not found a connected symmetric variable pattern that illustrates possi-

bility (ii), and we suspect that none exists.

Lemma 8. If eT
i ∈ RS(C), thenxi is either a single star or a double star for P.

Proof. By Lemma 7,zeT
i = ∑

j∈κ C(j) − ∑
j∈λ C(j) with z ∈ {1, 2}, whereκ ∩ λ =

φ andκ ∪ λ ⊂ n. Thus for 1� s � k,

ds ≡
∑
j∈κ

cjs −
∑
j∈λ

cjs =
{
z > 0 if s = i,

0 otherwise.

Note that for eachs, there are either one or two values ofj such thatcjs = 1, and
cjs = 0 otherwise. It follows thatdi is either 1 or 2, so the variablexi appears in
one or two rows ofX, each of which is indexed inκ. Hencexi appears in one or
two positions inX(κ, κ). If in one position, it is on the diagonal ofX, and if in two
positions, they are not on the diagonal.

If 1 � s � k ands /= i, thends = 0, so one of the following is true:
(i) xs lies in two rows ofX, one indexed inκ and one inλ. In this case,xs appears

once inX(κ, λ) and once inX(λ, κ).
(ii) Any appearance ofxs in X occurs in a row indexed in neitherκ norλ, so eachxs

appears inX((κ ∪ λ)c, (κ ∪ λ)c).
Thus, up to permutation similarity, we have

X =

 Y U 0
UT 0 0
0 0 Z


 ,

whereY = X(κ, κ), U = X(κ, λ), andZ = X((κ ∪ λ)c, (κ ∪ λ)c). If κ ∪ λ /= n,
thenX is a direct sum and is not connected. Hence

X =
[
Y U

UT 0

]
.

If xi appears only once (on the diagonal ofY), xi is a single star ofP with respect
to α = κ andβ = λ. If xi appears twice (in nondiagonal positions inY), thenxi is a
double star ofP with respect toσ = κ. �

We note that the following converse of Lemma 8 can be established. We state it
here without proof, since it is not needed in our exposition.

Lemma 9. If xi is either a single star or a double star of P, theneT
i ∈ RS(C).
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Proof of Theorem 2. Suppose first that there is a symmetric matrix inP with row
sum vectorr. Then (i) holds by [3, Theorem 9], and (ii) holds by an easy extension
of the argument preceding Definition 1.

Now suppose that (i) and (ii) hold. LetC be the symmetric coefficient matrix of
P. We must show that the equationCx = r has a totally nonzero solutionx ∈ Rk.
Let E = {i : 1 � i � k, eT

i ∈ RS(C)}. By [3, Lemma 6], there is au ∈ Rk such that
Cu = 0 andui = 0 if and only if i ∈ E. By our Lemma 6, the equationCx = r has
a solutionv.

We claim now thatvi /= 0 for i ∈ E. let A be the real matrix obtained fromX by
replacing eachxj with vj , j = 1, 2, . . . , k. ThenA has a pattern subordinate toP,
andA has row and column sumsr. If i ∈ E, then by Lemma 8,xi is either a single
star with respect to someα, β ⊂ n, or xi is a double star ofP with respect to some
σ ⊂ n.

If xi is a single star with respect toα andβ, thenapq = 0 for all but one choice
of (p, q) with p ∈ α andq ∈ βc, and for that one choice,apq = vi . Furthermore,
apq = 0 for all p ∈ αc andq ∈ β. Hence

∑
j∈α rj =

∑
j∈α

n∑
q=1

ajq

=
∑
j∈α

∑
q∈β

ajq + vi

=
∑
q∈β

∑
j∈α

ajq + vi

=
∑
q∈β

n∑
j=1

ajq + vi

=
∑
q∈β

rq + vi .

Thusvi = ∑
j∈α rj − ∑

j∈β rj /= 0.
If xi is a double star with respect toσ , thenapq = 0 for all but two choices of

(p, q) with p andq in σ , and for those two choices,apq = vi . Furthermore,apq = 0
for all p andq in σ c. Hence

∑
j∈σ rj =

∑
j∈σ

n∑
q=1

ajq

=
∑
j∈σ

∑
q∈σ

ajq +
∑
j∈σ

∑
q∈σ c

ajq

= 2vi +
∑
j∈σ

∑
q∈σ c

ajq
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= 2vi +
∑
q∈σ c

∑
j∈σ

ajq

= 2vi +
∑
q∈σ c

n∑
j=1

ajq

= 2vi +
∑
q∈σ c

rq .

Thus

vi = 1

2


∑
j∈σ

rj −
∑
j∈σ c

rj


 /= 0,

and the claim is established.
We now chooset ∈ R so thattui + vi /= 0 for 1 � i � k andi /∈ E, and the vector

tu + v is a totally nonzero solution ofCx = r, so Theorem 2 is established.�

We observe that statements (i) and (ii) in Theorem 2 are independent. The con-
nected pattern

P =

0 ∗ ∗

∗ 0 ∗
∗ ∗ 0


 with r =


1

2
3




satisfies (i) but not (ii). The connected pattern

P =




0 0 0 ∗ ∗
0 0 ∗ ∗ 0
0 ∗ 0 ∗ 0
∗ ∗ ∗ 0 0
∗ 0 0 0 0


 with r =




1
1
1
1
1




satisfies (ii) but not (i).
We consider now the case thatH is connected, but does not contain an odd cycle.

ThenP is not connected, and is not permutation similar to a direct sum. In this case,
H is bipartite, and there is a unique partition{π, πc} of the vertices{1, 2, . . . , n} of
H such that each edge inH connects a vertex inπ to one inπc, we will call {π, πc}
thebipartition of P . Clearly,P(π, π) = P(πc, πc) = 0. For Theorem 11, we need
the following additional lemma.

Lemma 10. Suppose H is connected, but does not contain an odd cycle. Let{π, πc}
be the bipartition of P, andσ ⊂ n. Then P has a double star with respect toσ if and
only ifP(π, πc) has a single star with respect toσ ∩ π andσ c ∩ πc. (Here the rows
and columns ofP(π, πc) retain the indexing from P.)
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Proof. By permutation similarity, we may assume thatπ = {1, 2, . . . , t} with t < n.
A further permutation similarity will bring the rows and columns originally indexed
by σ into contiguous positions. SinceP(σ, σ ) /= 0,σ intersects bothπ andπc. Thus
we may assume without loss of generality that

P =




0 0 ‖ U S

0 0 ‖ Q V

= = = = =
UT QT ‖ 0 0
ST V T ‖ 0 0




in which the indicated partition picturesπ with P(π, π) = P(πc, πc) = 0 and

P(π, πc) =
[
U S

Q V

]
,

andP(σ, σ ) is the central block[
0 Q

QT 0

]
.

If P has a double star with respect toσ , the blocks labelledQ andQT each contain
exactly one star, and the blocks labelledSandST are 0. Clearly, then, the star inQ
is a single star ofP(π, πc) with respect toσ ∩ π andσ c ∩ πc.

If P(π, πc) has a single star with respect toσ ∩ π andσ c ∩ πc, thenQ contains
exactly one star andS is 0. By the symmetry ofP, QT contains exactly one star and
ST is 0, soP has a double star with respect toσ . �

Theorem 11. Suppose P is an n-by-n symmetric pattern and r is inRn. Suppose
further that the undirected graph H of P is connected, but does not contain an odd
cycle. Let{π, πc} be the bipartition of P. Then there is a symmetric matrix A in P
with row sum vector r if and only if the following two conditions hold:
(i)

∑
j∈π rj = ∑

j∈πc rj .

(ii) If P has a double star with respect toσ ⊂ n, then
∑

j∈σ∩π rj /= ∑
j∈σ c∩πc rj .

Proof. Let rπ denote the vector of entries inr indexed byπ , andrπc the vector of
entries inr indexed byπc. Since symmetry of a matrix is invariant under permutation
similarity, we may assumeP has the structure shown in the proof of the Lemma 10.
It is then clear that there is a symmetricA ∈ P with row sumsr if and only if there
is a matrix

B ∈ P(π, πc) =
[
U S

Q V

]

with row sumsrπ and column sumsrπc. We note that the bipartite graph ofP(π, πc)

is the undirected graphH of P, and as such is connected. Hence by [3, Theorem 9]
and Lemma 10, there is such a matrixB if and only if (i) and (ii) hold. �
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We observe that, under the hypotheses of Theorem 11, (i) and (ii) imply that∑
j∈α rj /= ∑

j∈β rj wheneverP has a single star with respect toα ⊂ n andβ ⊂ n.
Thus, (see Theorem 2), the necessity of the latter condition does not depend on the
absence of an odd cycle inH.

4. The skew-symmetric problem

We are given ann-by-n symmetric patternP with zero diagonal, and a vectorr in
Rn, the sum of whose entries is 0. We seek necessary and sufficient conditions on
P andr that there exist a skew-symmetric matrix inP with row sum vectorr (and
consequently column sum vector−r). Of course if such a matrix exists, then by [3,
Theorem 9] it is necessary that

∑
j∈α rj /= ∑

j∈β(−rj ) wheneverP has a single star
for α ⊂ n andβ ⊂ n. That an additional condition is necessary is illustrated by the
following example:

P =




0 ∗ ∗ 0 0 0
∗ 0 ∗ 0 0 0
∗ ∗ 0 ∗ 0 0
0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 ∗
0 0 0 ∗ ∗ 0



, r =




2
−4
2
2

−4
2



.

The matrix

A =




0 1 1 0 0 0
−3 0 −1 0 0 0
1 3 0 −2 0 0
0 0 −2 0 3 1
0 0 0 −1 0 −3
0 0 0 1 1 0




belongs toP and has row sumsr and column sums−r. However, ifB is any matrix
in P with row sumsr and column sums−r, we compare the sum of the first three
rows ofB with the sum of its first three columns, and see that the 3,4 entry and the
4,3 entry must be equal and nonzero. ThusP allows no skew-symmetric matrix with
row sum vectorr.

We note that, in the undirected graphH of P, the edge joining 3 and 4 is a “cut
edge” separating vertices 1, 2, and 3 from vertices 4, 5, and 6. We also note that the
failure of P to contain a skew-symmetric matrix with row sumsr follows from the
fact thatr1 + r2 + r3 = 0 (and hencer4 + r5 + r6 = 0). These observations moti-
vate the following solution to the skew-symmetric problem. IfH has a cut edgew
adjacent to a vertexp, thenVp will denote the set of vertices in the component of
H − w that containsp.
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Theorem 12. Suppose P is an n-by-n symmetric pattern with zero diagonal, r is
a vector inRn the sum of whose entries is0, and the undirected graph H of P is
connected. Then there is a skew-symmetric matrix in P with row sum vector r if and
only if the following two conditions hold:

(i) If P has a single star with respect toα ⊂ n and β ⊂ n, then
∑

j∈α rj /=∑
j∈β(−rj ).

(ii) If H has a cut edge that is adjacent to vertex p, then
∑

t∈Vp rt /= 0.

Our proof strategy is to find a matrixA in P with row sumsr and column sums−r

such that12(A − AT) is in P. We need the following lemmas. We assume throughout
this section thatP is a symmetricn-by-n pattern with a zero diagonal,r is in Rn, the
sum of the entries inr is 0, and the undirected graphH of P is connected.

Lemma 13. Suppose H has a cut edge joining vertices p and q, andA = (aij ) is
any matrix in P with row sum vector r and column sum vector−r. Thenapq − aqp =
2

∑
t∈Vp rt .

Proof. SinceH has a cut edge joining verticesp andq, we may use permutation
similarity to assume without loss of generality thatA has the form

A =
[
B C

CT D

]
,

whereC has exactly one nonzero entry, which lies in rowp and columnq of A, B
is s-by-s, andVp = {1, 2, . . . , s}. Let Sdenote the sum of the entries inB. Adding
all the entries inB andC, we obtain

∑
t∈Vp rt = S + apq . Adding all the entries in

B andCT, we obtain
∑

t∈Vp(−rt ) = S + aqp. Subtracting these equations yields the
result. �

Lemma 14. Suppose A is in P and has row sum vector r and column sum vector−r.

Suppose also thatapq = aqp /= 0, and that the edge in H joining p and q is not a cut
edge of H. Then there is a B in P with row sum vector r and column sum vector−r

such thatbpq /= bqp andaij /= aji impliesbij /= bji .

Proof. Since the edge joiningp and q is not a cut edge, it lies on a cycle inH.
Let the vertices of such a cycle bep1, p2, . . . , ps , wherep1 = ps = p, p2 = q, and
pi /= pj unless{i, j} = {1, s}. LetC = (cij ) be then-by-n matrix defined by

cij =



1 if i = pt andj = pt+1 with 1 � t < s,

−1 if i = pt+1 andj = pt with 1 � t < s,

0 otherwise.

Then all linesums ofC are 0, so for any numbert, the matrixB = A + tC has row
sum vectorr and column sum vector−r. If t /= 0, thenbpq /= bqp. Furthermore,
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there are only finitely many choices oft that would produce a 0 inB whereA is
nonzero, and only finitely many choices oft that would producebij = bji where
aij /= aji . Hence we may selectt /= 0 so thatB establishes the lemma.�

Proof of Theorem 12. Suppose there is a skew-symmetricA in P with row sum
vectorr. Then (i) follows from [3, Theorem 9], and (ii) follows from Lemma 13.

Now suppose (i) and (ii) hold. (i) implies the existence of a matrixA = (aij ) in
P with row sum vectorr and column sum vector−r. Let 1� p, q � n, and sup-
poseapq /= 0. Letw be the edge inH joining p to q. If w is a cut edge inH, (ii)
together with Lemma 13 implies thatapq − aqp /= 0. If w is not a cut edge and
apq − aqp = 0, then by Lemma 14 we may perturbA to makeapq − aqp /= 0 without
leavingP and without creating any new instances ofaij − aji = 0. We repeat this
perturbation process for allp, q for which apq /= 0 andapq − aqp = 0, and arrive
eventually at a matrixA in P with row sum vectorr, column sum vector−r, and
aij − aji /= 0 wheneveraij /= 0. It is then easy to check that the skew-symmetric
matrix 1

2(A − AT) is in P and has row sum vectorr. �

5. Corollaries involving the equation Ax = y

Theorems 2, 11, and 12 give conditions under which the equationAe = r has a
solutionA in a symmetric patternP, whereedenotes the vector of all 1’s inRn. Easy
corollaries solve the seemingly more general problemAx = y as follows. We retain
the notation of the previous sections.

Theorem 15. Suppose P is an n-by-n connected symmetric pattern. Let x and y
be vectors inRn with x totally nonzero. Then there is a symmetric matrix A in P
satisfyingAx = y if and only if the following two conditions hold:
(i) If P has a single star with respect toα ⊂ n and β ⊂ n, then

∑
j∈α xjyj /=∑

j∈β xjyj .
(ii) If P has a double star with respect toσ ⊂ n, then

∑
j∈σ xj yj /= ∑

j∈σ c xjyj .

Theorem 16. Suppose P is a symmetric n-by-n pattern whose undirected graph H
is connected but does not contain an odd cycle, so that H is bipartite. Let{π, πc} be
the bipartition of P. Suppose x and y are vectors inRn with x totally nonzero. Then
there is a symmetric matrix A in P satisfyingAx = y if and only if the following two
conditions hold:
(i)

∑
i∈π xiyi = ∑

j∈πc xjyj .

(ii) If P has a double star with respect toσ ⊂n, then
∑

i∈σ∩π xiyi /=
∑

j∈σ c∩πc xjyj .

Theorem 17. Suppose P is a symmetric n-by-n pattern with zero diagonal and x
and y are vectors inRn with x totally nonzero, and the undirected graph H of P is
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connected. Then there is a skew-symmetric matrix A in P satisfyingAx = y if and
only if the following three conditions hold:

(i)
∑n

j=1 xjyj = 0.
(ii) If P has a single star with respect toα ⊂ n and β ⊂ n, then

∑
j∈α xjyj /=∑

j∈β(−xjyj ).

(iii) If the undirected graph H of P has a cut edge that is adjacent to vertex p, then∑
t∈Vp xtyt /= 0.

Theorems 15–17 are easily proved by applying Theorems 2, 11, and 12 (resp.) to
the matrixDxADx , whereDx denotes the diagonal matrix with diagonalx.

Acknowledgements

We wish to point out that there is a typographical error in the statement of
Theorem 11 in [3]. The inequality in part (2) of that statement should read:

∑
j∈α

ujyj /=
∑
k∈β

vkxk.
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