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Abstract

Sweeping is an important algorithmic tool in geometry. In the �rst part of this paper we de�ne
sweeps of arrangements and use the “Sweeping Lemma” to show that Euclidean arrangements of
pseudolines can be represented by wiring diagrams and zonotopal tilings. In the second part we
introduce a further representation for Euclidean arrangements of pseudolines. This representation
records an “orientation” for each triple of lines. It turns out that a “triple orientation” corresponds
to an arrangement exactly if it obeys a generalized transitivity law. Moreover, the “triple orien-
tations” carry a natural order relation which induces an order relation on arrangements. A closer
look on the combinatorics behind this leads to a series of signotope orders closely related to
higher Bruhat orders. We investigate the structure of higher Bruhat orders and give new purely
combinatorial proofs for the main structural properties. Finally, we reconnect the combinatorics
of the second part to geometry. In particular, we show that the maximum chains in the higher
Bruhat orders correspond to sweeps. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Sweeping is an important algorithmic tool in geometry. In the �rst part of this paper
(Sections 2 and 3) we de�ne sweeps of arrangements and use the “Sweeping Lemma”
to prove representations of Euclidean arrangements by allowable sequences, wiring
diagrams (cf. [11]) and zonotopal tilings (cf. [26]). We also use the Sweeping Lemma
to give a new proof of Levi’s Extension Lemma.
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In the second part (Section 4) we introduce a further representation for Euclidean
arrangements of pseudolines. This representation records an “orientation” for each triple
of lines. It turns out that a “triple orientation” corresponds to an arrangement exactly
if it obeys a generalized transitivity law. Moreover, the “triple orientations” carry a
natural order relation which induces an order relation on arrangements. A closer look
on the combinatorics behind this leads to a series of orders Sr(n) whose elements
will be called signotopes. These orders exist for all pairs (r; n) with 16r6n. Sr(n) is
closely related to the higher Bruhat order B(n; r−1) de�ned by Manin and Schechtman
[17] and further studied by Ziegler [26]. We investigate the structure of these orders
and give a purely combinatorial proof for the main structural result on higher Bruhat
orders. There is a surjective mapping, C → �C , from maximum chains in Sr−1(n) to
elements of Sr(n).
In Section 5 the combinatorics of the second part is reconnected to geometry. A

signotope � ∈ Sr(n) represents an arrangement A(�) of n pseudohyperplanes in Rr and
a maximum chain C in Sr−1(n) represents a sweep of the arrangement A(�C) in Rr .
Section 6 concludes with a brief collection of open problems.

1.1. Arrangements of pseudolines

A pseudoline is a curve in the Euclidean plane whose removal from the plane leaves
two unbounded connected components. In other words, a pseudoline is a simple curve
which goes to in�nity on both the sides. An arrangement of pseudolines is a family
of pseudolines with the property that each pair of pseudolines has a unique point of
intersection, where the two pseudolines cross. Since in this paper we are not concerned
about realizability questions we abbreviate and say arrangement when we really mean
the arrangement of pseudolines, we also say line instead of pseudoline.
An arrangement is simple if no three pseudolines have a common point of intersec-

tion. The order of an arrangement is the number of its pseudolines. An arrangement
partitions the plane into cells of dimensions 0, 1 or 2, the vertices, edges and faces
of the arrangement. Two arrangements are isomorphic if there is an isomorphism of
the induced cell decompositions respecting the labeling of the lines. Edges and faces
of the arrangement may either be bounded or unbounded. Let F be an unbounded cell
of arrangement A and let �F be the complementary face of F , i.e., the face separated
from F by all pseudolines. We may orient all pseudolines such that F is in the left
halfspace and �F in the right halfspace of every line. This orientation of pseudolines
induces an orientation of the edges of the arrangement. The pair (A; F) is a marked
arrangement or an arrangement with northface F and southface �F . If there is no
explicit reference to the northface of a marked arrangement A embedded in a coor-
dinatized plane we assume that the northface is the face containing the ray to (0;∞).
Two marked arrangements are isomorphic if there is an isomorphism of the induced
cell decompositions respecting the labeling and the orientation of the edges. See Fig. 1
for an illustration.
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Fig. 1. Arrangements A and B are isomorphic as arrangements but non-isomorphic as marked arrangements.

2. Sweeping the plane

Our main tool in proving a number of combinatorial encodings for Euclidean arrange-
ments in Section 3 will be the ability of sweeping the arrangement. In this section we
set up this tool, the main result is the Sweeping Lemma (Lemma 1) showing that Eu-
clidean arrangements can be swept. This result is not new, we are aware of at least two
sources. Snoeyink and Hershberger [22] have a theorem implying the Sweeping Lemma
for simple arrangements. In the book on oriented matroids [1] a result equivalent to
the Sweeping Lemma is derived as a consequence of Levi’s extension lemma. Here
we revert the direction and prove Levi’s extension lemma (Lemma 6) using sweep
techniques.
To begin with we formalize the notion of a sweep. Let (A; F) be a marked arrange-

ment. A sweep of A with northpole in F is a sequence c0; c1; : : : cr , of curves such
that each curve ci has �xed points �x ∈ �F and x ∈ F as endpoints. Further requirements
are:
(1) None of the curves ci contains a vertex of arrangement A.
(2) Each curve ci has exactly one point of intersection with each line lj.
(3) Besides at their endpoints any two curves ci and cj are disjoint.
(4) For any two consecutive curves ci, ci+1 of the sequence there is exactly one vertex

of arrangement A between them, i.e., in the interior of the closed curve ci ∪ ci+1.
(5) Every vertex of the arrangement is between a unique pair of consecutive curves,

hence, the interior of the closed curve c0 ∪ cr contains all vertices of A.
See Fig. 2 for an example of a sweep for the arrangement A of Fig. 1.
Note that if c0; : : : ; cr is a sweep for A then the reversed sequence is also a sweep

for A. One of these sweeps is from left to right and the other from right to left. As
usual we will always think of a sweep as a left to right sweep. A discrete sweep as
de�ned here can be transformed into a continuous sweep by appropriate interpolation
between any pair ci, ci+1 of curves. The dependency on the chosen points x and �x can
also be eliminated.
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Fig. 2. A sweep for arrangement A.

Lemma 1 (Sweeping Lemma). Let (A; F) be a marked Euclidean arrangement of
pseudolines. Then there is a sweep sequence of curves for A; i.e.; A can be swept.

Proof. Let G=(V; E) be the graph such that the vertices V of G are the vertices of A
and the edges of G are the �nite edges of the arrangement A. Let Ẽ be the orientation
of the edges of G induced by the orientation of pseudolines (the northface is in the
left halfplane of each pseudoline).

Claim A. The orientation Ẽ is an acyclic orientation of G.

Walking ‘at in�nity’ and clockwise from �F to F the pseudolines of A are met in
some order. Let permutation � be the corresponding order of the labels, w.l.o.g. we
assume that � is the identity.
We prove the above claim by contradiction: Assuming that Ẽ is not acyclic we

choose a cycle C such that the area enclosed by the corresponding curve in A is
minimal. It is easy to conclude that C corresponds to the boundary of a face of A.
With respect to this face the cycle C may be oriented clockwise or counterclockwise.
We consider the �rst case (clockwise) the other is symmetric.
Let e1; e2; : : : ; ek be edges of C and let ij be the supporting pseudoline of ej. Since

ej and ej+1 are consecutive on C the lines ij and ij+1 cross at a vertex of C. From the
de�nition of � and the clockwise orientation of C it follows that ij ¡ ij+1 (see Fig. 3).
Hence, i1¡i2¡ · · ·¡ik ¡ i1 a contradiction.

Since G̃ = (V; Ẽ) is acyclic there exists a topological sorting v1; v2; : : : ; vr of G̃. Fix
points x ∈ F and �x ∈ �F .

Claim B. There exists a sweep of curves c0; c1; : : : ; cr such that vertices v1; : : : ; vi are
to the left of ci and vertices vi+1; : : : ; vr are to the right of ci for all i = 1; : : : ; r.
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Fig. 3. Assuming an oriented cycle.

Proof. Let R be the union of the closed bounded cells of A. De�ne c0 as the union
of three curves. The �rst and the second connect x to R within F and �x to R within
�F , the third is the left boundary of an �-tube of the left boundary of R and connected
to the two other curves. For an appropriate � this gives a curve as desired.
Now suppose that ci−1, i6r, has been de�ned. Let i1; : : : ; it be the lines of A

containing vertex vi and assume i1¡ · · ·¡it . Let T be the triangle de�ned by curve
ci−1 and the two lines i1 and it . Since vi is a source (minimal) in the restriction of G̃
to vi; : : : ; vr and v1; : : : ; vi−1 are left of ci−1 vertex vi is the unique vertex of A in the
triangular region T . De�ne ci as the right boundary of an �-tube around ci−1 and T .
For an appropriate � this gives a curve as desired (see Fig. 4).

This concludes the proof of the lemma.

3. Applications of sweeping

In combinatorial geometry it is often useful to encode a geometric object by a com-
binatorial structure and further work with this structure. There are several combinato-
rial encodings for arrangements. In the �rst part of this section we review allowable
sequences and wiring diagrams. These representations have been introduced by Good-
man and Pollack [11]. The same authors [12] give an overview on work related to
allowable sequences and mention some applications. There are two reasons to includ-
ing a complete treatment of this subject here. The relation between allowable sequences
and arrangements of pseudolines is a special case of a more general phenomenon in
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Fig. 4. De�ning ci based on ci−1 and the shaded triangular region T .

the theory of signotopes (higher Bruhat orders) which will be the topic of Section 4.4,
Theorem 13. Furthermore, we believe that sweeps are the natural approach to these
representations.
In Section 3.2 we prove the equivalence between arrangements and zonotopal tilings.

This is a special (rank 3) case of the celebrated Bohne–Dress Theorem which states a
bijection between zonotopal tilings and oriented matroid liftings. No elementary proof
of the special case was known. Recently, we learned that Elnitsky [4] found another
simple proof for the correspondence. We will make use of zonotopal tilings in our
�gures since they provide us with canonical pictural representations of arrangements
(see e.g. Fig. 8).
Further sources for encodings of arrangements are Goodman and Pollack [12], Edels-

brunner [3], Felsner [5], Knuth [15] and Streinu [24].
In the last application we use the sweep technique to prove Levi’s extension lemma.

3.1. Allowable sequences and wiring diagrams

Let c0; c1; : : : ; cr be a sweep sequence of curves for the marked arrangement (A; F)
of order n. Traversing curve ci from �x to x we meet the lines of A in some order.
Since each line is met by ci exactly once the order of the crossings corresponds to a
permutation �i of [n].
Consider the labels of lines crossing at vertex vi. Since the region T de�ned in the

proof of Claim B is empty of vertices of A and by property (2) of the sweep curve ci
the lines i1; : : : ; it containing vertex vi are a consecutive substring of �i−1. Moreover,
in permutation �i−1 these lines are in the reversed order and this is the only di�erence
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between �i−1 and �i. Relabeling the lines of A appropriately we may assume that �0
is the identity permutation.

Example A. The sequence of permutations obtained from the sweep of Fig. 2 is

(1; 2; 3; 4; 5)
4;5−→(1; 2; 3; 5; 4) 1;2−→(2; 1; 3; 5; 4) 1;3;5−→(2; 5; 3; 1; 4) 2;5−→(5; 2; 3; 1; 4) 1;4−→(5; 2; 3; 4; 1)

2;3−→(5; 3; 2; 4; 1) 2;4−→(5; 3; 4; 2; 1) 3;4−→(5; 4; 3; 2; 1):
The sequence �0; : : : ; �r has the following properties:

(1) �0 is the identity permutation and �r is the reverse permutation on [n].
(2) Each permutation �i, 16i6r is obtained by the reversal of a consecutive substring

Mi from the preceding permutation �i−1.
(3) Any two elements x; y ∈ [n] are joint members of exactly one move Mi, i.e.,

reverse their order exactly once.

A sequence �=�0; : : : ; �r of permutations with properties (1)–(3) is called an allowable
sequence of permutations. If each move from �i−1 to �i consists in the reversal of just
one pair of elements, i.e., an adjacent transposition, we have r= ( n2 ) and the sequence
� is called a simple allowable sequence. We have thus seen how to obtain an allowable
sequence of permutations from every marked arrangement (A; F). However, more can
be said.
Every topological sorting of the graph G̃ of (A; F) induces an allowable sequence.

Consider the allowable sequences � and �′ corresponding to topological sortings � and
�′ of G̃ with the property that � = v1; : : : ; vi; vi+1; : : : ; vr and �′ = v1; : : : ; vi+1; vi; : : : ; vr ,
i.e., � and �′ di�er in an adjacent transposition. It follows that vi and vi+1 are both
minimal elements in the restriction of G̃ to {vi; vi+1; vi+2; : : : ; vr}. Hence, there is no line
in A that contains vertices vi and vi+1 and the labels of lines involved in the moves
Mi : �i−1 → �i and Mi+1 : �i → �i+1 in � are disjoint. In fact, for j 6= i; i + 1 the
permutations �j and �′j in � and �

′ coincide and M ′
i =Mi+1 and M

′
i+1 =Mi. Call two

allowable sequences � and �′ elementary equivalent if � can be transformed into �′

by interchanging two disjoint adjacent moves. Two allowable sequences � and �′ are
called equivalent if there exists a sequence �=�1; �2; : : : ; �m=�′ such that �i and �i+1
are elementary equivalent for 16i¡m. It is well known that it is possible to transform
any topological sorting of a directed acyclic graph G̃ into any other by a sequence of
adjacent transpositions, i.e., reversals of adjacent pairs of unrelated vertices. Therefore,
any two allowable sequences corresponding to the same marked arrangement (A; F)
are equivalent.

Theorem 2. There is a bijection between equivalence classes of allowable sequences
and marked arrangements of pseudolines. Moreover; this bijection maps simple
allowable sequences to simple arrangements.

Proof. We have already seen how to de�ne the equivalence class of allowable
sequences corresponding to a marked arrangement.
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Fig. 5. A wiring diagram for the arrangement of Fig. 2.

Let � be an allowable sequence. Start drawing n horizontal lines called wires and
vertical lines p0; : : : ; pr . Label the crossing of the ith wire from below with pj with
the label pj(i). Draw pseudoline i such that it interpolates the crossings with its label
as in Fig. 5.
Following Goodman [9] we call the arrangement thus obtained a wiring diagram for

�. Since the vertical lines p0; : : : ; pr essentially are a sweep sequence of curves for
the wiring diagram we see that the mapping from arrangements to allowable sequences
is surjective. Let (A; F) be any marked arrangements (A; F) such that � corresponds
to a sweep of c0; : : : ; cr of A. It is obvious that the part of A between ci−1 and ci is
isomorphic to the part of the wiring diagram between pi−1 and pi. These isomorphisms
for i=1; : : : ; r can be glued together to an isomorphism of the arrangements. This proves
injectivity and hence the �rst part of the theorem.
The second part of the theorem is obvious.

It is interesting to ask for the change in the representation when the northface is
changed. Let (A; F) be a marked arrangement and rede�ne the northface to be the
unbounded 2-cell F ′ to the left of F . Cells F and F ′ are separated by line n. The
directed graph G̃′ is obtained from G̃ by reverting the orientations of all edges with
supporting line n. Now choose a topological sorting � for G̃ such that all vertices of
A which are right or (below) line n precede the vertices on n and all vertices left or
(above) line n come later. Let v1; : : : ; vi−1, be the left block of �, vi; : : : ; vj−1 be the
middle block, i.e., the ordered sequence of vertices on line n, and vj; : : : ; vr be the right
block. It follows that v1; : : : ; vi−1; vj−1; : : : ; vi; vj; : : : ; vr is a topological sorting of G̃′.
Note that the order in which the lines enter vk for i6k6j has also changed, in G̃ line
n was the highest line entering vk and in G̃′ line n is the lowest line entering vk . Hence,
from the allowable sequence � of (A; F) with moves M1; : : : ; Mr corresponding to
v1; : : : ; vr we obtain a sequence �′

0 with moves M1; : : : ; Mi−1; M
∗
j−1; : : : ; M

∗
i ; Mj; : : : ; Mr ,

where M∗
k is obtained from Mk by moving element n from the top to the bottom. An

allowable sequence �′ for (A; F ′) is obtained from �′
0 by relabeling n → 1 → 2 →

· · · → n− 1→ n.
We briey mention another representation for marked arrangements where the change

from the representation of (A; F) to the representation (A; F ′) is more transparent.
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Fig. 6. An arrangement with its dual graph and the dual graph as zonotopal tiling.

Let �i be the permutation of {1; : : : ; n}\ i reporting the order from left to right in which
the other pseudolines cross line i, for i= 1; : : : ; n. Goodman and Pollack [11] call this
the local sequences of unordered switches of the arrangement. Felsner [5] used sweeps
to show that local sequences are a representation for marked arrangements. In case
of non-simple arrangements local sequences are slightly more general structures than
permutations since several lines can cross line i in the same point. For the arrangement
of Fig. 2 the local sequences are �1 = [2; {3; 5}; 4], �2 = [1; 5; 3; 4], �3 = [{1; 5}; 2; 4],
�4 = [5; 1; 2; 3] and �5 = [4; {1; 3}; 2]. To change from the local sequences of (A; F) to
those of (A; F ′) we revert sequence �n and relabel n → 1 → 2 → · · · → n − 1 → n
as before. In Section 4, Theorem 8, we characterize those (�i)i=1; :::; n corresponding to
simple marked arrangements.

3.2. Zonotopal tilings

A particularly nice representation of arrangements of pseudolines is the representation
by ‘zonotopal tilings’. Basically this is a standardized drawing of the ‘dual graph’ of
the arrangement. Fig. 6 should make the connection clear. Below, in Theorem 3 we
prove a bijection between zonotopal tilings and arrangements.
A two-dimensional zonotope is a centrally symmetric 2n-gon, or equivalently the

Minkowski sum of a set of line segments in R2. With a vector vi we associate the
line segment [ − vi;+vi]. The Minkowski sum of the line segments corresponding to
V = {v1; : : : ; vn} is the set

Z(V ) =

{
n∑
i=1

ci vi: − 16ci61 for all 16i6n
}
:

A zonotopal tiling T is a tiling of Z(V ) by translates of zonotopes Z(Vi) with Vi⊂V .
A zonotopal tiling is a simple zonotopal tiling if all tiles are rhombi, i.e., |Vi|= 2 for
all i. A zonotopal tiling together with a distinguished vertex x of the boundary of
Z(V ) is a marked zonotopal tiling. The next theorem is a precise statement for the
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correspondence suggested by Fig. 6. The proof of the theorem is based on a Sweeping
Lemma for zonotopal tilings, Lemma 4.

Theorem 3. Let V be a set of n pairwise non-collinear vectors in R2.
(1) There is a bijection between marked zonotopal tilings of Z(V ) and marked ar-

rangements of order n.
(2) Via this bijection simple tilings correspond to simple arrangements.

Before going into the proof let us comment on the broader context Theorem 3. The
theorem is equivalent to the rank 3 version of the Bohne–Dress Theorem which gives
a bijection between zonotopal tilings of d-dimensional zonotopes and oriented matroids
of rank d+ 1 with a realizable one-element contraction. The correspondence between
oriented matroids and arrangements is given by the representation theorem for oriented
matroids. This theorem states that the oriented matroids of rank d+ 1 are in bijection
with the arrangements of pseudohyperplanes in d-dimensional projective space. An
accessible treatment of these connections is given by Zigler [27]. A more geometric
proof of the Bohne–Dress Theorem was given by Richter–Gebert and Ziegler [20].
In the �rst part of the proof we give the mapping from zonotopal tilings to equiv-

alence classes of allowable sequences. Let Z(V ) be a marked zonotope with V a set
of n pairwise non-collinear vectors. The zonotope Z = Z(V ) is a centrally symmetric
2n-gon. Rotate Z such that the distinguished vertex x is the unique highest vertex of
Z , in particular the boundary of Z has no horizontal edge. Assume that the vectors in
V are labeled such that along the left boundary of Z , i.e., on the left path from the
lowest vertex �x to x, the segments correspond to v1; v2; : : : ; vn in this order.
Given a zonotopal tiling T consider the set of y-monotone path along segments of

T from �x to x. We de�ne a sweep of T with northpole x as a sequence p0; p1; : : : ; pr
of y-monotone path from �x to x in T with the following properties:
(1) Any two consecutive paths pi, pi+1 of the sequence have exactly one tile Ti of

tiling T between them, i.e., in the interior of the closed curve pi ∪ pi+1.
(2) Every tile is between a unique pair of consecutive paths, therefore, p0 ∪pr is the

boundary of Z(V ).
As we did for sweeps of arrangements we further assume that the sweep of T is from
left to right, i.e., p0 is the left boundary of Z(V ).

Remark. There is some interest in the maximum number m(n) of y-monotone �x
to x path a marked zonotopal tiling can have. Knuth [15, p. 39] conjectures that
m(n)6n2n−2. Via an inductive argument this would imply that the number of marked
arrangements of n pseudolines is bounded by

∏n
k=1m(k). Therefore, the conjectured

bound would show that this number is at most 2n
2=2+o(n2) which would be an improve-

ment over the currently best upper bound 20:69n
2
, Felsner [5].

A sweep of tiling T induces a total order T1; T2; : : : ; Tr on the tiles of T with the
property that after removing the tiles of any initial segment T1; : : : ; Ti−1 tile Ti can be
separated from the remaining tiles Ti+1; : : : ; Tr by a translation to the left parallel to
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the x-axis, we call this the separation property. Conversely, an order T1; T2; : : : ; Tr of
the tiles with the separation property corresponds to a sweep: De�ne path pi as the
right boundary of the union of T1; : : : ; Ti. To prove that a zonotopal tiling T can be
swept, it is therefore su�cient to show that there is a total order of the tiles with the
separation property.
Guibas and Yao [14] observed that the given any set C1; C2; : : : ; Cr of disjoint convex

objects in the plane there is at least one object Ci that can be translated to the left
parallel to the x-axis without ever colliding with another object from the set. Hence, by
induction every set of disjoint convex objects admits a total ordering C1; C2; : : : ; Cr with
the separation property, i.e., for i=1; : : : ; r given the sets Ci; : : : ; Cr we can separate Ci
from the remaining sets by a translation to the left parallel to the x-axis. As a special
case we obtain:

Lemma 4. Every marked zonotopal tiling T can be swept.

De�ne a graph G = (V; E) such that the vertices V of G are the tiles of T and the
edges of G are pairs of tiles sharing a common segment. Let Ẽ be an orientation of the
edges of G such that an edge {T; T ′} of G points from the tile on the left-hand side of
the segment T ∩T ′ to the tile on the right-hand side. Since the boundary of Z consists
entirely of non-horizontal edges this orientation is well de�ned. The orientation of the
edges of G represents the “immediate blocking relation” with respect to translations
parallel to the x-axis. From Lemma 4 we obtain:
Fact A. The orientation Ẽ is an acyclic orientation of G.
From the correspondence between marked zonotopal tilings and marked arrangements

indicated in Fig. 6 we see that we met graph G and its orientation already in the proof
of Lemma 1. A formal proof of this “obvious fact” will be implicit in the next lemma.
For later use we note:
Fact B. Every topological sorting of G̃ has the separation property.
The next lemma is the “zonotopal equivalent” of Theorem 2.

Lemma 5. There is a bijection between marked zonotopal tilings and equivalence
classes of allowable sequences. Moreover; this bijection maps simple zonotopal tilings
to classes of simple allowable sequences.

Proof. First, we show how to associate an allowable sequence to every sweep of a
zonotopal tiling. Recall that sweeps of T correspond to topological sortings of G̃.
Given a sweep sequence p0; : : : ; pr of paths we associate to each path pi a sequence
�i recording the labels of the vectors which de�ne the segments along the path in
the order of the path from �x to x. The sequence �0 is a permutation, the identity.
Any two consecutive sequences �i and �i+1 only di�er in a substring where path pi
takes the left boundary and path pi+1 takes the right boundary of tile Ti. Since Ti is a
zonotope, the same labels appear on both the boundaries but in reverse order. Hence,
all �i are permutations, moreover, �i → �i+1 is a move as in part (2) of the de�nition
of allowable sequences. We also note that �r is the reverse permutation.
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It remains to prove property (3) of allowable sequences, namely, that any two
elements a; b ∈ [n] are reversed in exactly one move. This is shown by an argu-
ment involving volumes. Due to a formula of McMullen (see Shephard [21, Propo-
sition 2:2:12]) the volume of a two-dimensional zonotope Z(v1; : : : ; vn) is given as
follows

vol(Z(v1; : : : ; vn)) =
∑
i¡j

vol(Z(vi; vj)) =
∑
i¡j

4| det(vi; vj)|:

A move reverting i1¡i2¡ · · ·¡is corresponds to a tile T = Z(vi1 ; : : : ; vis) of volume∑
ij¡ik 4| det(vij ; vik )|. Each pair has to be reversed at least once and this exhausts the

volume of the zonotope Z(V ). Hence, there can be no additional reversals and property
(3) is established.
Now, we have to show that the set of sweeps of T maps to an equivalence class

of allowable sequences. From Fact B we already know that the sweeps of T are in
one-to-one correspondence with topological sortings of G̃.
Consider topological sortings � and �′ of G̃ which only di�er in an adjacent trans-

position and let � and �′ be the two corresponding allowable sequences. From � =
T1; : : : ; Ti; Ti+1; : : : ; Tr and �′=T1; : : : ; Ti+1; Ti; : : : ; Tr it follows that the tiles Ti and Ti+1
are both minimal elements in the restriction of G̃ to {Ti; Ti+1; Ti+2; : : : ; Tr}. Hence, there
is no horizontal line intersecting both of them. From the y-monotonicity of pi−1 and
the fact that �i−1 is a permutation we conclude that Vi ∩Vi+1 = ∅ when Ti=Z(Vi) and
Ti+1 = Z(Vi+1). This shows that the moves Mi :�i−1 → �i and Mi+1 :�i → �i+1 in �
are disjoint and hence � and �′ are elementary equivalent. The argument can be read
backwards to show that if � and �′ are elementary equivalent allowable sequences and
� corresponds to a topological sorting of G̃ then so does �′.
For the inverse mapping we have to associate a marked zonotopal tiling to an equiv-

alence class of allowable sequences. Build the tiling from left to right starting with the
left boundary of Z(V ). After placing i tiles, three properties remain invariant:
(1) The union of the already placed tiles together with the left boundary of Z is a

simply connected region.
(2) The right boundary of this region is a y-monotone path pi.
(3) The segments along path pi are in the order given by �i.
From this it is obvious that we can place the tile Ti+1 corresponding to move Mi+1
such that the invariant remains valid. Since the last permutation �r is the reverse of
the identity path pr is the right boundary of Z(V ). The volume formula implies that
the tiles have been placed without overlap. Therefore, the placement of tiles T1; : : : ; Tr
is a tiling T of Z(V ).
It is easily seen that equivalent allowable sequences lead to the same tiling while

non-equivalent allowable sequences produce di�erent tilings.

Theorem 3 is now easily obtained:

Proof (Theorem 3). Statement (1) is a direct consequence of Theorem 2 and Lemma
5. Combining the two bijections it is seen that the graph of edges of the marked
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zonotopal tiling corresponding is the dual of the graph of the corresponding marked
arrangement with the marked face F of the arrangement and the marked vertex x of
the tiling dually corresponding to each other. For statement (2) we additionally note
that an arrangement is simple exactly if all bounded regions of the dual graph are
quadrangles.

Remark. Richter–Gebert and Ziegler [20] use a similar volume argument in their proof
of the Bohne–Dress Theorem. A proof of Theorem 3 avoiding the volume argument
was recently given by Elnitsky [4] in the context of reduced decompositions.

3.3. Levi’s Extension Lemma

Lemma 6. Let A be an arrangement of order n and let p; q be the two points in
the plane which do not both lie on any of the lines of A. Then there is a pseudoline
c containing p and q such that A ∪ c is an arrangement of order n+ 1.

The original source for the lemma stated for projective arrangements is Levi [16],
an English transcription is found in Gr�unbaum [13]. A proof using a variant of sweeps,
namely cyclic sweeps, was given by Snoeyink and Hershberger [22]. Here we use the
projective space as auxiliary tool.

Proof. We detail the proof for the case where p and q are not incident to a line of A
and leave the obvious modi�cations to include special cases to the interested reader.
Let p be contained in face Fp of A. Let l1; : : : ; ln be the pseudolines of A and

without loss of generality let l1 contain an edge e of the boundary of Fp. Add the
line at in�nity l∞ to the arrangement and map it back to Euclidean space such that
l1 is the line at in�nity thus obtaining an arrangement A′ with lines l∞; l2; : : : ; ln.
Mark A′ such that p ∈ Fp is the northpole. Apply the Sweeping Lemma to �nd a
curve c crossing the face Fq containing q. Line c can be bent in Fq to make q a
point on c. Extending c from p to in�nity we see that A′ ∪ c is an arrangement of
order n + 1. Adding the line at in�nity, i.e., l1 we obtain a projective arrangement
of order n + 2 which is mapped back to the Euclidean plane using l∞ as line at
in�nity. This gives an arrangement of lines l1; : : : ; ln; c with both points p and q on
line c.

It is notable that higher-dimensional analogs of the Extension Lemma fail. Examples
can be given of arrangements of pseudoplanes in three-space such that for some triples
of points p; q; r no pseudoplane can be added to extend the arrangement and contain
the three points (see Goodman and Pollack [10]). Richter–Gebert [19] has constructed
examples showing that the above non-existence result is already true for two points
instead of three.
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Fig. 7. Elementary ip at the shaded triangle.

Fig. 8. The graph G5 as diagram of the signotope order S3(n).

4. Flips, arrangements and signotopes

In the �rst part of the paper we have studied arrangements of pseudolines as in-
dividual objects. In this part we will change the focus and consider the set of all
arrangements. More precisely, we consider a graph Gn whose vertices are all combina-
torially di�erent simple marked arrangements of n pseudolines in the Euclidean plane
and edges corresponding to elementary ips (see Fig. 7), i.e., arrangements A and B

are adjacent if they only di�er in the orientation of a single triangle. Fig. 8 shows the
graph Gn for n= 5 with the arrangements represented by zonotopal tilings.
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In Section 4.1 we introduce an encoding of arrangements by triangle orientations.
This encoding imposes a natural orientation on Gn. In Section 4.2 we generalize the
patterns and de�ne an order Sr(n), for all 16r6n, such that S1(n) is the Boolean
lattice, S2(n) is the weak Bruhat order of the symmetric group and S3(n) is the above-
mentioned orientation of Gn. The elements of Sr(n) will be called signotopes. Section
4.3 gives some constructions for new signotopes from old ones. The main structural
result about signotopes is the surjective mapping from maximum chains in Sr−1(n) to
the elements of Sr(n), this result is derived in Section 4.4. Note that we have already
seen a special case of this mapping in Theorem 2. Maximum chains in the weak Bruhat
order S2(n) are simple allowable sequences and elements of S3(n) are marked simple
arrangements of pseudolines.

4.1. Encoding arrangements by triangle orientations

Flips are nicely described in the di�erent encodings of arrangements. In the encoding
by zonotopal tilings the projection of a cube is replaced by the view of the cube from
the other side. In the encoding by local sequences an adjacent transposition of elements
i and j is applied to the local sequence �k of line k and similarly to local sequences
�i and �j when the ip-triangle is con�ned by lines i; j and k.
In the representation by allowable sequences the transformation is not that obvious.

The change is easy to describe if we recall that the allowable sequences of a marked
arrangement (A; F) correspond to topological sortings of a directed graph G̃. The
change on G̃ is again a local one.
We now introduce a further representation for simple marked arrangements of pseu-

dolines. Let (A; F) be such an arrangement of n pseudolines. Consider the arrangement
induced by a triple of {i; j; k} of lines of A, where we assume i¡ j¡k. Note that
these three lines can induce two combinatorial di�erent arrangements. Either the cross-
ing of lines i and k is above line j, denote this by the symbol − or the crossing is
below line j, denoted by +. The shaded triangles of Fig. 7 are a − triangle on the
left-hand side and a + triangle on the right-hand side. With this convention a marked
simple arrangement induces a triangle-sign function f: ( [n]3 )→ {−;+}.
Note that for i¡ j and all k 6= i; j we have f({i; j; k}) = − i� on line k, the

crossing with line i precedes the crossing with line j, i.e., on the local sequence �k
the pair (i; j) is a non-inversion. Since local sequences encode marked arrangements,
i.e., arrangements with the same local sequences are isomorphic, it follows that the
above-de�ned sign patterns f: ( [n]3 )→ {−;+} also encode marked simple arrangements
of pseudolines.
Clearly not every possible sign pattern f: ( [n]3 ) → {−;+} will correspond to an

arrangement, there are simply too many such functions. Below we derive an obvious
necessary condition on the sign patterns of arrangements. Later, it will be shown that
this necessary condition is already su�cient.
Consider a quadruple of pseudolines h; i; j; k of A. These lines induce a marked

arrangement of four pseudolines. Since there is only one (unmarked) arrangement of
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four lines with eight unbounded faces we easily enumerate the eight possible patterns of
triangle-sign functions for n=4. The following list shows them, the signs are given in
lexicographical order of the three-sets, i.e., as {sign(1; 2; 3); sign(1; 2; 4); sign(1; 3; 4);
sign(2; 3; 4)}.

{−;−;−;−}; {+;−;−;−}; {+;+;−;−}; {+;+;+;−};

{−;−;−;+}; {−;−;+;+}; {−;+;+;+}; {+;+;+;+}

From this we obtain a necessary condition for the functions f induced by an ar-
rangement. For A ∈ ( [n]4 ) and 16i64 we let Abic denote the set A minus the ith largest
element of A, e.g., {2; 4; 5; 9}b3c={2; 4; 9}. If f corresponds to an arrangement A then
the restriction of A to the four lines of A has a pattern {sign Ab4c; sign Ab3c; sign Ab2c;
sign Ab1c} from the above list. Order the set {−;+} of signs by − ≺ +. Inspecting
the above enumeration we see that the legal sign patterns are characterized by the fol-
lowing property: For every 4 element subset P of [n] and all 16i¡ j¡k64 either
f(Pbic) 4 f(Pb jc) 4 f(Pbkc) or f(Pbic) ¡ f(Pb jc) ¡ f(Pbkc). This property is
called monotonicity.
Theorem 7, whose proof will be given in the next section, shows that the monotonic-

ity already characterizes the sign patterns f: ( [n]3 )→ {−;+} encoding arrangements.

Theorem 7. A function f: ( [n]3 ) → {−;+} is the triangle-sign function of a marked
simple arrangements Af of order n if and only if f is monotone on all 4-element
subsets of [n].

It is a useful exercise to verify that the monotonicity of the triangle-sign function
induced by an arrangement is equivalent to the transitivity of non-inversions and of
inversions of the local sequences �k , hence, equivalent to �k being a permutation.
Combining these remarks with Theorem 7 we obtain:

Theorem 8. A set (�i)i=1; :::; n with �i a permutation of [n] \ {i} is the set of local
sequences of a simple marked arrangement of order n if and only if for all i¡ j¡k
the pairs (i; j); (i; k); (j; k) are inversions in �k ; �j; �i or they are all three non-inversions.

An equivalent characterization theorem has been obtained by Streinu [24] in the
context of generalized con�gurations of points.

4.2. Signotopes and their orders

In this section we generalize the concept of triangle-sign functions. Recall some
notations. The set [n] = {1; : : : ; n} is equipped with the natural linear order. The set of
r element subsets of [n] is ( [n]r ). For A ∈ ( [n]r ) with r¿i we let Abic denote the set A
minus the ith largest element of A. The set {−;+} of signs is ordered by − ≺ +.
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De�nition 1. For integers 16r6n a r-signotope on [n] is a function � from the r
elements subsets of [n] to {−;+} such that for every r + 1 element subset P of
[n] and all 16i¡ j¡k6r + 1 either �(Pbic) 4 �(Pb jc) 4 �(Pbkc) or �(Pbic) ¡
�(Pb jc)¡ �(Pbkc). We refer to this property as monotonicity.
Let Sr(n) denote the set of all r-signotopes on [n] equipped with the order relation

�6� if �(A) 4 �(A) for all A ∈ ( [n]r ). Call Sr(n) the r-signotope order.

Note that for r = 3 the de�nitions reect our observations for the encodings of
marked simple arrangements of pseudolines made in the previous section. In particular,
Theorem 7 implies that S3(n) is a partial order on the set of marked arrangements of
n pseudolines. Indeed, S3(n) is an orientation of the graph Gn (see Fig. 8).
The list below collects some other special cases and easy observations.

(1) For r = 1 monotonicity is vacuous and S1(n) is just the lattice of subsets of [n].
(2) For all n¿r¿1 there is a unique minimal and a unique maximal element in Sr(n),

namely the constant − and the constant + function.
(3) The diagram of Sr(r + 1) is a (2r + 2)-gon for all r¿1.
(4) There is a natural correspondence between 2-signotopes on [n] and permutations

of n. Permutation � and 2-signotope � correspond to each other if a pair (i; j)
is an inversion of � i� �(i; j) = +. For the proof that this is a bijection, note
that monotonicity of � corresponds to transitivity of the inversion relation and
transitivity of the non-inversion relation for �. In the weak Bruhat order of the
symmetric group, the permutations are ordered by inclusion of their inversion sets.
By the indicated correspondence between 2-signotopes and permutations, S2(n) is
isomorphic to the weak Bruhat order of Sn.

Manin and Schechtman [17] introduced the higher Bruhat order B(n; r − 1) which is
an order relation on the set of r-signotopes on [n]. The higher Bruhat order relation
6HB is de�ned as follows: Let � and � be two r-signotopes with �(A) = �(A) for all
r-subsets A of [n] but just one A∗ where �(A∗) = − and �(A∗) = + in this case we
call the pair (�; �) a single-step. The order relation 6HB is the transitive closure of the
single-step relation, i.e., �6HB � i� there is a sequence �=�0; �1; : : : ; �t=� such that for
i=1; : : : ; t the pair (�i−1; �i) is a single-step. Higher Bruhat orders were further studied
by Voevodskij and Kapranov [25] and Ziegler [26]. In particular, Ziegler showed that
the higher Bruhat order B(n; r − 1) and the signotope order Sr(n) are not equal in
general. His example is B(8; 3) 6= S4(8). For r62 obviously B(n; r−1)=Sr(n). Ziegler
also shows that B(n; n−k−1)=Sn−k(n) for k63. The question whether B(n; 2)=S3(n)
was left open by Ziegler. This problem was resolved a�rmatively by Felsner and Weil
[7].
It should also be mentioned that Ziegler [26] gives a geometric interpretation of

signotopes. We give a di�erent interpretation in Theorem 7 (dimension 2) and Section
5 (general dimension). In terms of the closely related theory of oriented matroids our
geometric objects are the adjoints of the duals of Ziegler’s (see [8] for details).
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4.3. New signotopes from old

Various operations can be performed on signotopes. As in matroids we can perform
deletion and contraction but there exist other constructions of new signotopes from old.
In this subsection we review these operations. Some of the constructions, e.g. deletion,
contraction and weak boundary, will be useful later.
(1) For an r-signotope � the complement �� is obtained by exchanging all signs of �.

�� is a r-signotope.
(2) For an r-signotope � on a linearly ordered set X and Y ⊆X with |X \Y |¿r de�ne

the deletion � ↑Y to be the induced function on (X\Yr ). Deletion of Y gives a
r-signotope on X \ Y .

(3) For an r-signotope � on a set X and Y ⊆X with |Y |¡r de�ne the contraction
� ↓Y to be the function on ( X\Yr−|Y |) with � ↓Y (A) = �(A ∪ Y ). Contraction of Y
gives a (r − |Y |)-signotope on X \ Y .

Let � be an r-signotope on [n − 1]. A one-element expansion of � is an r-signotope
� in Sr(n) such that �= �↑n.

Lemma 9. The one-element expansions of � ∈ Sr(n− 1) form a lattice in Sr(n).

Proof. Let � and �′ be expansions of �. Let  : ( nr ) → {−;+} be the function with
(A) = + if �(A) = + or �′(A) = +. We claim that  is a r-signotope and hence the
least upper bound for � and �′. For the claim note �rst that every r+1 element set P
has �(Pbr+1c) = �′(Pbr+1c) = �(Pbr+1c). It follows that restricted to P the signotopes
� and �′ are comparable, i.e., the restrictions are comparable in Sr(P). On P the
function  equals the larger of the restrictions of � and �′. Hence for all (r + 1)-sets
P monotonicity of  is inherited from either � or �′.

We give geometric interpretations for the above constructions in the two-dimensional
case, i.e., for r = 3. Proofs for the correspondences can be derived from Theorem 7.
Let (A; F) be the marked arrangement with lines labeled by X corresponding to �.
The arrangement corresponding to �� is (A; �F). Delete the lines of Y from A to obtain
the arrangement corresponding to � ↑Y . Let x be an element of X ; the contraction � ↓x
is the local sequence �x of line x in A. One-element expansions of A are obtained
by adding a pseudoline n compatible with A that enters the plane in F and leaves in
�F . The new northface is the right one of the two faces obtained from F , i.e., the face
above n. Lemma 9 has the intuitive explanation that with two expansion lines n and
ln′ the right boundary of the region R obtained as union of the left halfplanes of n
and n′ is again an expansion line.
Ziegler [26] proposes two constructions of (r + 1)-signotopes from a r-signotope.

(4) For a r-signotope � on [n] let @� : ( [n]r+1) → {−;+} be de�ned by @�(P) = + i�
�(Pb1c) = − and �(Pbr+1c) = +. The boundary @� of � is an (r + 1)-signotope
(see [26]).
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(5) For a r-signotope � on [n] let �̂ : ( [n+1]r+1 ) → {−;+} be the unique function with
�̂ ↑n+1 =@� and �̂ ↓n+1 =�. The extension �̂ is an (r + 1)-signotope (see [26]).

Very much in the spirit of these constructions we de�ne:
(6) For a r-signotope � on [n] let @∗� : ( [n]r+1)→ {−;+} be de�ned by @∗�(P)=+ i�

�(Pbr+1c) = +.
Claim. The weak boundary @∗� of � is an (r + 1)-signotope.

Proof. Let Q be a r+2 element set and let P=Qbr+2c. Note that Qbicbr+1c=Pbic for all
i¡ r+2. Hence, @∗�(Qbic) = �(Qbicbr+1c) = �(Pbic). It follows from the monotonicity
of � that for 16i¡ j¡k ¡r + 2 either @∗�(Qbic) 4 @∗�(Qb jc) 4 @∗�(Qbkc) or
@∗�(Qbic)¡ @∗�(Qb jc)¡ @∗�(Qbkc).
If k = r + 2 and j¡ r + 1 we note that Qbkcbr+1c = Pbr+1c and the monotonicity

condition of @∗� for indices i; j; k follows from the condition for i; j; k − 1. Finally if
k=r+2 and j=r+1 we �nd that Qb jcbr+1c=Qbkcbr+1c, hence, @∗�(Qb jc)=@∗�(Qbkc)
and this implies the monotonicity condition of @∗� for i; j; k.

(7) For a r-signotope � on [n] let �̃ : ( [n+1]r+1 ) → {−;+} be the unique function with
�̃ ↑n+1 =@∗� and �̃ ↓n+1 =�. The weak extension �̃ is a r + 1-signotope.

Remark. Weak extensions have been studied by Rambau [18], using the name expan-
sion for these objects, he shows that � → �̃ is an order preserving embedding from
B(n; r − 1) to B(n+ 1; r).

4.4. Maximum chains of signotopes

This subsection is devoted to the proof of the main structural theorem on signotopes,
Theorem 13. This result is already part of publications on higher Bruhat orders [17,26].
While Ziegler refers to some non-trivial results from the theory of oriented matroids in
his proof the approach we take remains completely within elementary combinatorics.
With an r-signotope � on [n] associate a directed graph with vertices the r − 1

element subsets of [n] and edges →� de�ned by: For P ∈ ( [n]r ): and 16i¡ j6r, if
�(P) = + let Pbic →� Pb jc and if �(P) =− let Pb jc →� Pbic.

Lemma 10. For an r-signotope � on [n] the graph with vertices ( [n]r−1 ) and edges →�

is acyclic.

Proof. For r=2 and arbitrary n, relation →� is the transitive tournament corresponding
to the permutation whose inversion set is the set of pairs (i; j) with �(i; j) = +.
For n = r, relation →� is the lexicographic order on the r − 1 subsets of [r] if

�([r]) =− , otherwise, if �([r]) = + it is the reverse-lexicographic order.
Let n¿r¿ 2 and let � be the signotope obtained from � by deletion of {n}.

By induction →� is acyclic on (
[n−1]
r−1 ). Let  be the signotope obtained from � by

contraction of {n} and view → as graph on the vertex set Y = {A ∈ ( [n]r−1 ): n ∈ A}.
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By induction → is acyclic.
Let X−={A ∈ ( [n−1]r−1 ): �(A∪{n})=−} and X+={A ∈ ( [n−1]r−1 ): �(A∪{n})=+}. The

three sets X−; X+; Y partition the r−1 element subsets of [n], moreover, the subgraph
of →� induced by each of the three blocks of the partition is acyclic: It agrees with
the subgraph induced by →� in case of X− and X+ and with the subgraph induced by
→ in the case of Y . Now consider the edges of →� between the blocks. By de�nition
of X− all edges with one end in X− and the other end in Y are oriented from X−

to Y . Also all edges with one end in X+ and the other end in Y are oriented from Y
to X+. Therefore, the acyclicity of →� is readily established if we show that all the
edges with one end in X− and the other end in X+ are oriented from X− to X+. This
follows from the next claim.
Claim. A ∈ X− and B →� A implies B ∈ X−, i.e., X− is an ideal in the partial

order de�ned by the transitive closure of →�.
From B→� A it follows that P=A∪B is a r subset [n]. Let i; j be such that B=Pbic

and A = Pb jc. For Q = P ∪ {n} we then obtain Qbic = B ∪ {n}, Qb jc = A ∪ {n} and
Qb+1c = A ∪ B= P. We use the monotonicity of � on Q and distinguish two cases:
(1) If i¡ j then B →� A implies �(P) = �(Qbr+1c) = +. From A ∈ X− it follows

that �(Qb jc)= �(A∪{n})=−. Monotonicity forces �(Qbic)= �(B∪{n})=−, i.e.,
B ∈ X−.

(2) If j¡ i then B →� A implies �(P) = �(Qbr+1c) = −. From A ∈ X− it follows
that �(Qb jc)= �(A∪{n})=−. Monotonicity forces �(Qbic)= �(B∪{n})=−, i.e.,
B ∈ X−.

Proposition 11. For a r-signotope � on [n] there exist a chain �0¡�1¡ · · ·¡�( n
r−1 )

of (r − 1)-signotopes in Sr−1(n) such that for t = 1; : : : ; ( n
r−1 ) the signs of �t−1 and

�t di�er at only one (r − 1)-set At .

Proof. Let A1; A2; : : : ; A( n
r−1 )

be a topological sorting of →� and de�ne �t(A) = − if
A= Ai for some i¿ t and �t(A) = + if A= Ai for some i6t. To prove the lemma it
remains to show that each �t is a (r − 1)-signotope.
For every r element set P and all i; j; k with 16i¡ j¡k6r we either have Pbic →�

Pb jc →� Pbkc or Pbkc →� Pb jc →� Pbic. In the �rst case we have �t(Pbic) ¡
�t(Pb jc) ¡ �t(Pbkc) for all t and in the second case �t(Pbic) 4 �t(Pb jc) 4 �t(Pbkc)
for all t. This proves monotonicity for �t .

Based on this lemma will next give the proof of Theorem 7. The main motivation
for including this here is to illustrate the interpretations of the abstract combinatorial
objects we are playing with.

Proof (Theorem 7).
Let � be a 3-signotope, i.e., a function � : ( [n]3 )→ {−;+} obeying monotonicity on

4-subsets of [n]. From Proposition 11 we obtain a chain �0; : : : ; �( n2 ) in S2(n) corre-
sponding to �. Each �i encodes a permutation of [n]. �0 is the identity and �( n2 ) the
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reverse permutation. Moreover, two permutations �t and �t+1 di�er in a single sign
where �t is − and �t+1 is +. Hence, there is a single pair (i; j) being a non-inversion
of �t but an inversion in �t+1. This pair is an adjacent pair of both permutations. This
shows that �0; : : : ; �( n2 ) is a simple allowable sequence. From Theorem 2 we obtain
that via �0; : : : ; �( n2 ) signotope � encodes an arrangement A. From the construction it
is easily veri�ed that the triangle induced by lines i; j; k in A is a + triangle exactly
when �(ijk) = +. This proves the bijection.

The next proposition can be seen as a generalization of Theorem 2; it shows that
saturated chains of (r − 1)-signotopes can be used to encode r-signotopes.

Proposition 12. Let 1¡r6n and �0¡�1¡ · · ·¡�( n
r−1 )

be a maximum chain in
Sr−1(n). For t = 1; : : : ; ( n

r−1 ) let At be the unique (r − 1)-set with �t−1(At) = − and
�t(At) =+. There exists a r-signotope � on [n] so that A1; : : : ; A( n

r−1 )
is a topological

sorting of →�.

Proof. For a set A ∈ ( [n]r−1 ) let �(A) be the index of A in the list A1; : : : ; A( n
r−1 )
. Note that

monotonicity of the �t’s implies that for all D ∈ ( [n]r ) either �(Db1c)¡�(Db2c)¡ · · ·¡
�(Dbrc) or �(Db1c)¿�(Db2c)¿ · · ·¿�(Dbrc). In the �rst case let �(D) = + in the
second case �(D) =−. We have to show that � is a r-signotope, i.e., that � is mono-
tone at r + 1 sets. Let Q ∈ ( [n]r+1) and consider indices 16i¡ j¡k6r + 1. Sup-
pose �(Qbic) = �(Qbkc) = +. Let Qbi; jc denote the set Q minus the ith largest and
the jth largest element of Q, e.g., {1; 2; 5; 7; 8}b2;3c = {1; 7; 8}. From �(Qbic) = + we
obtain �(Qbi; jc)¡�(Qbi; kc). From �(Qbkc) = + we obtain that �(Qbi; kc)¡�(Qb j; kc).
Hence, �(Qbi; jc)¡�(Qb j; kc) which implies �(Qb jc)=+ as required. The argument for
�(Qbic) = �(Qbkc) = − is symmetric. It is obvious that A1; : : : ; A( [n]r−1 )

is a topological
sorting for the relation →�.

Propositions 11 and 12 together prove the main structure theorem for signotopes.

Theorem 13. There is a surjective mapping from maximum chains in Sr−1(n) to Sr(n).

Note that whenever Sr(n) = B(n; r − 1) then for any two signotopes �¡� in Sr(n)
there is a chain of maximum length containing both. In general we can show that at
least every single element of Sr(n) is contained in a chain of maximum length.

Proposition 14. Every element of Sr(n) is contained in a chain of length ( nr ) + 1.

Proof. Let � ∈ Sr(n) and consider the weak boundary @∗� of �. This de�nes the
directed graph →@∗� on (

[n]
r ). Note that A→@∗� B implies �(A) � �(B), i.e., the sets A

with �(A) = − form an ideal in the order corresponding to →@∗�. Let A1; A2; : : : ; A( nr )
be a linear extension of this order such that there is a t with �(Ai) = − for all i6t
and �(Ai) = + for all i¿ t. De�ne the sequence �j of r-signotopes as in the proof
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of Proposition 11. The sequence of complements �j is a chain of r signotopes with
�t = �.

Proposition 11 implies that the mapping � from maximum chains in Sr−1(n) to
elements of Sr(n) described in the proof of Proposition 12 is surjective. The two
propositions also imply that the preimage of � under � is a set of maximum chains in
Sr−1(n) of the same size as the set of topological sortings of →�, i.e., linear extensions
of the transitive closure of →�. We can even say more about this preimage.
Call two maximum chains in Sr−1(n) swap-equivalent if one of them corresponds

to the list A1; : : : ; A( n
r−1 )

of (r − 1)-sets and the list of the other chain di�ers only by
an adjacent transposition, i.e., is of the form A1; : : : ; At−1; At+1; At ; At+2; : : : ; A( n

r−1 )
for

some t.

Proposition 15. For r¿3 the set of maximum chains in Sr−1(n) mapped by � to
� ∈ Sr(n) is a complete swap-equivalence class.

Proof. The proof follows from two facts.
First, it is possible to transform any topological sorting of a directed acyclic graph

into any other by a sequence of adjacent transpositions, i.e., reversals of adjacent pairs
of unrelated vertices. Therefore, the preimage of � is contained in one swap-equivalence
class of chains in Sr−1(n).
Now assume r¿3 that A1; : : : ; A( n

r−1 )
is a topological sorting of →� and let list

A1; : : : ; At−1; At+1; At ; At+2; : : : ; A( n
r−1 )

correspond to a maximum chain of Sr−1(n). We
claim that At and At+1 are unrelated in →�. Otherwise, P = At ∪ At+1 is a r-set and
monotonicity only allows the signs of At and At+1 to be changed in a row if there
is an index i so that one of the two sets is Pbic and the other is Pbi+1c. Consider
sign and location in the list of a set of Pb jc; j 6= i; i + 1, to obtain a contradiction
to monotonicity. Hence, At and At+1 are unrelated in →� and the second list also
corresponds to a topological sorting of →�.

These considerations about swap-equivalence of the � preimages can be rephrased
as follows. Given a r-signotope � the set of (r− 1)-signotopes on maximum chains of
Sr−1(n) mapped to � by � together with the edges (single-steps) used by these chains
forms a lattice isomorphic to the lattice of antichains of the transitive closure of →�

(an example of this is given in Example B below). In particular, this shows that the
orders Sr(n) have a local lattice structure. What about global lattice structure? It is
known that Sr(n) is a lattice for r62. Ziegler [26] has shown that Sr(n) is a lattice
for r¿n− 2 and that S3(6) is not a lattice.

Example B. Let A (as shown in Fig. 9(a)) be the arrangement corresponding to a
3-signotope �. The directed graph →� is shown in Fig. 9(b). Note that we met the
transitive reduction of this graph (non-dashed edges) several times as

→
G (see Lemma

1, Section 3.1 and Lemma 4). The maximum chains of 2-signotopes mapped by � to
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Fig. 9. Illustrations for Example B.

� are the allowable sequences of A. In Section 3.1 we have seen that they correspond
bijectively to topological sortings of

→
G. It follows that the suborder of the weak Bruhat

order induced by permutations � appearing in allowable sequences ofA is a distributive
lattice (see Fig. 9(c)).

5. Geometric interpretations for signotopes

Ziegler [26] shows that there is a natural bijection between the uniform extension
poset on the set of single-element extensions of a cyclic hyperplane arrangement Xn;dc
in Rd and the higher Bruhat order B(n; n − d − 1). Felsner and Ziegler [8] note that
from the oriented matroid duality, B(n; n − d − 1) has another geometric representa-
tion as the set of 1-element liftings of Xn;n−dc . These liftings correspond to certain
a�ne arrangements of pseudohyperplanes in Rn−d−1. In this section we make the
connection with the second class of geometric objects explicit; that is, we character-
ize a class of arrangements of pseudohyperplanes in Rd corresponding to signotopes
� ∈ Sd+1(n).
A pseudohyperplane H in Rd is a homeomorph of a hyperplane such that the two

connected components of Rd \ H are homeomorphic to the d-ball. A set {H1; : : : ; Hn}
of pseudohyperplanes in Rd is an arrangement of pseudohyperplanes if every two
pseudohyperplanes Hi and Hj intersect in an (n − 1) dimensional pseudohyperplane
and they cross at their intersection. Moreover, for all j the set {Hi ∩Hj: i= 1; : : : ; j −
1; j + 1; : : : ; n} is an arrangement of n − 1 pseudohyperplanes in Hj ∼= Rd−1. We
say d-arrangement to abbreviate for “arrangement of pseudohyperplanes in Rd”. A
d-arrangement is simple if any set of d+1 pseudohyperplanes has empty intersection.
So far we have discussed arrangements of pseudolines which had been normalized

by a marking face F and a speci�c labeling of the lines (increasing on a clockwise
walk from �F to F at in�nity). For all arrangements of this section we assume that
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they are simple and that they are embedded in Rd in a normalized way as described
in the next paragraph.
For i=1; : : : ; d−1 let Ii be the (d−i)-dimensional space at in�nity obtained by setting

the last i coordinates equal to −∞, i.e., with xd =−∞; xd−1 =−∞; : : : ; xd−i+1 =−∞
(if the reader feels uncomfortable with these “spaces at in�nity” he may assume that
the arrangement is embedded in a d-dimensional unit hypercube [0; 1]d and consider
Ii as the side of this cube obtained by setting the last i coordinates equal to 0). We
demand that the d-arrangement induces a (d− i)-arrangement with the same number of
pseudohyperplanes on Ii. Moreover, the pseudohyperplanes are labeled by increasing x1
coordinate at their intersection with Id−1. We call an arrangement with these properties
normal.
The intersection of every set of d−1 pseudohyperplanes of an arrangement A deter-

mines a line of the arrangement. If the arrangement is normal we consider these lines
and the edges they support as oriented away from I1. A normal d-arrangement induces
a sign function f : ( [n]d+1)→ {−;+} by the following rule. Given i1¡i2¡ · · ·¡id+1
let f(i1; : : : ; id+1)=− i� on the intersection line of the pseudohyperplanes hi3 ; : : : ; hid+1
the intersection with hi1 comes before the intersection with hi2 .
Hurrying ahead we de�ne: A normal d-arrangement A is called a Cd-arrangement

if the normal (d − 1)-arrangement induced by A on I1 corresponds to the minimal
signotope �0 ∈ Sd(n); the minimal signotope �0 is the signotope with all signs −. It
should be remarked that the arrangement corresponding to �0 ∈ Sd(n) is the cyclic
arrangement Xn;dc .

Theorem 16. There is a bijection between Cd-arrangements with n pseudohyperplanes
and signotopes in Sd+1(n). The signotope corresponding to a Cd-arrangement A is
the sign function of A as de�ned above.

Proof. We use induction on d. Theorem 7 covers the case d = 2 and may serve as
basis for the induction. For the induction step we also use that if (�; �′) is a single
step in Sd(n) then the associated Cd−1-arrangements A and A′ are related by a ip
at a simplicial cell bounded by the hyperplanes corresponding to the unique d element
set A with �(A) =− and �′(A) = +.
For d dimensions we �rst consider normal arrangements of d+1 pseudohyperplanes

labeled by the elements of A= [d+1]. Such an arrangement A has just one bounded
cell which is a (pseudo)simplex. The set of bounded edges of A forms the skeleton
graph of the simplex, i.e., a complete graph Kd+1. The vertex of this graph determined
by the intersection of the pseudohyperplanes in Abic will itself be denoted Abic.

Claim A. The orientation of lines induces an acyclic orientation on the graph of
bounded edges of A.

Let Abic; Ab jc and Abkc be any three vertices of the graph. The three lines Abi; jc; Abi; kc;
Ab j; kc are supported by the plane Abi; j; kc which is a homeomorph of a disk D. The
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intersection of Abi; j; kc with I1 corresponds to an interval on the boundary of D in which
all three lines begin. Since lines and edges are oriented away from I1 the orientation of
the triangle with vertices Abic; Ab jc and Abkc is acyclic. An orientation of the complete
graph Kd+1 with all triangles acyclic is acyclic.

Claim B. For Cd-arrangements the orientation of Kd+1 is either the transitive closure
of Ab1c → Ab2c → · · · → Abd+1c in which case the sign of the arrangement is + or
of Abd+1c → Abdc → · · · → Ab1c in which case the sign is −.

Since the graph is acyclic we can sweep arrangement A starting with I1. Meaning,
we �nd a sequence s0; s1; : : : ; sd+1 of pseudohyperplanes such that they all share the
pseudosphere at in�nity with I1 = s0 and between any two consecutive pseudohyper-
planes si, si+1 there is exactly one vertex of the arrangement. Since the arrangement is
a Cd arrangement we know that the �rst vertex to be swept corresponds to a simplicial
cell in the arrangement of the minimal element of Sd(d + 1). This arrangement has
only two simplicial cells one bounded by the pseudohyperplanes in Ab1c and the other
by those in Abd+1c. The arrangement induced on s1 is thus obtained by ipping one of
these cells. After this �rst ip one of the two branches of Sd(d+1) which as we recall
has the structure of (2d + 2)-gon is determined. Playing with the bijection between
the arrangements induced on the sweep-planes si and the corresponding signotopes we
see that the sweep has to follow the chosen branch of Sd(d + 1). This results in one
of the above orderings of the vertices of Kd+1. The statement about the sign of the
arrangement follows from considering the orientation of the edge between Ab1c and
Ab2c.
From the previous claim we obtain generalized criteria for determining the sign of

a d + 1 element set A in a Cd-arrangement. Consider any two vertices Abic and Ab jc

with i¡ j of the arrangement induced by A. The sign of A is + i� Abic precedes Ab jc

on the line Abi; jc.
With this at hand we can show monotonicity for the sign functions of a Cd-arrange-

mentA with more than d+1 pseudohyperplanes. Let � be the sign function correspond-
ing to A and let P be a d+2 element set of pseudohyperplanes. For 16i¡ j¡k6d+
2 we have to show that �(Pbic) = + together with �(Pb jc) = − implies �(Pbkc) = −
and �(Pbic) = − together with �(Pb jc) = + implies �(Pbkc) = +. We only prove the
�rst implication, the other being similar. From �(Pbic)=+ we obtain that vertex Pbi; jc

precedes vertex Pbi; kc on the line Pbi; j; kc. From �(Pb jc) = − we obtain that vertex
Pb j; kc precedes vertex Pbi; jc on the line Pbi; j; kc. From transitivity Pb j; kc precedes Pbi; kc

and hence �(Pbkc) =−.
So far, we have seen that the sign function of a Cd-arrangement of n pseudohyper-

planes is a signotope in Sd+1(n). Given a Cd-arrangement with signotope � the next
thing to prove is the correspondence between simplicial cells in A and single steps
involving �. For the �rst half note that a simplicial cell of A can be ipped leading to
A′. Since A′ is a Cd-arrangement it has a corresponding signotope �′. Now compare
the ordering of vertices on lines of A and A′ to see that � and �′ di�er in just one
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sign. On the other hand, if � and �′ only di�er in the sign A then it is possible to
show that for all i; j in A the two vertices Abic and Ab jc are adjacent along the line
Abi; jc. Therefore, the simplicial cell corresponding to A is not penetrated by any further
pseudohyperplane.
Given any Cd-arrangement A, we may move to any other Cd-arrangement (of same

dimension with same number of pseudohyperplanes) using ips. This is due to the
connectedness of Sd+1(n) (Lemma 14). Therefore, the missing link for a complete
proof is the existence of a single Cd-arrangement with n pseudohyperplanes. This can
be provided by checking that the cyclic arrangements have the required properties.
Here we indicate a construction which is similar in spirit to the construction of wiring
diagrams as representatives of pseudolinear arrangements:
Given � ∈ Sd+1(n) choose a chain �0¡�1¡ · · ·¡�( nd ) in Sd(n) mapped by � to

�. By induction �0 corresponds to a Cd−1-arrangement B0 of n pseudohyperplanes. Let
A be the unique d-set with di�erent sign in �0 and �1. We know that the pseudohyper-
planes from A bound a simplicial cell in B0. Construct B1 by applying a simplicial-ip
to this cell in B0. Repeat this to obtain a sequence B0;B1; : : : ;B( nd )

of arrangements
in Rd−1 corresponding to �0; �1; : : : ; �( nd ). Introduce a new dimension xd and place
arrangement Bi in the a�ne (d − 1)-dimensional space at xd = i. The pseudohyper-
plane hi of the arrangement A corresponding to � is obtained by properly interpolating
between the ith pseudohyperplane in Bj and Bj+1 for j=0; : : : ; (

n
d)− 1 and extending

the ith pseudohyperplane of B0 and B( nd )
to xd =−∞ and xd =∞, respectively.

Note that, as a consequence of Theorem 16 Cd-arrangements can be swept. This
means that starting with the sweep-pseudohyperplane I1 the sweep never gets stuck.
While this property is clearly shared by realizable arrangements there are reasons to
believe that “most” higher dimensional arrangements cannot be swept (e.g. the exam-
ples constructed by Richter-Gebert [19]). In fact it is not even known whether every
d-arrangement of n¿d pseudohyperplanes contains a simplicial cell.

6. Conclusion and open problems

Summarized in three phrases the contributions of this paper are: sweeps are an
e�ective tool in dealing with planar arrangements. In the simple case, the mapping from
allowable sequences to marked arrangements is a special case of the general existence
of surjective mappings from maximal chains in Sr−1(n) to elements of Sr(n), and that
elements of Sr(n) correspond to a special class of arrangements (Cr−1-arrangements)
of pseudohyperplanes in Rr−1 which admits sweeps.
Hence, restricted to Cr−1-arrangements maximal chains in Sr−1(n) can be seen as

an r−1 dimensional generalization of allowable sequences. Goodman and Pollack [11]
had already asked for higher-dimensional analogs of allowable sequences. Can these
ideas be carried further to give such analogs for a larger class of arrangements of
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pseudohyperplanes? Are there other sets of conditions which guarantee the sweepability
of an arrangement?
Already Manin and Schechtman [17] mention that the maximal chains in the weak

Bruhat order have a nice encoding in terms of Young tableaux [23,2]. They ask for a
generalization to higher dimension, i.e., for encodings of chains in Sr(n), for r ¿ 2. It
seems that so far there is no progress concerning this question.
It would be very interesting to understand more of the structure of the graph Gr(n)

whose elements are r-signotopes and edges correspond to single-steps, i.e., two r-signo-
topes are connected by an edge if they di�er only in the sign of a single r-set. Only little
is known: Ziegler [26] shows that the higher Bruhat order is homotopy equivalent to a
sphere. Felsner and Ziegler [8] have shown that these graphs contain large subgraphs
which form the skeleton of zonotopes and characterize those pairs (r; n), where Gr(n)
actually is the skeleton graph of a zonotope in Rn−r+1. Questions like minimum and
maximum degree of Gr(n) or connectedness are wide open in general. Even for r = 3
the question concerning the minimum degree has only recently been solved by Felsner
and Kriegel [6]. They showed that every simple Euclidean arrangement of n pseudolines
contains n − 2 triangles. We venture the following conjecture: Minimum degree and
connectedness of Gr(n) are both n− r + 1.
We conclude with a problem that was brought to our attention by a referee. Does

the equivalent of Levi’s extension lemma hold for Cd-arrangements?
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