On the stability of multi-Jensen mappings in β-normed spaces

Tian Zhou Xu

School of Mathematics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Abstract

In this work, we prove the generalized Hyers–Ulam stability of the multi-Jensen mappings in β-normed spaces.

1. Introduction and preliminaries

The stability of the Jensen functional equation $2f((x + y)/2) = f(x) + f(y)$ (f satisfying this equation is called a Jensen mapping) has been studied by a number of mathematicians (see for instance [1–3]), whereas the stability of the bi-Jensen equation was investigated by Bae and Park (see [4]) and Jun et al. (see [5]).

Throughout this work, we fix a real number β with $0 < \beta \leq 1$, \mathbb{K} denotes either \mathbb{R} or \mathbb{C}, and $n \geq 1$ is an integer. Moreover, \mathbb{N} stands for the set of all positive integers. Let \mathcal{X} be a linear space over \mathbb{K}. A function $\| \cdot \|_\beta : \mathcal{X} \to [0, \infty)$ is called a β-norm on \mathcal{X} if and only if it satisfies:

1. $\|x\|_\beta = 0$ if and only if $x = 0$;
2. $\|\lambda x\|_\beta = |\lambda|^\beta \|x\|_\beta$ for all $\lambda \in \mathbb{K}$ and all $x \in \mathcal{X}$;
3. $\|x + y\|_\beta \leq \|x\|_\beta + \|y\|_\beta$ for all $x, y \in \mathcal{X}$.

The pair $(\mathcal{X}, \| \cdot \|_\beta)$ is called a β-normed space (see [17]). A β-Banach space is a complete β-normed space.

Let \mathcal{X} be a linear space over a field of characteristic different from 2 and \mathcal{Y} be a linear space. A function $f : \mathcal{X}^n \to \mathcal{Y}$ is called a multi-Jensen mapping if it satisfies Jensen’s equation in each of its n arguments, that is

$$2f(x_1, \ldots, x_{i-1}, (x_i + x'_i)/2, x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) + f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$$

for all $i = 1, \ldots, n$ and all $x_1, \ldots, x_{i-1}, x_i, x'_i, x_{i+1}, \ldots, x_n \in \mathcal{X}$.

Denote by $|S|$ the cardinality of a set S and put $\mathbf{n} := \{1, \ldots, n\}$. For a subset $S = \{j_1, \ldots, j_l\}$ of \mathbf{n} with $1 \leq j_1 < \cdots < j_l \leq n$ and $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$, $x_S := (0, \ldots, 0, x_{j_1}, 0, \ldots, 0, x_{j_l}, 0, \ldots, 0) \in \mathcal{X}^n$ denotes the vector which coincides with x in exactly those components, which are indexed by the elements of S and whose other components are set equal to zero. Note that $x_0 = 0, x_n = x$ and $(x_T)_S = (x_T)_S = x_{S\cap T}$ for $S, T \subseteq \mathbf{n}$.

E-mail address: xutianzhou@bit.edu.cn
It is known (see [7, Lemma 1.1]) that a function \(f : \mathcal{X}^n \to \mathcal{Y} \) is multi-Jensen if and only if

\[
f \left(\frac{1}{2} (x + y) \right) = \frac{1}{2^n} \sum_{S \subseteq \mathbb{N}} f(x_S + y_{n,S}), \quad x, y \in \mathcal{X}^n.
\]

(1.2)

The present work deals with the generalized Hyers-Ulam stability of Eq. (1.2) in \(\beta \)-normed spaces without referring to any knowledge of solutions.

2. The main results

For a given mapping \(f : \mathcal{X}^n \to \mathcal{Y} \), we define the difference operator

\[
Df(x, y) := 2^n f \left(\frac{1}{2} (x + y) \right) - \sum_{S \subseteq \mathbb{N}} f(x_S + y_{n,S}), \quad x, y \in \mathcal{X}^n.
\]

Theorem 2.1. Let \(\mathcal{X} \) be a linear space over a field of characteristic different from 2 and \(\mathcal{Y} \) be a \(\beta \)-Banach space. Let for any \(k \in \mathbb{N} \), \(\psi_k : \mathcal{X}^2 \to [0, \infty) \) satisfy \(\psi_k(0, 0) = 0 \) and

\[
\sum_{i=0}^\infty \left(\frac{1}{2^{n-1}} \right)^\beta \sum_{k=1}^n \psi_k(2^i x_k, 2^i y_k) < \infty
\]

(2.1)

for all \(x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathcal{X} \) and \(i \in \{0, \ldots, n-1 \} \). If \(f : \mathcal{X}^n \to \mathcal{Y} \) is a mapping satisfying

\[
\|Df(x, y)\|_\beta \leq \sum_{k=1}^n \psi_k(x_k, y_k)
\]

(2.2)

for all \(x, y \in \mathcal{X}^n \), then there exists a multi-Jensen function \(F : \mathcal{X}^n \to \mathcal{Y} \) such that

\[
\|f(x) - F(x)\|_\beta \leq \sum_{T \subseteq \mathbb{N}} \frac{1}{2 \left(\beta \right)} \sum_{i=1}^\infty \frac{\left(2^{n-|T|} \right)^\beta}{\left(2^{n-|T|} \right) \beta} \sum_{k \in \mathbb{N} \setminus T} \psi_k(2^i x_k, 0)
\]

(2.3)

for all \(x \in \mathcal{X}^n \). The mapping F is given by

\[
F(x) = \sum_{T \subseteq \mathbb{N}} F_T(x), \quad x \in \mathcal{X}^n,
\]

(2.4)

where \(F_n(x) := f(0) \) for all \(x \in \mathcal{X}^n \), and for any \(T \subseteq \mathbb{N} \),

\[
F_T(x) := \lim_{i \to \infty} \frac{1}{\left(\beta \right)} \sum_{\emptyset \not= S \subseteq \mathbb{N} \setminus T} (-1)^{n-|T|} f(2^i x_{S}) - \sum_{S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} (-1)^{n-|T| - |S|} f(2^{i+1} x_{S})
\]

(2.5)

Proof. Fix \(x \in \mathcal{X}^n \), \(l \in \mathbb{N} \setminus \{0\} \), \(i \in \{0, \ldots, n-1\} \) and a subset \(T = \{j_1, \ldots, j_l\} \) of \(\mathbb{N} \) with \(1 \leq j_1 < \cdots < j_l \leq n \). Using [9, Lemma 1], we have

\[
\frac{1}{2 \left(\beta \right)} \sum_{S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} (-1)^{n-|T| - |S|} f(2^i x_{S}) = \frac{1}{\left(\beta \right)} \sum_{S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} (-1)^{n-|T| - |S|} f(2^{i+1} x_{S})
\]

(2.6)

By (2.2) and (2.6) we obtain

\[
\left\| \frac{1}{\left(\beta \right)} \sum_{S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} (-1)^{n-|T| - |S|} f(2^i x_{S}) - \frac{1}{\left(\beta \right)} \sum_{S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} (-1)^{n-|T| - |S|} f(2^{i+1} x_{S}) \right\|_\beta
\]

\[
\leq \left(\frac{2 \left(\beta \right)}{\left(\beta \right)} \right)^\beta \sum_{\emptyset \not= S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} \left\|Df(2^{i+1} x_{S}, 0)\right\|_\beta
\]

\[
\leq \left(\frac{2 \left(\beta \right)}{\left(\beta \right)} \right)^\beta \sum_{\emptyset \not= S \subseteq \mathbb{N} \setminus \{1, \ldots, j\}} \sum_{k \in S} \psi_k(2^{i+1} x_{k}, 0)
\]

\[
= \frac{2^{n-|T| - 1}}{\left(\beta \right)^\beta} \left(2^{n-\beta(\beta+1)} \right) \sum_{k \in \mathbb{N} \setminus \{1, \ldots, j\}} \psi_k(2^{i+1} x_{k}, 0).
\]

(2.7)
For any non-negative integers l and m with $l < m$, using (2.7) we obtain
\[
\left\| \frac{1}{(2^{m-1})} \sum_{j \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} (-1)^{n-i-|S|} f(2^j x_S) - \frac{1}{(2^{m-1})} \sum_{j \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} (-1)^{n-i-|S|} f(2^m x_S) \right\|_{\beta} \\
\leq \sum_{j=1}^{m-1} \frac{2^{n-i-1}}{2^{2j}} \cdot (2^{n-i})^{\beta(i+1)} \sum_{k \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} \varphi_k(2^{j+1} x_k, 0). \quad (2.8)
\]

Therefore, from (2.1) and (2.8) it follows that \(\{ \frac{1}{(2^{m-1})} \sum_{j \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} (-1)^{n-i-|S|} f(2^j x_S) \}_{\beta \in \mathfrak{B}} \) is a Cauchy sequence in the β-Banach space \mathcal{X}. Thus this sequence is convergent and we define $F_T = F_{j_1, \ldots, j_m} : \mathcal{X}^n \to \mathcal{Y}$ by (2.5) and $F_n(x) = f(0)$. Putting $l = 0$ and letting $m \to \infty$ in (2.8), we get
\[
\left\| \sum_{j \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} (-1)^{n-i-|S|} f(x_S) - F_T(x) \right\|_{\beta} \leq \sum_{j=0}^{\infty} \frac{2^{n-i-1}}{2^{2j}} \cdot (2^{n-i})^{\beta(i+1)} \sum_{k \in \mathbf{n} \setminus \{j_1, \ldots, j_m\}} \varphi_k(2^{j+1} x_k, 0). \quad (2.9)
\]

As in the proof of Theorem 3 in [9], for any $x, y \in \mathcal{X}^n$, $r \in \mathbf{n}$ and $j_1, \ldots, j_{n-r} \in \mathbf{n}$ with $1 \leq j_1 < \cdots < j_{n-r} \leq n$ we have
\[
F_{j_1, \ldots, j_{n-r}}(x) := \lim_{l \to \infty} \frac{1}{(2^{r})^l} f(2^l x_{\mathbf{n} \setminus \{j_1, \ldots, j_{n-r}\}}) \quad (2.10)
\]
and
\[
D F_{j_1, \ldots, j_{n-r}}(x, y) = \lim_{l \to \infty} \frac{1}{(2^{r})^l} D f(2^l x_{\mathbf{n} \setminus \{j_1, \ldots, j_{n-r}\}}, 2^l y_{\mathbf{n} \setminus \{j_1, \ldots, j_{n-r}\}}).
\]

This together with (2.1) and (2.2) gives
\[
\|D F_{j_1, \ldots, j_{n-r}}(x, y)\|_{\beta} = \lim_{l \to \infty} \frac{1}{(2^{r})^l} \|D f(2^l x_{\mathbf{n} \setminus \{j_1, \ldots, j_{n-r}\}}, 2^l y_{\mathbf{n} \setminus \{j_1, \ldots, j_{n-r}\}})\|_{\beta} \leq \lim_{l \to \infty} \left(\frac{1}{2^l} \right) \sum_{j=1}^{n} \varphi_k(2^j x_k, 2^j y_k) = 0. \quad (2.11)
\]

Hence, the mapping $F_{j_1, \ldots, j_{n-r}}$ is multi-Jensen. Thus, for any $T \subseteq \mathbf{n}$ the mapping F_T is multi-Jensen, and so is the mapping given by (2.4). For any $x \in \mathcal{X}^n$. Since (see the proof of Theorem 3 in [9])
\[
f(x) = \sum_{T \subseteq \mathbf{n}} \sum_{\mathbf{s} \subseteq \mathbf{n} \setminus T} (-1)^{n-|T|-|S|} f(x_S), \quad (2.12)
\]
(2.9) finally gives
\[
\|f(x) - F(x)\|_{\beta} \leq \sum_{T \subseteq \mathbf{n}} \left(\sum_{\mathbf{s} \subseteq \mathbf{n} \setminus T} (-1)^{n-|T|-|S|} f(x_S) - F_T(x) \right) \|_{\beta} \leq \sum_{T \subseteq \mathbf{n}} \sum_{\mathbf{s} \subseteq \mathbf{n} \setminus T} (-1)^{n-|T|-|S|} f(x_S) \|_{\beta} \leq \sum_{T \subseteq \mathbf{n}} \sum_{j=1}^{\infty} \frac{2^{n-(\beta+1)|T|-1}}{(2^{n-|T|})^{\beta j}} \sum_{k \in T} \varphi_k(2^j x_k, 0). \quad (2.11)
\]

Corollary 2.2. Let \mathcal{X} be a β-normed space and \mathcal{Y} be a β-Banach space. If $\beta > 0$, $0 < p < 1$, and $f : \mathcal{X}^n \to \mathcal{X}$ is a mapping such that
\[
\|D f(x, y)\|_{\beta} \leq \theta \sum_{k=1}^{n} \left(\|x_k\|_{\beta}^p + \|y_k\|_{\beta}^p \right) \quad (2.13)
\]
for all $x, y \in \mathcal{X}^n$, then there exists a multi-Jensen mapping $F : \mathcal{X}^n \to \mathcal{Y}$ such that
\[
\|f(x) - F(x)\|_{\beta} \leq \theta \sum_{T \subseteq \mathbf{n}} \frac{2^{\beta p+n-(\beta+1)|T|-1}}{(2^{\beta(n-|T|)})^{\beta j}} \sum_{k \in T} \|x_k\|_{\beta}^p
\]
for all $x \in \mathcal{X}^n$. The mapping F is given by (2.4), where $F_n(x) := f(0)$ for all $x \in \mathcal{X}^n$, and for any $T \subseteq \mathbf{n}$, F_T is given by (2.5).
Proof. Let \(\varphi_k(x_k, y_k) = \theta(\|x_k\|_p^p + \|y_k\|_p^p) \) for all \(x, y \in \mathbb{X}^n \) and \(k \in \mathbb{n} \). In the case of \(0 < p < 1 \), we obtain the mapping \(F \) using Theorem 2.1.

Remark 2.3. For \(\beta = 1 \), Corollary 2.2 yields Theorem 3 in [9].

Theorem 2.4. Let \(\mathbb{X} \) be a linear space over a field of characteristic different from 2 and \(\mathbb{Y} \) be a \(\beta \)-Banach space. Let for any \(k \in \mathbb{n} \), \(\varphi_k : \mathbb{X} - \rightarrow [0, \infty) \) satisfy \(\varphi_k(0, 0) = 0 \) and

\[
\sum_{i=0}^{\infty} (2^{n-i})^l \sum_{k=1}^{n} \varphi_k \left(\frac{x_k}{2^n}, \frac{y_k}{2^n} \right) < \infty
\]

(2.14)

for all \(x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{X} \) and \(i \in \{0, \ldots, n-1\} \). If \(f : \mathbb{X}^n \rightarrow \mathbb{Y} \) is a mapping satisfying (2.2) for all \(x, y \in \mathbb{X}^n \), then there exists a multi-Jensen function \(F : \mathbb{X}^n \rightarrow \mathbb{Y} \) such that

\[
\|f(x) - F(x)\| \leq \sum_{T \subseteq \mathbb{n}} \sum_{j=0}^{\infty} 2^{n-(\beta+1)|T|} (2^n)^l \|f\| \sum_{k \in \mathbb{n} \setminus T} \varphi_k \left(\frac{x_k}{2^n}, 0 \right)
\]

(2.15)

for all \(x \in \mathbb{X}^n \). The mapping \(F \) is given by (2.4), where \(F_t(x) := f(0) \) for all \(x \in \mathbb{X}^n \), and for any \(T \subseteq \mathbb{n} \),

\[
F_T(x) := \lim_{l \to \infty} (2^{n-|T|})^l \sum_{s \subseteq \mathbb{n} \setminus T} (-1)^{n-|T|} f \left(\frac{X_s}{2^n} \right), \quad x \in \mathbb{X}^n.
\]

(2.16)

Proof. Fix \(x \in \mathbb{X}^n, l \in \mathbb{N} \cup \{0\}, i \in \{0, \ldots, n-1\} \) and a subset \(T = \{j_1, \ldots, j_l\} \) of \(n \) with \(1 \leq j_1 < \cdots < j_l \leq n \). Using [9, Lemma 1], we have

\[
(2^{n-i+1}) \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^{2l+1}} \right) - (2^{n-i}) \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^n} \right)
\]

(2.17)

By (2.2) and (2.17) we obtain

\[
\left\| (2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^n} \right) - (2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^{2l+1}} \right) \right\| \leq (2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} \varphi_k \left(\frac{x_k}{2^n}, 0 \right)
\]

(2.18)

For any non-negative integers \(l \) and \(m \) with \(l < m \), using (2.18) we obtain

\[
\left\| (2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^n} \right) - (2^{n-i})^m \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^m} \right) \right\| \leq (2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} \varphi_k \left(\frac{x_k}{2^n}, 0 \right).
\]

(2.19)

From (2.14) and (2.19) it follows that \(\{(2^{n-i})^l \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f \left(\frac{X_S}{2^n} \right)\}_{l \in \mathbb{N} \cup \{0\}} \) is a Cauchy sequence and we define \(F_T = T_{j_1, \ldots, j_l} : \mathbb{X}^n \rightarrow \mathbb{Y} \) by (2.16) and \(F_n(x) = f(0) \). Putting \(l = 0 \) and letting \(m \to \infty \) in (2.19), we get

\[
\left\| \sum_{S \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_l\}} (-1)^{n-|S|} f(x_S) - F_T(x) \right\| \leq \sum_{j=0}^{\infty} (2^{n-i})^l \cdot 2^{n-i-1} \sum_{k \in \mathbb{n} \setminus \{j_1, \ldots, j_l\}} \varphi_k \left(\frac{x_k}{2^n}, 0 \right).
\]

As in the proof of Theorem 4 in [9], for any \(x, y \in \mathbb{X}^n, r \in \mathbb{n} \) and \(j_1, \ldots, j_{n-r} \in \mathbb{n} \) with \(1 \leq j_1 < \cdots < j_{n-r} \leq n \) we get

\[
DF_{j_1,\ldots,j_{n-r}}(x, y) = \lim_{l \to \infty} (2^l)^l \sum_{T \subseteq \mathbb{n} \setminus \{j_1, \ldots, j_{n-r}\}} DF \left(\frac{x_T}{2^n}, \frac{y_T}{2^n} \right).
\]

The rest of the proof runs as before. \(\square \)
As an application of Theorem 2.4 we get the following corollary.

Corollary 2.5. Let \(\mathcal{X} \) be a \(\beta \)-normed space and \(\mathcal{Y} \) be a \(\beta \)-Banach space. If \(\theta > 0 \), \(p > n \), and \(f : \mathcal{X}^n \rightarrow \mathcal{Y} \) is a mapping such that (2.13) holds for all \(x, y \in \mathcal{X}^n \), then there exists a multi-Jensen mapping \(F : \mathcal{X}^n \rightarrow \mathcal{Y} \) such that

\[
\| f(x) - F(x) \|_\beta \leq \theta \sum_{T \subseteq n} 2^{\beta p + n - (\beta + 1)|T| - 1} \sum_{k \in n \setminus T} \| x_k \|_\beta^p
\]

for all \(x \in \mathcal{X}^n \). The mapping \(F \) is given by (2.4), where \(F_n(x) := f(0) \) for all \(x \in \mathcal{X}^n \), and for any \(T \subseteq n \), \(F_T \) is given by (2.16).

In the same manner as Corollaries 2.2 and 2.5 one can also prove the following result.

Corollary 2.6. Let \(\mathcal{X} \) be a \(\beta \)-normed space and \(\mathcal{Y} \) be a \(\beta \)-Banach space. If \(\theta > 0 \), \(p \in (1, n) \setminus \mathbb{N} \), and \(f : \mathcal{X}^n \rightarrow \mathcal{Y} \) is a mapping such that (2.13) holds for all \(x, y \in \mathcal{X}^n \), then there exists a multi-Jensen mapping \(F : \mathcal{X}^n \rightarrow \mathcal{Y} \) such that

\[
\| f(x) - F(x) \|_\beta \leq \theta \sum_{T \subseteq n} 2^{\beta p + n - (\beta + 1)|T| - 1} \sum_{k \in n \setminus T} \| x_k \|_\beta^p
\]

for all \(x \in \mathcal{X}^n \). The mapping \(F \) is given by (2.4), where \(F_n(x) := f(0) \) for all \(x \in \mathcal{X}^n \), and for any \(T \subseteq n \), \(F_T \) is given by (2.5) if \(|T| < n - p \) and by (2.16) if \(|T| > n - p \).

Remark 2.7. For \(\beta = 1 \), Corollaries 2.5 and 2.6 yield Theorems 4 and 5 in [9].

Acknowledgments

The author would like to thank the referees for giving useful suggestions for the improvement of this work. This work was supported by the National Natural Science Foundation of China (NNSFC), Grant No. 11171022.

References

