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Abstract

Two questions about the existence of structured matrices with given linesums and given
zero—nonzero patterns are settled: when is there a symmetric matrix and when is there a skew-
symmetric matrix? The solutions use some ideas from prior treatment of the analogous prob-
lems without structural constraints, but the current results require new conditions and new
methodology.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

An (unsigned)atternis anm-by-n arrayP with entries from{0, x}. A realm-by-
n matrix A belongs taP if the nonzero entries o appear precisely in the positions
of thex'sin P.

In [3], a complete solution to the following general problem was given.

(G): Given the m-by-n pattern,FPor which pairs of vectors € R™ andc € R” does
there exist a real matrix Abelonging to P whose row sum vector is r and whose
column sum vector ist
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We note that analogous problems involving sign patterns, rather than zero—non-
zero patterns, have been studied explicitly in [2], and “weak” versions have appeared
among more general results in [1]. The methods used in those studies differ signifi-
cantly from those in [3] and herein.

If the matrixA of (G) exists, we say th& strongly allowsow sums and column
sumsc. An m-by-n patternP = (pi;) is subordinateto them-by-n patternP = (p;;)
if p;j =0impliesp;; = 0. We say that the pattefiweakly allowsow sumsr and
column sumst if there is a pattern?, subordinate td®, that strongly allows row
sumsr and column sums. The (much easier) weak version’J®f problem (G)
was also resolved in [3]. While [1] likely implies the solution of jGt seems that
it encompasses neither the strong problem (G), which was the focus of [3], nor the
strong, structured problems that are the focus of the present work.

It is natural to ask questions analogous to (G) and When additional structural
conditions are imposed on the realizing ma#ki¥x-or example, consider the problem

(S): Given a symmetric n-by-n pattefh for which n-by1 vectors r does there exist a
symmetria-by-n matrix A belonging to P whose row sum vec¢tord hence column
sum vectoris r? There is, of course, a weak versior)(8f (S) in whichA is only
required to belong to a pattern subordinat®to

If a structured version of (G) or (has a solution, it is, of course, a solution
to the unstructured version. It may happen, as we shall see, that the unstructured
version has a solution when the structured version does not. In this case, we seek
additional conditions on the data that guarantee, and are guaranteed by, the existence
of a structured solution. One structure of interest in this paper is symmetry, and we
observe the following. It is not difficult to see that if the probleni)(as a solution
for the data: symmetriP, r, andc = r, then (3) has a solution for the sanieand
r; the converse is, of course, trivial. X is a solution of (G, then%(A + AT is
a solution to (9. However, because of the possibility of cancellation, it is much
less clear that (G) is so related to (S). In fact, the existence of a solution to (G) for
symmetricP, r, andc = r, does noimply the solvability of (S) for the samieé and
r, as shown by the following example.

Example. Let
0 =x

P=(x O

* *

QO * *

andr = [1, 1, 2]". Then, according to [3], problem (G) with= r has a solution; in
particular,

1 1

0 3 3

_ 1 3

A= -2 0 2
3 1

5 3 0
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is a solution for these data. However, becaage= —az1, %(A + AT) is not a so-
lution to (S) for these data, and, in fact, it is an easy calculation to see that (S) has
no solution for these data. In every solutidrto (G), a2 = —az1. The solvability
of (S), then, must entail conditions on the pRiandr in addition to the conditions
given in [3] for the solvability of (G). Itis a main purpose here to discover and prove
the additional conditions that ensure solvability of (S).
Another natural structural variant upon (G) is the problem (K) in wiids asked
to be skew-symmetric; thud must again be symmetric (and with a zero diagonal),
¢ = —r, and the sum of the entries pmust be 0. This variant is also treated in the
present work. In both cases we are able to use some of the techniques developed in
[3], but some new ones are required as well; in particular, while the bipartite graph
of P facilitated solution of (G), viewing the problem via the usual undirected graph
of P becomes natural for (S) and (K). This, however, requires some special care in
the case of certain instances of the problem that were previously “reducible”.
Finally, similar to [3], we note that, for given totally nonzexcandy in R”",
the seemingly more general question of when there is a symmetric or skew-sym-
metric A belonging toP such thatAx = y is actually a special case of our results
here.

2. Background and preliminaries

Let P = (p;;) be anm-by-n pattern. Thevipartite graph of As the bipartite graph
G with m “row” verticesry, ro, ..., ry, N “column” verticescy, ¢, ..., ¢,, and an
edge joiningr; to c; if and only if p;; = *. The patterrP is connectegrovided the
graphG is connected.

Thevariable patterrof P is them-by-n arrayX obtained fronP by replacing each
* with a subscripted variable;. Thej’s run from 1 tok, no subscript is used twice,
and the numbering proceeds from top to bottom, and within each row from left to
right.

For any positive integeq, we denote by the set{1, 2, ..., ¢}. If M is anym-
by-n array (matrix, pattern, variable pattern) asd- m andg C n, thenM («, 8)
denotes the subarray lying in the rows indexedrnd the columns indexed kg
The symbok® will denote the complement efin 7z, andB¢ will be the complement
of g in n. MY will denote thejth column ofM, and M(;, will denote thejth row
of M.

Definition. The variablex; (or, alternatively, the * inP that corresponds te;) is
a single star ofX (or P) with respect tax and g provideda C m, 8 C n, x; is the
only variable appearing i («, 8% and no variables appear K(a°, B).

The following theorem [3, Theorem 9] is the solution to the general problem (G)
of Section 1.
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Theorem. Let P be an m-by-n connected pattern and supposé®™ andc € R",
with 3%y rj = >j_y ck. The following are equivalent

(1) P strongly allows a matrix with row sums r and column sums ¢

(2) If P has a single star with respecttoandg, then}_ ., rj # >_;c5¢;-

Here and throughout the papeve agree that the sum on the right is Qgifis
empty.

For the problem (S), with which this paper deals, the pattris n-by-n and
symmetric

Definition. If P is a symmetrici-by-n pattern, the undirected graph &fis the
graphH with vertices 12, ..., n and an (undirected) edge joiningo j if and only
if p,'j = pj,' = k.

It can easily be checked th&t is connected (e. the bipartite graptG of P is
connected) if and only iH is connected and contains a cycle of odd edge length
(i.e., an “odd cycle”).

If the m-by-n patternP has bipartite graple that is not connected, thdp is
permutatiorequivalent{Q = SPT with SandT permutation matrices) to the direct
sum of connected principal subpatterns. The existence of a solution to (G) is invariant
under permutation equivalence (with the sum vectoasid ¢ properly permuted).
Thus if (G) is solved for connected patterns, it is easy to solve (& foyr consider-
ing problems on connected subpatterns. For this reason, results in [3] are stated only
for connected patterns.

The existence of a solution to the symmetric problem (S) is not invariant under
permutation equivalence (symmetry is lost), so we may lose generality by assum-
ing a nonconnecte® to be a direct sum. The existence of a solution to (S) is,
however, invariant under permutatisimilarity (Q = STPS with Sa permutation
matrix). Suppose, then, thBtis square and symmetric with bipartite gra@hand
undirected grapHhl. If H is not connected, the@ is not connected and, furthermore,

P is permutation similar to a direct sum of principal subpatterns. Thus we may with-
out loss of generality always assuidés connected. In the next section, Theorem 2
deals with the case th&is connected; that i${ is connected and contains an odd
cycle. Theorem 11 considers the case fhas not connected, bud is, so thatP

is not permutation similar to a direct sum. We have found no simple statement that
combines the two results.

3. Thesymmetric problem
In considering the symmetric problem (S), it is convenient to define the variable

pattern differently, and to define a “coefficient matrix"®f#lifferently than was done
in [3]. For purposes of this paper, we make the following definitions.
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Let P be a symmetrim-by-n pattern. Thesymmetric variable pattern of B the
n-by-n array X obtained fromP by replacing all *'s that are on or above the main
diagonal with variables;, numbering from top to bottom and within each row from
left to right, and then replacing each * that is below the main diagonal with the
variable that appears already in the symmetrically placed position.

For example, if

0 = % O
_|* 0 % O
P_**O*’

0 0O x =%

then
0 x1 x2 O
x| ™ 0 x3 O
x2 x3 0 x4
|0 0 x4 x5

Setting the row sums oK equal to the entries in yields a linear system that
has a totally nonzero solution (i.e., a solution in whichads 0) if and only if
P allows a symmetric matrix with row sum vectorlf k is the number of distinct
variables inX, the n-by-k coefficient matrixC = (c;;) of this system is called the
symmetric coefficient matrix of. RVe note that;; = 1 if x; appears in théh row
of X, andc;; = 0 otherwise. Ifx; appears in rowsandj of X, thenC® = ¢; + ¢;;
if x; appears as thi¢h diagonal entry irX, thenC® = ¢;. In any case, we label the
edge inH joining vertexi and vertey with x;. We observe that no two columns of
C are equal.

If there is a symmetric matrid € P with row sum vector, then by [3, Theorem
9]itis necessary thdt_;_, r; # >_ ;.5 rj wheneverP has a single star with respect

toa C nandg C n. An additional necessary condition is illustrated by the following
example:

Let
_[Pu P
P = P>q 0 i| ’
in which P11 is square, has diagonal entries 0, and contains exactly two stars (neces-
sarily symmetrically placed). Suppose tRatllows a symmetric matrix
_[A11 A
A= _A21 o
in which A1; has the nonzero numbaiin the two star positions aPy1, and suppose

the row sum vector oA is r. Let Sdenote the sum of the entries Ay», which is
equal to the sum of the entries itp1. If A17 hask rows, then

k n
Yori=2+S#5= ) r.
i=1 i=k+1
This example shows the necessity of condition (ii) in Theorem 2.
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Definition 1. Leto C n. We say that; is a double star oK (or of P) with respect
to o providedX (o, o) contains the variablg; in two positions and contains no other
variables, and (¢ ¢, o) contains no variables at all.

Theorem 2. Suppose P is an n-by-n connected symmetric pattern and rig.in
Then there is a symmetric matrix A in P with row sum vector r if and only if the
following two conditions hold

(i) If P has asingle star with respectéoC nandg C n, then)_ ., rj # > ;cp7;j-

(ii) If P has a double star with respectéoC 7, then_ ;. rj # 3 jcoc ;-

The proof of Theorem 2 requires several lemmas. Throughout the rest of this
section, we assume thafs a connected symmetnieby-n pattern Xis its symmetric
variable patternH is its undirected graph, ar@is its n-by-k symmetric coefficient
matrix.

Lemma3. Suppose; is an edge in H that lies on a closed path in H that traverses
x; only once and that has even edge length C’ is obtained from the coefficient
matrix C of P by deleting theth column thenrank(C’) = rank(C).

Proof. Lets; =+, and let the closed path ey, X, Viy, - - ., Uiy » Xspy» Urg)}s SO
thats; # s1for j =2,3,..., 2w. We have

C(S]_) =én + €r,
= (e, +er3) — (er5+e) + (e, +e15) — -+ (erp, +€17)
= Cb2 _ C(Ss) + C(A‘4) —_ C(SZw)'

Note that the subscript on the firgtin each parenthesis is even if and only if
that parenthesis is preceded by-aHence the last parenthesis is preceded hy a
HenceC®? is a linear combination of the other columns@and so raniC’) =
rankC). O

Lemma4. Suppose M is an odd cycle in ldnd x; is an edge in H that lies on a
cycle D in H but does not lie on the cycle.Nf C’ is obtained from the symmetric
coefficient matrix C by deleting théhscolumn thenrank(C’) = rank(C).

Proof. If D has even length, the conclusion follows by Lemma 3. Suppokas
odd length.

If M andD have a common vertex, consider the closed path that startaat
traverses the cycl®, then traverses the cycM, ending atv,. This closed path
has even edge length and traversgexactly once, so the conclusion follows from
Lemma 3.
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If M andD do not have a common vertex, there are vertige®f M andv,, of
D and a patlp from v, to v, that shares no edges with eithidror D. In this case,
the path starting at;, and followingp, D, p~, andM is a closed path of even edge
length that traverses, exactly once, so the conclusion follows from Lemma 8]

Lemmab5. Suppose; is an edge in H incident with a vertex v of degree on&’If
is obtained from C by deleting th¢h column, themank(C’) = rank(C) — 1.

Proof. Rowv of C has 1 in thesth position and 0's elsewhere, §8* is not a linear
combination of the other columns 6f O

Lemma6. The rank of the symmetric coefficient matrix C of P is n.

Proof. SinceP is connectedH is connected and contains a cydeof odd lengths.
Remove fronH an edge that lies on a cyclelihbut does not lie oM (if any). Then
remove an edge from the resulting graph that lies on a cycle, but does notMe on
Continue this process uni is the only cycle. The resulting grapH,, is connected,
and consists of thecycleM, n — s vertices notirM, andn — s edges not itM (more
edges would imply another cycle; fewer would violate connectednessy’ liet the
matrix obtained fronC by deleting the columns corresponding to the edges deleted
from H. By Lemma 4, rankC’) = rank(C). Now further reducet’ by removing
consecutively edges incident to vertices of degree one, Mntibgether withv — s
isolated vertices, is obtained. Each edge removal corresonds to a deletion of a column
from C’ which, by Lemma 5, reduces the rank by 1. Call the resulting matyjx
Sincen — s edges are removed, raitky,) = rank(C’) — (n — s) = rankC) — (n —
s). It remains to show that raik,,) = s, so thats = rank(C) — (n — s); that is,
rank(C) = n.

Cy is the symmetric coefficient matrix of anby-n symmetric patterrnPy, (ob-
tained fromP by replacing stars with 0’s as edgestbaire removed) whose graph is
the s-cycle M together withn — s isolated vertices. We may assume the symmetric

variable pattern foPy, is of the form[Xg ] where

0 xx 0 O .- 0 Xs ]

x1 0 x 0 --. 0 0

0O x 0 x3 --- 0 0
Xy =

o o o o -- 0 Xs_1

| Xs 0 0 0 -+ x51 0 i
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Thus the nonzero rows @f;; form thes-by-s matrix

10 0 0 - 0 17
1100 .- 00
0110 .- 00
C[/‘lz P
0000 -~ 1 0
0 00 0 .- 1 1]

Expanding de&iC),) by the first row (remember thats odd), we find deiC},) = 2,
so ranKCy) = rank(C},) = s, and the lemma is established.]

Lemma?7. If eiT € RS(C), then there is a positive numbere {1, 2} and subsets
andA of n such thatc N A = ¢ and

ze] =Y Cijy— Y Cip

Jjek JEA

Proof. Recall thaCis a 0,1 matrix and each column has either one or two 1's. Also,
no two columns ofC are equal, and rarik’) = n.

Suppose that the unique representatioiToas a linear combination of the rows
of Cis

n
el =) yiCi). yisinR.
j=1
We first suppose that is the only value of for which c;; = 1. We construct
the linear combination, and note that, by its uniqueness, all of the choices in the
following construction are forced.
The coefficienty, must be 1; that is, the sequential construction starts witg)1
If there are any 1's in this vector other than the one in positiosach must be
“removed” by adding-1 times the only other row that has a 1 in the same column.
This creates a 0 in that position, and the addition of multiples of any new rows will
not change that 0. When all of the 1's other than that inithgosition have been
removed, there may bel’s in positions that previously had 0. At this point each
nonzero entry other than tlih is either—1 or —2. But note that-2 cannot occur,
since it could not be removed by the addition of more terms to the combination.
Each—1 must be removed by adding 1 times the only other row with a 1 in that
position. This other row will not be one that has appeared before in the construction,
and no positions that have been changed from 1 to 0 will be affected. As before, 2
cannot occur in the vector, so all nonzero entries are now 1. If the combination thus
far constructed is noiiT, it is because there are some 1's in positions other than the
ith, and we continue the construction. Since all these choices have been forced, and
since the desired linear combination must exist, we will at some point arria/lIa at
and all coefficients used will have been 1-et, so the result is obtained with= 1.
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Now suppose there are two valuesjol and g, for which ¢;; = 1. If either of
Yo« OF yg is 0, we proceed as before to construct the unique linear combination and
find z = 1. We are left with the case, ys # 0 andy, + yg = 1. Our construction
of the linear combination begins with, C) + ysC(g). This vector has a 1 in the
ith position, but is notziT, since if it were, rowsx and g of C would be multiples of
each other and we would have rd6k < n, which is impossible by Lemma 6. If, for
somes + i, thesth entry werey, + yg, theith andsth columns ofC would be equal.
Thus each nonzero entry . C() + ygCg), other than the 1 in thigh position, is
eithery, or yg. We continue the construction by removing eaghby adding—y,
times a new row to the combination, and then removing-amy’s, and so forth as
before. There results a linear combination with 1 in itmeposition and each other
nonzero position containing eitheryg or +(y, — yg). Here we have used the fact
that the absence of duplicate column£iguarantees that no position other than the
ith can containt(y, + yg). We continue by removing angtyg’s, leaving only 0's
and, possibly;:(y, — yg)'s. There are now two possiblities:

(i) If now some entry isk(y, — yg), then, since all such entries must be 0, we have
Yo =Yg = % and our construction is complete. In this case, the lemma s proved
with z = 2.

(i) If, on the other hand, all entries other than ttieare 0, we have

el =Y yaCiy+ Y _yCi + Y (=y)Ci) + Y (=yp)C(j),
JjeA jeB jeD jeE
whereA, B, D, andE are pairwise disjoint subsets Nf We can now reverse the roles
of « andp to obtain

el =Y ypCi+ D yaCiiy+ D _(=yp)CG) + D (=ya)C(j-
JjeEA JjEB jebD JjEE
Sincey,Cw) + y8Cp) # €], one of A, B, D, andE contains an index other than
« andg. If y is such an index, the uniqueness of the coefficienf@f (because
rank(C) = n) in the expression foafiT implies thaty, = yg = % so agairy = 2 and
the lemma is proved. [

Possibility (i) in the proof is illustrated by the symmetric variable pattern

0 x1 x2 x3
x1 0 x4 x5
x2 x4 O 0
x3 x5 O 0

whose undirected graph is connected and contains two 3-cycles. The symmetric co-
efficient matrix is

X =

C =

cOoRr Rk
or opr
R OoOoR
orro
P ORr O
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and applying the construction given in the proof, we obtain

e1=YaCt) + ¥8C2) — ¥aC(3) — ypCa)
= [yu + yB 0 yu-— Yg  YB— Ya 0].

We have not found a connected symmetric variable pattern that illustrates possi-
bility (ii), and we suspect that none exists.

Lemmas8. If el.T € RS(C), theny; is either a single star or a double star for P.

Proof. ByLemma7zel =) ., Cijy — ;e Cjy With z € {1, 2}, wherex N 3. =
¢ andx UL C n. Thus for 1< s <k,

z>0 ifs=i,
ds = ZC-’S B ZC” - {O otherwise
Jjex JjEA
Note that for eacts, there are either one or two valuesjafuch thatc;; = 1, and
cjs = 0 otherwise. It follows that); is either 1 or 2, so the variablg appears in
one or two rows ofX, each of which is indexed irn. Hencex; appears in one or
two positions inX («, ). If in one position, it is on the diagonal of, and if in two
positions, they are not on the diagonal.
If 1 <s < kands # i, thend; = 0, so one of the following is true:
(i) x; lies in two rows ofX, one indexed inr and one in.. In this casex; appears
once inX (k, A) and once inX (1, k).
(i) Any appearance af; in X occurs in a row indexed in neithemor A, so eachx;
appears inX ((« U A)C, (k U 1)°).
Thus, up to permutation similarity, we have

Y U O
x=|Uu" 0 o0f,
0 0 Zz

whereY = X (k, k), U =Xk, 1), and Z = X ((k UA)C, (k UL)®). If k UL #7,
thenX s a direct sum and is not connected. Hence

Yy U
[y
If x; appears only once (on the diagonal¥)f x; is a single star oP with respect

toa =k andg = A. If x; appears twice (in nondiagonal positionsvi thenx; is a
double star oP with respecttar =«. O

We note that the following converse of Lemma 8 can be established. We state it
here without proof, since it is not needed in our exposition.

Lemma9. If x; is either a single star or a double star of tlhenel.T € RS(C).
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Proof of Theorem 2. Suppose first that there is a symmetric matriPimith row
sum vector. Then (i) holds by [3, Theorem 9], and (ii) holds by an easy extension
of the argument preceding Definition 1.

Now suppose that (i) and (ii) hold. L& be the symmetric coefficient matrix of
P. We must show that the equatigix = r has a totally nonzero solutione R*.
Let&={i:1<i <k, eiT € RS(C)}. By [3, Lemma 6], thereisa € R¥ such that
Cu = 0andu; = 0ifand only ifi € &. By our Lemma 6, the equatiafix = r has
a solutionv.

We claim now that; # 0 fori € &. let A be the real matrix obtained frod by
replacing each; with v;, j =1,2,..., k. ThenA has a pattern subordinate
andA has row and column sumsif i € &, then by Lemma 8y; is either a single
star with respect to some, 8 C 7, or x; is a double star oP with respect to some
o Cn.

If x; is a single star with respect toandg, thena,, = 0 for all but one choice
of (p,q) with p € « andg € B¢, and for that one choice,, = v;. Furthermore,
ap, = 0forall p € «®andqg € B. Hence

n
Y=Y aig

jea g=1

ZZZajq-I-Ui

j€a geB

= ZZ“M + i

qEPB jea

n
Zzzajq+vi

qgep j=1

:qu—}—vi.

qeB

ThUS-viZZjeal’j—leeﬁrj#o. .

If x; is a double star with respect tq thena,, = 0 for all but two choices of
(p, ¢) with pandgin o, and for those two choices,,; = v;. Furthermoreg,, =0
for all pandqin o €. Hence

n
Y=Y ajg

jeo g=1
=22 i+ ) i
jeo qeo j€o gea®

=2Ui+ZZajq

j€o geat
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=2v; + Z Zajq

geo® jeo
n
20+ Y3
geo® j=1
=2vi+2rq.
geo®
Thus
v== -] %0
2|4 :
jeo jeat

and the claim is established.
We now choose € Rsothatu; + v; # 0for1<i < kandi ¢ &, and the vector
tu + v is a totally nonzero solution afx = r, so Theorem 2 is established

We observe that statements (i) and (ii) in Theorem 2 are independent. The con-
nected pattern

0 x % 1
¥ % 0 3

satisfies (i) but not (ii). The connected pattern

0 0 0 % =% 1
0 0 x x O 1
P=]10 x 0 x O withr = |1
* % % 0 O 1
*x 0 0 0 O 1

satisfies (ii) but not (i).

We consider now the case thats connected, but does not contain an odd cycle.
ThenP is not connected, and is not permutation similar to a direct sum. In this case,
H is bipartite, and there is a unique partitipn, 7} of the verticeq1, 2, ..., n} of
H such that each edge kh connects a vertex in to one inz®, we will call {, 7€}
the bipartition of P. Clearly, P(xr, 7) = P(x¢, =% = 0. For Theorem 11, we need
the following additional lemma.

Lemma 10. Suppose H is connectgout does not contain an odd cycle. et 7 ¢}
be the bipartition of Pando C 7. Then P has a double star with respecbtdf and
only if P(r, 7€) has a single star with respectton = ando® N 7°. (Here the rows
and columns of? (7, ) retain the indexing from B



E.E. Eischen et al. / Linear Algebra and its Applications 357 (2002) 273-289 285

Proof. By permutation similarity, we may assume that {1, 2, ..., ¢t} with¢ < n.

A further permutation similarity will bring the rows and columns originally indexed
by o into contiguous positions. Sind&(c, o) # 0, ¢ intersects botlr andr= . Thus
we may assume without loss of generality that

o o0 | U s

O o0 | o V
P=|= = = = =
ut o || 0 O

sT vl | 0 o0

in which the indicated partition pictureswith P(x,7) = P(n¢, =% = 0 and

Pz, 7% = |:IQ] 5] ,

andP (o, o) is the central block

o ¢

If P has a double star with respectipthe blocks labelle@ andQT each contain
exactly one star, and the blocks label@dndST are 0. Clearly, then, the star @
is a single star of? (r, 7€) with respect ta N7 ando® N 7.

If P(x, 7% has a single star with respectd¢an = ando® N 7€, thenQ contains
exactly one star anBis 0. By the symmetry oP, QT contains exactly one star and
ST is 0, soP has a double star with respectto [

Theorem 11. Suppose P is an n-by-n symmetric pattern and r i&fn Suppose
further that the undirected graph H of P is connectedt does not contain an odd
cycle. Let{rr, 7€} be the bipartition of PThen there is a symmetric matrix A in P
with row sum vector r if and only if the following two conditions hold

0) Zjen rj= Zjencrj'

(i) If P has a double star with respectéoC 7, then)_ ;.. rj # > jcpcnze -

Proof. Letr, denote the vector of entries imndexed byz, andr,c the vector of
entries inr indexed by . Since symmetry of a matrix is invariant under permutation
similarity, we may assume has the structure shown in the proof of the Lemma 10.
It is then clear that there is a symmetdce P with row sumsr if and only if there

is a matrix

Be P(m,n% = [le ‘S/i|

with row sums-,; and column sums,c. We note that the bipartite graph B, 7°)
is the undirected grapH of P, and as such is connected. Hence by [3, Theorem 9]
and Lemma 10, there is such a matéii and only if (i) and (i) hold. [
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We observe that, under the hypotheses of Theorem 11, (i) and (ii) imply that
Y jea’j F 2 jep’j WhenevelP has a single star with respectdoC 7 andg C 7.
Thus, (see Theorem 2), the necessity of the latter condition does not depend on the
absence of an odd cycle kh

4. The skew-symmetric problem

We are given am-by-n symmetric patterf® with zero diagonal, and a vectoin
R", the sum of whose entries is 0. We seek necessary and sufficient conditions on
P andr that there exist a skew-symmetric matrixRrwith row sum vector (and
consequently column sum vecter). Of course if such a matrix exists, then by [3,
Theorem 9] itis necessary that ., r; # >_,;.5(—7;) whenevelP has a single star
for« c wandg c n. That an additional condition is necessary is illustrated by the
following example:

0 = = 0 0 O 2
*+ 0 *x 0 0 O -4
P * x 0 x 0 O . 2
0 0 * 0 =x x|’ 2
0O 0 0 % 0 = —4
|0 0 0 % O 2
The matrix
fo 1 1 0O 0 O
-3 0 -1 0 0 O
A 1 3 0 -2 0 O
-10 0 -2 0 3 1
o o o -1 0 -3
L0 0 O 1 1 O

belongs taP and has row sumisand column sums-r. However, ifB is any matrix

in P with row sumsr and column sums-r, we compare the sum of the first three
rows of B with the sum of its first three columns, and see that the 3,4 entry and the
4,3 entry must be equal and nonzero. TRuElows no skew-symmetric matrix with
row sum vector.

We note that, in the undirected graphof P, the edge joining 3 and 4 is a “cut
edge” separating vertices 1, 2, and 3 from vertices 4, 5, and 6. We also note that the
failure of P to contain a skew-symmetric matrix with row sumgollows from the
fact thatr; + r» + r3 = 0 (and hencey + rs + rg = 0). These observations moti-
vate the following solution to the skew-symmetric problemHlhas a cut edga
adjacent to a vertep, thenV, will denote the set of vertices in the component of
H — w that contain®.
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Theorem 12. Suppose P is an n-by-n symmetric pattern with zero diaganial
a vector inR" the sum of whose entries @& and the undirected graph H of P is
connectedThen there is a skew-symmetric matrix in P with row sum vector r if and
only if the following two conditions hold
() If P has a single star with respect t® c n and 8 C r, then Zjea rj #
Zjeﬂ (—I‘j).
(i) If H has a cut edge that is adjacent to vertexmenztevp rr # 0.

Our proof strategy is to find a matriin P with row sums and column sums-r
such thar%(A — ATy isin P. We need the following lemmas. We assume throughout
this section thaP is a symmetrim-by-n pattern with a zero diagonaljs in R”, the
sum of the entries inis 0, and the undirected graphof P is connected.

Lemma 13. Suppose H has a cut edge joining vertices p andfl A = (g;;) is
any matrix in P with row sum vector r and column sum veetorThena,, — a4, =
2 Ztevp Tt

Proof. SinceH has a cut edge joining verticgsand g, we may use permutation
similarity to assume without loss of generality tiahas the form

B C
=l b)
whereC has exactly one nonzero entry, which lies in rpvand columnq of A, B

is s-by-s, andV, = {1,2, ..., s}. Let Sdenote the sum of the entries 1 Adding
all the entries irB andC, we obtain) ;. r; = S + a,q. Adding all the entries in

BandCT, we obtain} .y (—r:) = S + agp. Subtracting these equations yields the
result. O

Lemma14. Suppose Aisin P and has row sum vector r and column sum veetor

Suppose also that,, = a,, # 0, and that the edge in H joining p and q is not a cut
edge of H. Then there is a B in P with row sum vector r and column sum veetor

such that,, # by, anda;; + a;; impliesb;; # bj;.

Proof. Since the edge joining andq is not a cut edge, it lies on a cycle k.
Let the vertices of such a cycle e, po, ..., ps, wherepy = p; = p, p2 = g, and
pi # pj unless(i, j} = {1, s}. LetC = (¢;;) be then-by-n matrix defined by

1 ifi=p;andj = p,pawithl<r <,
cj=13-1 ifi=pprandj=p, withl<zt <s,
0 otherwise.

Then all linesums o€ are 0, so for any numbérthe matrixB = A + ¢C has row
sum vectorr and column sum vectorr. If ¢ # 0, thenb,, + b,,. Furthermore,
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there are only finitely many choices bthat would produce a 0 iB whereA is
nonzero, and only finitely many choices othat would produceb;; = b;; where
a;j #+ aj;. Hence we may select 0 so thatB establishes the lemmalJ

Proof of Theorem 12. Suppose there is a skew-symmettidn P with row sum
vectorr. Then (i) follows from [3, Theorem 9], and (ii) follows from Lemma 13.
Now suppose (i) and (ii) hold. (i) implies the existence of a matrix (a;;) in
P with row sum vector and column sum vectorr. Let 1< p, g < n, and sup-
posea,, # 0. Letw be the edge iH joining p to g. If w is a cut edge irH, (ii)
together with Lemma 13 implies that,; — a4, # 0. If w is not a cut edge and
apq — agp = 0, then by Lemma 14 we may pertudlio makea,; — a,p # 0 without
leaving P and without creating any new instancesagf — a;; = 0. We repeat this
perturbation process for afl, ¢ for which a,, # 0 anda,, — a4, = 0, and arrive
eventually at a matriA in P with row sum vector, column sum vectorr, and
a;j —aj; + 0 whenevel;; # 0. It is then easy to check that the skew-symmetric
matrix 3(A — AT) is in P and has row sum vector O

5. Coroallariesinvolving the equation AXx =y

Theorems 2, 11, and 12 give conditions under which the equatios r has a
solutionAin a symmetric patterR, wheree denotes the vector of all 1's iR". Easy
corollaries solve the seemingly more general problem= y as follows. We retain
the notation of the previous sections.

Theorem 15. Suppose P is an n-by-n connected symmetric patieghx and y

be vectors inR" with x totally nonzeroThen there is a symmetric matrix A in P

satisfyingAx = y if and only if the following two conditions hald

() If P has a single star with respect @ C # and 8 C i, then Zan Xjy; #
2 jep*iVi-

(ii) If P has a double star with respectéoC 7, theny ., x;yj # 3 coc X ¥;

Theorem 16. Suppose P is a symmetric n-by-n pattern whose undirected graph H
is connected but does not contain an odd cystethat H is bipartite. Letr, 7¢} be
the bipartition of P. Suppose x and y are vector&ihwith x totally nonzero. Then
there is a symmetric matrix A in P satisfyidg = y if and only if the following two
conditions hold

() Dien xiyi = Zjezrc XjYj

(i) If P has adouble star with respectdaC 7, theny; ., Xiyi # X jcqenpe XjV;-

Theorem 17. Suppose P is a symmetric n-by-n pattern with zero diagonal and x
and y are vectors ifiR"* with x totally nonzerpand the undirected graph H of P is
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connected. Then there is a skew-symmetric matrix A in P satisfying y if and
only if the following three conditions hald
() X G—1xjy; =0.
(i) If P has a single star with respect w c n and 8 C n, then ij Xjy; #
> iep(—xjy))-
(iii) If the undirected graph H of P has a cut edge that is adjacent to vertéxem
ZteV,, x:y: # 0.

Theorems 15-17 are easily proved by applying Theorems 2, 11, and 12 (resp.) to
the matrixD, AD,, whereD, denotes the diagonal matrix with diagomal

Acknowledgements

We wish to point out that there is a typographical error in the statement of
Theorem 11 in [3]. The inequality in part (2) of that statement should read:

Z ujyj + Z Vi X

jea kep
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