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Petri nets are widely used to model concurrent systems. However, their composi- 
tion and abstraction mechanisms are inadequate: we solve this problem in a 
satisfactory way. We start by remarking that place/transition Petri nets can be 
viewed as ordinary, directed graphs equipped with two algebraic operations corre- 
sponding to parallell and sequential composition of transitions. A distributive law 
between the two operations captures a basic fact about concurrency. New 
morphisms are defined, mapping single, atomic transitions into whole computa- 
tions, thus relating system descriptions at different levels of abstraction. Categories 
equipped with products and coproducts (corresponding to parallel and nondeter- 
ministic compositions) are introduced for Petri nets with and without initial 
markings. Petri net duality is expressed as a duality functor, and several new 
invariants are introduced. A tensor product is defined on nets, and their category 
is proved to be symmetric monoidal closed. This construction is generalized to a 
large class of algebraic theories on graphs. These results provide a formal basis for 
expressing the semantics of concurrent languages in terms of Petri nets. They also 
provide a new understanding of concurrency in terms of algebraic structures over 
graphs and categories that should apply to other models besides Petri nets and thus 
contribute to the conceptual unification of concurrency. ci”l 1990 Academic Press, Inc. 

1. INTRODUCTION 

Petri nets are the first model of concurrent systems which has been 
developed and, in their various evolutions, the most heavily used in many 
applications. They have also been the object of many contributions in the 
literature (for an extensive list of references see Drees et al., 1986). 
Recently, a renewed interest in Petri nets has been stirred up by the 
so-called true concurrency approach to the semantics of concurrent systems 
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(Boudol and Castellani, 1988; Degano et al., 1988; Degano and Montanari, 
1987; Winskel, 1987; Olderog, 1987; van Glabbeek and Vaandrager, 1977). 

While the algebraic structure of Petri nets has been extensively 
investigated, we feel that a key point has been missed: a place/transition 
Petri net is simply an ordinary, directed graph equipped with two algebraic 
operations. More precisely, a net provides the generators of the algebraic 
structure. Several well-known constructions (e.g., the case graph, the firing 
sequences, the non-sequential processes, etc.) correspond to closure 
constructions with respect to the algebraic operations. 

Consider, for example, the place transition Petri net in Fig. 1. It has a set 
of places S = {a, b, c, d, e, f } and a set of transitions T = {t, t’}. Numbers 
on the incoming arrows of a transition specify how many tokens are 
consumed from each place when the transition tires, and numbers on the 
outgoing arrows specify how many tokens are generated as a consequence 
of the transition. The “state” of the net is determined by the number of 
tokens stored in each place. The left-hand side picture describes a state 
with two tokens in a, four in b, and three in c. In a Petri net, several trans- 
itions can fire concurrently. The picture on the right describes the state 
reached after the concurrent tiring of t and t’. 

The point is that this Petri net can be understood as an ordinary graph 
whose set of nodes is the free commutative monoid So generated by the set 
S of places (we use additive notation, so a typical element of S@ is for 
example 3a 0 2c @ 7e; in the computer science literature such elements are 
called finite multisets or “bags” and addition is understood as union). The 
transitions then correspond to arrows of the graph. In this case there are 
just two arrows. 

t: a@26-+3d@2e 

t’: b@3c -+e@qf: 

Addition can naturally be extended to transitions. For example, we can 
represent the parallel firing of t and t’ by the arrow 

FIG. 1. A place/transition net before and after the concurrent firing of t and 1’ 



PETRI NETS ARE MONOIDS 107 

Therefore, our first operation, 0, together with a zero element, yields a 
commutative monoid structure on a graph, in the sense that the monoid 
structure is defined on both nodes and arcs, and that the source and target 
functions 8, and d, from arcs to nodes are monoid homomorphisms. 

The commutative monoid structure on the nodes is free, having the 
places of the given net as generators. The commutative monoid structure 
on the arcs may also be free, and in that case the meaning of @ is the 
parallel, independent composition of transitions. In general, however, the 
monoid of the arcs need not be free: for example, it may take into account 
a synchronization algebra defined on the transitions. 

It is also convenient to consider rejkxiue graphs, i.e., graphs where every 
node is the source and the target of an associated identity arc, which is 
interpreted as an idle transition. For example, the identity arc 2~: 2a -+ 2a 
is interpreted as the idleness of two tokens in place a. In this way, we can 
represent the concurrent transition from state 2a@4b @ 3c to state 
3d @ 3e 0 4f in Fig. 1 by the arc, 

The commutative Petri monoid on a reflexive graph generated from a Petri 
net by additive closure is a well-know object in Petri net theory: it is called 
the case graph. 

The second algebraic operation is even simpler: it is the concatenation of 
the arcs of the graph and is denoted by a semicolon. Closure with respect 
to this operation of sequential composition straightforwardly generates new 
transitions corresponding to computations of the given Petri net. However, 
the interesting point here is that we close with respect to both sum and 
sequential composition at the same time, thus obtaining a more general 
notion of computation. 

The resulting structures can be seen as small categories, here called Petri 
categories, where the morphisms are computations. This naturally suggests 
making the sum operation functorial, i.e., making it respect identities and 
sequential composition. Therefore, a Petri category is a commutative 
monoid structure on a small category, with the distinguishing feature that 
the commutative monoid of objects is free. This justifies our title, since 
Petri nets are monoids both on graphs and, by additional closure, on 
categories. Indeed, if in the definition of Petri category we relax the freeness 
requirement, we obtain the more general notion of a commutative monoid 
structure on a category. Such structures are usually called strict symmetric 
monoidal categories, and the monoid homomorphisms are called strict 
monoidal functors (MacLane, 197 1). 
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The key law in Petri categories is the following distributive property. 
Given CI:U+V, u’:u’-+v’, /~:v-+uI, fl’:o’+w’, we have 

(a;8)0(a’;P’)=(agcr’);(POB’). (1) 

We feel that this law captures a rather basic fact about concurrency: the 
parallel composition of two given independent computations has the same 
effect as a computation whose steps are the parallel compositions of the 
steps of the given computations. 

A derived property may make the point clearer. Given c(: u + v, 
j3: u’ + v’, we have 

(aOld); (vop)=(uo~); (a@v’). 

This is the well-known property that two independent (concurrent) trans- 
itions can be executed in any order. The fact that they are concurrent is 
expressed by the fact that the places involved in one transition are idle 
while the other transition takes place: the two transitions are not causally 
related. 

Computations of Petri categories are closely related to nonsequential pro- 
cesses (Goltz and Reisig, 1983; Reisig, 1985), a well-known, classical con- 
cept apt to describe the concurrent behaviors of Petri nets. The two notions 
coincide (Degano et al., 1989a) in the important case of safe computations, 
i.e., computations where two instances of the same place are never con- 
current. When actions are introduced as labels for transitions, computa- 
tions of Petri categories are also similar to concurrent histories, a notion 
developed earlier in a different context by the second author in joint work 
with P. Degano (Degano and Montanari, 1987). The above derived 
property is called commutativity in (Degano and Montanari, 1987), where 
it plays a pivotal role. Winkowski (1982) introduced two operations of 
sequential and parallel composition of processes; however, his parallel 
composition is partial, and the approach is restricted to safe computations. 

The earliest use of free monoidal categories in computer science was 
probably made by Hotz (1965). In (Meseguer and Sols, 1975), linear 
algebra models of free monoidal categories were used to characterize 
sequential and parallel compositions of nondeterministic and probabilistic 
automata and switching networks. As part of their linear algebra approach 
to nondeterminism and concurrency, Main and Benson (1984) also 
advocate the use of monoidal categories to formalize sequential and 
parallel composition. 

The formal development we are proposing for the above ideas relies on 
category theory. In the case of Petri nets, the use of category theory is 
justified by very concrete motivations. In fact, Petri nets have been often 
considered inadequate since, at least in their original version, they are not 
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equipped with composition operations and with an abstraction mechanism. 
The categorical approach due to Winskel (1984, 1987) provides the former, 
since the categorical constructions of product and coproduct correspond to 
parallel and nondeterministic composition (respectively) ( Winskel, 1984) 
for languages like CCS (Milner, 1985). A further benefit that category 
theory provides is very powerful techniques for relating different classes of 
models (i.e., different categories). This is an important advantage in the 
case of concurrency, where different models of the same system are often 
considered for different purposes. For instance, Petri nets, occurrence nets, 
several versions of event structures, transition systems, synchronization 
trees, etc. can be given a categorical structure, and their semantic relations 
can be profitably expressed (typically as coreflections) in the language of 
categories (Winskel, 1984, 1986). 

In this paper, besides directly using categories as a model of computation 
in Petri categories, we broaden the applicability of Winskel’s contribution, 
and, in addition, we show that the abstraction problem also has a simple 
and natural solution by providing new very general morphisms corre- 
sponding to the notion of implementation. 

Our view of a Petri net as a reflexive graph equipped with two opera- 
tions (0 and ; ) immediately suggests that morphisms are reflexive graph 
morphisms (i.e., mappings of arcs and nodes respecting sources, targets, 
and identity arcs) which furthermore respect the operations of parallel sum 
and sequential composition. 

These morphism are, to our knowledge, new in the context of Petri nets.’ 
They are a decisive improvement over the strongly restrictive versions pre- 
viously proposed in the literature, since they allow simulations where single 
transitions of the specification correspond to whole computations of the 
implementation. Relating system descriptions at different levels of abstrac- 
tion has, admittedly, been one of the main goals of the theory of Petri nets 
from its very beginning, a goal which has never been fully achieved. 

Furthermore, our categorical approach has the advantage of suggesting 
completely new constructions for Petri nets. As important examples, we 
express Petri net duality as a duality functor and we make explicit a 
symmetric monoidal closed category structure, where nets are closed under 
a function space construction with an associated (noncartesian) product. 

Considering our approach a little more in detail, in Section 2 we 
naturally define a hierarchy of categories, where the objects have richer and 
richer algebraic structures: Petri nets, pointed Petri nets (nets with a zero 
transition), Petri monoids, reflexive nets, Petri categories. All these 

‘See [Hinderer, 19821 for an early attempt to use category theory to obtain a general 
notion of morphism. Although similar in spirit to the notion that we propose, the basic link 
between Petri nets and categories was, in hindsight, unsatisfactory. 
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categories are obviously related by forgetful functors, whose left adjoints 
provide the closure constructions with respect to the added operations. 
However, to capture the morphisms we are interested in, it is not necessary 
to make the additional structure explicit. It is sufficient to consider as 
objects ordinary Petri nets and to equip them with the morphisms defined 
on their closures. This approach, described in Section 3, generates a 
hierarchy of categories, where the objects are the same, the ordinary Petri 
nets, but where more general types of morphisms become available as more 
and more structure is taken into account. Ail these categories have 
products and coproducts. 

The graph definition we have followed until now does not require an 
initial node. In fact, the initial marking of a Petri net is often considered 
inessential. This makes the formal treatment simpler and nicer. In fact, 
Winskel (1987) proved that his categories, relying on a Petri net definition 
which includes an initial marking, do not have coproducts: he restricted his 
treatment to safe nets and safe morphisms to guarantee the existence of 
coproducts. Lacking coproducts is a serious drawback, since, as we 
noticed, they correspond semantically to nondeterministic compositions. 

However, an initial state is needed whenever Petri nets are used for 
defining the operational semantics of concurrent languages (Degano et al., 
1988; Degano and Montanari, 1987; Winskel, 1984; Olderog, 1987; van 
Glabbeek and Vaandrager, 1987). In Section 4, we extend the applicability 
of our results also to this important case by adding an initial marking, but 
we require it to be a set (instead of a multiset) of places. No restrictions 
whatsoever are placed on nets, nor on morphisms, except that they 
preserve the initial marking. We then show the existence of products and 
coproducts for all morphisms, includig those allowing a change in the level 
of abstraction. In practice, our restriction involves no loss in generality: we 
easily define a functor which adds to a given multiset-marked net a new 
initial place and a starting transition. This functor lands in a full sub- 
category, with unreachable initial markings, equipped with products 
and coproducts, which is our best candidate for language definition 
applications. 

The morphisms proposed by Winskel (1987) called synchronous 
morphisms, asynchronous morphisms, and homomorphisms, correspond 
more or less to the first three steps of the hierarchy described in Section 2: 
Petri nets, pointed Petri nets, and Petri monoids (respectively). However, 
homomorphisms are hardly used in (Winskel, 1987) and indeed doubts 
about their usefulness are raised; synchronous and asynchronous 
morphisms are introduced, as restrictions of the latter, in a somewhat 
adhoc manner. Indeed, Winskel’s treatment of the category of Petri nets 
and homomorphisms (based on ideas by Reisig: a net is a two-sorted 
algebra on the multisets XT and -Mlrs with operations ‘(-), (0’: Xr-+ .;lf’ 
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and a constant ME JV’) recognizes the algebraic nature of nets but does 
not take full advantage of their graph structures. 

Besides requiring the initial marking to be a set rather than a multiset, 
a difference with Winkel’s approach is that we consider in most of the 
paper finite multisets (viewed as elements of a free commutative monoid) 
rather than arbitrary ones, so that our transitions have linitary precondi- 
tions and postconditions; as a consequence, we do not need any restrictions 
to obtain a category, whereas Winskel has to add conditions on the net to 
make sure that homomorphisms compose. However, an entirely parallel 
development of our ideas can be obtained by introducing transitions hav- 
ing in their pre/postconditions both an infinite number of places and places 
with an infinite multiplicity. We explain in Section 7.4.2 that most of our 
results hold in this case as well. On the other hand, our Petri monoid 
category is more general, in that the monoid structure of transitions need 
not be free. The usefulness of this additional generality may reflect a syn- 
chronization algebra and also becomes apparent when we consider Petri 
categories (where the monoid of transitions is not free for the existence of 
laws like (1 )), which have no counterpart in Winskel’s work. 

Our approach of viewing Petri nets as ordinary graphs may appear to 
obscure the well-known and fruitful fact that nets can be dualized by regar- 
ding transitions as places and places as transitions. The opposite is the 
case. In Section 5 we express Petri net duality as a duality functor. We then 
give a geometrical interpretation of T-invariants and their properties 
through a very general notion of a Loop functor, and we use duality to give 
a functorial account of S- and T-invariants. Using elementary algebra, we 
also derive algebraic relations between the groups of S- and T-invariants of 
a Petri net and associate to a Petri net N two other groups, S$,,,(N) and 
T:“,,(N) that apparently are new. 

It is well known that a tensor product A @ B can be defined in the 
category CMon of commutative monoids so that, up to natural 
isomorphisms, 0 is associative, commutative, and has ,V as an identity. It 
is also well known that the monoid homomorphisms from A to B form a 
commutative monoid [A + B] and that there is a natural isomorphism 

CMon((A @B), C) ‘v CMon(A, [B + Cl); 

in other words, the category of commutative monoids is a symmetric 
monoidal closed category (MacLane, 1971). This is just like a Cartesian 
closed category except that the product A@ B is not the categorical 
product. Since “Petri nets are monoids,” this result can be extended to nets: 
In Section 6 we give tensor product and function space constructions for 
Petri nets and prove that their category is symmetric monoidal closed. 
In fact, the definition works even better (without need for a finiteness 
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condition) for the more general case where the monoid of nodes in the 
graph need not be free. This construction seems to be completely new. 
Furthermore, we generalize this result to the categories of commutative 
monoids on graphs, on reflexive graphs, and on categories. 

Finally, in Section 7 the basic constructions of Section 6 (and with them 
most of the results of the paper) are generalized to a large class of algebraic 
theories on graphs. The required condition is that the algebraic theories of 
both nodes and arcs be commutative and that the source and target maps 
be homomorphisms. The development is carried out in the framework of 
the theory of commutatiue monads (Eilenberg and Moore, 1965; MacLane, 
1971; Manes, 1976; Linton, 1966; Kock, 1971). This “meta” result makes 
our theory applicable to a variety of interesting cases: in Section 7.4 we give 
examples concerning fuzzy nets, infinitary nets, and probabilistic nets, and 
in Section 8 we indicate an extension to term rewriting systems. 

Although we have for the most part concentrated on the case of Petri 
nets, the general new concept that emerges from the present work is that 
of transition systems as graphs with algebraic structure. Computations of a 
transition system then appear as morphism of a path category generated by 
its graph. This path category will be endowed with an algebraic structure 
similar to that of the transition system. For Petri nets, the relevant 
algebraic structure is that of a commutative monoid, and therefore com- 
putations have a strict symmetric monoidal category structure, but this is 
just a particular case. Other algebraic structures besides that of monoid are 
possible and natural. Considerations of this kind should lead to a general 
algebraic (meta) model of true concurrency of wide applicability. 

Regarding prerequisites, we assume some acquaintance with basic 
notions of category theory such as category, functor, products, coproducts, 
etc. However, we give intuitive explanations of adjoints, Cartesian and 
monoidal closed categories, and monads, when each notion is first encoun- 
tered. An excellent reference is (MacLane, 1971). Section 5 assumes an 
undergraduate level acquaintance with groups, rings, and modules. 

2. ADDING MONOID AND CATEGORY STRUCTURE TO PETRI NETS 

2.1. Petri Nets 

The standard definition of place/transition net (Reisig, 1985; Winskel, 
1987) is as follows: A place/transition (P/T) net is a triple (S, T, F), where 

l S is a set of places; 

l T is a set of transitions; 

l F: (S x T) + (T x S) + N is a multiset called the causal dependency 
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relation. (Here N denotes the natural numbers and + denotes disjoint 
union of sets.) 

In the rest of this paper a Petri net will always mean the general case of a 
place/transition net. Sometimes special requirements (like global finiteness 
conditions, or limitations on the capacity of the places) are added. 

As explained in Section 1, we want to see Petri nets exactly as graphs. 

DEFINITION 1. A graph G is a set T of arcs, a set V of nodes and two 
functions 8, and 8, called source and target, respectively: 

A morphism h from G to G’ is a pair of functions (f, g), f: T+ T’ and 
g: V-t I/’ such that: 

This, with the obvious componentwise composition of morphisms, 
defines the category Crap/z. We follow the usual notation and write t: u + u 
to denote a,(t) = U, a,(t) = u for t E T. 

DEFINITION 2. A (place/transition) Petri net is a graph where the arcs 
are called transitions and where the set of nodes is the free commutative 
monoid S@ over a set of places S: 

a,, a,: T+ s? 

A Petri net morphism is a graph morphism (f, g), where g is a monoid 
homomorphism (i.e., leaving 0 fixed and respecting the monoid operation 
0). This defines a category Petri. 

The elements of S@ will be represented as formal sums n, a, 0 . . . 0 nk ak 
with the order of the summands being immaterial, with the a, in S, the ni 
in JV, addition defined by (0 i qa,) @ (0 i m,aJ = (0 i (ni + mi) ai) and 0 
as the neutral element. 

It is easy to see that our definition coincides with the standard definition, 
if we require there that for each t E T the set {s I F(s, t) # 0 or F(t, s) # 0) 
is finite. 

For example, from 

F(a, t) = 2, 

S= {a, b, c}, T= {t} 

F(b, t) = 1, F(t, c)=2, F = 0 elsewhere, 
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we obtain the graph with nodes (a, 6, cj@ and the single arrow 
t:2a@b+2c. 

There is an obvious forgetful functor Petri + Graph that forgets about 
the monoid structure of the nodes. There is an associated free construction 
sending a graph G to the free Petri net N(G) generated by G. “Freenes” of 
course means that there is a graph morphism qc: G -+ N(G) injecting the 
generators G into N(G) such that given a Petri net M and a graph 
morphism h : G + M there is a unique Petri net morphism h: N(G) -+ M 
extending h, i.e., such that h 0 g, = h. A free construction of this kind always 
defines a functor “going the other way” and called the lefl adjoint to the 
given forgetful functor (MacLane, 1971) (dually, the forgetful functor is 
called the right adjoint of its free construction functor). In our case, the 
left adjoint is a functor N: Graph -+ Petri associating to a graph G = 
(a,, 8,: T-t V) the Petri net N(G)= (a,, 8,: T-r V@). In what follows, 
since free constructions associated to forgetful functors are exactly the same 
thing as left adjoints, we will just say that there is a left adjoint for a given 
forgetful functor and indicate the result of the free construction on the 
objects (the inclusion of generators yl tends to be obvious (typically a 
set-theoretic inclusion) and can safely be left implicit). 

The categorical product in the category Graph of two graphs 

G=(&,,a,: T-, I’) and G’ = (S;, 8; : T’ + V’) 

is the graph 
GxG’=(&,x&,,d,x8;: TX T’+ Vx I”). 

For Petri nets N=(c?,,c?,: T-S@) and N’=(ab,Si: T’+SQ), their 
product as graphs 

NxN’=(a,xab,a,xa;:TxT’-,SOxS’O) 

is also a Petri net, since 

p x S’Q N (S+ S’)Q N SQ 0 P, 

i.e., finite products and coproducts of free commutative monoids coincide. 
The Petri net N x N’ is clearly the categorical product in Petri and is called 
the synchronous product of the nets N and N’. Intuitively, the synchronous 
product of two Petri nets is the result of a composition operation with 
synchronization: The places of the result are the union of the places of the 
factors, while the transitions in the synchronous product are pairs (i.e., 
synchronizations) of the given transitions. 

The category Petri has also coproducts, 

NON’=([a,,a;], [a,,a;l: T+T’-+(S+S’)@), 
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where [a,, ai] denotes the function induced on the coproduct T-t T’ by 
functions ai and ~3: on the pieces. 

Intuitively, the coproduct of two Petri nets is the result of a composition 
operation without synchronization: the two nets are just laid aside without 
interaction. We will see that in the case of marked nets (i.e., nets with 
initial state, discussed in Section 4) the meaning of coproducts is, more 
suggestively, that of nondeterministic choice composition. 

The initial net has no transitions and no places, while the final net has 
one transition and no places. The construction of the coproduct of two 
Petri nets generalizes to arbitrary families of nets. 

Petri has neither arbitrary limits nor arbitrary colimits. This is due to the 
fact that the category of free commutative monoids lacks arbitrary limits 
and colimits. However, dropping the freeness requirement for the monoid 
of nodes leads to a bigger category GraIPetri that has all limits and 
colimits. 

2.2. Pointed Petri Nets 

In the category Petri, a map (f, g): N -+ N’ maps each transition t of 
N to a transition f(t) of N’. We might, however, want to allow for certain 
transitions to be erased by a mapping. This would correspond to making 
the map f: T -+ T’ partial. An approach which is completely equivalent 
from a semantical point of view, but more convenient technically, is to add 
a special element 0 to T, making it into a pointed set. Maps between 
pointed sets are required to leave 0 fixed, and thus directly correspond to 
partial functions between the original sets. The commutative monoid 
S@ is already a pointed set considering as special element the 0 element of 
the 0 operation. 

DEFINITION 3. A pointed Petri net consists of a Petri net where the set 
of transitions is a pointed set (T, 0), 0 E T, the commutative monoid S@ is 
viewed as a pointed set, and 

a,,, d, : (T, 0) + S@ 

are pointed set maps. A pointed Petri net morphism is a Petri net morphism 
(f, g), where f is a map of pointed sets. This defines a category Petri,. 

There is an obvious forgetful functor Pet& + Petri that forgets about 
the pointed set structure of the transitions. This functor has a left adjoint 
(-)o: Petri+ Petri, that associates to a net N= (a,, ~3,: T-+S@) the 
pointed net 

-- 
N0=(i3,,&:(T+(O},0)4@) 

with q = ai on T, and q(O) = 0. 
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As in Petri, the product of two pointed Petri nets as graphs has an 
obvious pointed net structure and yields the categorical product in Petri,. 

Coproducts are also easy; 

where (T, O)@ (T’, 0’) is the coproduct of pointed sets, i.e., the disjoint 
union T + T’, except that 0 and 0’ are identified. 

2.3. Petri Monoids 

DEFINITION 4. A Petri commutative monoid M consists of a Petri net 
where the set of transitions is a commutative monoid (T, + , 0) and where 

&,,a,:(T, +,0)-S@. 

are monoid homomorphisms. A Petri commutative monoid morphism is a 
Petri net morphism (f, g), where f is a monoid homomorphism. This 
defines a category CMonPetri. 

There are forgetful functors 

CMonPetri + Petri, + Petri, 

each with a left adjoint. We shall denote by (-)@ : Petri + CMonPetri 
the left adjoint of their composition. It associates to a Petri net N= -- 
(a,, 8,: T+ S@) the Petri commutative monoid N@ = (a,,, a,: TQ + S@), 
where & and & are the unique monoid homomorphisms extending d, 
and a,. 

In general, however, Petri monoids need not be free. Nonfreeness may 
reflect a synchronization structure. Assume, for example, a free abelian 
group 3”(A } generated by a set A of basic actions as in Milner’s (1982) 
approach so that addition of one action with its inverse corresponds to 
synchronization. Then, given a Petri net N = (a,, a, : T + S@) together 
with a labeling map 1: T-+ Z”(A) we can define a Petri monoid N’ with 
same set of places as N but with a monoid structure that reflects the 
synchronization information provided by the labeling. N’ has a monoid of 
transitions the quotient monoid T’ obtained from T@ by imposing the 
relations 

a = a’ 

for all a,a’ET@ such that f(a)=f(a’)=O, and &(a)=&(a’) for i=O, 1. 
The requirement q(a) = &(a’) for i = 0, 1 ensures the existence of 
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homomorphisms yi: T’+ So, i=O, 1 such that K= yioq, where q: T@ + T’ 
is the quotient homomorphism. We then define N’ = (yO, yi : T’ + S@). 

As in Pet&, and Petri, the product Mx M’ as graphs of two Petri com- 
mutative monoids M and M’ has an obvious Petri commutative monoid 
structure and yields the categorical product in CMonPetri. 

Coproducts are also straightforward; 

MOM’=(a,oab,a,oa;:(T, +,O)@(T’, +‘,O’)-S@@S’@), 

where (T, +, 0) 0 (T’, + ‘, 0’) is the coproduct of commutative monoids. It 
is not hard to check that the coproduct of two arbitrary commutative 
monoids coincides with their product. This implies also the same property 
in CMonPetri, i.e., M x 44’ = MOM’. 

The Petri commutative monoid, 

O=(l,, l,:O+O) 

is the initial and final object in CMonPetri. 
It is fruitful to observe that CMonPetri is a full subcategory of 

CMonGruph, where objects of CMonGraph are commutative monoid struc- 
tures on graphs. In a compact form, a commutative monoid structure on 
a graph G can be described as a pair of graph morphisms + : G2 -+ G and 
0: 1 + G satisfying the commutative monoid equations (expressed as com- 
mutative diagrams). The graph 1 is the terminal object of Graph and has 
one edge and one node. CMonPetri is just the full subcategory determined 
by those monoid structures whose monoid of nodes is free. This justifies 
our claim in the title that “Petri nets are monoids.” This claim will be 
further supported by adding a sequential composition operator since this 
will make Petri nets monoids not only on graphs but also on categories. Of 
course, CMonGruph has all limits and colimits, so that those limits or 
colimits that do not exist in CMonPetri have a meaning in CMonGruph. 

2.4. Rejlexive Petri Nets 

A reflexive graph G is one in which every node v has a specified arrow 
id(v): u --, u. Reflexive structure is very useful at the Petri net level. It is 
implicit in the so-called case graph of a net N. As we shall see, the case 
graph is just a free construction that freely adds additional structure to a 
Petri net. All reflexive Petri net structures live over the category RGruph of 
reflexive graphs with objects graphs G = (a,, 13,: T-r I’) together with 
a function id: V+ T such that a,0 id = a,0 id= 1”. Reflexive graph 
morphisms (f, g) : (G, idc) + (G’, id,.) are graph morphisms satisfying the 
additional requirement fo id, = idc, o g. 

DEFINITION 5. A reflexive Petri net consists of a Petri net N which in 
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addition is a reflexive graph. A rclflexive Petri net morphism is a Petri net 
morphism that is also a morphism of reflexive graphs. Similarly, a reflexive 
Petri commutative monoid is a Petri commutative monoid with a reflexive 
graph structure such that id: S@ + (T, +, 0) is a monoid homomorphism, 
and a reflexive Petri commutative monoid morphism is a Petri commutative 
monoid morphism that is also a morphism of reflexive graphs. This defines 
categories RPetri and CMonRPetri with obvious forgetful functors, 

CMonRPetri --+ RPetri ---+ RGraph 

CMonPetri - Petri ---+ Graph. 

Note that a reflexive Petri net is naturally endowed with a pointed Petri 
net structure so that there is no point in defining a category RPefr&, since 
this coincides with RPetri. 

All the above functors have left adjoints. The most interesting of them 
is the left-adjoint %?-] to the forgetful functor CMonRPetri+ Petri. 
%‘[-I associates to each Petri net N its case graph V[N]. For N= 
(a,, aI: T-+ S@) we define 

where id= j, is the coproduct inclusion. 
In all these categories, the Cartesian product as graphs has a unique 

structure making it into the categorical product. Coproducts also exist 
everywhere. For example, for (M, id), (M’, id’) in CMonRPetri we have, 
(M, id) 0 (M’, id’) = (M 0 M’, id @ id’), where M @ M’ is the coproduct in 
CMonPefri; also, (M, id)@(M’, id’)=(M, id)x(M’, id’). For (N, id), 
(N’, id’) in RPetri. (N, id) @ (N’, id’) has transitions (T- Im(id)) + 
(T’ - Im(id’)) + (Im(id) x Im(id’)) and an identity map given by id x id’. 

The category CMonRPetri is the full subcategory of the category 
CMonRGraph of commutative monoid structures on reflexive graphs deter- 
mined by those structures whose commutative monoid of nodes is free. 

2.5. Petri Categories 

DEFINITION 6. A Petri category consists of a reflexive Petri com- 
mutative monoid 

C=(a,,a,:(T, +,O)-+S@,id) 

together with a partial function -; -: T x T -+ T which is defined exactly for 
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those pairs (a, p) such that a,(a) = a&?). In addition, the following axioms 
are ‘satisfied (whenever the compositions CY; j?, etc. are defined): 

1. &,(a; P) = 4,(a) and a,(~; a) = a,(B) 
2. a; id(kY,(a)) = a and id(a,(a)); a = cx 

3. (a;P); y=a; (P;r) 
4. Given a : u -+ v, a’ : u’ + v’, fi: v + w, /I’ : v’ -+ w’, we have 

(a+a’);(j3+8’)=(a;B)+(a’;B’). 

Given two Petri categories C and D a Petri category morphism from C to 
D is a morphism (f, g ) : C --+ D of their underlying reflexive Petri monoids 
such that f(a; /I) =f(a); f(B). This determines a category CatPetri. 

There are forgetful functors 

CatPetri + CMonRPetri --$ CMonPetri + Petri, -+ Petri 

and also similar functors to the remaining categories of reflexive Petri nets. 
All of them have left adjoints. We shall describe the left adjoint 
SC-]: Petri-+ CatPetri for their composition. Given a net N= 
(a,, a,: T+ S@) the Petri category F[N] is inductively defined by the 
following rules of inference: 

t:u-+vinN uinS@ 
t:u+uinF[N] u:u-,uinF[N] 

a:u-rv,/?:v-,winF[N] a: u --+ v, a’: u’ + v’ in F[N] 
a;~:u+winF[N] a@a’: u@u’--+ v@v’in S[N] 

with @ and 0 subject to the commutative monoid equations, with identities 
given by id(u) = U, and with -; _ and id satisfying the equations in parts 
2-4 in the definition of Petri category. 

Notice that the case graph g[N] of a Petri net N is a reflexive Petri sub- 
monoid V[N] 5 FEN] with arrows of the form t, @ . . . 0 t,@w: 
u,@ ... @un@w+vl@ ... 0 v, 0 w. Actually, %?[N] generates F[N] 
when closed under -; ~ as shown by the following lemma. 

LEMMA 7. Any a : u --, v in F[N] can be decomposed as a = a, ; . . . . a, 
with ai E ‘Gf?[N]. 

Prooj: We can reason by induction on the depth of a as a term and 
reduce to the case a = (PO y): u + u’. By induction hypothesis, /I = 
B,;...;/3, and y=yI;...;ym with /3i:vi-+ui+l, yi: wi+wi+,~%‘[N]. Either 

n--m 

m<norm2n;saym<n. Wecanexpressy=y,;...;y,; 

643/88/?-Z 
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the equation of part 2, and by n applications of part 4 we get CI = p @ y = 
(8,0Yl);...;(P,0Y,);(Bm+tO~’ m + , ); . . . . (fi, 0 w, + , ), where all the fac- 
tors on the right-hand side are in V[N], as desired. m 

The above decomposition is not unique. In particular, by further apply- 
ing parts 4 and 2 to the fii, yi, we obtain the following corollary. 

COROLLARY 8. Any ~1: u -+ v in Y [N] can be decomposed as a = 
(t,@u,); . . . . (t,@u,) with tin T. 

The sequence t,, . . . . t, is then called a firing sequence for the computation 
aEF[N]. However, the advantage of the category F[N] is that it 
provides a calculus with simple algebraic laws for parallel and sequential 
composition of transitions in the net N and permits focusing on and 
reasoning about entire computations directly, overcoming the need for 
indirect, sequentialized, descriptions such as those provided by paths in the 
case graph or by firing sequences. 

We have already considered the full subcategory inclusions: 

CMonPetri E CMonGraph 

CMonRPetri E CMonRGraph 

which justify our claim that, after appropriate closure under increasingly 
general computations, Petri nets are monoids. This claim also holds true 
for CatPetri. Indeed, if in the definition of Petri category we relax the con- 
dition that the commutative monoid of nodes be free, we obtain the notion 
of a commutative monoid structure on a category, i.e., a category C and 
functors + : C2 + C, 0: 1 --+ C (where 1 is the category with one object and 
one, identity, morphism) satisfying the commutative monoid equations 
(expressed as commutative diagrams of functors). Such commutative 
monoid structures on a category are usually called strict symmetric 
monoidal categories, and the monoid homomorphisms are called strict 
monoidal functors (MacLane, 1971). They determine a category that, to 
be consistent with the rest of our notation, we shall denote CMonCat. 
Therefore, we have a full subcategory inclusion, 

CatPetri E CMonCat, 

determined by those strict symmetric monoidal categories whose com- 
mutative monoid of objects is free. In CMonCat, as in CMonGraph and 
CMonRGraph, finite products and finite coproducts coincide,* and this 

2 See the arguments in the proof of Proposition 13 below for a justification of this general 
fact in terms of semiadditive categories. 
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property is also inherited by CatPetri. We will, however, give a more 
detailed justification of this property in what follows. 

Let 

c=(a,,a,:(r, +,0)-,&s@,-;-,id) 
C’ = (a;, a; : (T’, +, 0) + S’@, -; -, id) 

be two Petri categories. We already know that the their product Cx C’ as 
graphs is a reflexive Petri commutative monoid. It has also a Petri category 
structure by operating componentwise, i.e., (a, a’); (/3; 8’) = (~1; 8. cc’; fl’) and 
is the categorical product of C and C’ in CutPetri. It is also the coproduct, 
i.e., C x C’ = C@ C’. To see this, note that we already know this for the 
underlying reflexive Petri commutative monoid structures; therefore, we 
only have to check that given two Petri category morphisms (f, g): 
C -+ D, (I’, g’) : C’ -+ D the induced reflexive Petri commutative monoid 
morphism ([f,f’], [g,g’]):CxC’ + D is actually a Petri category 
morphism. Indeed, given (~1, a’) : (u, u’) + (u, u’) and (p, 8’) : (u, u’) + 
(M:, w’), we have 

cf? f’l((4 a’); CP; 8’)) = CL f’l(cc Pv a’; 8’) 

= (f(a); f(P)) + (f’(a’k f’(m) 

= (f(a) + f’(O); (f(B) + f’(P)) 

= Cft s’l(4 a’); Cf, f’l(B, a’). 

Since left adjoints preserve coproducts, given Petri nets N and N’ we have 

F[N@ N’] = S[N] @S[N’] = 9-[N] x S[N’]. 

3. IMPLEMENTATION MORPHISMS 

The sequence of categories that we have been considering provides a 
corresponding sequence of increasingly more general ways of relating two 
Petri nets. We can view a net N’ as an implementation of another net N by 
giving a morphism N + N’. The widening sequence of morphisms between 
N and N’ that we have been considering is: 

l (Petri) A transition t in N maps to a transition t’ in N’. 

l (Pet&,) A transition t in N maps to a transition t’ in N’ or is erased. 

. (CMonPetri) A transition t in N maps to a parallel composition 
t;@ ... @ tl, of transitions in N’ (or is erased, n = 0). 
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l (CMonRPetvi) A transition t in N maps to a parallel composition 
t’, @ fea @ t:,@u of transitions in N’ and idle (identity) transitions. 

l (C&Petri) A transition t in N maps to an entire computation c1 in 
N’ with possibly many sequential and parallel steps. 

The most general and interesting case is the last one, since it provides a 
very flexible way of relating system description at different levels of abstrac- 
tion. This, admittedly, has been one of the main goals of the theory of Petri 
nets from its very beginning, but the realization of this goal has proved 
elusive. We claim that our notions of Petri category and a Petri category 
morphism give a new and very general solution to the abstraction problem 
for Petri nets. Notice that these morphisms (and a fortiori the less general 
ones) obviously preserve the dynamic behavior of nets, since the arrows of 
a Petri category are computations made up of sequential and parallel 
composition of atomic transitions, and morphisms preserve sequential and 
parallel compositions. 

To achieve this widening in the ways of relating Petri nets it is not 
necessary to make additional structure (monoid, category, etc.) explicit at 
all, i.e., we can restrict our attention to ordinary (P/T) Petri nets 
N, N’ E Petri, and for them consider the increasingly general morphisms 
that our approach provides. This is entirely similar to the notion of a 
matrix in linear algebra, where a linear function f: 2” + &“” is equivalent 
to a matrix, i.e., a function M: [n] --) 8”’ ([n] = { 1, . . . . n}), and M can be 
viewed as a “generalized function” or morphism M: [n] + [m] between 
two finite sets. In our case, the role of [n] and [m] is played by ordinary 
Petri nets N and N’, and the role of the matrix is played by Petri net 
morphisms such as N --) N’@, N--t F[N’], etc., that are then viewed as 
(generalized) morphisms N -+ N’ of a category having ordinary Petri nets 
as objects. 

DEFINITION 9. Given two Petri nets N, N’ E Petri, an asynchronous 
morphism (f, g) : N + N’ is just a net morphisms (f; g) : N + Nb in Petri. 
A composition of two asynchronous morphisms (f,g).N+N', 
(f', g’): N’ + N” is the net morphism (f', g')$c' (f, g): N + Nl, where 
(f ‘, g’ ) s: Nb + Nl in Petri,, is the unique extension of (f ‘, g’ ). Similarly, 
we define a linear morphism (f, g) : N -+ N’ to be a net morphism (f, g) : 
N-+ N’@, a %-morphism (f, g): N + N’ to be a net morphism (f, g): 
N +%‘[N”], and an implementation morphism (f, g): N -+ N’ to be a net 
morphism (f, g ) : N * S[N’]; composition is always defined as a net 
morphism (f ‘, g’)s 0 (f, g), where (f ‘, g’)s is the unique extension of 
(f', g’) to a morphism in CMonPetri, resp., CMonRPetri, resp., CatPetri. 
It is an easy fact about adjoint functors that this gives categories 

Petri E AsynchPetri E LinPetri c_ %‘Petri c ZmplPetri. (2) 
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All with the same objects, i.e., (P/T) Petri nets, but with increasingly more 
general morphisms. 

Notice that implementation morphisms (and a fortiori, the less general 
ones) obviously preserve the dynamic behavior of nets, since the arrows of 
a Petri category are computations made up of sequential and parallel com- 
positions of atomic transitions, which are preserved by morphisms. The 
coproduct is the same in all these categories, namely the coproduct NON’ 
in Petri. Regarding products, in Petri it is of course the synchronous 
product that we have already described; in LinPetri, UPetri, and ImplPetri, 
since products and coproducts coincide in the corresponding categories 
CMonPetri, CMonRPetri, and CatPetri, the product is just NON’. For 
AsynchPetri, the product must be a net N” such that N: = N, x Nb. Thus, 
N” = (N, x N&) - { (0, 0)} obtained from N, x Nb by removing the trans- 
ition (0,O); it is called the asynchronous product of N and N’. Each of the 
inclusions in (2) is a left adjoint with an associated right adjoint. For exam- 
ple, the right adjoint to the inclusion Petrig ImpZPetri maps a net N to 
(the underlying net of) S[ N]. 

4. MARKED NETS 

When considering the behavior of a Petri net it is often convenient to 
specify an initial marking, i.e., an element u E Se. We can then consider 
generalized transitions CL: u + v in Y[N] starting from the “marking” u. If 
the marking is made part of the structure of the net, then net morphisms 
should preserve markings. However, this leads to serious problems with the 
coproduct construction, since coproducts do not exist for asynchronous 
morphisms (Winskel, 1987) and a fortiori they do not exist for the more 
general morphisms considered in this paper. The dilliculty can be easily 
explained as a unification problem. Notice that, for nets with an empty set 
of transitions, net morphisms are just monoid homomorphisms S@ -+ S’@. 
Consider markings u E S@, v E So, with, say Sn s’ = 0. The coproduct 
as marked nets would require giving WE S”@ together with monoid 
homomorphisms j, : So + S”@‘, j,: S’@ + S”@ such that j,(u) = j,(u) = w  
with j,, j, universal for this property. This is just an algebraic way of 
requiring the existence of a most general unifier for the equation u = u in 
the theory of commutative monoids. It is, however, well known that in the 
theory of commutative monoids there is a finite set of unifiers generating 
all other unifiers, but in general there is not a single most general unifier 
(Herold and Siekmann, 1987). 

The solution that Winskel (1987) gave to this problem was to consider 
the restricted category of “safe” nets, such that the image of the map 
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F: (S x T) + (TX S) -+ JV’ is contained in { 0, 1 > and where multiple tokens 
can never appear as a consequence of transitions from an initial marking 
without repeated tokens. Asynchronous morphisms were also substantially 
restricted to so-called “safe morphisms,” and for this category a coproduct 
was shown to exist. We give a solution that is entirely general, in that it 
applies to ordinary, pointed, commutative monoid, reflexive commutative 
monoid, and category Petri nets and morphisms, and permits reasoning 
about marked Petri nets and forming their coproducts at all those levels. 
Of course, some restriction has to be imposed, since we already know that 
coproducts do not exist for arbitrary markings. Our restriction is minimal; 
we just require that the initial marking is of the form u = a, @ . . . 0 a, with 
a,# uj when i# j, i.e., we rule out multiple tokens per place in the initial 
marking; we will later justify why this involves no loss of generality in 
practice. 

DEFINITION 10. A marked Petri net is a Petri net N = (a,, d 1 : T -+ So) 
together with an element u E So of the form u = a, @ . . @a, with a, # uj 
when i # j. A morphism (f, g ) : (N, U) + (N’, u’) is an ordinary net 
morphism that, in addition, preserves the markings, i.e., g(u) = u’. This 
defines a category MPetri. Similarly, we can define categories MPet&, 
MCMonPetri, MCMonRPetri, MCatPetri, MAsynchPetri, MLinPetri, 
MCPetri, MZmplPetri, just be requiring that the markings be preserved. 

For g any of the categories of (unmarked) nets with structure, there is 
an obvious forgetful functor MB --f g forgetting the marking. This forgetful 
functor always has a left adjoint that just adds a new element a, to S and 
uses it as the marking. All the categories MB have products, which are the 
underlying product in &I with marking u 0 U’ if u and U’ were the original 
markings (where we have taken care of making the places of u and U’ 
disjoint via the isomorphisms So x s’@ N (S+ S’)@ and where we abuse 
notation by treating injections into the disjoint union as inclusions). 

THEOREM 11. For B = Petri, Petri,, CMonPetri, CMonRPetri, CatPetri, 
AsynchPetri, LinPetri, CPetri, ZmplPetri, the category A49 has finite 
coproducts. 

Proof: We give the construction for B = Petri and for 93 = CatPetri and 
leave the other cases as an exercise. For 93 = Petri, let (N, a, 0 ... @a,), 
(N’, b, 0 . ..@b.)~MPetri with, say, N=(Bo,8,: T-S@) and N’= 
(ab,C?;: T’-+S’@). Let A= (a,, . . . . a,} and B= {b ,,..., b,} and consider 
the monoid homomorphisms j, : A@ -+ (A x B)@, j,: B@ -+ (A x B)@ given 
by j,(ui)=(uit b,)O *.. @(a,, b,), j,(bi)=(~l, b,)O ... @(a,,, b,). We 
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then havej,(a,@ ... @a,)=j,(b, 0 ... 0 6,) = CL.j (ai, b,). We can now 
define 

(iv, al 0 ... OUH)O(W,~,O ..’ 0L) 

= ag,a;l:T+T’+((S-A)+(S’-B)+(AxB))Q,~(ai,bj) ( i. j > 
with a;(t)=h,(8i(t)), i?:‘(t’)=hz($(t’)) for tET, t’E T’, where h, is the 
map 

(S-A)Q@AQ 3 ((S-A)+(S’-B))@+O(A xB)Q, 

with k@ the unique monoid homomorphism extending the injection k of 
(S- A) into the disjoint union (S- A) + (S’- B), and where h, is defined 
similarly. To check the universal property, the key idea is to remark that 
FinSetoP, the dual of the category of finite sets, is isomorphic to a sub- 
category of the category of free commutative monoids obtained by sending 
a function f: {b,, . . . . 6,) -+ {aI, . . . . a,} to the monoid homomorphism 
f-‘: ({a,, .4,)P +((b,, -.-, 6,))@ defined by f-‘(ai)=bi,@ .** @b, 
whenever (set theoreticaly) f-‘(a,) = {b,,, . . . . b,}. By definition, this 
homomorphism satisfiesf-‘(a,@ ... @a,)=b,@ ... Ob,. Note that in 
FinSetoP the coproduct of A and B is A x B. 

For &J=CatPetri, let (C,a,@ ... @a,), (C’, b,@ ... @b,)EMCat- 
Petri, with, say, C=(&,,a,:(T, +,O)+SQ,-o-,id)) and C’= 
(a;, 8; : (T’, + ‘, 0) + S’@, -0’ -, id’)). Their coproduct is constructed as 
follows: let (E, xi, j (uj, bj)) denote the coproduct in MPetri of the underly- 
ing marked Petri nets, whose construction we have just described. Then 
tc,a,0 *.. Ou,)O(C’,b,@ ... @b,) is obtained as a quotient of 
(S[E], C1.j (ui, bj)) by imposing the following relations on S[E] : 

1. a@j=a+& a,flET 

2. a’@/?‘=a’+‘/?‘, a’, /I’E T’ 

3. a;b=ao/3, a,fiET 

4. a’; 8’ = a’ 0’ /I’, a’, /Jr E T’ 

5. id(u) = h,(u), UE S@ 

6. id(d) = h,(d), u’ E SQ. l 

In practice, our requirement that the initial marking should have no 
multiplicities involves no loss in generality. Consider a more general type 
of marked net (N, U) with an arbitrary marking u = n, a, @ . . . @ nkuk. We 
can easily transform such a net into a net (N’, uo) E &Petri. If N= 
(a,,ar : T+ S@) then N’= (a& 3;: Tf {start} -+ (S+ {q,))@) with &, 8; 
identical to a,, 8, on T, with db(sfurt) = u0 and 8i(start) = U. Except for the 
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initial transition, start, the behaviors of (N, u) and (N’, ao) are identical. 
This construction is indeed a functor GMPetri + MPetri from the category 
GMPetri of marked Petri nets with arbitrary markings to our category 
MPetri. Similar functors GMB + MS exist for the remaining B. A very 
nice property of this construction is that nets of the form (N’, ao) have an 
initial marking that can never be reached again, i.e., our functor lands 
inside a full subcategory UMPetris MPetri of marked nets with 
unreachable initial markings (in general, LIM.33 c MB) for which the 
coproduct exactly corresponds to the nondeterministic choice operator of 
languages such as CCS (Milner, 1985). 

All the free constructions of the unmarked case carry over to the marked 
case without a change, i.e., if ,B + g’ is one of the forgetful functors and 
has, say F, as its left adjoint, the corresponding forgetful functor at the 
marked level ML47 + ML&?’ has a left adjoint mapping (X, u) to (FX, u). For 
example, the left adjoint to the forgetful functor MCMonPetri -+ MPetri 
sends (N, u) to (No, u). 

5. DUALITY AND INVARIANTS 

It is well known that Petri nets can be dualized by regarding transitions 
as places, and places as transitions (Petri, 1973). Such duality has many 
fruitful applications. In this section, we express Petri net duality as a 
duality functor. We then give a geometrical interpretation of T-invariants 
and their properties through a very general notion of a Loop functor, and 
we use duality to give a functorial account of S- and T-invariants. Using 
elementary algebra, we also derive algebraic relations between the groups 
of S- and T-invariants of a Petri net, and associate to a Petri net N two 
other groups, S”,b,,,(N) and Tz,,t(N) that seem to be new. 

5.1. Duality 

Given vector space W3, its dual space (B3)* is the vector space of all 
linear functions f: B3 + C&Y (usually called linear forms). As is well known, 
(.$?‘)* is also a three-dimensional vector space with canonical basis the 
three projections x, y, z: &@Y3 + B?, i.e., ~(a, b, c) = a, ~(a, 6, c) = b and 
~(a, b, c) = c. However, if we consider an infinite-dimensional vector space 
V, its dual space V* is of strictly greater dimension than I/. Given a linear 
function h : 9” + B”‘, say with matrix M, h determines a map in the other 
direction for the dual spaces, h* : (Z”)* -+ (.%?)* mapping each linear form 
f: B”’ + L@. to the linear form fo h: L%” + 9. If we express (SV’)* and (an)* 
in terms of their canonical bases of coordinate projections, h* has a very 
simple matrix form, namely M’, the transpose of M. Duality therefore 
means that we can “run the linear function h backwards.” This is entirely 
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similar to the case of a binary relation R: B -+ A which can also be viewed 
as relation R*: A + B. 

The notion of a vector space on a field generalizes to the notion of a 
module on a (commutative) ring. For instance, for 3 the ring of integers, 
a Z-module is just an abelian group, and a T-linear homomorphism 
is a group homomorphism. This notion can be further generalized to the 
notion of a semimodule on a semiring, by requiring only that the 
“vectors” form a commutative monoid and that the + of the coefficients 
is a commutative monoid. For instance, for JV” the semiring of natural 
numbers, M-semimodules are just commutative monoids, and X-linear 
homomorphisms are monoid homomorphisms. This permits viewing duality 
of vector spaces and duality of (finitary) relations as common instances 
of the general phenomenon of duality for semimodules. The process is 
always the same: for R the semiring of coefficients, there is a functor 
(-)* : SMod,, --f SMod, defined by V* = [V+ R], where [V+ R] is the 
R-semimodule of R-linear functions from V to R. 

In particular, we have a duality functor (-)* : CM&p + CMon mapping 
each commutative monoid A4 to the commutative monoid [M-r JV] of 
monoid homomorphisms from M to A’. If S and S’ are finite, then a 
monoid homomorphism f: SQ -+ S'@ can be described by an M-matrix M, 
and the dual f * : (Se)* + (S’@)* has M’ as its associated matrix, since for 
S finite we have S@ ‘v (Se)*. 

Consider now the category CMonGraph. The underlying category Graph 
can be viewed as a functor category SetJ, where J is the category with two 
objects 1 and 2, with two identities, and with two arrows do, 8,: 1 + 2. 
Similarly, we can view CMonGraph as the functor category CMonJ. The 
category J has the remarkable property of being isomorphic to its dual PP. 
One such isomorphic can be obtained by permuting 1 and 2 and also per- 
muting the ai. This isomorphism combines nicely with the duality of CMon 
to give a duality functor 

(-) * : CMonGraphoP + CMonGraph, 

sending M= (a,, 8, : Mi + M2) to M* = (a:, a,* : M: -+ MT) and sending 
(f, g):M-+M’ to (f*, g*):M’* --) M*. This duality functor restricts to 
a functor 

(-) * : Petrig -b Petri,“, , 

where Petrig . IS the full subcategory determined by those ME CMonPetri 
of the form M= N*, with N having finite sets of places and arrows. 

3 In (Meseguer and Sols, 1975). categories of semimodules were proposed as a way of 
unifying nondeterministic, probabilistic, and “fuzzy” computations. More recently, Main and 
Benson (1984) have used them in an algebraic treatment of nondeterminism and concurrency. 
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Given a net N, if we define N* as the Petri net uniquely determined by 
the equation (N*)@ = (No)*, it is not hard to see that N* is obtained from 
N by exchanging places and transitions and that its source function has as 
matrix the transposed of 8,‘s matrix and its target function has as matrix 
the transposed of i3,‘s matrix. For example, in the nets in Fig. 2, the 
matrices for ~3, and 8, of N are 

namely, e.g., t’ : a 0 2b + a @ 2b, while the matrices for d, and a 1 of N* are 

[ 4 1 0 4 1 
M,*=Mi= 

0 
o . 2 3 1 ) M:=M;= [ o 2 1 1 

For any ME Petrig there is a natural isomorphism MN M**. For 
ME CMonPetri- Petrig, we only have M** E CMonGraph, but there is 
still a natural homomorphism cp M : M + M* *. 

So far, we have only considered commutative monoid structures on Petri 
nets. We can take a further step and consider abelian group structures. For 
example, we can consider the category A& where A6 is the category of 
abelian groups. We then have an entirely similar duality functor: 

(-)* : AbGraphaP -+ AbGraph. 

The forgetful functor AbGraph + CMonGraph has a left adjoint 

(-)ab : CMonGraph + AbGraph. 

In particular, a commutative monoid Petri net M = (a,, d 1 : M, + S@ ) is 
sent to Mab = (sib, dTb: MSb + (S@)ab) for (-)“b: CMon + Ab, the left 
adjoint of the forgetful functor Ab + CMon. The group (S@Bab is just 
Z??(S), the free abelian group on generators S. We extend this notation to t 

4 w- 4 
1 2 

a -+ t’ 
1 

4!&++@ 

N NS 

FIG. 2. A net N and its dual N*. 
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Petri nets and write Z”(N) = (NO)ab for NE Petri If N has a finite number 
of transitions and a finite number of places, we again have 
iT{N} -T”(N) **. The advantage of considering abelian groups instead of 
commutative monoids is that they are easier to work with and have nicer 
structural properties. For example, a subgroup of a finitely generated group 
is finitely generated, and free if the original group is so. In general, neither 
finite generation nor freeness are inherited by the submonoids of a com- 
mutative monoid. From the conceptual point of view, however, considering 
only groups would be unnecessarily restrictive, and indeed there is no need 
to require that the algebraic structures considered always are groups. 

5.2. Invariants 

The group of T-invariants of a Petri net N is an abelian group naturally 
associated to the structure EZ’{N} that we have just introduced. However, 
there are several possible variations of this notion that can be considered 
replacing Z?“(N) by NQ (the so-called positive T-invariants) or even by 
%‘[N] or S[N]. As we shall see, Y[N] is the most natural choice from 
an intuitive point of view, but its monoid of invariants has not been 
explicitly considered before. In all cases, a T-invariant corresponds to a 
(possible generalized) computation c(: u + u that begins and ends in the 
same state. Rather than just associating some group or monoid of 
invariants to a Petri net N, we can take a more intrinsic and geometric 
viewpoint and define Loop functors. For G = (a,, d, : T + V) a graph, the 
subgraph Loop(G) s G has the same nodes as G and arrows those t E T 
such that d,(t) = a,(t), i.e., the arrows of Loop(G) are the equalizer4 of the 
pair (a,, a,). It follows easily from the equalizer property that Loop is 
indeed an endofunctor Loop : Graph + Graph. In fact, Loop can be defined 
as an endofunctor Loop: ~3 + 33 for any of the categories that we have 
already considered, i.e., for L?~I = Petri, CMonPetri, CMonRPetri, CatPetri, 
and more generally for 93 = CMonGraph, AbGraph, CMonRGraph, CMon- 
cut. 

All such categories g come equipped with a functor Arrow that forgets 
about the nodes and keeps only the arrows, with whatever structure they 
had. For example, we have Arrow : Petri + Set mapping (a,, 8 1 : T + So ) 
to T, Arrow: CMonPetri+ CMon mapping (a,, d, : (M, +, 0) + S@) to 
(M, +,O), and Arrow:AbGraph+Ab mapping (S,,d,:(A, +,O)-+ 
(B, +, 0)) to (A, +, 0). By definition, for any of the categories g just 
listed, a set, monoid, or group of invariants for XES? is the object 

4 In any category, given morphisms f, g: A + B a morphism j: E+ A is called their 
equalizer iffa j= go j and for any morphism h: X + A such that fo h = g 0 h there is a unique 
morphism I;: X+ E such that h = job. In the category of sets, the equalizer off and g is the 
set of XE A such that f(x) = g(x). The dual notion of coequalizer is obtained by reversing all 
the arrows in the above definition. 
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Tz,,(X) =Arrow(Loop(X)). For N a Petri net, the usual group of its 
T-invariants is just 7’::“(N) = Arrow( Loop( .Z’{ Nj )), Notice that in the 
definition of rp,b,(N) (differently from T:,(X)) the application of the 
functor T(N) is included. We shall denote this group T:&(N), to dis- 
tinguish it from the monoids T::“(N) = Arrow(Loop(N@)), the monoid of 
positive T-invariants, and T;::(N) = Arrow(Loop(5[N])). T:::(N) is the 
most natural of them all, since it consists of all computations ol: u + u of 
N that begin and end in the same state. The following theorem is related 
to Theorem 6.7(g) in (Reisig, 1985) and expresses the intuition that if there 
is a nonidentity computation of N ending in its initial state, then there 
must also exist a parallel composition of atomic transitions with the same 
property. 

THEOREM 12. For N a Petri net, T;:“(N) #O ijjf T:,“:(N) # So. 

Proof. Of course, since N@ E S[N], we have T::“(N) c T;::(N) - So. 
We have to show that if there is an CI: u -+ u in T$,(N) with CI not in So, 
then there is an ~1’: u’ + U’ in Try(N) with CI’ # 0. 

By Corollary 8, such an cc is of the form a = (t, 0 u,); . . . . (t, 0 u,) with 
n>l, say ti@ui:u,@u,+w,@uj with u~~@u~=v~+~@u~+,. Therefore, 
t,@ ... @t,:v,@ . ..@u.-+w,@ ... @w,,. I f  we show v,@ . ..@u.,= 

W,O a-- @w,, the theorem is proved. Indeed, we have u = vi @u, = 
w,@u, and therefore (t,Ou,)O...O(tlOu,):uO(u,OtlZ)O...O 
(u,~~,)+(w~~u,)@ . . . @(w,~~@u,~~)@u. Since wi@ui = 
V z+l@Ui+l, the source and the target of this arrow are identical, and since 
S@ is a cancellative monoid,’ this shows U, @ . . @ u,, = w, 0 . 0 w,, as 
desired. 1 

PROPOSITION 13. For &Y any of the categories listed above except 
9 = Petri, the functor Tz, preserves finite products and coproductx6 

Proof Notice that for all such B, &I-morphisms are of the form 
(f, g) : X+ Y, with f, g monoid homomorphisms, and that @(X, Y) has 
a commutative monoid structure by defining (f, g > + (f ', g' ) = 
(f+f’,g+g’).Also,given (h,i):X’-+Xand (j,k):Y’+YinB,we 
have 

’ A commutative monoid is called cancellative if x + y  = x + z implies y  = z. 
’ For S$(N) (a dual concept to be detined below), this fact was also observed by Winskel 

[ 1987). 
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and, similarly, (f+f’,g+g’)~(h,i)=((f,g)~(h,i))+((f’+g’)~ 
(h, d)). Finally, (0, O>o (f, g> = C&O>, and CL g>o (60) = ((IO>. 
This makes all such 93 semiadditive categories in the sense of Definition 40.1 
in (Herrlich and Strecker, 1973). In any semiadditive category, finite 
products and finite coproducts coincide (Herrlich and Strecker, 1973, 
Proposition 40.9). Moreover, a functor F: B -+@’ between two semi- 
additive categories preserves finite products and coproducts if and only if 
it is additive in the sense that F,,.: B(X, Y) + B’(FX, FY) is a monoid 
homomorphism for all X, YE B (Herrlich and Strecker, 1973, 
Theorem 40.16). It is trivial to check that the functors Loop and AWOW are 
additive for all such g’, and therefore so is T& as desired. 1 

As an application of Petri net duality, we consider S-invariants. For 
LOB= CMonGraph, AbGraph, we have duality functors. We then define 
Sf,(X) = T&(X*). 

In any category %’ having equalizers and coequalizers, given a pair of 
maps f, g : X + Y, its left exact sequence is the diagram 

/ 
es(f, 8) - L-.-t Y R 

where eq(f, g) -+ X is the equalizer map. Similarly, its right exact sequence 
is the diagram 

f 
X===Z Y- coeq(f, g) 

g 

for Y -+ coeq(f, g) the coequalizer map. The exact sequence off, g is the 
diagram 

/- 
es(f, g) - X---2 Y- coeq(f, 8). K 

For categories of modules over a commutative ring, or, more generally, 
for abelian categories, this usually is represented in terms of the difference 
f - g and leads to the notion of an exact sequence 

f-n O-ker(f-g)-X- Y- coker(f - g)- 0, 

where eq(f, g) = ker(f - g) is the subobject mapped to 0 by (f - g) and 
coeq(f, g) is the quotient object coker(f - g) = Y/Im(f- g). 

However, if R is a semiring but not a ring, as happens for R = N, this 
latter representation is not possible. In order to relate S-invariants with 
T-invariants, we shall use a lemma about symmetric monoidal closed 
categories, a concept that we explain below. 

The simplest example of symmetric monoidal closed categories is given 
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by Cartesian closed categories, i.e., categories V with finite products and a 
final object 1 such that for any object X the functor Xx -: %? -+ %? has a 
right adjoint [X -+ -1: V -+ V. In other words, there is a natural “lambda 
abstraction” isomorphism 

%7(Xx Y,Z)-+3(X, [Y-,2]), 

It is not hard to see that letting X vary defines a functor [----I: 
VP x %? ---f %Z called the internal ham functor, which is related to the 
ordinary “external” horn by the formula 

qx, Y)=%(l, [X+ Y]). 

The simplest Cartesian closed category is the category of sets, where the 
internal and the external horns coincide. More interesting examples are 
provided by the category of Scott domains used in denotational semantics 
and by the category Cut of small categories; we shall see later that Graph 
and RGruph are also Cartesian closed. The notion of Cartesian closed 
category can be generalized by dropping the condition that the product is 
a categorical product. In this way we obtain the notion of a (symmetric) 
monoidal closed category (MacLane, 1971) consisting of a category g 
together with a product functor _ 0 -: %‘* -+ % and a unit object ZE V, 
together with “unit,” “associativity,” and “commutativity” natural 
isomorphisms, making 9 into a symmetric monoidal category’ that in addi- 
tion is closed in the sense that for each XE G?? the functor X0 - has a right 
adjoint [X -+ -1. Again, letting X vary we have an internal horn functor 
and natural isomorphisms 

W(X@Y,Z)1:%(X, [Y+Z]) 

G&Y, Y) rr: %?(I, [X-+ Y]). 

For any commutative semiring R, the category of R-semimodules is closed 
symmetric monoidal. The internal hom[A + S] is just the R-semimodule 
of R-linear functions, and A @ B is the R-tensor product of the two semi- 
modules (for a detailed and very accessible treatment of tensor products of 
modules see MacLane and Birkhoff (1967); the case of semimodules is just 
a slight generalization). Tensor products can be characterized by a univer- 
sal R-bilinear map p: A x B -+ A @B such that for each R-bilinear 
f: A x B -+ C there is a unique R-linear homomorphism f: A 0 B + C such 

’ This just generalizes the strict symmetric monoidal categories (i.e., commutative monoid 
structures in a category) that we have already encountered in our study of Petri nets by relax- 
ing the commutative mdnoid axioms to hold “up to isomorphism,” e.g., commutativity now 
means X@ Y ‘5 Y@ X, etc. 
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that f = fo p. For free semimodules the tensor product has a very easy 
description, since it is also free and generated by the Cartesian product of 
the generators for the factors. In particular, for R = JV, 2 we have 

zT{S) @zqS’] =S(Sx S’). 

We shall see later how this generalizes to Petri nets. For the moment we 
just need the following 

LEMMA 14. For %? a symmetric monoidal closed category with internal 
horn functor [- + -1: %Top x %? + %? and BE %? any object, the contravariant 

functor [- + B] : Wop + %? maps any colimit cone in %? to a limit cone in %?. 

Proof: Since %? is symmetric monoidal closed, we have U(X, [Y + B]) N 
U(X@ Y, B) N %‘( Y, [X-+ B]) with X@- left adjoint to [X- -1. We have 
to prove that for any XE V, %‘(X, [colim Yi + B]) = lim +2(X, [Y, + Bl). 
Since left adjoints preserve colimits (MacLane, 1971), we have 
%?(X, [colim Y, + B]) 14: U(X@ (colim Yi), B) N V(colim(XO Yi), B) 2: 
lim %(X0 Yi, B) = lim U(X, [ Yi --+ B]). 1 

COROLLARY 15. For R any commutative semiring and X 2 Y+ Z a 
right exact sequence of R-semimodules, the dual sequence Z* + Y* 2 Y* 
obtained by applying the functor (-)* = [- + R] is left exact. 

COROLLARY 16. Let % = CMonGraph (resp. AbGraph), let X= 
(a,, a, : X1 + X2) be an object in g and consider the exact sequence in 
CMon (resp. Ab): 

T:,(X) - x, de, x2 - coeq(a,, a, 1. 
81 

Then SE,(X) = coeq(&,, al)*. 

COROLLARY 17. For any Petri net N with finite sets of places and trans- 
itions, there are isomorphisms T::“(N) E SEt”(N*) and T;$(N) % 
S;;JN*). 

Notice that for 33 = AbGruph, the above sequence yields the exact 
sequence 

O- Ti%,,(X) 
d=8,-do 

-x,-x,-- (X,)/Im a ---+ 0 (3) 

so that we get the formula St,(X)= ((X,)/Im a)*. In particular, for 
X = T{N} coming form a Petri net N = (a,, 8, : T + Se) with a finite set 
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S of places, the group 3 { S}/Im 8 is a finitely generated abelian group and, 
as it is well known (e.g., MacLane and Birkhoff, 1967) it can be decom- 
posed as (~{s)/Im he,@ (~(s)/Im a)torsiont where (~ISl/Im Gee= 
a{ U> is a free abelian group with a finite set U of generators, and 
WWIm &rslon = F’, 0 . . 0 Tn4 is a direct sum of finite cyclic groups. 

COROLLARY 18. For N = (I.?,, ii,: T+ S@) a Petri tiet with S finite, 
S%(N) = (T{S)/Jm alfree. 

Proof: (%(S)/Ima)* = [P{S}/Im d + 31 = [S(U) + 5Y] 0 
[~n,+~]@ ..I o[~~,-s]=[a(U;~~]-a(U}, since Y”(U) is 
finitely generated and therefore %“( U> * = .5 { U), and since for any n E .&‘ 
the only homomorphisms zn -+ 2 are the zero ones, i.e., [Yn -+ 5?‘] = 0. 

Consider for example the net in Fig. 2(a). The maps a,, a, : Y”( T} + 
!A{ S} are given by the matrices 

and therefore the map 8 : B ( T} -+ 3 {S} has matrix 

M= [ 

0 0 

0 
0 

0 2 1 
so that the exact sequence (3) becomes 

0 - Tf’;JN) 

=~{t,t’}--*b{t,t’,t”)~~{a,h}-BOB*-0. 

Corollary 16 stated that S;iJN) ‘v .5?{a) and this is clear in the example, 
since iJ* has matrix -M’ so that for N* we have a corresponding exact 
sequence 

0 - S$(N) 

=~{~}*-~{u,b}*~~{t,t’,t”}*-~{t,t’}*O~~-0. 

Thegrow (~{SllIm %,rsion contains additional information about the net 
N; it measures the multiplicity with which tokens grow due to transitions. 
In our example, Z, indicates that two extra tokens are generated in place 
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b each time transition t” fires. We define T$,,,,(N) = (ZZ’{s)/Im a),,,,,,,. 
This defines an additive functor TcUbult: Petri% -+ Ab which preserves 
finite products and coproducts. Similarly, for N@ E Petri$f, we define 

This again gives an additive functor 
finite products and coproducts. By 

duality, we have the following corollary. 

COROLLARY 19. For any Petri net N with finite sets of places and trans- 
itions, there are isomorphisms S:“,,(N) 31 Tz,l,(N*) and T::,,(N) E 

X-k,tW*). 

The monoid s::“(N) and the groups S$( N) and 7’$,( N) can be 
expressed in terms of a construction dual to Loop. Notice that, if we define 
the category of multisets Multiset with objects functions I*: X+ Y and 
morphisms pairs of functions (f, g): (p : X+ Y) + (p’: X’ --t Y’) such that 
pLI of = go p, we have an obvious inclusion Multiset 4 Graph mapping 
(11: X+ Y) to the graph (p, p: X -+ Y). The functor Loop is just the right 
adjoint for that inclusion, but there is also a left adjoint Loop*: 
Graph --t Multiset mapping a graph (a,, a, : T + V) to the multiset (q 0 ~7, = 
qod,: T+ N -% coeq(&, a,)), obtained by imposing on the nodes N the 
equivalence relation generated by the pairs (d,(t), i?,(t)), t E T. Loop* is 
similarly defined for CMonGraph and AbGraph as a coequalizer construc- 
tion. For N a Petri net, we can define the monoid of positive S-invariants 
of N as 

S::“(N) = Node(Loop*(N@))* = Arrow(Loop((N@)*)) 

and the group of S-invariants of N as 

S~~V(N)=Node(Loop*(2’{N}))*=Arrow(Loop(%{N}*)). 

For N a finite Petri net, we can define 

i.e., as the torsion subgroup of the group Node(Loop*(%“{N})). For yet 
another description of invariants, see the footnote in Section 6.3. 

6. TENSOR PRODUCTS AND FUNCTION SPACES 

Commutative monoids can be viewed as semimodules on the semiring of 
natural numbers JV, just as abelian groups can be viewed as 6-modules on 
the ring of integers 2. In this way, they provide the most basic instance of 
linear and multilinear algebra. We have already seen that the categories 

643/88/2-3 
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Fa _Ff, Fa’ 

Pa 1 1 ‘Pb 

Ga Gf Ga’ 

FIG. 3. The commutative diagram for natural transformations. 

CMon and Ab (or, more generally, any category of semimodules on a com- 
mutative semiring) are closed symmetric monoidal. In this section we shall 
see that this generalizes to CMonGraph, CMonRGraph, and C’MonCat, 
basically because Graph, RGraph, and Cat are Cartesian closed, and in 
addition Graph and RGraph are topoi (Lawvere, 1971). These properties 
are, to a good extent, inherited by the subcategories CMonPetri, 
CMonRPetri, and CatPetri, although the internal horn objects may at 
times be outside such subcategories. 

The categories Petri and Petri,, also have an associated symmetric 
monoidal closed structure that we describe in detail below. 

6.1. Cartesian Closed Structure of Graphs and Categories 

This subsection recalls the well-known fact that graphs, reflexive graphs 
and categories form Cartesian closed categories. This will be important in 
understanding the monoidal closed structure of Petri nets, Petri 
commutative monoids (reflexive or not) and Petri categories. 

The fact that (small) categories are Cartesian closed is familiar to 
anybody acquainted with natural transformations. Given (small) categories 
A and B, the category BA has objects functors F: A -+ B. Morphisms 
cp: A + B between two such functors are natural transformations, i.e., 
families { cpa: Fa -+ Ga 1 a E ) CJ > such that for each f: a -+ a’ E A the diagram 
in Fig. 3 commutes. We then have an isomorphism 

natural in A, B, CE Cat, i.e., Cat is Cartesian closed (MacLane, 1971). 
For any small category J, the category SetJ is a topos (Lawvere, 1971) 

and therefore Cartesian closed. In particular, the categories Graph and 
RGraph are topoi,’ since Graph = SetJ, where J is the category with two 
objects 1, 2, their identities 1,) 1, and two morphisms a,, a,: 1 -+ 2. 
Similarly, RGraph= SetK, for K the category obtained by adding to J a 
morphism id : 2 -+ 1 and the equation a,~ id = d i 0 id = 12. We have already 
discussed the straightforward construction of products in Graph and 

s For a beautiful treatment of the topos structure of graphs see the recent work by Lawvere 
(1989). 
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RGraph. Given any small category C, and objects X, YE Setc, the internal 
horn object [X+ Y] E SetC is always given by the Yoneda formula 

[X+ Y](c) ‘v nat(C(c, -), [X-+ Y]) = nat(C(c, -)xX, Y) 

which in our case can be specialized for C=J, K. We shal1 presently 
explain the meaning of this formula in Graph and RGraph. Given graphs 
G=(a,,a,: T-t V) and G/=(&,8;: T’+ V’), the graph [G-G’] has as 
set of arrows the set 

((A: T-t T’, g: V+ V’, g’: V + V’)laboh=god,,S;oh=g’@a,} 

and as set of nodes the set V’ ’ of functions from V to V’. The source and 
target maps are the second and third projections, i.e., &,(h, g, g’) = g, 
8,(/r, g, g’) = g’. We can illustrate this with an example. Let G= 
(k.(2x), 11x.(2x + 1): JI/‘+ M), i.e., the graph with set of nodes the 
natural numbers and with exactly one arrow n: 2n + 2n + 1 for each n E A”. 
Let G’ be an arbitrary graph. Then the graph [G + G’] has as nodes 
sequences g: Jf + V’ of nodes in G’. An arrow g --) g’ between two such 
sequences is a sequence h: N + T’ of arrows h,: g,, --f g;,+ I (see Fig. 4). 

The external horn Graph(G, G’) is obtained by considering the graph 
homomorphisms 1 -+ [G-G’], where 1 =(lcl,, lr,,: [l] -+ Cl]), for [l] 
the one point set { l), is the final object of Graph, i.e., we have 

Graph(G, G’) 2: Graph( 1, [G + G’] ). 

Since we will be considering internal horns in many different categories, 
we will adopt a uniform convention of qualifying the functor [- + -1 with 
a subscript suggesting its category of definition. Thus we will sometimes 
write [A + Blc for the internal horn BA in Cat, [G + G’lG for the internal 
horn in Graph and [G -+ G’],, for the internal horn in RGraph that we 
shall describe below. 

FIG. 4. An arrow of thegraph [G+G’], where G=(ls.(2x),i.r.(2.r+l):.~‘“~)and 
G’ is an arbitrary graph. 



138 MESEGUER AND MONTANARI 

Given reflexive graphs G = (a,, 8, : T-t V, id), G’ = (ah, ~3; : T’ + V’, id’), 
the internal horn [G -+ G’],, has as set of arrows the set of tuples 

((h: T-+ T’, f: T-+ T’, f’: T+ T’, g: V-+ V’, g’: I’+ V’)I 

(.f, s>, Cf’t g’>: G-G’ 

are reflexive graph homomorphisms and 8; o h = g 0 a,, 8; 0 h = g’ o d I}, 

its set of nodes is the set RGraph(G, G’) of reflexive graph homomorphisms, 
and we define 

&(h, L f’, g, g’) = (f> s> 

d,(h, f, f’, g, g’)= (f’, g’> 

id(f, g> = (A f, s, g, 8). 

Therefore, nodes in [G + G’],, are reflexive graph homomorphisms 
and an arrow (f, g) -+ (f ‘, g’) is a way of systematically relating them 
by a function h: T --f T’ as shown in the diagram in Fig. 5. Again, 
we have RGruph(G, G’) N RGruph( 1, [G -+ G’] RG), for 1 the final object 
(lc,ly lc13: Cl1 -, C11, id= 1,,1). 

Consider the sequence of forgetful functors 

Cat -+ RGraph + Graph 

which allows us to regard a category as a reflexive graph, or just as a 
graph, and to regard a reflexive graph as a graph. In particular, for A and 
B categories, we have the following internal horns: [A --f B],, [A + B],, 
and [A + BIG, and for G and G’ reflexive graphs we have the internal 

at6 
ga A gb 

Ai 
g’a 2 g’b 

G G’ 
FIG. 5. Evaluation at f E T of an arrow (f, g) + (f', g’) of graph [C + G’],, 
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homs.[G+G’IRC and [G + G/IO. How are all these horns related? In the 
case of external horns, we have 

Cut(A, B) E RGruph(A, B) E Gruph(A, B) (4) 

RGraph( G, G’) G Graph( G, G’). (5) 

But for internal horns the situation is more subtle. Basically, the internal 
horns have richer structure and contain more information as we move up 
from graphs to reflexive graphs and to categories. In order to relate these 
different horns, we have to “throw away” the extra information of the 
richer structure. This takes the form of natural transformations called 
comparison maps z9 

p: CA+Blc -+ CA-,aRG 
p’: [G-P G’-jRG + [G + G’-JG 

p”: [A + Blc -+ [A + BIG, 

where p” is obtained by composing p and p’. We presently describe p and 
p’. p maps a natural transformation cp: (f, g) + (f’, g’) to the arrow 

(Aa E Arrows(A). ((Pi, ofa): IAl -+ 14, “l-3 f’l g, 8’): (“6 s> + cl-‘> g’> 

in [A --) B],,; i.e., we extract from the natural transformation cp the 
diagonals cpu, ofa = f’a 0 (Pi, for each a: a -+ a’ in A. The map p’ maps an 
arrow (h, f, f’, g, g’): (f, g) -+ (f’, g’) in [G + G’],, to the arrow 
(h, g, g’): g + g’ in [G + G’IG. Denoting by [A + B]P,, [G + G’]&, and 
[A -+ B]g the images of the comparison maps p, p’, and p”, we then have 
the internal versions 

[A+B]P,E[A+B]RC 

[A-tB]~~[A-tB]~~~[A-,Blc 

[G+G']&L[G+G']~ 

of the external homset inclusions (4) and (5). 

6.2. Monoidal Closed Structure of Petri and Petri,, 

We can slightly generalize the categories Petri and Petri, by dropping 
the requirement that the nodes are a free commutative monoid and just 
requiring that the nodes have a commutative monoid structure M= 

9 In general, for F: ‘8 + V’ a product-preserving functor between two Cartesian closed 
categories, a comparison map p: F( [A + B],)+ [FA --t FBI,. can always be obtained by 
“currying” the map F(E: [A + B), x A + B), where E is the evaluation map in 59. 
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(M, +, 0). In this way we obtain categories GrafPetri and GralPetri, that 
contain Petri and Petri,, as full subcategories. We shall see below that 
GralPetri and GraZPetri, are closed symmetric monoidal. In particular, 
there is a tensor product that restricts to ordinary Petri nets, and (after 
imposing a finiteness condition) given two Petri nets there is a third Petri 
net that is their internal horn. All these constructions seem to be new, as 
well as the monoidal closed structure of Petri that seems not to have been 
recognized before. 

THEOREM 20. GralPetri and GralPetri, are (symmetric) monoidal closed 
categories. 

Proof. We consider first the case of the category GralPetri. Let N = 
(a,, a, : T+ M) and N’ = (a;, a; : T' --) M’) be generalized Petri nets (with 
M and M’ commutative monoids). We define their tensor product NON’ 
as the generalized Petri net N@ N’= (ai, 8:: TX T’ + MOM’), where 
MOM’ is the tensor product of the monoids M, M’ and ai’ is the 
composition 

where a : A4 x M’ + M@ M’ is the universal bilinear map for A4 @ M’. 
Since the tensor product of two free commutative monoids S@ and So 

is the commutative monoid (Sx S’)@, the tensor product for generalized 
Petri nets restricts to one for ordinary Petri nets, -0 -: Petri* + Petri. The 
tensor product NON’ of two Petri nets N and N’ has as transitions the 
Cartesian product of their transitions, as places the Cartesian product of 
their places and as multiplicities the product of their multiplicities (see the 
example in Fig. 6). The unit object I is the Petri net (a,, a, : [l] --) J), 
with a, = a, the inclusion of [l] in Jf. 

t 

P 5 

0 c 

N N’ 

lo+ 

0 c@d’ 

N @N’ 

FIG. 6. Two nets N and N’ and their tensor product NQ N’. 
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The internal hom[N --f N’lp of our two generalized Petri nets is a 
subgraph of the graph[N-+ N’lc and has as arrows the set of triples 

{(h : T + T’, g : A4 -+ M’, g’ : M -+ M’) / g, g’ are monoid homomorphisms 

andaboh=go8,anda;oh=g’oa,} 

and as monoid of nodes the monoid [M-t M’] of monoid 
homomorphisms from A4 to M’, with 8, and 8, the second and third 
projections. We then have 

GralPetri( N, N’ ) N GralPetri( Z, [N + N’ ] p) 

and we leave for the reader to check the natural isomorphism: 

GralPetri(N @ N’, N” ) N GrafPetri( N, [N’ -+ N”] p). 

The symmetric monoidal closed structure of GralPetri, can be easily 
described by remarking that every generalized pointed Petri net is 
isomorphic to one of the form N,,, for N a generalized Petri net, where 
(-)o: GrufPetri -+ GrulPetri, is the left adjoint to the forgetful functor 
GralPetri,, --t GrufPetri that adds a transition 0: 0 --) 0 to the net N. We can 
then define the tensor product in GrulPetri, by 

N,ON;=(N@N’),, 

where @ in the right-hand side is performed in GrdPetri. This restricts to 
a functor -@-: Petri: + Petrio. The unit of the tensor product is the 
pointed Petri net I,. We finally define the internal horn by 

which is pointed with point (0: T + T’ + { 0}, 0: M -+ M’, 0: A4 --t M’). 
This works, since GrulPetrio( N, 0 Nb, N$) z GrulPetri( N @ N’, Nl) N 
GrufPetri (N, [N’ + Nl] p) N GrulPetri( N, [N& -+ Nllpo) N GrulPetri, 

(No, CN;, -+K’lid I 
Notice that, whenever S = (a,, . . . . a,} is finite, we have 

[S@+S’@] ,s* 
n 

A- 
xS’@2:S’@@ . ‘. OS’@ cz (S’ + . . . + S’)@. 

Therefore we have the following corollary. 

COROLLARY 21. For N, N’ E Petri (resp. N, N’ E Petrio) and N with a 
finite set of places, [N + N’] p E Petri (resp. [N -+ N’] p,, E Petri,). 
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Furthermore, defining Petri,.,, and Petri,,,, as the categories of Petri 
nets and pointed Petri nets with finite sets of places, we have also the 
following corollary. 

COROLLARY 22. Petri,,, and Petri,,,, are symmetric monoidal closed 
categories. 

6.3. Monoidal Closed Structure of CMonPetri, CMonRPetri, CatPetri 

The categories we should concentrate on are CMonGraph, 
CMonRGraph, and CMonCat. Since topoi are categories of generalized 
sets, most standard mathematical constructions carry over to a topos with 
a natural numbers object. In particular, the constructions establishing that 
CMon is symmetric monoidal closed could be carried over for commutative 
monoids over a topos 9’ with a natural numbers object and specialized for 
Y = Graph and 9’ = RGraph to CMonGraph and CMonRGraph. However, 
it is not difficult to give a more direct description of their symmetric 
monoidal closed structure. Tensor products are constructed pointwise, i.e., 
for M= (a,, d, : M, -+ MI) and M’ = (ah, 8, : M; + M;) in CMonGraph, 
we define MOM’= (13,@&,, a,@a’r: M,QM; -+ M,@M;), and for M= 
(a,, a, : M, + M,, id) and M’ = (a;, a’, f M; -+ M;, id’) in CMonRGraph, 
we define MQM’=(d,Oab,a,oa;:M,OM;-tM,QM;,idOid’). 
The unit” is Z = (1.,-, lU,.: -V -+ ~4“) in CMonGraph and Z = 
(1 ul., lml : N --) JV’, id = lb+.) in CMonRGraph. For CMonGraph, the inter- 
nal horn [M + M’] CMG is a subgraph of [M -+ M’lG with arrows those 
(h, g, g’) : g + g’ in [M --) M’] G such that h, g, and g’ are monoid 
homomorphisms; such arrows form a commutative monoid by com- 
ponentwise addition. The monoid of nodes is the monoid [M, + MJ, and 
a, and 8, are second and third projection. Similarly, for M, 
M’ E CMonRGraph, the internal horn [M -+ M’],-,, is a reflexive sub- 
graph of [M + M’] RG with monoid of arrows given by those 
(A, f, f’, g, 6) : (f, g> + (f’? g’ > in [M -+ M’] RG such that h, f, f’, g 
and g’ are all monoid homomorphisms; and monoid of nodes the external 
homset CMonRGraph(M, M’) which is a commutative monoid by com- 
ponentwise addition. 

We remark that the tensor products restrict to the full subcategories 
CMonPetri c CMonGraph and CMonRPetri s CMonRGraph and that the 
unit objects belong to them. In addition, we have the following lemma and 
corollary. 

“Notice that the external horn of CMonGraph has a commutative monoid structure, so 
that for each X E CMonGraph we have a functor CMonGraph(X. -) : CMonGraph -P CMon. 
The monoid of invariants Tzt (N) of a Petri net N then has a very simple description in terms 
of the unit IE CMonGraph, namely T;:(N) = CMonGraph(1, NQ). 
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LE.MMA 23. For M, M’ E CMonPetri and M such that its set S of places 
is finite, [M + M’] CMG E CMonPetri. 

COROLLARY 24. The full subcategory CMonPetri,,, determined by 
those Petri commutative monoids with finite sets of places, is symmetric 
monoidal closed. 

For M, M’ E CMonRPetri, the internal horn [ A4 + M’] C‘MR need not be 
in CiVfonRPetri, even if M has a finite set of places; however, there is an 
inclusion 

[M-+M’]&& CM+M’ICMG. 

If M has a finite set of places, [M + M’lCMG E CMonPetri, but 
CM+ M’l&, need not belong to CMonPetri, since a submonoid of a free 
commutative monoid need not be free. 

We must discuss the category CMonCut of strict monoidal categories. 
Given C, D E CMonCat, we define [C + D] CMC as the category with 
objects strict monoidal functors and morphisms natural transformations. 
As mentioned before, the category CutPetri is the full subcategory deter- 
mined by those CE CMonCut whose commutative monoid of objects is 
free. In this context, for consistency with the rest of the paper, we will use 
additive notation for strict monoidal products for a C E CMonCut. 

LEMMA 25. [C+DICMC can be made into a strict symmetric monoidal 
category. 

Prooj Addition on the objects is defined by (f, g) + (f', g') = 
(f + f’, g + g’) and determines a commutative monoid structure. 
Addition on natural transformations cp: (f, g) + (f', g’) and cp’: 
(h, i) -+ (h’, i’) is the natural transformation cp + cp’: (f + h, g + i) + 
(f’ + h’, g’ + i’) determined by the family { cp, + cp>: g(x) + i(x) + 
g’(x) + i’(x) 1 x E ICI >. Such a family is natural, since for ~1: x + y in C we 
have, writing things in diagrammatic order, 

(f+h)(~); (cp,,+cpj.)= (fy-+ha); (cp,.+@,,)= (fk (P.~)+ W CP;~) 

=(cp,;f'g)+ (cp:;h'~)=(f'+h')(a); (cp,+&x). 

It follows from our definition of cp + cp’ that a,, ai, and id are monoid 
homomorphisms. The only condition left to check is the equation 
(cp + cp’); ($ + II/‘) = (cp; II/)+ (cp’; $‘) that we leave as an exercise. i 

The tensor product is determined by a universal property of bilinearity. 
Given C, D E CMonCat, we have to exhibit a category C @ D E CMonCat 
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and a bilinear functor (f, g) : C x D + CO D, i.e., a functor (f, g) such 
that for any CI, a’: x -+ J’ in C and /I, p’: z + w  in D we have 

1. f(&O)=f(O,B)=O 
2. f(a+a',P)=f(cr,8)+f(a',B) 
3. f(a,B+B')=f(a,B)+f(cc,B'). 

Notice that the forgetful functor CMonCat + CMonRGvaph has a left 
adjoint P: CMonRGraph + CMonCat which is essentially a path category 
construction. We can easily construct C@ D in terms of the tensor product 
of C and D in CMonRGraph that we shall denote by COR D. We have a 
bilinear morphism C x D -+ COR D for the underlying commutative 
monoid on a reflexive graph structure. We can then compose with the unit 
map COR D -+ P( C’OR D) to get another bilinear morphism for the 
CMonRGraph structure. Denote the composite blinear map 

CxD+C@,D+P(CORD) 

by (f, g). To make it into a functor, we have to further impose on 
P(C@, D) relations r of the form 

.f(F u', B; P',=f(a, P,;f(a', P', 

and then we define C@ D E CMonCat as the quotient P( COR D)/f. In this 
way we get a bilinear functor as a composition 

Such a functor has the desired universal property, since, given a bilinear 
functor (h, i>: Cx D+ E, it induces a unique (h’, i’): CORD + E in 
CMonRGraph, which in turn induces a unique (h’, i ‘) : P( C @ R D) + E in 
CMonCat. We then have h+(f(cr; cc’, fi; /?‘)) = h(cc; cd, j3; j’) = h(a; fi); 
NM', 8') =ht(f(a, PI); ht(f(u', B')) = h'(f(@, PI; f(a', B')), i.e. (ht, it) 
induces a unique (h’, i ‘) : C 0 D + E in CMonCat, as desired. The unit for 
the tensor product is the category with objects JV and just one identity 
morphism n: n -+ n for each it, with monoidal product n + m : n + m -+ 
n + m. This ends our discussion of the symmetric monoidal closed structure 
for CMonCat. 

We finish the discussion of the different internal horns in this section 
by listing, for C, D E CMonCat, M, , M2 E CMonRGraph, and M, M’ E 
CMonGraph, the following inclusions: 
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7. GENERALIZATIONS 

One of the advantages of adopting a categorical point of view when 
investigating a problem is that often new connections are naturally dis- 
covered and results can be easily transferred by relying on the common 
categorical properties. In this section, we take a more abstract view of the 
developments in previous sections. A common pattern emerges that 
naturally suggests a wide variety of ways in which the ideas we have 
presented can be generalized. In what follows, we will find very useful to 
present our ideas using the concept of a monad, as explained below. 

7.1. Monads 

Let T= (Z, r) be a presentation by operations C and equations r of a 
(one sorted) algebraic theory, such as commutative monoids, rings, etc. 
Any set X generates a free T-algebra T(X) = T,,,(X) and there is a natural 
map qX: X-+ T(X) interpreting the generators inside the algebra. This 
natural map is a natural transformation q: l,, -+ T between two 
endofunctors. There is also a natural transformation h: T2 + T. For 
T= (Z, a), p: T,(T,(X)) -+ T=(X) maps a term t[t,, . . . . t,] (where the 
t 1 > . ..> t, E T,(X) are viewed as variables without any internal structure) to 
the substitution term t( tl , . . . . t,)e T,(X), and for T= (C, r) ~1 acts just the 
same on equivalence classes of terms. The triple (T, p, id) is a monad 
(MacLane, 1971), i.e., a monoid for the (monoidal) product given by 
functor composition To T= T2, with associativity and identity expressed by 
the expected commutative diagrams of natural transformation (MacLane, 
1971). Then, a monad morphism ~1: (T, ,u, yl) -+ (T’, p’, q’) is a natural trans- 
formation a: T -+ T’ such that it is a monoid homomorphism. Intuitively, 
a monad morphism ~1: T -+ T’ is an interpretation of equational theories 
that maps operations of T into (possibly derived) operations of T’. 

Conversely, any monad T in the category Set is generated by an 
algebraic theory T= (2, r), although the operations may be inlinitary and 
range over all cardinals (Manes, 1976). The category of T-algebras can be 
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recovered from the monad (T, p, id) itself, since it is isomorphic to a 
category Set, having as objects pairs (X, q: T(X) + X) such that q satisfies 
the condition of being an action of the monoid T (just as in automata 
theory; again see MacLane, 1971, for the two commutative diagrams). 
Morphisms f: (X, q) --t (Y, q’) are given by functions ,f: X+ Y such that 
q’ 0 Tf = fo q. For example, for T the theory of commutative monoids, the 
monoid structure of a given commutative monoid (M, +, 0) can be 
recovered from the unique homomorphism q: M@ + n/i induced by the 
identity function 1 M : M -+ M, and the map (M, + , 0) H (M, q) is an 
isomorphism of categories CMon 2: Ser, Jo. 

The notion of a monad was originally defined in (Eilenberg and Moore, 
1965), where it was called triple. This notion is extremely valuable since it 
permits generalizing universal algebra over the category of sets to universal 
algebra over arbitrary categories, for which more subtle kinds of algebraic 
structures, not expressible in classical terms, may exist. 

In this paper we have made crucial use of the fact that the category 
CMon is a symmetric monoidal closed category, and we have pointed out 
that this is a property common to the different versions of linear algebra 
provided by the choice of different commutative semirings. The symmetric 
monoidal closed structure is intimately connected with the fact that the 
semimodule operations “commute” with each other. For example, given 
J E R, a coefficient, and + vector addition, we have 

(Ax) + (ly) = A(x + y). 

Linton (1966) proved an important characterization theorem showing 
that, indeed, for all commutative algebraic theories T= (C, f) the category 
of algebras is symmetric monoidal closed, where a theory T= (Z, r) is 
called commutative iff for any two operations rs: n + 1, 5: m + 1, the equa- 
tion 

~WI,), ...? T(xnj)) = t(a(xil), .‘.> o(xin)) 

with variables {xii 1 1 < i < n, 1 < j < n } and vectors xk, and xik correspond- 
ing to the kth row and kth column, respectively, of the matrix of variables. 
This is equivalent to saying that for any operation 0: n + 1 in Z, and any 
T-algebra A, the operation A,: A” + A is a C-homomorphism. A monad 
(T, p, q) on Set is commutative iff it is the monad of a commutative theory 
(the definition extends naturally to infinitary operations). This can be 
extended to strong monads (T, /J, q) over an arbitrary symmetric monoidal 
closed category “Y-, i.e., monads such that T is a strong functor (also called 
a V-functor) in the sense that T maps not only the external horns but also 
the internal horns, TAB: [A --+ B] + [ TA -+ TB] and ,D and q are V-natural 
transformations. This was done by Kock (1971), who gave a diagrammatic 
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definition of commutative monad and showed that Y’; is itself a closed 
category. As we shall see below, the notion of a commutative monad is 
extremely useful for generalizing the closed symmetric monoidal structure 
of Petri nets to more general notions of transition system. 

7.2. Some Monads 

Any right adjoint U: J&’ -+ 8 with left adjoint F: S3 + d has associated 
natural transformations q : 1 9 --+ UQ F (“insertion of generators”) and 
E: FO U+ I., (“evaluation”) and generates a monad T= (Uo F, U&F, q) 
(MacLane, 1971). 

Therefore, the left adjoints N: GvapA + GrafPetui, N, : Graph + 
GralPetri, , and CM: Gruph + CMonGruph to the forgetful functors 
GralPetri + Graph, GralPetri, + Graph, and CMonGraph + Graph (in 
terms of functors already described, N,(G) = N(G), and CL%Z( G) = N(G)@) 
yield monads N, N,, CM : Graph +Graph. It is not hard to check that 
these monads are strong for the Cartesian closed structure of Graph. We 
claim that the following isomorphisms exist: 

GralPetri N Graph, 

GralPetri, N Graph,, 

CMonGraph ‘v Graph,, . 

Similarly, N: RGraph -+ GralRPetri and CM: RGraph + CMonRGraph, left 
adjoints to the obvious forgetful functors, yield strong monads on RGraph 
and isomorphisms 

GraIRPetri ‘v RGraph, 

CMonRGraph N RGraph,, 

and the left adjoint CM: Cut + CMonCat to the forgetful functor 
CMonCat + Cut yields a strong monad CM on Cat with an isomorphism 

CMonCat N Cat,,,, . 

All this is just an abstract way of saying that all the above categories are 
categories of algebras but instead of being algebras over the category of 
sets, they are algebras over the categories Graph, RGruph, or Cat. Of 
course, the notion of “being an algebra” is now more subtle, since, say, the 
algebraic structure on the nodes need not be the same as that of the 
arrows. This subtlety is what the notion of a monad captures. 

7.3. A Common Pattern 

We have already seen that the categories GralPetri, GrafPetr&, and 
CMonGruph are symmetric monoidal closed. In each case, the left adjoint 
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operates by taking a graph G = (a,, 8, : A + V), generating some (possibly 
trivial) algebraic structure T(A) on the arrows, generating a (possibly 
richer) algebraic structure T’( I’) on the nodes and then “lifting” the 
original a,, 8, in a natural way. In our examples, T’( V) is always V@, 
whereas for GralPetri we have T( A ) = A, for GralPetri, T(A ) = A, and for 
CMonGvuph T(A) = A@. Of course, l,,, (-)0 and (()@ are monads, indeed 
commutative monads, associated to the theories of sets, pointed sets and 
commutative monoids, and the natural inclusions q: lse, -+ (-)@, 
t-h + (-I@ are monad morphisms. A monad morphism 01: T -+ T’ maps 
each operation CJ: n -+ 1 of T to a (derived) operation tx(a) : n + 1 in T’. 
Given a T-algebra X and a T’-algebra Y, a map f: X-+ Y is called an 
a-homomorphism iff for each operation 0: n + 1 in T, f(o(x,, . . . . x,)) = 
a(cr)(f(x,), . . . . f’(x,)). Note that for any T-homomorphism g: X0 -+ Y and 
any T’-homomorphism h : Y + Y,, the compositions fo g and h of are 
a-homomorphisms. This suggests the following theorem. 

THEOREM 26. Let T, T’ be commutative monads on Set and ~1: T -+ T’ a 
monad morphism. Then the category Graph, with objects (a,, a, : X -+ Y) 
such that X is a T-algebra, Y is a T’-algebra and a,, a, are 
cl-homomorphisms is isomorphic to the category of algebras Graph, for a 
monadT,=(T,,~L,,~,)onGraphthatsendseachG=(a,,a,:A~V)tothe 
graph T,(G) = (TA +a‘4 T’A Sf:z T’V), with pI = (pLT, pT.) and qa= 
(qT, qT’ >. Besides, the category Graph, is symmetric monoidal closed. 

Proof. The isomorphism Graph, 2: Graph, follows easily from the 
isomorphism Alg, N Set. and Alg,, N Set,. at the Set level. The proof that 
Graph, is symmetric monoidal closed is a straightforward generalization of 
our proof for GralPetri. Indeed, given A = (a,, 3 I : X -+ Y) and B = 
(a;, a’, : X’ -+ Y’) in Graph,, we define the internal horn [A -+ B], as the 
following subgraph of [A + BIG. The nodes are those functions g: Y -+ Y’ 
that are T’-homomorphisms. Therefore, since T’ is commutative, they form 
a T’-algebra [ Y + Y’] T,. The arrows (f, g, g’): g + g’ are those arrows 
of [A + BIG such that f is a T-homomorphism and g, g’ are 
T’-homomorphisms. They have a natural T-algebra structure defined as 
follows: if 0: n + 1 is a T-operation, then we define a( (f,, g,, g’,), . . . . 
(.A, g,, gi)) = (4fi, . . . . f,), da)(slt . . . . s,), do)(s’,, . . . . dJ), where the 
expressions in the right-hand side are well-defined functions in [X -+ X’] r 
and in [Y-+ Y’] Tr. Using the fact that a,, a,, a;, and a’, are 
cx-homomorphisms, it is not hard to check that this indeed gives an arrow 
a(a)(g, 3 .a., 8,) + ~(~)(dl, ..., gk) in [A + B] G. The second and third 
projections are cr-homomorphisms by the very definition of the T-structure 
on the arrows. 

The tensor product A 0, B is of the form (a;, 8; : X@ r X’ -+ YO T Y’), 
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where 8: is the unique a-homomorphism induced by the following 
a-bilinear l1 map 

AxA’==+ T(AxA’) T(ii,xii;! gBxB’) Y ) B@,. B’, 

where q is the unique T-homomorphism induced by the universal 
T’-bilinear map B x B’ + B@,. B’. 1 

In particular, we have GralPetri = Graph,, , GralPetri, = Graph,, , and 
CMonGruph = Graph,, for qs : lse, --f (-)@ the unit of (-)@, 
t12 = (oO 4 (-)@ and CI~ = 1 o : (-)@ -+ (-)@. 

7.4. Generalizations 

This suggests a very general notion of transition system as given by a 
category of algebras over graphs, possibly of the form Graph, for c(: T + T’ 
a monad map. Our motto “Petri nets are monoids” leads to the more 
general slogan “transition systems are algebras” (over Graph). The 
possibilities are many. We sketch several of them below under the assump- 
tion that T and T’ are commutative, and briefly discuss the noncom- 
mutative case in the conclusions. 

7.4.1. R-Petri nets. Replace J1/’ by a commutative semiring R and define 
GrulPetri, = Gruph,, for qR the unit of the monad of R-semimodules. For 
R = 2 we obtain the abelian Petri nets that we already encountered in our 
discussion of duality and invariants. For R a distributive lattice L with top 
and bottom, we obtain a notion of L-fuzzy Petri nets.12 All these monads 
are commutative and most of the results in the paper generalize to this set- 
ting, including the results on coincidence of finite products and coproducts 
for the categories where this held. 

7.4.2. Znfinitary Petri nets. These are Petri nets where a transition may 
have an infinite number of places as preconditions and as postconditions. 
Let Nm = JV u {co }. For {ni 1 i E Z, ni E N-, } and indexed family of 
arbitrary cardinality, we can define xi., ni E Nm to be the usual sum in Jf 
if only finitely many of the ni are nonzero and all n,# co, or cc otherwise. 
There is a commutative monad (-)QZ, sending each set S to the set Sem 
of all functions f: S -+ Mm. Such functions can be expressed as sums f = 
CSESfbb The unit ‘I@, maps an element s E S to the function mapping 

I’ Given T-algebras X, X’, and X”, a map .f: Xx X + A”’ is T-bilinear i f f  each of the maps 
WE X’.f(x, x’) and Ix E X.f(x, x’) is a T-homomorphism. Given a monad map a: T -+ T’, 
T-algebras X and X’ and T’-algebra I’, a mapf: Xx X + Y is u-bilinear i f f  each of the maps 
Ix’ E X’.f(x, x’) and Ix E X.f(x, x’) is an a-homomorphism. 

‘* Actually, the most satisfactory notion would assume a complete distributive lattice and 
intinitary operations similar to those in Section 7.4.2 below. 
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s to 1 and everything else to 0; the monad multiplication p@, maps an 
element xfeSer 2,f to the function 

Jf, is a semiring, and any (-)@*-algebra has an underlying 
,V,-semimodule structure. Also, (()@*--homomorphisms ‘are ,Vm-linear 
maps and are closed under addition and zeros; i.e., Set,-,o, is a semiad- 
ditive category where finite products coincide with finite sums, so that this 
carries over to categories of Petri nets whenever the transitions have the 
(-P- -structure in a way entirely similar to the linitary case treated in this 
paper. The basic category of (generalized) inlinitary Petri nets is Graph,,l 
and, by commutativity, it is a symmetric monoidal closed category. 

7.4.3. Probabilistic Petri nets. Consider the “simplex” monad A : Set + Set 
with 

where the sums Cj &xi are assumed to be’iinite, and with multiplication 
pd: AZ-A defined by 

and unit qd: l,, -+ A given by Y]~,~ (x) = lx. Then Graph,, is a category of 
probabilistic (generalized) Petri nets where transitions are of the form 
t: I,a, + ... +&an+p,bbl+ ... +p,,,b,. If transition t fired, then exactly 
one token was consumed (and A,, . . . . A, are the probabilities that the token 
was consumed from place a,, . . . . a,) and one token was produced (and 
Ply ..a, Pm are the probabilities that the token was produced in place 
b,, . . . . b,). It is easy to check that the monad A is commutative, so that 
GyQphqd is symmetric monoidal closed by our general theorem. This 
category seems very well suited for applications, where transitions have a 
probabilistic nature, and should provide a fruitful and interesting link with 
the well-developed notion of Markov process in probability theory. 

8. CONCLUSIONS 

We have given a new definition of place/transition Petri nets as graphs 
equipped with the operations of parallel and sequential composition on the 
transitions. Known concepts, like case graphs and invariants, have been 
derived in a natural way. More importantly, new morphisms, relating 
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system descriptions at rather different levels of abstraction, and new con- 
structions, like a function space for Petri nets, have been defined. 

It has been mentioned in Section 1 that transitions of Petri categories 
coincide, in the case of safe computations, with Petri nonsequential pro- 
cesses (Goltz and Reisig, 1983; Reisig, 1985). In the general case, however, 
the situation is more complex, and a full treatment can be found in 
(Degano et al., 1989, 1989a), of which we give here a short account. 

Best and Devillers (1987) observed that for general place/transition Petri 
nets, while one might expect processes to be more abstract than tiring 
sequences and thus many firing sequences to correspond to the same 
process, the two notions are in fact incomparable. Thus they looked for a 
new notion of computation, more abstract than both firing sequences and 
processes. In a somewhat ad hoc manner, they defined a swapping operation 
on processes: when two concurrent instances of the same place can be 
found, their causal consequences can be exchanged. Equivalence classes 
with respect to swapping, which we may call commutative processes, are 
recognized as the least abstract model which is more abstract than both 
firing sequences and processes and is suggested as the correct observation 
level for nets. 

In (Degano et al., 1989, 1989a), commutative processes are proved 
isomorphic to the morphisms of S[N], thus providing an operational 
counterpart to the algebraic definition presented in this paper. Further- 
more, another small category p[N] is proposed for modelling the classical 
notion of processes associated to a net N. In Y[N], the same axioms hold 
as in Y[N], except for the commutativity of parallel composition @ of 
transitions. Instead, 9 [N] contains a subcategory of symmetries expressing 
the fact that in a marking the tokens on the same place can be permuted. 
A coherence axiom holds, which equates any parallel composition LX of 
processes with another parallel composition ct’ of the same processes, where 
the different order between CI and GI’ is compensated by composing suitable 
symmetries in sequence before c1 and after CI’. 

The main result of (Degano et al., 1989, 1989a) is showing that the 
morphisms of LY[N] are just a slight refinement, which we call con- 
catenable processes, of classical processes. The refinement consists of impos- 
ing a total ordering among those minimal places (or “heads”) of a process 
that are instances of the same place and a similar ordering for the maximal 
places (or “tails”). This makes possible to define a new general notion of 
sequential composition of processes, which of course corresponds to 
morphism composition in Y[ N]. 

Besides S[N], in (Degano et al., 1989, 1989a) a category Y[N] is intro- 
duced containing the classical tiring sequences. Finally, a fourth category 
X[N] is added, providing a most concrete extremum for both g[N] and 
Y[N]. The axiom expressing the functoriality of parallel composition of 
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transitions maps X[N] to Y[N] and Y[N] to S[N], while com- 
mutativity of parallel composition maps X[iV] to Y[N] and, as we saw, 
g[N] to S[N] (see Fig. 7). Thus the pushout diagram of the four 
categories gives a full account in algebraic terms of the relationship 
between interleaving and partial ordering observations of P/T net com- 
putations. It is easy to see that the morphism from g[N] to S[N] is 
bijective when restricted to safe computations. 

Our development of algebraic theories on graphs can be extended by 
dropping the commutativity requirement altogether and consider arbitrary 
theories T, = (C, @) or Tz.E= (C, E). This is intimately connected with 
the notion of concurrent term rewriting developed by the first author in 
joint work with J. A. Goguen and C. Kirchner (Goguen et al., 1987) using 
more elementary methods. The study of this case will be the subject of a 
separate investigation (Meseguer, 1990). 

Although we have for the most concentrated on the case of Petri nets, 
the general new concept that emerges from the present work is that of 
transition systems as graphs with algebraic structure. Computations of a 
transition system then appear as morphism of a path category generated by 
its graph. This path category will be endowed with an algebraic structure 
similar to that of the transition system. For Petri nets, the relevant 
algebraic structure is that of a commutative monoid, and therefore com- 
putations have a strict symmetric monoidal category structure, but this is 
just a particular case. For example, for C-term rewriting the category of 
computations has a C-algebra structure, and for inlinitary Petri nets there 

c-processes 

17 WI 

firing & step 
sequences 

net computations 

FIG. 7. The categories X[N]. Y[N], Y[N], and Y[N] and their semantic relationship. 



PETRI NETS ARE MONOIDS 153 

is an infmitary parallel composition of computations. In each case, there 
will be a “distributive law” relating sequential and parallel composition of 
computations. Considerations of this kind should lead to a general 
algebraic (meta) model of true concurrency of wide applicability. 

The categorical approach we have outlined here should provide the 
framework necessary to develop a hierarchy of models where the necessary 
structure is introduced only at the proper level, as advocated for instance 
in (Degano and Montanari, 1985). The structure to be added includes, for 
instance, actions, invisible actions, a synchronization mechanism, a term 
structure with variables and substitutions, and a spatial structure on the 
places. 
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