
INFORMATION AND COMPUTATION 88, 105-15.5 (1990)

Petri Nets Are Monoids*

Jo& MESEGUER+ AND Uco MONTANAR?

SRI International, Menlo Park, California 94025

Petri nets are widely used to model concurrent systems. However, their composi-
tion and abstraction mechanisms are inadequate: we solve this problem in a
satisfactory way. We start by remarking that place/transition Petri nets can be
viewed as ordinary, directed graphs equipped with two algebraic operations corre-
sponding to parallell and sequential composition of transitions. A distributive law
between the two operations captures a basic fact about concurrency. New
morphisms are defined, mapping single, atomic transitions into whole computa-
tions, thus relating system descriptions at different levels of abstraction. Categories
equipped with products and coproducts (corresponding to parallel and nondeter-
ministic compositions) are introduced for Petri nets with and without initial
markings. Petri net duality is expressed as a duality functor, and several new
invariants are introduced. A tensor product is defined on nets, and their category
is proved to be symmetric monoidal closed. This construction is generalized to a
large class of algebraic theories on graphs. These results provide a formal basis for
expressing the semantics of concurrent languages in terms of Petri nets. They also
provide a new understanding of concurrency in terms of algebraic structures over
graphs and categories that should apply to other models besides Petri nets and thus
contribute to the conceptual unification of concurrency. ci”l 1990 Academic Press, Inc.

1. INTRODUCTION

Petri nets are the first model of concurrent systems which has been
developed and, in their various evolutions, the most heavily used in many
applications. They have also been the object of many contributions in the
literature (for an extensive list of references see Drees et al., 1986).
Recently, a renewed interest in Petri nets has been stirred up by the
so-called true concurrency approach to the semantics of concurrent systems

* Supported by Office of Naval Research Contracts NOOO14-86-C-0450 and
NOOO14-88-C-0618, NSF Grant CCR-8707155 and by a grant from the System Development
Foundation. A summarized version of this paper appeared in Meseguer and Montanari
(1988).

’ Also Center for the Study of Language and Information, Stanford University, Stanford,
California 94305.

* Dipartimento di Informatica, Universita di Pisa, I-56100 Pisa, Italy; research performed
while on leave at SRI International.

105
0890-5401/90 $3.00

Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

106 MESEGUER AND MONTANARI

(Boudol and Castellani, 1988; Degano et al., 1988; Degano and Montanari,
1987; Winskel, 1987; Olderog, 1987; van Glabbeek and Vaandrager, 1977).

While the algebraic structure of Petri nets has been extensively
investigated, we feel that a key point has been missed: a place/transition
Petri net is simply an ordinary, directed graph equipped with two algebraic
operations. More precisely, a net provides the generators of the algebraic
structure. Several well-known constructions (e.g., the case graph, the firing
sequences, the non-sequential processes, etc.) correspond to closure
constructions with respect to the algebraic operations.

Consider, for example, the place transition Petri net in Fig. 1. It has a set
of places S = {a, b, c, d, e, f } and a set of transitions T = {t, t’}. Numbers
on the incoming arrows of a transition specify how many tokens are
consumed from each place when the transition tires, and numbers on the
outgoing arrows specify how many tokens are generated as a consequence
of the transition. The “state” of the net is determined by the number of
tokens stored in each place. The left-hand side picture describes a state
with two tokens in a, four in b, and three in c. In a Petri net, several trans-
itions can fire concurrently. The picture on the right describes the state
reached after the concurrent tiring of t and t’.

The point is that this Petri net can be understood as an ordinary graph
whose set of nodes is the free commutative monoid So generated by the set
S of places (we use additive notation, so a typical element of S@ is for
example 3a 0 2c @ 7e; in the computer science literature such elements are
called finite multisets or “bags” and addition is understood as union). The
transitions then correspond to arrows of the graph. In this case there are
just two arrows.

t: a@26-+3d@2e

t’: b@3c -+e@qf:

Addition can naturally be extended to transitions. For example, we can
represent the parallel firing of t and t’ by the arrow

FIG. 1. A place/transition net before and after the concurrent firing of t and 1’

PETRI NETS ARE MONOIDS 107

Therefore, our first operation, 0, together with a zero element, yields a
commutative monoid structure on a graph, in the sense that the monoid
structure is defined on both nodes and arcs, and that the source and target
functions 8, and d, from arcs to nodes are monoid homomorphisms.

The commutative monoid structure on the nodes is free, having the
places of the given net as generators. The commutative monoid structure
on the arcs may also be free, and in that case the meaning of @ is the
parallel, independent composition of transitions. In general, however, the
monoid of the arcs need not be free: for example, it may take into account
a synchronization algebra defined on the transitions.

It is also convenient to consider rejkxiue graphs, i.e., graphs where every
node is the source and the target of an associated identity arc, which is
interpreted as an idle transition. For example, the identity arc 2~: 2a -+ 2a
is interpreted as the idleness of two tokens in place a. In this way, we can
represent the concurrent transition from state 2a@4b @ 3c to state
3d @ 3e 0 4f in Fig. 1 by the arc,

The commutative Petri monoid on a reflexive graph generated from a Petri
net by additive closure is a well-know object in Petri net theory: it is called
the case graph.

The second algebraic operation is even simpler: it is the concatenation of
the arcs of the graph and is denoted by a semicolon. Closure with respect
to this operation of sequential composition straightforwardly generates new
transitions corresponding to computations of the given Petri net. However,
the interesting point here is that we close with respect to both sum and
sequential composition at the same time, thus obtaining a more general
notion of computation.

The resulting structures can be seen as small categories, here called Petri
categories, where the morphisms are computations. This naturally suggests
making the sum operation functorial, i.e., making it respect identities and
sequential composition. Therefore, a Petri category is a commutative
monoid structure on a small category, with the distinguishing feature that
the commutative monoid of objects is free. This justifies our title, since
Petri nets are monoids both on graphs and, by additional closure, on
categories. Indeed, if in the definition of Petri category we relax the freeness
requirement, we obtain the more general notion of a commutative monoid
structure on a category. Such structures are usually called strict symmetric
monoidal categories, and the monoid homomorphisms are called strict
monoidal functors (MacLane, 197 1).

108 MESEGUER AND MONTANARI

The key law in Petri categories is the following distributive property.
Given CI:U+V, u’:u’-+v’, /~:v-+uI, fl’:o’+w’, we have

(a;8)0(a’;P’)=(agcr’);(POB’). (1)

We feel that this law captures a rather basic fact about concurrency: the
parallel composition of two given independent computations has the same
effect as a computation whose steps are the parallel compositions of the
steps of the given computations.

A derived property may make the point clearer. Given c(: u + v,
j3: u’ + v’, we have

(aOld); (vop)=(uo~); (a@v’).

This is the well-known property that two independent (concurrent) trans-
itions can be executed in any order. The fact that they are concurrent is
expressed by the fact that the places involved in one transition are idle
while the other transition takes place: the two transitions are not causally
related.

Computations of Petri categories are closely related to nonsequential pro-
cesses (Goltz and Reisig, 1983; Reisig, 1985), a well-known, classical con-
cept apt to describe the concurrent behaviors of Petri nets. The two notions
coincide (Degano et al., 1989a) in the important case of safe computations,
i.e., computations where two instances of the same place are never con-
current. When actions are introduced as labels for transitions, computa-
tions of Petri categories are also similar to concurrent histories, a notion
developed earlier in a different context by the second author in joint work
with P. Degano (Degano and Montanari, 1987). The above derived
property is called commutativity in (Degano and Montanari, 1987), where
it plays a pivotal role. Winkowski (1982) introduced two operations of
sequential and parallel composition of processes; however, his parallel
composition is partial, and the approach is restricted to safe computations.

The earliest use of free monoidal categories in computer science was
probably made by Hotz (1965). In (Meseguer and Sols, 1975), linear
algebra models of free monoidal categories were used to characterize
sequential and parallel compositions of nondeterministic and probabilistic
automata and switching networks. As part of their linear algebra approach
to nondeterminism and concurrency, Main and Benson (1984) also
advocate the use of monoidal categories to formalize sequential and
parallel composition.

The formal development we are proposing for the above ideas relies on
category theory. In the case of Petri nets, the use of category theory is
justified by very concrete motivations. In fact, Petri nets have been often
considered inadequate since, at least in their original version, they are not

PETRI NETS ARE MONOIDS 109

equipped with composition operations and with an abstraction mechanism.
The categorical approach due to Winskel (1984, 1987) provides the former,
since the categorical constructions of product and coproduct correspond to
parallel and nondeterministic composition (respectively) (Winskel, 1984)
for languages like CCS (Milner, 1985). A further benefit that category
theory provides is very powerful techniques for relating different classes of
models (i.e., different categories). This is an important advantage in the
case of concurrency, where different models of the same system are often
considered for different purposes. For instance, Petri nets, occurrence nets,
several versions of event structures, transition systems, synchronization
trees, etc. can be given a categorical structure, and their semantic relations
can be profitably expressed (typically as coreflections) in the language of
categories (Winskel, 1984, 1986).

In this paper, besides directly using categories as a model of computation
in Petri categories, we broaden the applicability of Winskel’s contribution,
and, in addition, we show that the abstraction problem also has a simple
and natural solution by providing new very general morphisms corre-
sponding to the notion of implementation.

Our view of a Petri net as a reflexive graph equipped with two opera-
tions (0 and ;) immediately suggests that morphisms are reflexive graph
morphisms (i.e., mappings of arcs and nodes respecting sources, targets,
and identity arcs) which furthermore respect the operations of parallel sum
and sequential composition.

These morphism are, to our knowledge, new in the context of Petri nets.’
They are a decisive improvement over the strongly restrictive versions pre-
viously proposed in the literature, since they allow simulations where single
transitions of the specification correspond to whole computations of the
implementation. Relating system descriptions at different levels of abstrac-
tion has, admittedly, been one of the main goals of the theory of Petri nets
from its very beginning, a goal which has never been fully achieved.

Furthermore, our categorical approach has the advantage of suggesting
completely new constructions for Petri nets. As important examples, we
express Petri net duality as a duality functor and we make explicit a
symmetric monoidal closed category structure, where nets are closed under
a function space construction with an associated (noncartesian) product.

Considering our approach a little more in detail, in Section 2 we
naturally define a hierarchy of categories, where the objects have richer and
richer algebraic structures: Petri nets, pointed Petri nets (nets with a zero
transition), Petri monoids, reflexive nets, Petri categories. All these

‘See [Hinderer, 19821 for an early attempt to use category theory to obtain a general
notion of morphism. Although similar in spirit to the notion that we propose, the basic link
between Petri nets and categories was, in hindsight, unsatisfactory.

110 MESEGUER AND MONTANARI

categories are obviously related by forgetful functors, whose left adjoints
provide the closure constructions with respect to the added operations.
However, to capture the morphisms we are interested in, it is not necessary
to make the additional structure explicit. It is sufficient to consider as
objects ordinary Petri nets and to equip them with the morphisms defined
on their closures. This approach, described in Section 3, generates a
hierarchy of categories, where the objects are the same, the ordinary Petri
nets, but where more general types of morphisms become available as more
and more structure is taken into account. Ail these categories have
products and coproducts.

The graph definition we have followed until now does not require an
initial node. In fact, the initial marking of a Petri net is often considered
inessential. This makes the formal treatment simpler and nicer. In fact,
Winskel (1987) proved that his categories, relying on a Petri net definition
which includes an initial marking, do not have coproducts: he restricted his
treatment to safe nets and safe morphisms to guarantee the existence of
coproducts. Lacking coproducts is a serious drawback, since, as we
noticed, they correspond semantically to nondeterministic compositions.

However, an initial state is needed whenever Petri nets are used for
defining the operational semantics of concurrent languages (Degano et al.,
1988; Degano and Montanari, 1987; Winskel, 1984; Olderog, 1987; van
Glabbeek and Vaandrager, 1987). In Section 4, we extend the applicability
of our results also to this important case by adding an initial marking, but
we require it to be a set (instead of a multiset) of places. No restrictions
whatsoever are placed on nets, nor on morphisms, except that they
preserve the initial marking. We then show the existence of products and
coproducts for all morphisms, includig those allowing a change in the level
of abstraction. In practice, our restriction involves no loss in generality: we
easily define a functor which adds to a given multiset-marked net a new
initial place and a starting transition. This functor lands in a full sub-
category, with unreachable initial markings, equipped with products
and coproducts, which is our best candidate for language definition
applications.

The morphisms proposed by Winskel (1987) called synchronous
morphisms, asynchronous morphisms, and homomorphisms, correspond
more or less to the first three steps of the hierarchy described in Section 2:
Petri nets, pointed Petri nets, and Petri monoids (respectively). However,
homomorphisms are hardly used in (Winskel, 1987) and indeed doubts
about their usefulness are raised; synchronous and asynchronous
morphisms are introduced, as restrictions of the latter, in a somewhat
adhoc manner. Indeed, Winskel’s treatment of the category of Petri nets
and homomorphisms (based on ideas by Reisig: a net is a two-sorted
algebra on the multisets XT and -Mlrs with operations ‘(-), (0’: Xr-+ .;lf’

PETRI NETS ARE MONOIDS 111

and a constant ME JV’) recognizes the algebraic nature of nets but does
not take full advantage of their graph structures.

Besides requiring the initial marking to be a set rather than a multiset,
a difference with Winkel’s approach is that we consider in most of the
paper finite multisets (viewed as elements of a free commutative monoid)
rather than arbitrary ones, so that our transitions have linitary precondi-
tions and postconditions; as a consequence, we do not need any restrictions
to obtain a category, whereas Winskel has to add conditions on the net to
make sure that homomorphisms compose. However, an entirely parallel
development of our ideas can be obtained by introducing transitions hav-
ing in their pre/postconditions both an infinite number of places and places
with an infinite multiplicity. We explain in Section 7.4.2 that most of our
results hold in this case as well. On the other hand, our Petri monoid
category is more general, in that the monoid structure of transitions need
not be free. The usefulness of this additional generality may reflect a syn-
chronization algebra and also becomes apparent when we consider Petri
categories (where the monoid of transitions is not free for the existence of
laws like (1)), which have no counterpart in Winskel’s work.

Our approach of viewing Petri nets as ordinary graphs may appear to
obscure the well-known and fruitful fact that nets can be dualized by regar-
ding transitions as places and places as transitions. The opposite is the
case. In Section 5 we express Petri net duality as a duality functor. We then
give a geometrical interpretation of T-invariants and their properties
through a very general notion of a Loop functor, and we use duality to give
a functorial account of S- and T-invariants. Using elementary algebra, we
also derive algebraic relations between the groups of S- and T-invariants of
a Petri net and associate to a Petri net N two other groups, S$,,,(N) and
T:“,,(N) that apparently are new.

It is well known that a tensor product A @ B can be defined in the
category CMon of commutative monoids so that, up to natural
isomorphisms, 0 is associative, commutative, and has ,V as an identity. It
is also well known that the monoid homomorphisms from A to B form a
commutative monoid [A + B] and that there is a natural isomorphism

CMon((A @B), C) ‘v CMon(A, [B + Cl);

in other words, the category of commutative monoids is a symmetric
monoidal closed category (MacLane, 1971). This is just like a Cartesian
closed category except that the product A@ B is not the categorical
product. Since “Petri nets are monoids,” this result can be extended to nets:
In Section 6 we give tensor product and function space constructions for
Petri nets and prove that their category is symmetric monoidal closed.
In fact, the definition works even better (without need for a finiteness

112 MESEGUERANDMONTANARI

condition) for the more general case where the monoid of nodes in the
graph need not be free. This construction seems to be completely new.
Furthermore, we generalize this result to the categories of commutative
monoids on graphs, on reflexive graphs, and on categories.

Finally, in Section 7 the basic constructions of Section 6 (and with them
most of the results of the paper) are generalized to a large class of algebraic
theories on graphs. The required condition is that the algebraic theories of
both nodes and arcs be commutative and that the source and target maps
be homomorphisms. The development is carried out in the framework of
the theory of commutatiue monads (Eilenberg and Moore, 1965; MacLane,
1971; Manes, 1976; Linton, 1966; Kock, 1971). This “meta” result makes
our theory applicable to a variety of interesting cases: in Section 7.4 we give
examples concerning fuzzy nets, infinitary nets, and probabilistic nets, and
in Section 8 we indicate an extension to term rewriting systems.

Although we have for the most part concentrated on the case of Petri
nets, the general new concept that emerges from the present work is that
of transition systems as graphs with algebraic structure. Computations of a
transition system then appear as morphism of a path category generated by
its graph. This path category will be endowed with an algebraic structure
similar to that of the transition system. For Petri nets, the relevant
algebraic structure is that of a commutative monoid, and therefore com-
putations have a strict symmetric monoidal category structure, but this is
just a particular case. Other algebraic structures besides that of monoid are
possible and natural. Considerations of this kind should lead to a general
algebraic (meta) model of true concurrency of wide applicability.

Regarding prerequisites, we assume some acquaintance with basic
notions of category theory such as category, functor, products, coproducts,
etc. However, we give intuitive explanations of adjoints, Cartesian and
monoidal closed categories, and monads, when each notion is first encoun-
tered. An excellent reference is (MacLane, 1971). Section 5 assumes an
undergraduate level acquaintance with groups, rings, and modules.

2. ADDING MONOID AND CATEGORY STRUCTURE TO PETRI NETS

2.1. Petri Nets

The standard definition of place/transition net (Reisig, 1985; Winskel,
1987) is as follows: A place/transition (P/T) net is a triple (S, T, F), where

l S is a set of places;

l T is a set of transitions;

l F: (S x T) + (T x S) + N is a multiset called the causal dependency

PETRI NETS ARE MONOIDS 113

relation. (Here N denotes the natural numbers and + denotes disjoint
union of sets.)

In the rest of this paper a Petri net will always mean the general case of a
place/transition net. Sometimes special requirements (like global finiteness
conditions, or limitations on the capacity of the places) are added.

As explained in Section 1, we want to see Petri nets exactly as graphs.

DEFINITION 1. A graph G is a set T of arcs, a set V of nodes and two
functions 8, and 8, called source and target, respectively:

A morphism h from G to G’ is a pair of functions (f, g), f: T+ T’ and
g: V-t I/’ such that:

This, with the obvious componentwise composition of morphisms,
defines the category Crap/z. We follow the usual notation and write t: u + u
to denote a,(t) = U, a,(t) = u for t E T.

DEFINITION 2. A (place/transition) Petri net is a graph where the arcs
are called transitions and where the set of nodes is the free commutative
monoid S@ over a set of places S:

a,, a,: T+ s?

A Petri net morphism is a graph morphism (f, g), where g is a monoid
homomorphism (i.e., leaving 0 fixed and respecting the monoid operation
0). This defines a category Petri.

The elements of S@ will be represented as formal sums n, a, 0 . . . 0 nk ak
with the order of the summands being immaterial, with the a, in S, the ni
in JV, addition defined by (0 i qa,) @ (0 i m,aJ = (0 i (ni + mi) ai) and 0
as the neutral element.

It is easy to see that our definition coincides with the standard definition,
if we require there that for each t E T the set {s I F(s, t) # 0 or F(t, s) # 0)
is finite.

For example, from

F(a, t) = 2,

S= {a, b, c}, T= {t}

F(b, t) = 1, F(t, c)=2, F = 0 elsewhere,

114 MESEGUER AND MONTANARI

we obtain the graph with nodes (a, 6, cj@ and the single arrow
t:2a@b+2c.

There is an obvious forgetful functor Petri + Graph that forgets about
the monoid structure of the nodes. There is an associated free construction
sending a graph G to the free Petri net N(G) generated by G. “Freenes” of
course means that there is a graph morphism qc: G -+ N(G) injecting the
generators G into N(G) such that given a Petri net M and a graph
morphism h : G + M there is a unique Petri net morphism h: N(G) -+ M
extending h, i.e., such that h 0 g, = h. A free construction of this kind always
defines a functor “going the other way” and called the lefl adjoint to the
given forgetful functor (MacLane, 1971) (dually, the forgetful functor is
called the right adjoint of its free construction functor). In our case, the
left adjoint is a functor N: Graph -+ Petri associating to a graph G =
(a,, 8,: T-t V) the Petri net N(G)= (a,, 8,: T-r V@). In what follows,
since free constructions associated to forgetful functors are exactly the same
thing as left adjoints, we will just say that there is a left adjoint for a given
forgetful functor and indicate the result of the free construction on the
objects (the inclusion of generators yl tends to be obvious (typically a
set-theoretic inclusion) and can safely be left implicit).

The categorical product in the category Graph of two graphs

G=(&,,a,: T-, I’) and G’ = (S;, 8; : T’ + V’)

is the graph
GxG’=(&,x&,,d,x8;: TX T’+ Vx I”).

For Petri nets N=(c?,,c?,: T-S@) and N’=(ab,Si: T’+SQ), their
product as graphs

NxN’=(a,xab,a,xa;:TxT’-,SOxS’O)

is also a Petri net, since

p x S’Q N (S+ S’)Q N SQ 0 P,

i.e., finite products and coproducts of free commutative monoids coincide.
The Petri net N x N’ is clearly the categorical product in Petri and is called
the synchronous product of the nets N and N’. Intuitively, the synchronous
product of two Petri nets is the result of a composition operation with
synchronization: The places of the result are the union of the places of the
factors, while the transitions in the synchronous product are pairs (i.e.,
synchronizations) of the given transitions.

The category Petri has also coproducts,

NON’=([a,,a;], [a,,a;l: T+T’-+(S+S’)@),

PETRI NETS ARE MONOIDS 115

where [a,, ai] denotes the function induced on the coproduct T-t T’ by
functions ai and ~3: on the pieces.

Intuitively, the coproduct of two Petri nets is the result of a composition
operation without synchronization: the two nets are just laid aside without
interaction. We will see that in the case of marked nets (i.e., nets with
initial state, discussed in Section 4) the meaning of coproducts is, more
suggestively, that of nondeterministic choice composition.

The initial net has no transitions and no places, while the final net has
one transition and no places. The construction of the coproduct of two
Petri nets generalizes to arbitrary families of nets.

Petri has neither arbitrary limits nor arbitrary colimits. This is due to the
fact that the category of free commutative monoids lacks arbitrary limits
and colimits. However, dropping the freeness requirement for the monoid
of nodes leads to a bigger category GraIPetri that has all limits and
colimits.

2.2. Pointed Petri Nets

In the category Petri, a map (f, g): N -+ N’ maps each transition t of
N to a transition f(t) of N’. We might, however, want to allow for certain
transitions to be erased by a mapping. This would correspond to making
the map f: T -+ T’ partial. An approach which is completely equivalent
from a semantical point of view, but more convenient technically, is to add
a special element 0 to T, making it into a pointed set. Maps between
pointed sets are required to leave 0 fixed, and thus directly correspond to
partial functions between the original sets. The commutative monoid
S@ is already a pointed set considering as special element the 0 element of
the 0 operation.

DEFINITION 3. A pointed Petri net consists of a Petri net where the set
of transitions is a pointed set (T, 0), 0 E T, the commutative monoid S@ is
viewed as a pointed set, and

a,,, d, : (T, 0) + S@

are pointed set maps. A pointed Petri net morphism is a Petri net morphism
(f, g), where f is a map of pointed sets. This defines a category Petri,.

There is an obvious forgetful functor Pet& + Petri that forgets about
the pointed set structure of the transitions. This functor has a left adjoint
(-)o: Petri+ Petri, that associates to a net N= (a,, ~3,: T-+S@) the
pointed net

--
N0=(i3,,&:(T+(O},0)4@)

with q = ai on T, and q(O) = 0.

116 MESEGUERANDMONTANARI

As in Petri, the product of two pointed Petri nets as graphs has an
obvious pointed net structure and yields the categorical product in Petri,.

Coproducts are also easy;

where (T, O)@ (T’, 0’) is the coproduct of pointed sets, i.e., the disjoint
union T + T’, except that 0 and 0’ are identified.

2.3. Petri Monoids

DEFINITION 4. A Petri commutative monoid M consists of a Petri net
where the set of transitions is a commutative monoid (T, + , 0) and where

&,,a,:(T, +,0)-S@.

are monoid homomorphisms. A Petri commutative monoid morphism is a
Petri net morphism (f, g), where f is a monoid homomorphism. This
defines a category CMonPetri.

There are forgetful functors

CMonPetri + Petri, + Petri,

each with a left adjoint. We shall denote by (-)@ : Petri + CMonPetri
the left adjoint of their composition. It associates to a Petri net N= --
(a,, 8,: T+ S@) the Petri commutative monoid N@ = (a,,, a,: TQ + S@),
where & and & are the unique monoid homomorphisms extending d,
and a,.

In general, however, Petri monoids need not be free. Nonfreeness may
reflect a synchronization structure. Assume, for example, a free abelian
group 3”(A } generated by a set A of basic actions as in Milner’s (1982)
approach so that addition of one action with its inverse corresponds to
synchronization. Then, given a Petri net N = (a,, a, : T + S@) together
with a labeling map 1: T-+ Z”(A) we can define a Petri monoid N’ with
same set of places as N but with a monoid structure that reflects the
synchronization information provided by the labeling. N’ has a monoid of
transitions the quotient monoid T’ obtained from T@ by imposing the
relations

a = a’

for all a,a’ET@ such that f(a)=f(a’)=O, and &(a)=&(a’) for i=O, 1.
The requirement q(a) = &(a’) for i = 0, 1 ensures the existence of

PETRINETS AREMONOIDS 117

homomorphisms yi: T’+ So, i=O, 1 such that K= yioq, where q: T@ + T’
is the quotient homomorphism. We then define N’ = (yO, yi : T’ + S@).

As in Pet&, and Petri, the product Mx M’ as graphs of two Petri com-
mutative monoids M and M’ has an obvious Petri commutative monoid
structure and yields the categorical product in CMonPetri.

Coproducts are also straightforward;

MOM’=(a,oab,a,oa;:(T, +,O)@(T’, +‘,O’)-S@@S’@),

where (T, +, 0) 0 (T’, + ‘, 0’) is the coproduct of commutative monoids. It
is not hard to check that the coproduct of two arbitrary commutative
monoids coincides with their product. This implies also the same property
in CMonPetri, i.e., M x 44’ = MOM’.

The Petri commutative monoid,

O=(l,, l,:O+O)

is the initial and final object in CMonPetri.
It is fruitful to observe that CMonPetri is a full subcategory of

CMonGruph, where objects of CMonGraph are commutative monoid struc-
tures on graphs. In a compact form, a commutative monoid structure on
a graph G can be described as a pair of graph morphisms + : G2 -+ G and
0: 1 + G satisfying the commutative monoid equations (expressed as com-
mutative diagrams). The graph 1 is the terminal object of Graph and has
one edge and one node. CMonPetri is just the full subcategory determined
by those monoid structures whose monoid of nodes is free. This justifies
our claim in the title that “Petri nets are monoids.” This claim will be
further supported by adding a sequential composition operator since this
will make Petri nets monoids not only on graphs but also on categories. Of
course, CMonGruph has all limits and colimits, so that those limits or
colimits that do not exist in CMonPetri have a meaning in CMonGruph.

2.4. Rejlexive Petri Nets

A reflexive graph G is one in which every node v has a specified arrow
id(v): u --, u. Reflexive structure is very useful at the Petri net level. It is
implicit in the so-called case graph of a net N. As we shall see, the case
graph is just a free construction that freely adds additional structure to a
Petri net. All reflexive Petri net structures live over the category RGruph of
reflexive graphs with objects graphs G = (a,, 13,: T-r I’) together with
a function id: V+ T such that a,0 id = a,0 id= 1”. Reflexive graph
morphisms (f, g) : (G, idc) + (G’, id,.) are graph morphisms satisfying the
additional requirement fo id, = idc, o g.

DEFINITION 5. A reflexive Petri net consists of a Petri net N which in

118 MESEGUER AND MONTANARI

addition is a reflexive graph. A rclflexive Petri net morphism is a Petri net
morphism that is also a morphism of reflexive graphs. Similarly, a reflexive
Petri commutative monoid is a Petri commutative monoid with a reflexive
graph structure such that id: S@ + (T, +, 0) is a monoid homomorphism,
and a reflexive Petri commutative monoid morphism is a Petri commutative
monoid morphism that is also a morphism of reflexive graphs. This defines
categories RPetri and CMonRPetri with obvious forgetful functors,

CMonRPetri --+ RPetri ---+ RGraph

CMonPetri - Petri ---+ Graph.

Note that a reflexive Petri net is naturally endowed with a pointed Petri
net structure so that there is no point in defining a category RPefr&, since
this coincides with RPetri.

All the above functors have left adjoints. The most interesting of them
is the left-adjoint %?-] to the forgetful functor CMonRPetri+ Petri.
%‘[-I associates to each Petri net N its case graph V[N]. For N=
(a,, aI: T-+ S@) we define

where id= j, is the coproduct inclusion.
In all these categories, the Cartesian product as graphs has a unique

structure making it into the categorical product. Coproducts also exist
everywhere. For example, for (M, id), (M’, id’) in CMonRPetri we have,
(M, id) 0 (M’, id’) = (M 0 M’, id @ id’), where M @ M’ is the coproduct in
CMonPefri; also, (M, id)@(M’, id’)=(M, id)x(M’, id’). For (N, id),
(N’, id’) in RPetri. (N, id) @ (N’, id’) has transitions (T- Im(id)) +
(T’ - Im(id’)) + (Im(id) x Im(id’)) and an identity map given by id x id’.

The category CMonRPetri is the full subcategory of the category
CMonRGraph of commutative monoid structures on reflexive graphs deter-
mined by those structures whose commutative monoid of nodes is free.

2.5. Petri Categories

DEFINITION 6. A Petri category consists of a reflexive Petri com-
mutative monoid

C=(a,,a,:(T, +,O)-+S@,id)

together with a partial function -; -: T x T -+ T which is defined exactly for

PETRI NETS ARE MONOIDS 119

those pairs (a, p) such that a,(a) = a&?). In addition, the following axioms
are ‘satisfied (whenever the compositions CY; j?, etc. are defined):

1. &,(a; P) = 4,(a) and a,(~; a) = a,(B)
2. a; id(kY,(a)) = a and id(a,(a)); a = cx

3. (a;P); y=a; (P;r)
4. Given a : u -+ v, a’ : u’ + v’, fi: v + w, /I’ : v’ -+ w’, we have

(a+a’);(j3+8’)=(a;B)+(a’;B’).

Given two Petri categories C and D a Petri category morphism from C to
D is a morphism (f, g) : C --+ D of their underlying reflexive Petri monoids
such that f(a; /I) =f(a); f(B). This determines a category CatPetri.

There are forgetful functors

CatPetri + CMonRPetri --$ CMonPetri + Petri, -+ Petri

and also similar functors to the remaining categories of reflexive Petri nets.
All of them have left adjoints. We shall describe the left adjoint
SC-]: Petri-+ CatPetri for their composition. Given a net N=
(a,, a,: T+ S@) the Petri category F[N] is inductively defined by the
following rules of inference:

t:u-+vinN uinS@
t:u+uinF[N] u:u-,uinF[N]

a:u-rv,/?:v-,winF[N] a: u --+ v, a’: u’ + v’ in F[N]
a;~:u+winF[N] a@a’: u@u’--+ v@v’in S[N]

with @ and 0 subject to the commutative monoid equations, with identities
given by id(u) = U, and with -; _ and id satisfying the equations in parts
2-4 in the definition of Petri category.

Notice that the case graph g[N] of a Petri net N is a reflexive Petri sub-
monoid V[N] 5 FEN] with arrows of the form t, @ . . . 0 t,@w:
u,@ ... @un@w+vl@ ... 0 v, 0 w. Actually, %?[N] generates F[N]
when closed under -; ~ as shown by the following lemma.

LEMMA 7. Any a : u --, v in F[N] can be decomposed as a = a, ; a,
with ai E ‘Gf?[N].

Prooj: We can reason by induction on the depth of a as a term and
reduce to the case a = (PO y): u + u’. By induction hypothesis, /I =
B,;...;/3, and y=yI;...;ym with /3i:vi-+ui+l, yi: wi+wi+,~%‘[N]. Either

n--m

m<norm2n;saym<n. Wecanexpressy=y,;...;y,;

643/88/?-Z

120 MESEGUERANDMONTANARI

the equation of part 2, and by n applications of part 4 we get CI = p @ y =
(8,0Yl);...;(P,0Y,);(Bm+tO~’ m + ,); (fi, 0 w, + ,), where all the fac-
tors on the right-hand side are in V[N], as desired. m

The above decomposition is not unique. In particular, by further apply-
ing parts 4 and 2 to the fii, yi, we obtain the following corollary.

COROLLARY 8. Any ~1: u -+ v in Y [N] can be decomposed as a =
(t,@u,); (t,@u,) with tin T.

The sequence t,, t, is then called a firing sequence for the computation
aEF[N]. However, the advantage of the category F[N] is that it
provides a calculus with simple algebraic laws for parallel and sequential
composition of transitions in the net N and permits focusing on and
reasoning about entire computations directly, overcoming the need for
indirect, sequentialized, descriptions such as those provided by paths in the
case graph or by firing sequences.

We have already considered the full subcategory inclusions:

CMonPetri E CMonGraph

CMonRPetri E CMonRGraph

which justify our claim that, after appropriate closure under increasingly
general computations, Petri nets are monoids. This claim also holds true
for CatPetri. Indeed, if in the definition of Petri category we relax the con-
dition that the commutative monoid of nodes be free, we obtain the notion
of a commutative monoid structure on a category, i.e., a category C and
functors + : C2 + C, 0: 1 --+ C (where 1 is the category with one object and
one, identity, morphism) satisfying the commutative monoid equations
(expressed as commutative diagrams of functors). Such commutative
monoid structures on a category are usually called strict symmetric
monoidal categories, and the monoid homomorphisms are called strict
monoidal functors (MacLane, 1971). They determine a category that, to
be consistent with the rest of our notation, we shall denote CMonCat.
Therefore, we have a full subcategory inclusion,

CatPetri E CMonCat,

determined by those strict symmetric monoidal categories whose com-
mutative monoid of objects is free. In CMonCat, as in CMonGraph and
CMonRGraph, finite products and finite coproducts coincide,* and this

2 See the arguments in the proof of Proposition 13 below for a justification of this general
fact in terms of semiadditive categories.

PETRI NETS ARE MONOIDS 121

property is also inherited by CatPetri. We will, however, give a more
detailed justification of this property in what follows.

Let

c=(a,,a,:(r, +,0)-,&s@,-;-,id)
C’ = (a;, a; : (T’, +, 0) + S’@, -; -, id)

be two Petri categories. We already know that the their product Cx C’ as
graphs is a reflexive Petri commutative monoid. It has also a Petri category
structure by operating componentwise, i.e., (a, a’); (/3; 8’) = (~1; 8. cc’; fl’) and
is the categorical product of C and C’ in CutPetri. It is also the coproduct,
i.e., C x C’ = C@ C’. To see this, note that we already know this for the
underlying reflexive Petri commutative monoid structures; therefore, we
only have to check that given two Petri category morphisms (f, g):
C -+ D, (I’, g’) : C’ -+ D the induced reflexive Petri commutative monoid
morphism ([f,f’], [g,g’]):CxC’ + D is actually a Petri category
morphism. Indeed, given (~1, a’) : (u, u’) + (u, u’) and (p, 8’) : (u, u’) +
(M:, w’), we have

cf? f’l((4 a’); CP; 8’)) = CL f’l(cc Pv a’; 8’)

= (f(a); f(P)) + (f’(a’k f’(m)

= (f(a) + f’(O); (f(B) + f’(P))

= Cft s’l(4 a’); Cf, f’l(B, a’).

Since left adjoints preserve coproducts, given Petri nets N and N’ we have

F[N@ N’] = S[N] @S[N’] = 9-[N] x S[N’].

3. IMPLEMENTATION MORPHISMS

The sequence of categories that we have been considering provides a
corresponding sequence of increasingly more general ways of relating two
Petri nets. We can view a net N’ as an implementation of another net N by
giving a morphism N + N’. The widening sequence of morphisms between
N and N’ that we have been considering is:

l (Petri) A transition t in N maps to a transition t’ in N’.

l (Pet&,) A transition t in N maps to a transition t’ in N’ or is erased.

. (CMonPetri) A transition t in N maps to a parallel composition
t;@ ... @ tl, of transitions in N’ (or is erased, n = 0).

122 MESEGUER AND MONTANARI

l (CMonRPetvi) A transition t in N maps to a parallel composition
t’, @ fea @ t:,@u of transitions in N’ and idle (identity) transitions.

l (C&Petri) A transition t in N maps to an entire computation c1 in
N’ with possibly many sequential and parallel steps.

The most general and interesting case is the last one, since it provides a
very flexible way of relating system description at different levels of abstrac-
tion. This, admittedly, has been one of the main goals of the theory of Petri
nets from its very beginning, but the realization of this goal has proved
elusive. We claim that our notions of Petri category and a Petri category
morphism give a new and very general solution to the abstraction problem
for Petri nets. Notice that these morphisms (and a fortiori the less general
ones) obviously preserve the dynamic behavior of nets, since the arrows of
a Petri category are computations made up of sequential and parallel
composition of atomic transitions, and morphisms preserve sequential and
parallel compositions.

To achieve this widening in the ways of relating Petri nets it is not
necessary to make additional structure (monoid, category, etc.) explicit at
all, i.e., we can restrict our attention to ordinary (P/T) Petri nets
N, N’ E Petri, and for them consider the increasingly general morphisms
that our approach provides. This is entirely similar to the notion of a
matrix in linear algebra, where a linear function f: 2” + &“” is equivalent
to a matrix, i.e., a function M: [n] --) 8”’ ([n] = { 1, n}), and M can be
viewed as a “generalized function” or morphism M: [n] + [m] between
two finite sets. In our case, the role of [n] and [m] is played by ordinary
Petri nets N and N’, and the role of the matrix is played by Petri net
morphisms such as N --) N’@, N--t F[N’], etc., that are then viewed as
(generalized) morphisms N -+ N’ of a category having ordinary Petri nets
as objects.

DEFINITION 9. Given two Petri nets N, N’ E Petri, an asynchronous
morphism (f, g) : N + N’ is just a net morphisms (f; g) : N + Nb in Petri.
A composition of two asynchronous morphisms (f,g).N+N',
(f', g’): N’ + N” is the net morphism (f', g')$c' (f, g): N + Nl, where
(f ‘, g’) s: Nb + Nl in Petri,, is the unique extension of (f ‘, g’). Similarly,
we define a linear morphism (f, g) : N -+ N’ to be a net morphism (f, g) :
N-+ N’@, a %-morphism (f, g): N + N’ to be a net morphism (f, g):
N +%‘[N”], and an implementation morphism (f, g): N -+ N’ to be a net
morphism (f, g) : N * S[N’]; composition is always defined as a net
morphism (f ‘, g’)s 0 (f, g), where (f ‘, g’)s is the unique extension of
(f', g’) to a morphism in CMonPetri, resp., CMonRPetri, resp., CatPetri.
It is an easy fact about adjoint functors that this gives categories

Petri E AsynchPetri E LinPetri c_ %‘Petri c ZmplPetri. (2)

PETRI NETS ARE MONOIDS 123

All with the same objects, i.e., (P/T) Petri nets, but with increasingly more
general morphisms.

Notice that implementation morphisms (and a fortiori, the less general
ones) obviously preserve the dynamic behavior of nets, since the arrows of
a Petri category are computations made up of sequential and parallel com-
positions of atomic transitions, which are preserved by morphisms. The
coproduct is the same in all these categories, namely the coproduct NON’
in Petri. Regarding products, in Petri it is of course the synchronous
product that we have already described; in LinPetri, UPetri, and ImplPetri,
since products and coproducts coincide in the corresponding categories
CMonPetri, CMonRPetri, and CatPetri, the product is just NON’. For
AsynchPetri, the product must be a net N” such that N: = N, x Nb. Thus,
N” = (N, x N&) - { (0, 0)} obtained from N, x Nb by removing the trans-
ition (0,O); it is called the asynchronous product of N and N’. Each of the
inclusions in (2) is a left adjoint with an associated right adjoint. For exam-
ple, the right adjoint to the inclusion Petrig ImpZPetri maps a net N to
(the underlying net of) S[N].

4. MARKED NETS

When considering the behavior of a Petri net it is often convenient to
specify an initial marking, i.e., an element u E Se. We can then consider
generalized transitions CL: u + v in Y[N] starting from the “marking” u. If
the marking is made part of the structure of the net, then net morphisms
should preserve markings. However, this leads to serious problems with the
coproduct construction, since coproducts do not exist for asynchronous
morphisms (Winskel, 1987) and a fortiori they do not exist for the more
general morphisms considered in this paper. The dilliculty can be easily
explained as a unification problem. Notice that, for nets with an empty set
of transitions, net morphisms are just monoid homomorphisms S@ -+ S’@.
Consider markings u E S@, v E So, with, say Sn s’ = 0. The coproduct
as marked nets would require giving WE S”@ together with monoid
homomorphisms j, : So + S”@‘, j,: S’@ + S”@ such that j,(u) = j,(u) = w
with j,, j, universal for this property. This is just an algebraic way of
requiring the existence of a most general unifier for the equation u = u in
the theory of commutative monoids. It is, however, well known that in the
theory of commutative monoids there is a finite set of unifiers generating
all other unifiers, but in general there is not a single most general unifier
(Herold and Siekmann, 1987).

The solution that Winskel (1987) gave to this problem was to consider
the restricted category of “safe” nets, such that the image of the map

124 MESEGUER AND MONTANARI

F: (S x T) + (TX S) -+ JV’ is contained in { 0, 1 > and where multiple tokens
can never appear as a consequence of transitions from an initial marking
without repeated tokens. Asynchronous morphisms were also substantially
restricted to so-called “safe morphisms,” and for this category a coproduct
was shown to exist. We give a solution that is entirely general, in that it
applies to ordinary, pointed, commutative monoid, reflexive commutative
monoid, and category Petri nets and morphisms, and permits reasoning
about marked Petri nets and forming their coproducts at all those levels.
Of course, some restriction has to be imposed, since we already know that
coproducts do not exist for arbitrary markings. Our restriction is minimal;
we just require that the initial marking is of the form u = a, @ . . . 0 a, with
a,# uj when i# j, i.e., we rule out multiple tokens per place in the initial
marking; we will later justify why this involves no loss of generality in
practice.

DEFINITION 10. A marked Petri net is a Petri net N = (a,, d 1 : T -+ So)
together with an element u E So of the form u = a, @ . . @a, with a, # uj
when i # j. A morphism (f, g) : (N, U) + (N’, u’) is an ordinary net
morphism that, in addition, preserves the markings, i.e., g(u) = u’. This
defines a category MPetri. Similarly, we can define categories MPet&,
MCMonPetri, MCMonRPetri, MCatPetri, MAsynchPetri, MLinPetri,
MCPetri, MZmplPetri, just be requiring that the markings be preserved.

For g any of the categories of (unmarked) nets with structure, there is
an obvious forgetful functor MB --f g forgetting the marking. This forgetful
functor always has a left adjoint that just adds a new element a, to S and
uses it as the marking. All the categories MB have products, which are the
underlying product in &I with marking u 0 U’ if u and U’ were the original
markings (where we have taken care of making the places of u and U’
disjoint via the isomorphisms So x s’@ N (S+ S’)@ and where we abuse
notation by treating injections into the disjoint union as inclusions).

THEOREM 11. For B = Petri, Petri,, CMonPetri, CMonRPetri, CatPetri,
AsynchPetri, LinPetri, CPetri, ZmplPetri, the category A49 has finite
coproducts.

Proof: We give the construction for B = Petri and for 93 = CatPetri and
leave the other cases as an exercise. For 93 = Petri, let (N, a, 0 ... @a,),
(N’, b, 0 . ..@b.)~MPetri with, say, N=(Bo,8,: T-S@) and N’=
(ab,C?;: T’-+S’@). Let A= (a,, a,} and B= {b ,,..., b,} and consider
the monoid homomorphisms j, : A@ -+ (A x B)@, j,: B@ -+ (A x B)@ given
by j,(ui)=(uit b,)O *.. @(a,, b,), j,(bi)=(~l, b,)O ... @(a,,, b,). We

PETRI NETS ARE MONOIDS 125

then havej,(a,@ ... @a,)=j,(b, 0 ... 0 6,) = CL.j (ai, b,). We can now
define

(iv, al 0 ... OUH)O(W,~,O ..’ 0L)

= ag,a;l:T+T’+((S-A)+(S’-B)+(AxB))Q,~(ai,bj) (i. j >
with a;(t)=h,(8i(t)), i?:‘(t’)=hz($(t’)) for tET, t’E T’, where h, is the
map

(S-A)Q@AQ 3 ((S-A)+(S’-B))@+O(A xB)Q,

with k@ the unique monoid homomorphism extending the injection k of
(S- A) into the disjoint union (S- A) + (S’- B), and where h, is defined
similarly. To check the universal property, the key idea is to remark that
FinSetoP, the dual of the category of finite sets, is isomorphic to a sub-
category of the category of free commutative monoids obtained by sending
a function f: {b,, 6,) -+ {aI, a,} to the monoid homomorphism
f-‘: ({a,, .4,)P +((b,, -.-, 6,))@ defined by f-‘(ai)=bi,@ .** @b,
whenever (set theoreticaly) f-‘(a,) = {b,,, b,}. By definition, this
homomorphism satisfiesf-‘(a,@ ... @a,)=b,@ ... Ob,. Note that in
FinSetoP the coproduct of A and B is A x B.

For &J=CatPetri, let (C,a,@ ... @a,), (C’, b,@ ... @b,)EMCat-
Petri, with, say, C=(&,,a,:(T, +,O)+SQ,-o-,id)) and C’=
(a;, 8; : (T’, + ‘, 0) + S’@, -0’ -, id’)). Their coproduct is constructed as
follows: let (E, xi, j (uj, bj)) denote the coproduct in MPetri of the underly-
ing marked Petri nets, whose construction we have just described. Then
tc,a,0 *.. Ou,)O(C’,b,@ ... @b,) is obtained as a quotient of
(S[E], C1.j (ui, bj)) by imposing the following relations on S[E] :

1. a@j=a+& a,flET

2. a’@/?‘=a’+‘/?‘, a’, /I’E T’

3. a;b=ao/3, a,fiET

4. a’; 8’ = a’ 0’ /I’, a’, /Jr E T’

5. id(u) = h,(u), UE S@

6. id(d) = h,(d), u’ E SQ. l

In practice, our requirement that the initial marking should have no
multiplicities involves no loss in generality. Consider a more general type
of marked net (N, U) with an arbitrary marking u = n, a, @ . . . @ nkuk. We
can easily transform such a net into a net (N’, uo) E &Petri. If N=
(a,,ar : T+ S@) then N’= (a& 3;: Tf {start} -+ (S+ {q,))@) with &, 8;
identical to a,, 8, on T, with db(sfurt) = u0 and 8i(start) = U. Except for the

126 MESEGUERANDMONTANARI

initial transition, start, the behaviors of (N, u) and (N’, ao) are identical.
This construction is indeed a functor GMPetri + MPetri from the category
GMPetri of marked Petri nets with arbitrary markings to our category
MPetri. Similar functors GMB + MS exist for the remaining B. A very
nice property of this construction is that nets of the form (N’, ao) have an
initial marking that can never be reached again, i.e., our functor lands
inside a full subcategory UMPetris MPetri of marked nets with
unreachable initial markings (in general, LIM.33 c MB) for which the
coproduct exactly corresponds to the nondeterministic choice operator of
languages such as CCS (Milner, 1985).

All the free constructions of the unmarked case carry over to the marked
case without a change, i.e., if ,B + g’ is one of the forgetful functors and
has, say F, as its left adjoint, the corresponding forgetful functor at the
marked level ML47 + ML&?’ has a left adjoint mapping (X, u) to (FX, u). For
example, the left adjoint to the forgetful functor MCMonPetri -+ MPetri
sends (N, u) to (No, u).

5. DUALITY AND INVARIANTS

It is well known that Petri nets can be dualized by regarding transitions
as places, and places as transitions (Petri, 1973). Such duality has many
fruitful applications. In this section, we express Petri net duality as a
duality functor. We then give a geometrical interpretation of T-invariants
and their properties through a very general notion of a Loop functor, and
we use duality to give a functorial account of S- and T-invariants. Using
elementary algebra, we also derive algebraic relations between the groups
of S- and T-invariants of a Petri net, and associate to a Petri net N two
other groups, S”,b,,,(N) and Tz,,t(N) that seem to be new.

5.1. Duality

Given vector space W3, its dual space (B3)* is the vector space of all
linear functions f: B3 + C&Y (usually called linear forms). As is well known,
(.$?‘)* is also a three-dimensional vector space with canonical basis the
three projections x, y, z: &@Y3 + B?, i.e., ~(a, b, c) = a, ~(a, 6, c) = b and
~(a, b, c) = c. However, if we consider an infinite-dimensional vector space
V, its dual space V* is of strictly greater dimension than I/. Given a linear
function h : 9” + B”‘, say with matrix M, h determines a map in the other
direction for the dual spaces, h* : (Z”)* -+ (.%?)* mapping each linear form
f: B”’ + L@. to the linear form fo h: L%” + 9. If we express (SV’)* and (an)*
in terms of their canonical bases of coordinate projections, h* has a very
simple matrix form, namely M’, the transpose of M. Duality therefore
means that we can “run the linear function h backwards.” This is entirely

PETRI NETS ARE MONOIDS 127

similar to the case of a binary relation R: B -+ A which can also be viewed
as relation R*: A + B.

The notion of a vector space on a field generalizes to the notion of a
module on a (commutative) ring. For instance, for 3 the ring of integers,
a Z-module is just an abelian group, and a T-linear homomorphism
is a group homomorphism. This notion can be further generalized to the
notion of a semimodule on a semiring, by requiring only that the
“vectors” form a commutative monoid and that the + of the coefficients
is a commutative monoid. For instance, for JV” the semiring of natural
numbers, M-semimodules are just commutative monoids, and X-linear
homomorphisms are monoid homomorphisms. This permits viewing duality
of vector spaces and duality of (finitary) relations as common instances
of the general phenomenon of duality for semimodules. The process is
always the same: for R the semiring of coefficients, there is a functor
(-)* : SMod,, --f SMod, defined by V* = [V+ R], where [V+ R] is the
R-semimodule of R-linear functions from V to R.

In particular, we have a duality functor (-)* : CM&p + CMon mapping
each commutative monoid A4 to the commutative monoid [M-r JV] of
monoid homomorphisms from M to A’. If S and S’ are finite, then a
monoid homomorphism f: SQ -+ S'@ can be described by an M-matrix M,
and the dual f * : (Se)* + (S’@)* has M’ as its associated matrix, since for
S finite we have S@ ‘v (Se)*.

Consider now the category CMonGraph. The underlying category Graph
can be viewed as a functor category SetJ, where J is the category with two
objects 1 and 2, with two identities, and with two arrows do, 8,: 1 + 2.
Similarly, we can view CMonGraph as the functor category CMonJ. The
category J has the remarkable property of being isomorphic to its dual PP.
One such isomorphic can be obtained by permuting 1 and 2 and also per-
muting the ai. This isomorphism combines nicely with the duality of CMon
to give a duality functor

(-) * : CMonGraphoP + CMonGraph,

sending M= (a,, 8, : Mi + M2) to M* = (a:, a,* : M: -+ MT) and sending
(f, g):M-+M’ to (f*, g*):M’* --) M*. This duality functor restricts to
a functor

(-) * : Petrig -b Petri,“, ,

where Petrig . IS the full subcategory determined by those ME CMonPetri
of the form M= N*, with N having finite sets of places and arrows.

3 In (Meseguer and Sols, 1975). categories of semimodules were proposed as a way of
unifying nondeterministic, probabilistic, and “fuzzy” computations. More recently, Main and
Benson (1984) have used them in an algebraic treatment of nondeterminism and concurrency.

128 MESEGUER AND MONTANARI

Given a net N, if we define N* as the Petri net uniquely determined by
the equation (N*)@ = (No)*, it is not hard to see that N* is obtained from
N by exchanging places and transitions and that its source function has as
matrix the transposed of 8,‘s matrix and its target function has as matrix
the transposed of i3,‘s matrix. For example, in the nets in Fig. 2, the
matrices for ~3, and 8, of N are

namely, e.g., t’ : a 0 2b + a @ 2b, while the matrices for d, and a 1 of N* are

[4 1 0 4 1
M,*=Mi=

0
o . 2 3 1) M:=M;= [o 2 1 1

For any ME Petrig there is a natural isomorphism MN M**. For
ME CMonPetri- Petrig, we only have M** E CMonGraph, but there is
still a natural homomorphism cp M : M + M* *.

So far, we have only considered commutative monoid structures on Petri
nets. We can take a further step and consider abelian group structures. For
example, we can consider the category A& where A6 is the category of
abelian groups. We then have an entirely similar duality functor:

(-)* : AbGraphaP -+ AbGraph.

The forgetful functor AbGraph + CMonGraph has a left adjoint

(-)ab : CMonGraph + AbGraph.

In particular, a commutative monoid Petri net M = (a,, d 1 : M, + S@) is
sent to Mab = (sib, dTb: MSb + (S@)ab) for (-)“b: CMon + Ab, the left
adjoint of the forgetful functor Ab + CMon. The group (S@Bab is just
Z??(S), the free abelian group on generators S. We extend this notation to t

4 w- 4
1 2

a -+ t’
1

4!&++@

N NS

FIG. 2. A net N and its dual N*.

PETRI NETS ARE MONOIDS 129

Petri nets and write Z”(N) = (NO)ab for NE Petri If N has a finite number
of transitions and a finite number of places, we again have
iT{N} -T”(N) **. The advantage of considering abelian groups instead of
commutative monoids is that they are easier to work with and have nicer
structural properties. For example, a subgroup of a finitely generated group
is finitely generated, and free if the original group is so. In general, neither
finite generation nor freeness are inherited by the submonoids of a com-
mutative monoid. From the conceptual point of view, however, considering
only groups would be unnecessarily restrictive, and indeed there is no need
to require that the algebraic structures considered always are groups.

5.2. Invariants

The group of T-invariants of a Petri net N is an abelian group naturally
associated to the structure EZ’{N} that we have just introduced. However,
there are several possible variations of this notion that can be considered
replacing Z?“(N) by NQ (the so-called positive T-invariants) or even by
%‘[N] or S[N]. As we shall see, Y[N] is the most natural choice from
an intuitive point of view, but its monoid of invariants has not been
explicitly considered before. In all cases, a T-invariant corresponds to a
(possible generalized) computation c(: u + u that begins and ends in the
same state. Rather than just associating some group or monoid of
invariants to a Petri net N, we can take a more intrinsic and geometric
viewpoint and define Loop functors. For G = (a,, d, : T + V) a graph, the
subgraph Loop(G) s G has the same nodes as G and arrows those t E T
such that d,(t) = a,(t), i.e., the arrows of Loop(G) are the equalizer4 of the
pair (a,, a,). It follows easily from the equalizer property that Loop is
indeed an endofunctor Loop : Graph + Graph. In fact, Loop can be defined
as an endofunctor Loop: ~3 + 33 for any of the categories that we have
already considered, i.e., for L?~I = Petri, CMonPetri, CMonRPetri, CatPetri,
and more generally for 93 = CMonGraph, AbGraph, CMonRGraph, CMon-
cut.

All such categories g come equipped with a functor Arrow that forgets
about the nodes and keeps only the arrows, with whatever structure they
had. For example, we have Arrow : Petri + Set mapping (a,, 8 1 : T + So)
to T, Arrow: CMonPetri+ CMon mapping (a,, d, : (M, +, 0) + S@) to
(M, +,O), and Arrow:AbGraph+Ab mapping (S,,d,:(A, +,O)-+
(B, +, 0)) to (A, +, 0). By definition, for any of the categories g just
listed, a set, monoid, or group of invariants for XES? is the object

4 In any category, given morphisms f, g: A + B a morphism j: E+ A is called their
equalizer iffa j= go j and for any morphism h: X + A such that fo h = g 0 h there is a unique
morphism I;: X+ E such that h = job. In the category of sets, the equalizer off and g is the
set of XE A such that f(x) = g(x). The dual notion of coequalizer is obtained by reversing all
the arrows in the above definition.

130 MESEGUER AND MONTANARI

Tz,,(X) =Arrow(Loop(X)). For N a Petri net, the usual group of its
T-invariants is just 7’::“(N) = Arrow(Loop(.Z’{ Nj)), Notice that in the
definition of rp,b,(N) (differently from T:,(X)) the application of the
functor T(N) is included. We shall denote this group T:&(N), to dis-
tinguish it from the monoids T::“(N) = Arrow(Loop(N@)), the monoid of
positive T-invariants, and T;::(N) = Arrow(Loop(5[N])). T:::(N) is the
most natural of them all, since it consists of all computations ol: u + u of
N that begin and end in the same state. The following theorem is related
to Theorem 6.7(g) in (Reisig, 1985) and expresses the intuition that if there
is a nonidentity computation of N ending in its initial state, then there
must also exist a parallel composition of atomic transitions with the same
property.

THEOREM 12. For N a Petri net, T;:“(N) #O ijjf T:,“:(N) # So.

Proof. Of course, since N@ E S[N], we have T::“(N) c T;::(N) - So.
We have to show that if there is an CI: u -+ u in T$,(N) with CI not in So,
then there is an ~1’: u’ + U’ in Try(N) with CI’ # 0.

By Corollary 8, such an cc is of the form a = (t, 0 u,); (t, 0 u,) with
n>l, say ti@ui:u,@u,+w,@uj with u~~@u~=v~+~@u~+,. Therefore,
t,@ ... @t,:v,@ . ..@u.-+w,@ ... @w,,. I f we show v,@ . ..@u.,=

W,O a-- @w,, the theorem is proved. Indeed, we have u = vi @u, =
w,@u, and therefore (t,Ou,)O...O(tlOu,):uO(u,OtlZ)O...O
(u,~~,)+(w~~u,)@ . . . @(w,~~@u,~~)@u. Since wi@ui =
V z+l@Ui+l, the source and the target of this arrow are identical, and since
S@ is a cancellative monoid,’ this shows U, @ . . @ u,, = w, 0 . 0 w,, as
desired. 1

PROPOSITION 13. For &Y any of the categories listed above except
9 = Petri, the functor Tz, preserves finite products and coproductx6

Proof Notice that for all such B, &I-morphisms are of the form
(f, g) : X+ Y, with f, g monoid homomorphisms, and that @(X, Y) has
a commutative monoid structure by defining (f, g > + (f ', g') =
(f+f’,g+g’).Also,given (h,i):X’-+Xand (j,k):Y’+YinB,we
have

’ A commutative monoid is called cancellative if x + y = x + z implies y = z.
’ For S$(N) (a dual concept to be detined below), this fact was also observed by Winskel

[1987).

PETRI NETS ARE MONOIDS 131

and, similarly, (f+f’,g+g’)~(h,i)=((f,g)~(h,i))+((f’+g’)~
(h, d)). Finally, (0, O>o (f, g> = C&O>, and CL g>o (60) = ((IO>.
This makes all such 93 semiadditive categories in the sense of Definition 40.1
in (Herrlich and Strecker, 1973). In any semiadditive category, finite
products and finite coproducts coincide (Herrlich and Strecker, 1973,
Proposition 40.9). Moreover, a functor F: B -+@’ between two semi-
additive categories preserves finite products and coproducts if and only if
it is additive in the sense that F,,.: B(X, Y) + B’(FX, FY) is a monoid
homomorphism for all X, YE B (Herrlich and Strecker, 1973,
Theorem 40.16). It is trivial to check that the functors Loop and AWOW are
additive for all such g’, and therefore so is T& as desired. 1

As an application of Petri net duality, we consider S-invariants. For
LOB= CMonGraph, AbGraph, we have duality functors. We then define
Sf,(X) = T&(X*).

In any category %’ having equalizers and coequalizers, given a pair of
maps f, g : X + Y, its left exact sequence is the diagram

/
es(f, 8) - L-.-t Y R

where eq(f, g) -+ X is the equalizer map. Similarly, its right exact sequence
is the diagram

f
X===Z Y- coeq(f, g)

g

for Y -+ coeq(f, g) the coequalizer map. The exact sequence off, g is the
diagram

/-
es(f, g) - X---2 Y- coeq(f, 8). K

For categories of modules over a commutative ring, or, more generally,
for abelian categories, this usually is represented in terms of the difference
f - g and leads to the notion of an exact sequence

f-n O-ker(f-g)-X- Y- coker(f - g)- 0,

where eq(f, g) = ker(f - g) is the subobject mapped to 0 by (f - g) and
coeq(f, g) is the quotient object coker(f - g) = Y/Im(f- g).

However, if R is a semiring but not a ring, as happens for R = N, this
latter representation is not possible. In order to relate S-invariants with
T-invariants, we shall use a lemma about symmetric monoidal closed
categories, a concept that we explain below.

The simplest example of symmetric monoidal closed categories is given

132 MESEGUER AND MONTANARI

by Cartesian closed categories, i.e., categories V with finite products and a
final object 1 such that for any object X the functor Xx -: %? -+ %? has a
right adjoint [X -+ -1: V -+ V. In other words, there is a natural “lambda
abstraction” isomorphism

%7(Xx Y,Z)-+3(X, [Y-,2]),

It is not hard to see that letting X vary defines a functor [----I:
VP x %? ---f %Z called the internal ham functor, which is related to the
ordinary “external” horn by the formula

qx, Y)=%(l, [X+ Y]).

The simplest Cartesian closed category is the category of sets, where the
internal and the external horns coincide. More interesting examples are
provided by the category of Scott domains used in denotational semantics
and by the category Cut of small categories; we shall see later that Graph
and RGruph are also Cartesian closed. The notion of Cartesian closed
category can be generalized by dropping the condition that the product is
a categorical product. In this way we obtain the notion of a (symmetric)
monoidal closed category (MacLane, 1971) consisting of a category g
together with a product functor _ 0 -: %‘* -+ % and a unit object ZE V,
together with “unit,” “associativity,” and “commutativity” natural
isomorphisms, making 9 into a symmetric monoidal category’ that in addi-
tion is closed in the sense that for each XE G?? the functor X0 - has a right
adjoint [X -+ -1. Again, letting X vary we have an internal horn functor
and natural isomorphisms

W(X@Y,Z)1:%(X, [Y+Z])

G&Y, Y) rr: %?(I, [X-+ Y]).

For any commutative semiring R, the category of R-semimodules is closed
symmetric monoidal. The internal hom[A + S] is just the R-semimodule
of R-linear functions, and A @ B is the R-tensor product of the two semi-
modules (for a detailed and very accessible treatment of tensor products of
modules see MacLane and Birkhoff (1967); the case of semimodules is just
a slight generalization). Tensor products can be characterized by a univer-
sal R-bilinear map p: A x B -+ A @B such that for each R-bilinear
f: A x B -+ C there is a unique R-linear homomorphism f: A 0 B + C such

’ This just generalizes the strict symmetric monoidal categories (i.e., commutative monoid
structures in a category) that we have already encountered in our study of Petri nets by relax-
ing the commutative mdnoid axioms to hold “up to isomorphism,” e.g., commutativity now
means X@ Y ‘5 Y@ X, etc.

PETRI NETS AREMONOIDS 133

that f = fo p. For free semimodules the tensor product has a very easy
description, since it is also free and generated by the Cartesian product of
the generators for the factors. In particular, for R = JV, 2 we have

zT{S) @zqS’] =S(Sx S’).

We shall see later how this generalizes to Petri nets. For the moment we
just need the following

LEMMA 14. For %? a symmetric monoidal closed category with internal
horn functor [- + -1: %Top x %? + %? and BE %? any object, the contravariant

functor [- + B] : Wop + %? maps any colimit cone in %? to a limit cone in %?.

Proof: Since %? is symmetric monoidal closed, we have U(X, [Y + B]) N
U(X@ Y, B) N %‘(Y, [X-+ B]) with X@- left adjoint to [X- -1. We have
to prove that for any XE V, %‘(X, [colim Yi + B]) = lim +2(X, [Y, + Bl).
Since left adjoints preserve colimits (MacLane, 1971), we have
%?(X, [colim Y, + B]) 14: U(X@ (colim Yi), B) N V(colim(XO Yi), B) 2:
lim %(X0 Yi, B) = lim U(X, [Yi --+ B]). 1

COROLLARY 15. For R any commutative semiring and X 2 Y+ Z a
right exact sequence of R-semimodules, the dual sequence Z* + Y* 2 Y*
obtained by applying the functor (-)* = [- + R] is left exact.

COROLLARY 16. Let % = CMonGraph (resp. AbGraph), let X=
(a,, a, : X1 + X2) be an object in g and consider the exact sequence in
CMon (resp. Ab):

T:,(X) - x, de, x2 - coeq(a,, a, 1.
81

Then SE,(X) = coeq(&,, al)*.

COROLLARY 17. For any Petri net N with finite sets of places and trans-
itions, there are isomorphisms T::“(N) E SEt”(N*) and T;$(N) %
S;;JN*).

Notice that for 33 = AbGruph, the above sequence yields the exact
sequence

O- Ti%,,(X)
d=8,-do

-x,-x,-- (X,)/Im a ---+ 0 (3)

so that we get the formula St,(X)= ((X,)/Im a)*. In particular, for
X = T{N} coming form a Petri net N = (a,, 8, : T + Se) with a finite set

134 MESEGUERAND MONTANARI

S of places, the group 3 { S}/Im 8 is a finitely generated abelian group and,
as it is well known (e.g., MacLane and Birkhoff, 1967) it can be decom-
posed as (~{s)/Im he,@ (~(s)/Im a)torsiont where (~ISl/Im Gee=
a{ U> is a free abelian group with a finite set U of generators, and
WWIm &rslon = F’, 0 . . 0 Tn4 is a direct sum of finite cyclic groups.

COROLLARY 18. For N = (I.?,, ii,: T+ S@) a Petri tiet with S finite,
S%(N) = (T{S)/Jm alfree.

Proof: (%(S)/Ima)* = [P{S}/Im d + 31 = [S(U) + 5Y] 0
[~n,+~]@ ..I o[~~,-s]=[a(U;~~]-a(U}, since Y”(U) is
finitely generated and therefore %“(U> * = .5 { U), and since for any n E .&‘
the only homomorphisms zn -+ 2 are the zero ones, i.e., [Yn -+ 5?‘] = 0.

Consider for example the net in Fig. 2(a). The maps a,, a, : Y”(T} +
!A{ S} are given by the matrices

and therefore the map 8 : B (T} -+ 3 {S} has matrix

M= [

0 0

0
0

0 2 1
so that the exact sequence (3) becomes

0 - Tf’;JN)

=~{t,t’}--*b{t,t’,t”)~~{a,h}-BOB*-0.

Corollary 16 stated that S;iJN) ‘v .5?{a) and this is clear in the example,
since iJ* has matrix -M’ so that for N* we have a corresponding exact
sequence

0 - S$(N)

=~{~}*-~{u,b}*~~{t,t’,t”}*-~{t,t’}*O~~-0.

Thegrow (~{SllIm %,rsion contains additional information about the net
N; it measures the multiplicity with which tokens grow due to transitions.
In our example, Z, indicates that two extra tokens are generated in place

PETRINETS ARE MONOIDS 135

b each time transition t” fires. We define T$,,,,(N) = (ZZ’{s)/Im a),,,,,,,.
This defines an additive functor TcUbult: Petri% -+ Ab which preserves
finite products and coproducts. Similarly, for N@ E Petri$f, we define

This again gives an additive functor
finite products and coproducts. By

duality, we have the following corollary.

COROLLARY 19. For any Petri net N with finite sets of places and trans-
itions, there are isomorphisms S:“,,(N) 31 Tz,l,(N*) and T::,,(N) E

X-k,tW*).

The monoid s::“(N) and the groups S$(N) and 7’$,(N) can be
expressed in terms of a construction dual to Loop. Notice that, if we define
the category of multisets Multiset with objects functions I*: X+ Y and
morphisms pairs of functions (f, g): (p : X+ Y) + (p’: X’ --t Y’) such that
pLI of = go p, we have an obvious inclusion Multiset 4 Graph mapping
(11: X+ Y) to the graph (p, p: X -+ Y). The functor Loop is just the right
adjoint for that inclusion, but there is also a left adjoint Loop*:
Graph --t Multiset mapping a graph (a,, a, : T + V) to the multiset (q 0 ~7, =
qod,: T+ N -% coeq(&, a,)), obtained by imposing on the nodes N the
equivalence relation generated by the pairs (d,(t), i?,(t)), t E T. Loop* is
similarly defined for CMonGraph and AbGraph as a coequalizer construc-
tion. For N a Petri net, we can define the monoid of positive S-invariants
of N as

S::“(N) = Node(Loop*(N@))* = Arrow(Loop((N@)*))

and the group of S-invariants of N as

S~~V(N)=Node(Loop*(2’{N}))*=Arrow(Loop(%{N}*)).

For N a finite Petri net, we can define

i.e., as the torsion subgroup of the group Node(Loop*(%“{N})). For yet
another description of invariants, see the footnote in Section 6.3.

6. TENSOR PRODUCTS AND FUNCTION SPACES

Commutative monoids can be viewed as semimodules on the semiring of
natural numbers JV, just as abelian groups can be viewed as 6-modules on
the ring of integers 2. In this way, they provide the most basic instance of
linear and multilinear algebra. We have already seen that the categories

643/88/2-3

136 MESEGUER AND MONTANARI

Fa _Ff, Fa’

Pa 1 1 ‘Pb

Ga Gf Ga’

FIG. 3. The commutative diagram for natural transformations.

CMon and Ab (or, more generally, any category of semimodules on a com-
mutative semiring) are closed symmetric monoidal. In this section we shall
see that this generalizes to CMonGraph, CMonRGraph, and C’MonCat,
basically because Graph, RGraph, and Cat are Cartesian closed, and in
addition Graph and RGraph are topoi (Lawvere, 1971). These properties
are, to a good extent, inherited by the subcategories CMonPetri,
CMonRPetri, and CatPetri, although the internal horn objects may at
times be outside such subcategories.

The categories Petri and Petri,, also have an associated symmetric
monoidal closed structure that we describe in detail below.

6.1. Cartesian Closed Structure of Graphs and Categories

This subsection recalls the well-known fact that graphs, reflexive graphs
and categories form Cartesian closed categories. This will be important in
understanding the monoidal closed structure of Petri nets, Petri
commutative monoids (reflexive or not) and Petri categories.

The fact that (small) categories are Cartesian closed is familiar to
anybody acquainted with natural transformations. Given (small) categories
A and B, the category BA has objects functors F: A -+ B. Morphisms
cp: A + B between two such functors are natural transformations, i.e.,
families { cpa: Fa -+ Ga 1 a E) CJ > such that for each f: a -+ a’ E A the diagram
in Fig. 3 commutes. We then have an isomorphism

natural in A, B, CE Cat, i.e., Cat is Cartesian closed (MacLane, 1971).
For any small category J, the category SetJ is a topos (Lawvere, 1971)

and therefore Cartesian closed. In particular, the categories Graph and
RGraph are topoi,’ since Graph = SetJ, where J is the category with two
objects 1, 2, their identities 1,) 1, and two morphisms a,, a,: 1 -+ 2.
Similarly, RGraph= SetK, for K the category obtained by adding to J a
morphism id : 2 -+ 1 and the equation a,~ id = d i 0 id = 12. We have already
discussed the straightforward construction of products in Graph and

s For a beautiful treatment of the topos structure of graphs see the recent work by Lawvere
(1989).

PETRI NETS ARE MONOIDS 137

RGraph. Given any small category C, and objects X, YE Setc, the internal
horn object [X+ Y] E SetC is always given by the Yoneda formula

[X+ Y](c) ‘v nat(C(c, -), [X-+ Y]) = nat(C(c, -)xX, Y)

which in our case can be specialized for C=J, K. We shal1 presently
explain the meaning of this formula in Graph and RGraph. Given graphs
G=(a,,a,: T-t V) and G/=(&,8;: T’+ V’), the graph [G-G’] has as
set of arrows the set

((A: T-t T’, g: V+ V’, g’: V + V’)laboh=god,,S;oh=g’@a,}

and as set of nodes the set V’ ’ of functions from V to V’. The source and
target maps are the second and third projections, i.e., &,(h, g, g’) = g,
8,(/r, g, g’) = g’. We can illustrate this with an example. Let G=
(k.(2x), 11x.(2x + 1): JI/‘+ M), i.e., the graph with set of nodes the
natural numbers and with exactly one arrow n: 2n + 2n + 1 for each n E A”.
Let G’ be an arbitrary graph. Then the graph [G + G’] has as nodes
sequences g: Jf + V’ of nodes in G’. An arrow g --) g’ between two such
sequences is a sequence h: N + T’ of arrows h,: g,, --f g;,+ I (see Fig. 4).

The external horn Graph(G, G’) is obtained by considering the graph
homomorphisms 1 -+ [G-G’], where 1 =(lcl,, lr,,: [l] -+ Cl]), for [l]
the one point set { l), is the final object of Graph, i.e., we have

Graph(G, G’) 2: Graph(1, [G + G’]).

Since we will be considering internal horns in many different categories,
we will adopt a uniform convention of qualifying the functor [- + -1 with
a subscript suggesting its category of definition. Thus we will sometimes
write [A + Blc for the internal horn BA in Cat, [G + G’lG for the internal
horn in Graph and [G -+ G’],, for the internal horn in RGraph that we
shall describe below.

FIG. 4. An arrow of thegraph [G+G’], where G=(ls.(2x),i.r.(2.r+l):.~‘“~)and
G’ is an arbitrary graph.

138 MESEGUER AND MONTANARI

Given reflexive graphs G = (a,, 8, : T-t V, id), G’ = (ah, ~3; : T’ + V’, id’),
the internal horn [G -+ G’],, has as set of arrows the set of tuples

((h: T-+ T’, f: T-+ T’, f’: T+ T’, g: V-+ V’, g’: I’+ V’)I

(.f, s>, Cf’t g’>: G-G’

are reflexive graph homomorphisms and 8; o h = g 0 a,, 8; 0 h = g’ o d I},

its set of nodes is the set RGraph(G, G’) of reflexive graph homomorphisms,
and we define

&(h, L f’, g, g’) = (f> s>

d,(h, f, f’, g, g’)= (f’, g’>

id(f, g> = (A f, s, g, 8).

Therefore, nodes in [G + G’],, are reflexive graph homomorphisms
and an arrow (f, g) -+ (f ‘, g’) is a way of systematically relating them
by a function h: T --f T’ as shown in the diagram in Fig. 5. Again,
we have RGruph(G, G’) N RGruph(1, [G -+ G’] RG), for 1 the final object
(lc,ly lc13: Cl1 -, C11, id= 1,,1).

Consider the sequence of forgetful functors

Cat -+ RGraph + Graph

which allows us to regard a category as a reflexive graph, or just as a
graph, and to regard a reflexive graph as a graph. In particular, for A and
B categories, we have the following internal horns: [A --f B],, [A + B],,
and [A + BIG, and for G and G’ reflexive graphs we have the internal

at6
ga A gb

Ai
g’a 2 g’b

G G’
FIG. 5. Evaluation at f E T of an arrow (f, g) + (f', g’) of graph [C + G’],,

PETRI NETS ARE MONOIDS 139

homs.[G+G’IRC and [G + G/IO. How are all these horns related? In the
case of external horns, we have

Cut(A, B) E RGruph(A, B) E Gruph(A, B) (4)

RGraph(G, G’) G Graph(G, G’). (5)

But for internal horns the situation is more subtle. Basically, the internal
horns have richer structure and contain more information as we move up
from graphs to reflexive graphs and to categories. In order to relate these
different horns, we have to “throw away” the extra information of the
richer structure. This takes the form of natural transformations called
comparison maps z9

p: CA+Blc -+ CA-,aRG
p’: [G-P G’-jRG + [G + G’-JG

p”: [A + Blc -+ [A + BIG,

where p” is obtained by composing p and p’. We presently describe p and
p’. p maps a natural transformation cp: (f, g) + (f’, g’) to the arrow

(Aa E Arrows(A). ((Pi, ofa): IAl -+ 14, “l-3 f’l g, 8’): (“6 s> + cl-‘> g’>

in [A --) B],,; i.e., we extract from the natural transformation cp the
diagonals cpu, ofa = f’a 0 (Pi, for each a: a -+ a’ in A. The map p’ maps an
arrow (h, f, f’, g, g’): (f, g) -+ (f’, g’) in [G + G’],, to the arrow
(h, g, g’): g + g’ in [G + G’IG. Denoting by [A + B]P,, [G + G’]&, and
[A -+ B]g the images of the comparison maps p, p’, and p”, we then have
the internal versions

[A+B]P,E[A+B]RC

[A-tB]~~[A-tB]~~~[A-,Blc

[G+G']&L[G+G']~

of the external homset inclusions (4) and (5).

6.2. Monoidal Closed Structure of Petri and Petri,,

We can slightly generalize the categories Petri and Petri, by dropping
the requirement that the nodes are a free commutative monoid and just
requiring that the nodes have a commutative monoid structure M=

9 In general, for F: ‘8 + V’ a product-preserving functor between two Cartesian closed
categories, a comparison map p: F([A + B],)+ [FA --t FBI,. can always be obtained by
“currying” the map F(E: [A + B), x A + B), where E is the evaluation map in 59.

140 MESEGUER AND MONTANARI

(M, +, 0). In this way we obtain categories GrafPetri and GralPetri, that
contain Petri and Petri,, as full subcategories. We shall see below that
GralPetri and GraZPetri, are closed symmetric monoidal. In particular,
there is a tensor product that restricts to ordinary Petri nets, and (after
imposing a finiteness condition) given two Petri nets there is a third Petri
net that is their internal horn. All these constructions seem to be new, as
well as the monoidal closed structure of Petri that seems not to have been
recognized before.

THEOREM 20. GralPetri and GralPetri, are (symmetric) monoidal closed
categories.

Proof. We consider first the case of the category GralPetri. Let N =
(a,, a, : T+ M) and N’ = (a;, a; : T' --) M’) be generalized Petri nets (with
M and M’ commutative monoids). We define their tensor product NON’
as the generalized Petri net N@ N’= (ai, 8:: TX T’ + MOM’), where
MOM’ is the tensor product of the monoids M, M’ and ai’ is the
composition

where a : A4 x M’ + M@ M’ is the universal bilinear map for A4 @ M’.
Since the tensor product of two free commutative monoids S@ and So

is the commutative monoid (Sx S’)@, the tensor product for generalized
Petri nets restricts to one for ordinary Petri nets, -0 -: Petri* + Petri. The
tensor product NON’ of two Petri nets N and N’ has as transitions the
Cartesian product of their transitions, as places the Cartesian product of
their places and as multiplicities the product of their multiplicities (see the
example in Fig. 6). The unit object I is the Petri net (a,, a, : [l] --) J),
with a, = a, the inclusion of [l] in Jf.

t

P 5

0 c

N N’

lo+

0 c@d’

N @N’

FIG. 6. Two nets N and N’ and their tensor product NQ N’.

PETRI NETS ARE MONOIDS 141

The internal hom[N --f N’lp of our two generalized Petri nets is a
subgraph of the graph[N-+ N’lc and has as arrows the set of triples

{(h : T + T’, g : A4 -+ M’, g’ : M -+ M’) / g, g’ are monoid homomorphisms

andaboh=go8,anda;oh=g’oa,}

and as monoid of nodes the monoid [M-t M’] of monoid
homomorphisms from A4 to M’, with 8, and 8, the second and third
projections. We then have

GralPetri(N, N’) N GralPetri(Z, [N + N’] p)

and we leave for the reader to check the natural isomorphism:

GralPetri(N @ N’, N”) N GrafPetri(N, [N’ -+ N”] p).

The symmetric monoidal closed structure of GralPetri, can be easily
described by remarking that every generalized pointed Petri net is
isomorphic to one of the form N,,, for N a generalized Petri net, where
(-)o: GrufPetri -+ GrulPetri, is the left adjoint to the forgetful functor
GralPetri,, --t GrufPetri that adds a transition 0: 0 --) 0 to the net N. We can
then define the tensor product in GrulPetri, by

N,ON;=(N@N’),,

where @ in the right-hand side is performed in GrdPetri. This restricts to
a functor -@-: Petri: + Petrio. The unit of the tensor product is the
pointed Petri net I,. We finally define the internal horn by

which is pointed with point (0: T + T’ + { 0}, 0: M -+ M’, 0: A4 --t M’).
This works, since GrulPetrio(N, 0 Nb, N$) z GrulPetri(N @ N’, Nl) N
GrufPetri (N, [N’ + Nl] p) N GrulPetri(N, [N& -+ Nllpo) N GrulPetri,

(No, CN;, -+K’lid I
Notice that, whenever S = (a,, a,} is finite, we have

[S@+S’@] ,s*
n

A-
xS’@2:S’@@ . ‘. OS’@ cz (S’ + . . . + S’)@.

Therefore we have the following corollary.

COROLLARY 21. For N, N’ E Petri (resp. N, N’ E Petrio) and N with a
finite set of places, [N + N’] p E Petri (resp. [N -+ N’] p,, E Petri,).

142 MESEGUER AND MONTANARI

Furthermore, defining Petri,.,, and Petri,,,, as the categories of Petri
nets and pointed Petri nets with finite sets of places, we have also the
following corollary.

COROLLARY 22. Petri,,, and Petri,,,, are symmetric monoidal closed
categories.

6.3. Monoidal Closed Structure of CMonPetri, CMonRPetri, CatPetri

The categories we should concentrate on are CMonGraph,
CMonRGraph, and CMonCat. Since topoi are categories of generalized
sets, most standard mathematical constructions carry over to a topos with
a natural numbers object. In particular, the constructions establishing that
CMon is symmetric monoidal closed could be carried over for commutative
monoids over a topos 9’ with a natural numbers object and specialized for
Y = Graph and 9’ = RGraph to CMonGraph and CMonRGraph. However,
it is not difficult to give a more direct description of their symmetric
monoidal closed structure. Tensor products are constructed pointwise, i.e.,
for M= (a,, d, : M, -+ MI) and M’ = (ah, 8, : M; + M;) in CMonGraph,
we define MOM’= (13,@&,, a,@a’r: M,QM; -+ M,@M;), and for M=
(a,, a, : M, + M,, id) and M’ = (a;, a’, f M; -+ M;, id’) in CMonRGraph,
we define MQM’=(d,Oab,a,oa;:M,OM;-tM,QM;,idOid’).
The unit” is Z = (1.,-, lU,.: -V -+ ~4“) in CMonGraph and Z =
(1 ul., lml : N --) JV’, id = lb+.) in CMonRGraph. For CMonGraph, the inter-
nal horn [M + M’] CMG is a subgraph of [M -+ M’lG with arrows those
(h, g, g’) : g + g’ in [M --) M’] G such that h, g, and g’ are monoid
homomorphisms; such arrows form a commutative monoid by com-
ponentwise addition. The monoid of nodes is the monoid [M, + MJ, and
a, and 8, are second and third projection. Similarly, for M,
M’ E CMonRGraph, the internal horn [M -+ M’],-,, is a reflexive sub-
graph of [M + M’] RG with monoid of arrows given by those
(A, f, f’, g, 6) : (f, g> + (f’? g’ > in [M -+ M’] RG such that h, f, f’, g
and g’ are all monoid homomorphisms; and monoid of nodes the external
homset CMonRGraph(M, M’) which is a commutative monoid by com-
ponentwise addition.

We remark that the tensor products restrict to the full subcategories
CMonPetri c CMonGraph and CMonRPetri s CMonRGraph and that the
unit objects belong to them. In addition, we have the following lemma and
corollary.

“Notice that the external horn of CMonGraph has a commutative monoid structure, so
that for each X E CMonGraph we have a functor CMonGraph(X. -) : CMonGraph -P CMon.
The monoid of invariants Tzt (N) of a Petri net N then has a very simple description in terms
of the unit IE CMonGraph, namely T;:(N) = CMonGraph(1, NQ).

PETRI NETS ARE MONOIDS 143

LE.MMA 23. For M, M’ E CMonPetri and M such that its set S of places
is finite, [M + M’] CMG E CMonPetri.

COROLLARY 24. The full subcategory CMonPetri,,, determined by
those Petri commutative monoids with finite sets of places, is symmetric
monoidal closed.

For M, M’ E CMonRPetri, the internal horn [A4 + M’] C‘MR need not be
in CiVfonRPetri, even if M has a finite set of places; however, there is an
inclusion

[M-+M’]&& CM+M’ICMG.

If M has a finite set of places, [M + M’lCMG E CMonPetri, but
CM+ M’l&, need not belong to CMonPetri, since a submonoid of a free
commutative monoid need not be free.

We must discuss the category CMonCut of strict monoidal categories.
Given C, D E CMonCat, we define [C + D] CMC as the category with
objects strict monoidal functors and morphisms natural transformations.
As mentioned before, the category CutPetri is the full subcategory deter-
mined by those CE CMonCut whose commutative monoid of objects is
free. In this context, for consistency with the rest of the paper, we will use
additive notation for strict monoidal products for a C E CMonCut.

LEMMA 25. [C+DICMC can be made into a strict symmetric monoidal
category.

Prooj Addition on the objects is defined by (f, g) + (f', g') =
(f + f’, g + g’) and determines a commutative monoid structure.
Addition on natural transformations cp: (f, g) + (f', g’) and cp’:
(h, i) -+ (h’, i’) is the natural transformation cp + cp’: (f + h, g + i) +
(f’ + h’, g’ + i’) determined by the family { cp, + cp>: g(x) + i(x) +
g’(x) + i’(x) 1 x E ICI >. Such a family is natural, since for ~1: x + y in C we
have, writing things in diagrammatic order,

(f+h)(~); (cp,,+cpj.)= (fy-+ha); (cp,.+@,,)= (fk (P.~)+ W CP;~)

=(cp,;f'g)+ (cp:;h'~)=(f'+h')(a); (cp,+&x).

It follows from our definition of cp + cp’ that a,, ai, and id are monoid
homomorphisms. The only condition left to check is the equation
(cp + cp’); ($ + II/‘) = (cp; II/)+ (cp’; $‘) that we leave as an exercise. i

The tensor product is determined by a universal property of bilinearity.
Given C, D E CMonCat, we have to exhibit a category C @ D E CMonCat

144 MESECZJER AND MONTANARI

and a bilinear functor (f, g) : C x D + CO D, i.e., a functor (f, g) such
that for any CI, a’: x -+ J’ in C and /I, p’: z + w in D we have

1. f(&O)=f(O,B)=O
2. f(a+a',P)=f(cr,8)+f(a',B)
3. f(a,B+B')=f(a,B)+f(cc,B').

Notice that the forgetful functor CMonCat + CMonRGvaph has a left
adjoint P: CMonRGraph + CMonCat which is essentially a path category
construction. We can easily construct C@ D in terms of the tensor product
of C and D in CMonRGraph that we shall denote by COR D. We have a
bilinear morphism C x D -+ COR D for the underlying commutative
monoid on a reflexive graph structure. We can then compose with the unit
map COR D -+ P(C’OR D) to get another bilinear morphism for the
CMonRGraph structure. Denote the composite blinear map

CxD+C@,D+P(CORD)

by (f, g). To make it into a functor, we have to further impose on
P(C@, D) relations r of the form

.f(F u', B; P',=f(a, P,;f(a', P',

and then we define C@ D E CMonCat as the quotient P(COR D)/f. In this
way we get a bilinear functor as a composition

Such a functor has the desired universal property, since, given a bilinear
functor (h, i>: Cx D+ E, it induces a unique (h’, i’): CORD + E in
CMonRGraph, which in turn induces a unique (h’, i ‘) : P(C @ R D) + E in
CMonCat. We then have h+(f(cr; cc’, fi; /?‘)) = h(cc; cd, j3; j’) = h(a; fi);
NM', 8') =ht(f(a, PI); ht(f(u', B')) = h'(f(@, PI; f(a', B')), i.e. (ht, it)
induces a unique (h’, i ‘) : C 0 D + E in CMonCat, as desired. The unit for
the tensor product is the category with objects JV and just one identity
morphism n: n -+ n for each it, with monoidal product n + m : n + m -+
n + m. This ends our discussion of the symmetric monoidal closed structure
for CMonCat.

We finish the discussion of the different internal horns in this section
by listing, for C, D E CMonCat, M, , M2 E CMonRGraph, and M, M’ E
CMonGraph, the following inclusions:

PETRINETS AREMONOIDS 145

7. GENERALIZATIONS

One of the advantages of adopting a categorical point of view when
investigating a problem is that often new connections are naturally dis-
covered and results can be easily transferred by relying on the common
categorical properties. In this section, we take a more abstract view of the
developments in previous sections. A common pattern emerges that
naturally suggests a wide variety of ways in which the ideas we have
presented can be generalized. In what follows, we will find very useful to
present our ideas using the concept of a monad, as explained below.

7.1. Monads

Let T= (Z, r) be a presentation by operations C and equations r of a
(one sorted) algebraic theory, such as commutative monoids, rings, etc.
Any set X generates a free T-algebra T(X) = T,,,(X) and there is a natural
map qX: X-+ T(X) interpreting the generators inside the algebra. This
natural map is a natural transformation q: l,, -+ T between two
endofunctors. There is also a natural transformation h: T2 + T. For
T= (Z, a), p: T,(T,(X)) -+ T=(X) maps a term t[t,, t,] (where the
t 1 > . ..> t, E T,(X) are viewed as variables without any internal structure) to
the substitution term t(tl , t,)e T,(X), and for T= (C, r) ~1 acts just the
same on equivalence classes of terms. The triple (T, p, id) is a monad
(MacLane, 1971), i.e., a monoid for the (monoidal) product given by
functor composition To T= T2, with associativity and identity expressed by
the expected commutative diagrams of natural transformation (MacLane,
1971). Then, a monad morphism ~1: (T, ,u, yl) -+ (T’, p’, q’) is a natural trans-
formation a: T -+ T’ such that it is a monoid homomorphism. Intuitively,
a monad morphism ~1: T -+ T’ is an interpretation of equational theories
that maps operations of T into (possibly derived) operations of T’.

Conversely, any monad T in the category Set is generated by an
algebraic theory T= (2, r), although the operations may be inlinitary and
range over all cardinals (Manes, 1976). The category of T-algebras can be

146 MESEGUER AND MONTANARI

recovered from the monad (T, p, id) itself, since it is isomorphic to a
category Set, having as objects pairs (X, q: T(X) + X) such that q satisfies
the condition of being an action of the monoid T (just as in automata
theory; again see MacLane, 1971, for the two commutative diagrams).
Morphisms f: (X, q) --t (Y, q’) are given by functions ,f: X+ Y such that
q’ 0 Tf = fo q. For example, for T the theory of commutative monoids, the
monoid structure of a given commutative monoid (M, +, 0) can be
recovered from the unique homomorphism q: M@ + n/i induced by the
identity function 1 M : M -+ M, and the map (M, + , 0) H (M, q) is an
isomorphism of categories CMon 2: Ser, Jo.

The notion of a monad was originally defined in (Eilenberg and Moore,
1965), where it was called triple. This notion is extremely valuable since it
permits generalizing universal algebra over the category of sets to universal
algebra over arbitrary categories, for which more subtle kinds of algebraic
structures, not expressible in classical terms, may exist.

In this paper we have made crucial use of the fact that the category
CMon is a symmetric monoidal closed category, and we have pointed out
that this is a property common to the different versions of linear algebra
provided by the choice of different commutative semirings. The symmetric
monoidal closed structure is intimately connected with the fact that the
semimodule operations “commute” with each other. For example, given
J E R, a coefficient, and + vector addition, we have

(Ax) + (ly) = A(x + y).

Linton (1966) proved an important characterization theorem showing
that, indeed, for all commutative algebraic theories T= (C, f) the category
of algebras is symmetric monoidal closed, where a theory T= (Z, r) is
called commutative iff for any two operations rs: n + 1, 5: m + 1, the equa-
tion

~WI,), ...? T(xnj)) = t(a(xil), .‘.> o(xin))

with variables {xii 1 1 < i < n, 1 < j < n } and vectors xk, and xik correspond-
ing to the kth row and kth column, respectively, of the matrix of variables.
This is equivalent to saying that for any operation 0: n + 1 in Z, and any
T-algebra A, the operation A,: A” + A is a C-homomorphism. A monad
(T, p, q) on Set is commutative iff it is the monad of a commutative theory
(the definition extends naturally to infinitary operations). This can be
extended to strong monads (T, /J, q) over an arbitrary symmetric monoidal
closed category “Y-, i.e., monads such that T is a strong functor (also called
a V-functor) in the sense that T maps not only the external horns but also
the internal horns, TAB: [A --+ B] + [TA -+ TB] and ,D and q are V-natural
transformations. This was done by Kock (1971), who gave a diagrammatic

PETRI NETS ARE MONOIDS 147

definition of commutative monad and showed that Y’; is itself a closed
category. As we shall see below, the notion of a commutative monad is
extremely useful for generalizing the closed symmetric monoidal structure
of Petri nets to more general notions of transition system.

7.2. Some Monads

Any right adjoint U: J&’ -+ 8 with left adjoint F: S3 + d has associated
natural transformations q : 1 9 --+ UQ F (“insertion of generators”) and
E: FO U+ I., (“evaluation”) and generates a monad T= (Uo F, U&F, q)
(MacLane, 1971).

Therefore, the left adjoints N: GvapA + GrafPetui, N, : Graph +
GralPetri, , and CM: Gruph + CMonGruph to the forgetful functors
GralPetri + Graph, GralPetri, + Graph, and CMonGraph + Graph (in
terms of functors already described, N,(G) = N(G), and CL%Z(G) = N(G)@)
yield monads N, N,, CM : Graph +Graph. It is not hard to check that
these monads are strong for the Cartesian closed structure of Graph. We
claim that the following isomorphisms exist:

GralPetri N Graph,

GralPetri, N Graph,,

CMonGraph ‘v Graph,, .

Similarly, N: RGraph -+ GralRPetri and CM: RGraph + CMonRGraph, left
adjoints to the obvious forgetful functors, yield strong monads on RGraph
and isomorphisms

GraIRPetri ‘v RGraph,

CMonRGraph N RGraph,,

and the left adjoint CM: Cut + CMonCat to the forgetful functor
CMonCat + Cut yields a strong monad CM on Cat with an isomorphism

CMonCat N Cat,,,, .

All this is just an abstract way of saying that all the above categories are
categories of algebras but instead of being algebras over the category of
sets, they are algebras over the categories Graph, RGruph, or Cat. Of
course, the notion of “being an algebra” is now more subtle, since, say, the
algebraic structure on the nodes need not be the same as that of the
arrows. This subtlety is what the notion of a monad captures.

7.3. A Common Pattern

We have already seen that the categories GralPetri, GrafPetr&, and
CMonGruph are symmetric monoidal closed. In each case, the left adjoint

148 MESEGUER AND MONTANARI

operates by taking a graph G = (a,, 8, : A + V), generating some (possibly
trivial) algebraic structure T(A) on the arrows, generating a (possibly
richer) algebraic structure T’(I’) on the nodes and then “lifting” the
original a,, 8, in a natural way. In our examples, T’(V) is always V@,
whereas for GralPetri we have T(A) = A, for GralPetri, T(A) = A, and for
CMonGvuph T(A) = A@. Of course, l,,, (-)0 and (()@ are monads, indeed
commutative monads, associated to the theories of sets, pointed sets and
commutative monoids, and the natural inclusions q: lse, -+ (-)@,
t-h + (-I@ are monad morphisms. A monad morphism 01: T -+ T’ maps
each operation CJ: n -+ 1 of T to a (derived) operation tx(a) : n + 1 in T’.
Given a T-algebra X and a T’-algebra Y, a map f: X-+ Y is called an
a-homomorphism iff for each operation 0: n + 1 in T, f(o(x,, x,)) =
a(cr)(f(x,), f’(x,)). Note that for any T-homomorphism g: X0 -+ Y and
any T’-homomorphism h : Y + Y,, the compositions fo g and h of are
a-homomorphisms. This suggests the following theorem.

THEOREM 26. Let T, T’ be commutative monads on Set and ~1: T -+ T’ a
monad morphism. Then the category Graph, with objects (a,, a, : X -+ Y)
such that X is a T-algebra, Y is a T’-algebra and a,, a, are
cl-homomorphisms is isomorphic to the category of algebras Graph, for a
monadT,=(T,,~L,,~,)onGraphthatsendseachG=(a,,a,:A~V)tothe
graph T,(G) = (TA +a‘4 T’A Sf:z T’V), with pI = (pLT, pT.) and qa=
(qT, qT’ >. Besides, the category Graph, is symmetric monoidal closed.

Proof. The isomorphism Graph, 2: Graph, follows easily from the
isomorphism Alg, N Set. and Alg,, N Set,. at the Set level. The proof that
Graph, is symmetric monoidal closed is a straightforward generalization of
our proof for GralPetri. Indeed, given A = (a,, 3 I : X -+ Y) and B =
(a;, a’, : X’ -+ Y’) in Graph,, we define the internal horn [A -+ B], as the
following subgraph of [A + BIG. The nodes are those functions g: Y -+ Y’
that are T’-homomorphisms. Therefore, since T’ is commutative, they form
a T’-algebra [Y + Y’] T,. The arrows (f, g, g’): g + g’ are those arrows
of [A + BIG such that f is a T-homomorphism and g, g’ are
T’-homomorphisms. They have a natural T-algebra structure defined as
follows: if 0: n + 1 is a T-operation, then we define a((f,, g,, g’,),
(.A, g,, gi)) = (4fi, f,), da)(slt s,), do)(s’,, dJ), where the
expressions in the right-hand side are well-defined functions in [X -+ X’] r
and in [Y-+ Y’] Tr. Using the fact that a,, a,, a;, and a’, are
cx-homomorphisms, it is not hard to check that this indeed gives an arrow
a(a)(g, 3 .a., 8,) + ~(~)(dl, ..., gk) in [A + B] G. The second and third
projections are cr-homomorphisms by the very definition of the T-structure
on the arrows.

The tensor product A 0, B is of the form (a;, 8; : X@ r X’ -+ YO T Y’),

PETRI NETS ARE MONOIDS 149

where 8: is the unique a-homomorphism induced by the following
a-bilinear l1 map

AxA’==+ T(AxA’) T(ii,xii;! gBxB’) Y) B@,. B’,

where q is the unique T-homomorphism induced by the universal
T’-bilinear map B x B’ + B@,. B’. 1

In particular, we have GralPetri = Graph,, , GralPetri, = Graph,, , and
CMonGruph = Graph,, for qs : lse, --f (-)@ the unit of (-)@,
t12 = (oO 4 (-)@ and CI~ = 1 o : (-)@ -+ (-)@.

7.4. Generalizations

This suggests a very general notion of transition system as given by a
category of algebras over graphs, possibly of the form Graph, for c(: T + T’
a monad map. Our motto “Petri nets are monoids” leads to the more
general slogan “transition systems are algebras” (over Graph). The
possibilities are many. We sketch several of them below under the assump-
tion that T and T’ are commutative, and briefly discuss the noncom-
mutative case in the conclusions.

7.4.1. R-Petri nets. Replace J1/’ by a commutative semiring R and define
GrulPetri, = Gruph,, for qR the unit of the monad of R-semimodules. For
R = 2 we obtain the abelian Petri nets that we already encountered in our
discussion of duality and invariants. For R a distributive lattice L with top
and bottom, we obtain a notion of L-fuzzy Petri nets.12 All these monads
are commutative and most of the results in the paper generalize to this set-
ting, including the results on coincidence of finite products and coproducts
for the categories where this held.

7.4.2. Znfinitary Petri nets. These are Petri nets where a transition may
have an infinite number of places as preconditions and as postconditions.
Let Nm = JV u {co }. For {ni 1 i E Z, ni E N-, } and indexed family of
arbitrary cardinality, we can define xi., ni E Nm to be the usual sum in Jf
if only finitely many of the ni are nonzero and all n,# co, or cc otherwise.
There is a commutative monad (-)QZ, sending each set S to the set Sem
of all functions f: S -+ Mm. Such functions can be expressed as sums f =
CSESfbb The unit ‘I@, maps an element s E S to the function mapping

I’ Given T-algebras X, X’, and X”, a map .f: Xx X + A”’ is T-bilinear i f f each of the maps
WE X’.f(x, x’) and Ix E X.f(x, x’) is a T-homomorphism. Given a monad map a: T -+ T’,
T-algebras X and X’ and T’-algebra I’, a mapf: Xx X + Y is u-bilinear i f f each of the maps
Ix’ E X’.f(x, x’) and Ix E X.f(x, x’) is an a-homomorphism.

‘* Actually, the most satisfactory notion would assume a complete distributive lattice and
intinitary operations similar to those in Section 7.4.2 below.

150 MESEGUER AND MONTANARI

s to 1 and everything else to 0; the monad multiplication p@, maps an
element xfeSer 2,f to the function

Jf, is a semiring, and any (-)@*-algebra has an underlying
,V,-semimodule structure. Also, (()@*--homomorphisms ‘are ,Vm-linear
maps and are closed under addition and zeros; i.e., Set,-,o, is a semiad-
ditive category where finite products coincide with finite sums, so that this
carries over to categories of Petri nets whenever the transitions have the
(-P- -structure in a way entirely similar to the linitary case treated in this
paper. The basic category of (generalized) inlinitary Petri nets is Graph,,l
and, by commutativity, it is a symmetric monoidal closed category.

7.4.3. Probabilistic Petri nets. Consider the “simplex” monad A : Set + Set
with

where the sums Cj &xi are assumed to be’iinite, and with multiplication
pd: AZ-A defined by

and unit qd: l,, -+ A given by Y]~,~ (x) = lx. Then Graph,, is a category of
probabilistic (generalized) Petri nets where transitions are of the form
t: I,a, + ... +&an+p,bbl+ ... +p,,,b,. If transition t fired, then exactly
one token was consumed (and A,, A, are the probabilities that the token
was consumed from place a,, a,) and one token was produced (and
Ply ..a, Pm are the probabilities that the token was produced in place
b,, b,). It is easy to check that the monad A is commutative, so that
GyQphqd is symmetric monoidal closed by our general theorem. This
category seems very well suited for applications, where transitions have a
probabilistic nature, and should provide a fruitful and interesting link with
the well-developed notion of Markov process in probability theory.

8. CONCLUSIONS

We have given a new definition of place/transition Petri nets as graphs
equipped with the operations of parallel and sequential composition on the
transitions. Known concepts, like case graphs and invariants, have been
derived in a natural way. More importantly, new morphisms, relating

PETRI NETS ARE MONOIDS 151

system descriptions at rather different levels of abstraction, and new con-
structions, like a function space for Petri nets, have been defined.

It has been mentioned in Section 1 that transitions of Petri categories
coincide, in the case of safe computations, with Petri nonsequential pro-
cesses (Goltz and Reisig, 1983; Reisig, 1985). In the general case, however,
the situation is more complex, and a full treatment can be found in
(Degano et al., 1989, 1989a), of which we give here a short account.

Best and Devillers (1987) observed that for general place/transition Petri
nets, while one might expect processes to be more abstract than tiring
sequences and thus many firing sequences to correspond to the same
process, the two notions are in fact incomparable. Thus they looked for a
new notion of computation, more abstract than both firing sequences and
processes. In a somewhat ad hoc manner, they defined a swapping operation
on processes: when two concurrent instances of the same place can be
found, their causal consequences can be exchanged. Equivalence classes
with respect to swapping, which we may call commutative processes, are
recognized as the least abstract model which is more abstract than both
firing sequences and processes and is suggested as the correct observation
level for nets.

In (Degano et al., 1989, 1989a), commutative processes are proved
isomorphic to the morphisms of S[N], thus providing an operational
counterpart to the algebraic definition presented in this paper. Further-
more, another small category p[N] is proposed for modelling the classical
notion of processes associated to a net N. In Y[N], the same axioms hold
as in Y[N], except for the commutativity of parallel composition @ of
transitions. Instead, 9 [N] contains a subcategory of symmetries expressing
the fact that in a marking the tokens on the same place can be permuted.
A coherence axiom holds, which equates any parallel composition LX of
processes with another parallel composition ct’ of the same processes, where
the different order between CI and GI’ is compensated by composing suitable
symmetries in sequence before c1 and after CI’.

The main result of (Degano et al., 1989, 1989a) is showing that the
morphisms of LY[N] are just a slight refinement, which we call con-
catenable processes, of classical processes. The refinement consists of impos-
ing a total ordering among those minimal places (or “heads”) of a process
that are instances of the same place and a similar ordering for the maximal
places (or “tails”). This makes possible to define a new general notion of
sequential composition of processes, which of course corresponds to
morphism composition in Y[N].

Besides S[N], in (Degano et al., 1989, 1989a) a category Y[N] is intro-
duced containing the classical tiring sequences. Finally, a fourth category
X[N] is added, providing a most concrete extremum for both g[N] and
Y[N]. The axiom expressing the functoriality of parallel composition of

152 MESEGUER AND MONTANARI

transitions maps X[N] to Y[N] and Y[N] to S[N], while com-
mutativity of parallel composition maps X[iV] to Y[N] and, as we saw,
g[N] to S[N] (see Fig. 7). Thus the pushout diagram of the four
categories gives a full account in algebraic terms of the relationship
between interleaving and partial ordering observations of P/T net com-
putations. It is easy to see that the morphism from g[N] to S[N] is
bijective when restricted to safe computations.

Our development of algebraic theories on graphs can be extended by
dropping the commutativity requirement altogether and consider arbitrary
theories T, = (C, @) or Tz.E= (C, E). This is intimately connected with
the notion of concurrent term rewriting developed by the first author in
joint work with J. A. Goguen and C. Kirchner (Goguen et al., 1987) using
more elementary methods. The study of this case will be the subject of a
separate investigation (Meseguer, 1990).

Although we have for the most concentrated on the case of Petri nets,
the general new concept that emerges from the present work is that of
transition systems as graphs with algebraic structure. Computations of a
transition system then appear as morphism of a path category generated by
its graph. This path category will be endowed with an algebraic structure
similar to that of the transition system. For Petri nets, the relevant
algebraic structure is that of a commutative monoid, and therefore com-
putations have a strict symmetric monoidal category structure, but this is
just a particular case. For example, for C-term rewriting the category of
computations has a C-algebra structure, and for inlinitary Petri nets there

c-processes

17 WI

firing & step
sequences

net computations

FIG. 7. The categories X[N]. Y[N], Y[N], and Y[N] and their semantic relationship.

PETRI NETS ARE MONOIDS 153

is an infmitary parallel composition of computations. In each case, there
will be a “distributive law” relating sequential and parallel composition of
computations. Considerations of this kind should lead to a general
algebraic (meta) model of true concurrency of wide applicability.

The categorical approach we have outlined here should provide the
framework necessary to develop a hierarchy of models where the necessary
structure is introduced only at the proper level, as advocated for instance
in (Degano and Montanari, 1985). The structure to be added includes, for
instance, actions, invisible actions, a synchronization mechanism, a term
structure with variables and substitutions, and a spatial structure on the
places.

ACKNOWLEDGMENTS

We thank Joseph Goguen, for his extensive comments to a previous draft and for his very
valuable technical suggestions, and F. William Lawvere, for his comments and his many
enlightening conversations with the first author on categorical matters. We also thank
Friedrich von Henke, Gordon Plotkin, and Wolfgang Reisig who made very helpful sugges-
tions that led to improvements in the paper.

RECEIVED February 3, 1988; FINAL MANUSCRIPT ACCEPTED August 29, 1989

REFERENCES

BENSON, D. B. (1975), The basic algebraic structures in categories of derivations, Inform. and
Comput. 28, l-29.

BEST, E., AND DEVILLERS, R. (1987), Sequential and concurrent behaviour in Petri net theory,
Theoret. Comput. Sci. 5S, 87-136.

BOUDOL, G., AND CASTELLANI, I. (1988), Concurrency and atomicity, Theoret. Comput. Sci.
59, 25-84.

DEGANO, P., DE NICOLA, R., AND MONTANARI, U. (1988), A distributed operational semantics
for CCS based on condition/event systems, Acta Inform. 26, 59-91.

DEGANO, P., MESEGUER, J., AND MONTANARI, U. (1989), Axiomatizing net computations and
processes, in “Proceedings, 4th Symposium on Logic in Computer Science, IEEE, June
1989, Asilomar, CA,” pp. 175-185.

DEGANO, P., MESEGLJER, J., AND MONTANARI, U. (1989a). “Axiomatizing the Algebra of Net
Computations and Processes,” Technical Report SRI Int., Menlo Park and Dipartimento
di Informatica, Pisa.

DEGANO, P., AND MONTANARI, U. (1985), Specification languages for distributed systems, in
“TAPSOFT” (H. Ehrig et al., Eds.), pp. 29-51, Lect. Notes in Comput. Sci., Vol. 185,
Springer-Verlag, New York/Berlin.

DEGANO, P., AND MONTANARI, U. (1987). Concurrent histories: A basis for observing
distributed systems, J. Comput. System Sci. 34, Nos. 213, 422-461.

DREES, S., GOMM, D., PL~~NNECKE, H., REISIG, W., AND WALTER, R. (1986), “Bibliography of
Net Theory,” Arbeitspapiere der GMD 212, Gesellschaft fiir Mathematik und Datenverar-
beitung MBH.

EILENBERG, S., AND MOORE, J. C. (1965), Adjoint functors and triples, Illinois J. Math. 9,
381-398.

154 MESEGUER AND MONTANARI

GOGUEN. J., KIRCHNER, C., AND MESEGUER, J. (1987), Concurrent term rewriting as a model
of computation, in “Proceedings, Workshop on graph reduction, Santa Fe, New Mexico”
(R. Keller and J. Fasel, Eds.), pp. 53-93, Lect. Notes in Comput. Sci., Vol. 279, Springer-
Verlag, New York/Berlin.

GOLTZ, U.. AND REI%G, W. (1983), The nonsequential behavior of Petri nets, Inform. and
Comput. 51, 125-147.

HEROLD A., AND SIEKMANN. J. (1987). Unification in abelian semigroups, J. Automated
Reasoning 3, 247-283.

HERRLICH, H., AND STRECKER. G. E. (1973). “Category Theory,” Allyn & Bacon, Rockleigh,
NJ.

HINDERER, W. (1982), Transfer of graph constructs in goguen’s paper to net constructs, in
“Application and Theory of Petri Nets” (C. Girault and W. Reisig, Eds.), pp. 142-150,
Informatik-Fachberichte, Vol. 52. Springer-Verlag. New York/Berlin.

HOTZ, G. (1965), Eine algebraisierung des syntheseproblemen von schaltkreisen, i and ii, EIK
1, 185-206, 209-231.

KOCK, A. (1971), Closed categories generated by commutative monads, J. Aus~rai. Math. Sot.
12, 405424.

LAWVERE, F. W. (1971), Quantiliers and sheaves, in “Actes Congrts Intl. Math., Nice 1970,”
Vol. 1, pp. 329-334, Gauthier-Villars, Paris.

LAWVERE, F. W. (1989), Qualitative distinctions between some toposes of generalized graphs,
in “Proceedings, AMS Summer Research Conference on Categories in Computer Science
and Logic, Boulder, Colorado, June 1987” (J. Gray and A. Scedrov, Eds.), Amer. Math.
Sot., Providence, RI.

LINTON, F. E. J. (1966), Autonomous equational categories, J. Math. Mech. 15, 637-642.
MACLANE. S. (1971), “Categories for the Working Mathematician,” Springer-Verlag.

New York/Berlin.
MACLANE, S., AND BIRKHOFF. G. (1967). “Algebra,” Macmillan, New York.
MAIN, M. G., AND BENSON, D. B. (1984), Functional behaviour of nondeterministic and

concurrent programs, Inform. and Comput. 62, 144-189.
MANES, E. (1976), “Algebraic Theories,” Graduate Texts in Mathematics, Vol. 26, Springer-

Verlag, New York/Berlin.
MESEGUER, J. (1990), Rewriting as a unified model of concurrency, Technical Report

SRI-CSL-90-02, SRI International, Computer Science Laboratory, February 1990.
MESEGUER, J., AND MONTANARI, U. (1988), Petri nets are monoids: A new algebraic founda-

tion for net theory, in “Proceedings, 3rd Symposium on Logic in Computer Science,”
pp. 155-164, IEEE, New York.

MESEGUER, J., AND SOLS, I. (1975), Automata in semimodule categories, in “Category Theory
Applied to Computation and Control” (E. G. Manes, Ed.), pp. 193-198, Lect. Notes in
Comput. Sci., Vol. 25, Springer-Verlag, New York/Berlin.

MILNER, R. (1985), Lectures on a calculus for communicating systems, in “Control Flow and
Data Flow: Concepts of Distributed Programming” (M. Broy, Ed.), pp. 205-228, NATO
AS1 Ser. F, Vol. 14, Springer-Verlag, New York/Berlin.

MILNER, R. (1982), “Calculi for Synchrony and Asynchrony,” Technical Report, CSR-104-82,
Comput. Sci. Dept., University of Edinburgh, February.

OLDEROC, E.-R. (1987), Operational Petri net semantics for ccsp, in “Advances in Petri Nets
1987” (G. Rozenberg, Ed.), pp. 196223, Springer-Verlag, New York/Berlin.

PETRI, C. A. (1973), Concepts of net theory, in “Mathematical Foundations of Computer
Science,” pp. 137-146, Math. Inst. of the Slovak Academy of Sciences.

REnlG, W. (1985), “Petri Nets,” Springer-Verlag, New York/Berlin.
VAN GLABBEEK, R., AND VAANDRAGER, F. (1987), Petri net model for algebraic theories of

concurrency, in “PARLE Conference” (J. W. de Bakker et al., Eds.), Lect. Notes in
Comput. Sci.. Vol. 259. Springer-Verlag, New York/Berlin.

PETRI NETS ARE MONOIDS 155

WINKOWSKI, J. (1982), An algebraic description of system behaviours, Theoref. Comput. Sci.
21, 315-340.

WINSKEL, G. (1984), Categories of models for concurrency, in “Workshop on the Semantics
of Concurrency” (S. Brooks, Ed.).

WINSKEL, G. (1986), “Event Structures,” Technical Report 95, University of Cambridge
Computer Laboratory, July.

WINSKEL, G. (1987), Petri nets, algebras. morphisms, and compositionality, Inform. and
Comput. 12, 197-238.

