Stable properties of graphs

A.S. Hasratian
Department of Applied Mathematics, State University of Yerevan, Yerevan, USSR

N.K. Khachatrian
Computing Center, Academy of Sciences, Armenian SSR, Yerevan, USSR

Received 10 April 1987
Revised 17 August 1989

Abstract

Hasratian, A.S. and N.K. Khachatrian, Stable properties of graphs, Discrete Mathematics 90 (1991) 143-152.

For many properties P Bondy and Chvatal (1976) have found sufficient conditions such that if a graph $G+u v$ has property P then G itself has property P. In this paper we will give a generalization that will improve ten of these conditions.

1. Introduction

Our notation and terminology follows Berge [1] and Harary [7]. We denote the set of all graphs of order n by R_{n}. The distance between vertices u and v in the graph $G=(V(G), E(G))$ is denoted by $d_{G}(u, v)$. Let k be a positive integer. For each $u \in V(G)$ we denote by $N_{G}^{k}(u)$ and $M_{G}^{k}(u)$ the sets of all $v \in V(G)$ with $d_{G}(u, v)=k$ and $d_{G}(u, v) \leqslant k$, respectively.

The k-closure of G is the graph $C_{k}(G)$ obtained from G by recursively joining pairs of non-adjacent vertices whose degree-sum is at least k, until no such pair remains.

For many properties P, Bondy and Chvátal [2] have found sufficient conditions such that if a graph $G+u v$ has property P, then G itself has property P. In particular it is shown (by paraphrasing Ore's proof [10]) that if $G \in R_{n}$, $u v \notin E(G), d_{G}(u)+d_{G}(v) \geqslant n$ and $G+u v$ is hamiltonian, then G is hamiltonian. Using this condition Bondy and Chvátal [2] have found the following sufficient condition for a graph to be hamiltonian: If the graph $C_{n}(G)$ is hamiltonian, then G is hamiltonian. In particular, if $n \geqslant 3$ and $C_{n}(G)=K_{n}$, then G is hamiltonian. It was noted in [2], that many generalizations of Dirac's condition [6] including those of Chvátal [4] and Las Vernas [9], guarantee that $C_{n}(G)=K_{n}$. It was shown in [5], that if $C_{n}(G)=K_{n}$ then $|E(G)| \geqslant\left\lceil(n+2)^{2} / 8\right\rceil$.

In this paper we will give a generalization that will improve the conditions of Bondy-Chvátal for ten properties considered in [2]. For example, we prove that if $G+u v$ is hamiltonian, $d_{G}(u, v)=2$ and

$$
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{2}(u)\right|+\left|N_{G}^{3}(u) \cap N_{G}^{1}(v)\right|
$$

then G is hamiltonian. Using this condition, we define a new closure of the graph G, which has $C_{n}(G)$ as a spanning subgraph, and G is hamiltonian if and only if this new closure of G is hamiltonian. It is shown that for every $n \geqslant 6$ there is $G \in R_{n}$ such that $|E(G)|=2 n-3$ and the new closure of G is a complete graph.

These results can be viewed as a step towards a unification of the various known results on the existence of hamiltonian cycles in undirected graphs.

We will use the methods of proof that were used in [2].

2. Stability and closures

Let P be a property defined on R_{n} and r be an integer.

Definition 1. The property P is (k, r)-stable, $k \geqslant 2$, if whenever $G+u v$ has property $P, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{k}(u)\right|+\left|N_{G}^{k+1}(u) \cap N_{G}^{1}(v)\right|+r \tag{2.1}
\end{equation*}
$$

then G itself has property P.
Remark 1. If $k \geqslant 3$ and $d_{G}(u, v)=2$ then (2.1) is equivalent to

$$
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{k}(u)\right|+r
$$

because

$$
N_{G}^{k+1}(u) \cap N_{G}^{1}(v)=\emptyset .
$$

Remark 2. If $d_{G}(u, v)=2$ then (2.1) is equivalent to

$$
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant 1+\sum_{j=2}^{k}\left|N_{G}^{j}(u) \backslash N_{G}^{1}(v)\right|+r
$$

because

$$
\left|M_{G}^{k}(u)\right|=1+\sum_{j=1}^{k}\left|N_{G}^{j}(u)\right|, \quad d_{G}(u)=\left|N_{G}^{1}(u)\right|, \quad d_{G}(v)=\sum_{j=1}^{3}\left|N_{G}^{j}(u) \cap N_{G}^{1}(v)\right|
$$

and

$$
N_{G}^{j}(u) \backslash N_{G}^{1}(v)=N_{G}^{j}(u), \quad N_{G}^{j}(u) \cap N_{G}^{1}(v)=\emptyset \quad \text { for } j \geqslant 4 .
$$

From Definition 1 we have the following.

Proposition 1. If property P is (k, r)-stable and $m>k \geqslant 2, t>r$, then:
(a) P is (m, r)-stable,
(b) P is (k, t)-stable.

A property P is called $(n+r)$-stable [2] if whenever $G \in R_{n}, G+u v$ has property P and $d_{G}(u)+d_{G}(v) \geqslant n+r$, then G itself has property P.

Proposition 2. If property P is (k, r)-stable, $k \geqslant 2$ and $r \geqslant-1$, then P is $(n+r)$-stable .

Proof. Assume $G \in R_{n}, G+u v$ has property P and $d_{G}(u)+d_{G}(v) \geqslant n+r$. Clearly,

$$
d_{G}(u, v)=2 \quad \text { and } \quad d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{k}(u)\right|+\left|N_{G}^{k+1}(u) \cap N_{G}^{1}(v)\right|+r .
$$

Hence G has property P which completes the proof.

In [2], the smallest integer $r(P)$ was found for many properties P such that P is $(n+r(P))$-stable.

In this paper we will find for ten of these properties P the smallest integer $k(P) \geqslant 2$ such that P is $(k(P), r(P))$-stable.

Definition 2. Let $G \in R_{n}, H \in R_{n}$ and let H be a supergraph of G. We shall say that H is a (k, r)-closure of $G, k \geqslant 2$, if

$$
d_{H}(u)+d_{H}(v)<\left|M_{H}^{k}(u)\right|+\left|N_{H}^{k+1}(u) \cap N_{H}^{1}(v)\right|+r
$$

for all $u v \notin E(H)$ with $d_{H}(u, v)=2$ and there exists a sequence of graphs H_{1}, \ldots, H_{m} such that $H_{1}=G, H_{m}=H$ and for $1 \leqslant i \leqslant m-1 H_{i+1}=H_{i}+u_{i} v_{i}$, where $d_{H_{i}}\left(u_{i}, v_{i}\right)=2$ and

$$
d_{H_{i}}\left(u_{i}\right)+d_{H_{i}}\left(v_{i}\right) \geqslant\left|M_{H_{i}}^{k}\left(u_{i}\right)\right|+\left|N_{H_{i}}^{k+1}\left(u_{i}\right) \cap N_{H_{i}}^{1}\left(v_{i}\right)\right|+r
$$

A (k, r)-closure of a graph is certainly not unique. For example, the graph G in Fig. 1 has two $(2,0)$-closures, namely $G+u v$ and $G+u w$.

It is not difficult to see that if $r \geqslant-1$ then $C_{n+r}(G)$ is a subgraph of each (k, r)-closure of $G, k \geqslant 2$.

From Definition 1 and 2 we have the following.

Proposition 3. If P is (k, r)-stable, $k \geqslant 2$ and some (k, r)-closure of G has property P, then G itself has property P.

Fig. 1.

3. The hamiltonian property

Lemma 1. Let $G \in R_{n}, n \geqslant 3$. If $u_{1}, u_{2}, \ldots, u_{n}$ is a hamiltonian path of G, $d_{G}\left(u_{1}, u_{n}\right)=2$, and

$$
\begin{equation*}
d_{G}\left(u_{1}\right)+d_{G}\left(u_{n}\right) \geqslant\left|M_{G}^{2}\left(u_{1}\right)\right|+\left|N_{G}^{3}\left(u_{1}\right) \cap N_{G}^{1}\left(u_{n}\right)\right| \tag{3.1}
\end{equation*}
$$

then there is a m such that $2 \leqslant m \leqslant n-2, u_{1} u_{m+1} \in E(G)$ and $u_{n} u_{m} \in E(G)$.
Proof. Let $N_{G}^{1}\left(u_{1}\right)=\left\{u_{i,}, \ldots, u_{i,}\right\}$. If $u_{n} u_{i,-1} \notin E(G)$ for every $j, 1 \leqslant j \leqslant t$, then

$$
\left|N_{G}^{1}\left(u_{1}\right) \cap N_{G}^{1}\left(u_{n}\right)\right|+\left|N_{G}^{2}\left(u_{1}\right) \cap N_{G}^{1}\left(u_{n}\right)\right|<\left|M_{G}^{2}\left(u_{1}\right)\right|-d_{G}\left(u_{1}\right) .
$$

But then

$$
d_{G}\left(u_{n}\right)<\left|M_{G}^{2}\left(u_{1}\right)\right|+\left|N_{G}^{3}\left(u_{1}\right) \cap N_{G}^{1}\left(u_{n}\right)\right|-d_{G}\left(u_{1}\right)
$$

because

$$
d_{G}\left(u_{n}\right)=\sum_{j=1}^{3}\left|N_{G}^{j}\left(u_{1}\right) \cap N_{G}^{1}\left(u_{n}\right)\right| .
$$

This contradicts (3.1) and completes the proof.

Theorem 1. The property of containing a hamiltonian cycle is $(2,0)$-stable.
Proof. Let $G \in R_{n}, n \geqslant 3, d_{G}(u, v)=2$ and

$$
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{2}(u)\right|+\left|N_{G}^{3}(u) \cap N_{G}^{1}(v)\right| .
$$

Suppose that $G+u v$ is hamiltonian, but G is not. Then, G has a hamiltonian path $u_{1}, u_{2}, \ldots, u_{n}$ with $u_{1}=u, u_{n}=v$. From Lemma 1 , there is an integer m such that $2 \leqslant m \leqslant n-2, u_{n} u_{m} \in E(G)$ and $u_{1} u_{m+1} \in E(G)$. But then G has the hamiltonian cycle $u_{1} u_{2} \cdots u_{m} u_{n} u_{n-1} \cdots u_{m+1} u_{1}$. This contradicts the hypothesis, and completes the proof.

From Theorem 1 and Proposition 1 it follows that the property of containing a hamiltonian cycle is $(3,0)$-stable. Hence, from Remark 1 we have the following.

Corollary 1. Let $G \in R_{n}, n \geqslant 3$. If $d_{G}(u, v)=2, \quad d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{3}(u)\right|$ and $G+u v$ is hamiltonian, then G is hamiltonian.

Remark 3. If the $(2,0)$-closure of G has the hamiltonian cycle C, then, by using Lemma 1, one can transform C into a hamiltonian cycle in G in exactly the same way that the hamiltonian cycle in $C_{n}(G)$ was transformed into a hamiltonian cycle in G (see [2]).

From Theorem 1 and Proposition 3 we obtain the following.

Corollary 2. Let $G \in R_{n}, n \geqslant 3$. If K_{n} is the (2,0)-closure of G, then G is hamiltonian.

Theorem 2. For every $n \geqslant 6$ there is $G \in R_{n}$ such that $|E(G)|=2 n-3$ and K_{n} is the $(2,0)$-closure of G.

Proof. Let t be the integer part of the number $n / 2$. Consider a sequence of graphs G_{1}, \ldots, G_{t}, such that $G_{t}=K_{n}, V\left(G_{i}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, i=1, \ldots$, t and

$$
\begin{aligned}
& E\left(G_{t-k+1}\right)=\left\{u_{i} u_{j} \mid 2 k-1 \leqslant i<j \leqslant n\right\} \\
& \quad \cup\left\{u_{2 i-1} u_{2 i}, u_{2 i-1} u_{2 i+1}, u_{2 i} u_{2 i+1}, u_{2 i} u_{2 i+2} \mid i=1, \ldots, k-1\right\}
\end{aligned}
$$

for every $k, 2 \leqslant k \leqslant t$. (For $n=8$ the graphs G_{1}, G_{2}, G_{3} are shown in Fig. 2.) Clearly
$\left|E\left(G_{1}\right)\right|=2 n-3$ and $\left|E\left(G_{t-k+2}\right)\right|-\left|E\left(G_{t-k+1}\right)\right|=2 n-4 k+1, k=2, \ldots, t$.
We shall show that G_{t} is a $(2,0)$-closure of G_{1}. For each $k, 2 \leqslant k \leqslant t$, define $H_{k, 0}, H_{k, 1}, \ldots, H_{k, 2 n-4 k+1}$ to be a sequence of graphs such that $H_{k, 0}=G_{t-k+1}$, $H_{k, 2 n-4 k+1}=G_{t-k+2}$ and
(1) if $k=t, n=2 t$ then $H_{k, 1}=G_{2}=G_{1}+u_{n} u_{n-3}$,
(2) if $k<t$ or $n=2 t+1$ then

$$
H_{k, i+1}= \begin{cases}H_{k, i}+u_{n-i} u_{2 k-2} & \text { for } i=0,1, \ldots, n-2 k-1, \\ H_{k, i}+u_{2 n-2 k-i} u_{2 k-3} & \text { for } i=n-2 k, \ldots, 2 n-4 k .\end{cases}
$$

It is not difficult to verify that if $2 \leqslant k \leqslant t, 0 \leqslant i<2 n-4 k+1$ and $H_{k, i+1}=$ $H_{k, i}+u_{p} u_{r}$, then

$$
d_{H_{k}, i}\left(u_{p}, u_{r}\right)=2
$$

and

$$
d_{H_{k, i}}\left(u_{p}\right)+d_{H_{k, i}}\left(u_{r}\right) \geqslant\left|M_{H_{k, i}}^{2}\left(u_{p}\right)\right|+\left|N_{H_{k, i}}^{3}\left(u_{p}\right) \cap N_{H_{k, i}}^{1}\left(u_{r}\right)\right| .
$$

Hence G_{t} is a $(2,0)$-closure of G_{1} and this completes the proof.

4. Other properties

By C_{s} and P_{s} we mean a cycle and a path on s vertices, respectively.
Theorem 3. Let n, s be positive integers with $4 \leqslant s \leqslant n$. Then the property of containing $a C_{s}$ is $(2, n-s)$-stable.

Fig. 2.

Proof. Let $G \in R_{n}, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{2}(u)\right|+\left|N_{G}^{3}(u) \cap N_{G}^{1}(v)\right|+n-s \tag{4.1}
\end{equation*}
$$

From Remark 2 we have that (4.1) is equivalent to

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant 1+\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|+n-s . \tag{4.2}
\end{equation*}
$$

If $G+u v$ contains a C_{s} but G does not, then G contains a path $u_{1}, u_{2}, \ldots, u_{s}$ with $u_{1}=v, u_{s}=u$. Let H be the subgraph of G induced by $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. Then $H+u v$ is hamiltonian but H is not. Clearly, $v \in N_{G}^{2}(u) \backslash N_{G}^{1}(v)$ and

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \leqslant\left|N_{H}^{1}(u) \cap N_{I I}^{1}(v)\right|+n-s \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3) we have $\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right| \geqslant 1$, and so $d_{H}(u, v)=2$. Now from Theorem 1 and Remark 2, it follows that

$$
\begin{equation*}
\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|<1+\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right| . \tag{4.4}
\end{equation*}
$$

It's clear, that $\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right| \leqslant\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|$. From (4.3) and (4.4) we can deduce that

$$
\begin{align*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| & \leqslant\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|+n-s \\
& \leqslant\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right|+n-s \leqslant\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|+n-s . \tag{4.5}
\end{align*}
$$

This contradicts (4.2) and completes the proof.
Theorem 4. Let n, s be positive integers such that s is even and $4 \leqslant s<n$. Then the property of containing $a C_{s}$ is $(4, n-s-1)$-stable.

Proof. Let $G \in R_{n}, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{4}(u)\right|+n-s-1 . \tag{4.6}
\end{equation*}
$$

From Remark 2 we have that (4.6) is equivalent to

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant n-s+\sum_{j=2}^{4}\left|N_{G}^{j}(u) \backslash N_{G}^{1}(v)\right| . \tag{4.7}
\end{equation*}
$$

If $G+u v$ contains a C_{s} but G does not, then G contains a path $u_{1}, u_{2}, \ldots, u_{s}$ with $u_{1}=v, u_{s}=u$. Let H be the subgraph of G induced by $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. As in the proof of Theorem 3, we have (4.5). It's clear, that (4.5) and (4.7) imply

$$
\begin{align*}
& \left|N_{G}^{3}(u) \backslash N_{G}^{1}(v)\right|=\left|N_{G}^{4}(u) \backslash N_{G}^{1}(v)\right|=0, \\
& \left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|=\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right|=\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|, \tag{4.8}
\end{align*}
$$

and

$$
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right|=\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|+n-s .
$$

Since $n>s, u$ and v have a common neighbour w.
Clearly,

$$
\begin{equation*}
\left\{k \mid 2 \leqslant k \leqslant s-2, u_{n} u_{k} \in E(G), u_{1} u_{k+1} \in E(G)\right\}=\emptyset, \tag{4.9}
\end{equation*}
$$

because in fact if $u_{n} u_{k} \in E(G)$ and $u_{1} u_{k+1} \in E(G)$ for some k, then $u_{1} u_{2} \cdots u_{k} u_{s} u_{s-1} \cdots u_{k+1} u_{1}$ is C_{s} in G.

In addition we have $u_{1} u_{3} \notin E(G)$, for otherwise $u_{1} u_{3} u_{4} \cdots u_{s} w u_{1}$ is a C_{s} in G. Similarly, we have $u_{s} u_{s-2} \notin E(G)$ for otherwise $u_{1} u_{2} \cdots u_{s-2} u_{s} w u_{1}$ is a C_{s} in G.

Let $N_{H}^{1}(u) \cap N_{H}^{1}(v)=\left\{u_{i_{1}}, \ldots, u_{i_{i}}\right\}, i_{0}=0$ and $i_{1}<\cdots<i_{t}$ if $t \geqslant 2$. Then (4.9) and $u_{1} \in N_{H}^{2}(u) \backslash N_{H}^{1}(v)$ imply that for $j, 0 \leqslant j \leqslant t-1$, there exist r_{j}, such that $i_{j}<r_{j}<i_{j+1}$ and $u_{r_{j}} \in N_{H}^{2}(u) \backslash N_{H}^{1}(v)$. We can take $r_{0}=1$.

We will now show that $i_{t}=s-1$. Suppose $i_{t}<s-1$. Then (4.9) and $u_{s} u_{s-2} \notin$ $E(G)$ imply that there exists r_{t} such that $i_{t}<r_{t} \leqslant s-2, u u_{r_{t-1}} \in E(G), u u_{r_{i}} \notin E(G)$ and $v u_{r_{i}} \notin E(G)$. But then $\left\{u_{r_{i}} \mid i=0,1, \ldots, t\right\} \subseteq N_{H}^{2}(u) \backslash N_{H}^{1}(v)$ and $\mid N_{H}^{2}(u) \backslash$ $N_{H}^{1}(v) \mid \geqslant t+1$, which contradicts (4.8). Therefore $i_{t}=s-1$.

Next, note that if $2 \leqslant i \leqslant s-3$, then

$$
\begin{equation*}
u_{i} u_{s} \in E(G) \Rightarrow u_{s} u_{i+1} \notin E(G) \tag{4.10}
\end{equation*}
$$

Otherwise $u_{1} \cdots u_{i} u_{s} u_{i+1} u_{i+2} \cdots u_{s-1} u_{1}$ is a C_{s} in G.
We have that

$$
d_{H}\left(u_{3}, u\right) \leqslant 4 \quad \text { and } \quad N_{G}^{3}(u) \backslash N_{G}^{1}(v)=N_{G}^{4}(u) \backslash N_{G}^{1}(v)=\emptyset .
$$

Therefore $d_{G}\left(u_{3}, u\right) \leqslant 2$. If $d_{G}\left(u_{3}, u\right)=1$, then from (4.9) and (4.10) we have $u_{4} \in N_{H}^{2}(u) \backslash N_{H}^{1}(v)$. This implies $\left\{u_{4}, u_{r_{0}}, \ldots, u_{r_{i-1}}\right\} \subseteq N_{H}^{2}(u) \backslash N_{H}^{1}(v)$ and $\mid N_{H}^{2}(u) \backslash$ $N_{H}^{1}(v) \mid \geqslant t+1$ which contradicts (4.8).

If $d_{G}\left(u_{3}, u\right)=2$ and $i_{1} \geqslant 4$ then $\left\{u_{3}, u_{r_{1}}, \ldots, u_{r_{1}-1}\right\} \subseteq N_{H}^{2}(u) \backslash N_{H}^{1}(v)$, which contradicts (4.8).

Let $d_{G}\left(u_{3}, u\right)=2$ and $i_{1}=2$. Then $t \geqslant 2$ and $u_{1} u_{i_{i}-1} \notin E(G), j=1, \ldots, t$, because if $u_{1} u_{i,-1} \in E(G)$ for some j, then $u_{1} u_{i,} \cdots u_{s} u_{2} u_{3} \cdots u_{i_{j}-1} u_{1}$ is a C_{s} in G. It follows from (4.10) that $u_{i j-1} \in N_{H}^{2}(u) \backslash N_{H}^{1}(v), j=1, \ldots, t$.

Also, $i_{j+1}-i_{j}=2$ for every $j=1, \ldots, t-1$, because if $i_{j+1}-i_{j}>2$ for some j, then

$$
\left\{u_{i_{1}-1}, \ldots, u_{i_{t}-1}, u_{1+i_{i}}\right\} \subseteq N_{H}^{2}(u) \backslash N_{H}^{1}(v) \quad \text { and } \quad\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right| \geqslant t+1
$$

which contradicts (4.8).
Therefore $s=2 t+1$, which contradicts the hypothesis, that s is even, and completes the proof.

Fig. 3 (with $n=10, s=8$) and its obvious generalization show that the property of containing a C_{s} with $s=2 p<n$ is not ($3, n-s-1$)-stable for $s \geqslant 8$.

Fig. 3.

Theorem 5. Let n, s be positive integers with $4 \leqslant s \leqslant n$. Then the property of containing a P_{s} is $(4,-1)$-stable.

Proof. Let $G \in R_{n}, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{4}(u)\right|-1 . \tag{4.11}
\end{equation*}
$$

From Remark 2 we have that (4.11) is equivalent to

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant \sum_{j=2}^{4}\left|N_{G}^{j}(u) \backslash N_{G}^{1}(v)\right| . \tag{4.12}
\end{equation*}
$$

Suppose $G+u v$ contains a P_{s} but G does not. Then $G+u v$ contains a path $u_{1}, u_{2}, \ldots, u_{s}$ with $u_{m}=u, u_{m+1}=v$ for some $m, 1 \leqslant m \leqslant s-1$. Let $N_{G}^{1}(u) \cap$ $N_{G}^{1}(v)=\left\{u_{i}, \ldots, u_{i t}\right\}, i_{0}=1, i_{t+1}=s, i_{0}<i_{1}<\cdots<i_{t+1}$ and let $i_{k}<m<i_{k+1}$. Clearly,

$$
\left\{j \mid 1 \leqslant j \leqslant s, u_{m} u_{j} \in E(G), u_{m+1} u_{j+1} \in E(G)\right\}=\emptyset
$$

because if $u_{m} u_{j} \in E(G)$ and $u_{m+1} u_{j+1} \in E(G)$ for some j, then G contains a P_{s} where

$$
P_{s}= \begin{cases}u_{1} u_{2} \cdots u_{j} u_{m} u_{m-1} \cdots u_{j+1} u_{m+1} \cdots u_{s} & \text { if } j<m \\ u_{1} u_{2} \cdots u_{m} u_{j} u_{j-1} \cdots u_{m+1} u_{j+1} \cdots u_{s} & \text { if } j>m .\end{cases}
$$

In addition we have $u_{s} u_{m} \notin E(G)$ and $u_{1} u_{m+1} \notin E(G)$. Then for each $j, j \neq k$, $1 \leqslant j \leqslant t$, there is a $u_{r_{j}}$ such that $i_{j}<r_{j}<i_{j+1}, u u_{r_{j}-1} \in E(G), u u_{r_{j}} \notin E(G)$ and $v u_{r_{j}} \notin E(G)$. Therefore $u_{r_{j}} \in N_{G}^{2}(u) \backslash N_{G}^{1}(v), j \neq k, 1 \leqslant j \leqslant t$, and

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \leqslant\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right| . \tag{4.13}
\end{equation*}
$$

It follows from (4.12) and (4.13) that $N_{G}^{3}(u) \backslash N_{G}^{1}(v)=N_{G}^{4}(u) \backslash N_{G}^{1}(v)=\emptyset$ and

$$
\begin{equation*}
t=\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right|=\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right| \tag{4.14}
\end{equation*}
$$

If $u u_{1} \notin E(G)$ then $u_{1} \in N_{G}^{2}(u) \backslash N_{G}^{1}(v)$. Then

$$
\left\{u_{r_{i}} \mid j \neq k, 1 \leqslant j \leqslant k\right\} \cup\left\{u_{1}, v\right\} \subseteq N_{G}^{2}(u) \backslash N_{G}^{1}(v)
$$

and $\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right| \geqslant t+1$. This contradicts (4.14).
If $u u_{1} \in E(G)$, then $i_{1}>m$, for otherwise

$$
u_{1+i_{1}} u_{2+i_{2}} \cdots u_{m} u_{1} u_{2} \cdots u_{i_{1}} u_{m+1} u_{m+2} \cdots u_{s}
$$

is a P_{s} in G. Therefore

$$
\left\{v, u_{r_{1}}, \ldots, u_{r}\right\} \subseteq N_{G}^{2}(u) \backslash N_{G}^{1}(v) \quad \text { and } \quad\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right| \geqslant t+1 .
$$

This contradicts (4.14) and completes the proof.
Fig. 4 (with $n=s=7$) and its obvious generalization show that the property of containing a P_{s} is not $(3,-1)$-stable for $s \geqslant 7$.

Fig. 4.
Theorem 6. Let n, s be positive integers with $4 \leqslant s \leqslant n$. Then the property of containing a P_{s} is $(2,0)$-stable.

Proof. Let $G \in R_{n}, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{2}(u)\right|+\left|N_{G}^{3}(u) \cap N_{G}^{1}(v)\right| . \tag{4.15}
\end{equation*}
$$

From Remark 2 we have that (4.15) is equivalent to

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant 1+\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right| . \tag{4.16}
\end{equation*}
$$

Suppose $G+u v$ contains a P_{s} but G does not. Then $G+u v$ contains a path $u_{1}, u_{2}, \ldots, u_{s}$ with $u_{m}=u, u_{m+1}=v$ for some $m, 1 \leqslant m \leqslant s-1$. As in the proof of Theorem 5, we have $\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \leqslant\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|$. This contradicts (4.16) and completes the proof.

Corollary 3. Let n, s be positive integers with $4 \leqslant s \leqslant n$. Then the property of containing a P_{s} is $(3,0)$-stable.

Corollary 3 follows from Theorem 6 and Proposition 1. From Theorem 5, Corollary 3 and Remark 1 we have the following.

Corollary 4. If $d_{G}(u)+d_{G}(v) \geqslant \min \left\{\left|M_{G}^{4}(u)\right|-1,\left|M_{G}^{3}(u)\right|\right\}, \quad d_{G}(u, v)=2$ and $G+u v$ contains a P_{s}, then G contains a P_{s}.

Theorem 7. Let n, s be positive integers with $s \leqslant n-3$. Then the property of being s-hamiltonian (see [3]) is ($2, s$)-stable.

Proof. Let $G \in R_{n}, d_{G}(u, v)=2$ and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \geqslant\left|M_{G}^{2}(u)\right|+\left|N_{G}^{3}(u) \cap N_{G}^{1}(v)\right|+s \tag{4.17}
\end{equation*}
$$

From Remark 2 we have that (4.17) is equivalent to

$$
\begin{equation*}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \geqslant 1+\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|+s . \tag{4.18}
\end{equation*}
$$

Suppose that for some set W of at most s vertices of $G,(G+u v)-W$ is hamiltonian but $H=G-W$ is not. We have

$$
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| \leqslant\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|+s .
$$

Together with (4.18) this implies that

$$
\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right| \geqslant 1 \quad \text { and } \quad d_{H}(u, v)=2 .
$$

Then from Theorem 1 and Remark 2 we have

$$
\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|<1+\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right| .
$$

Hence

$$
\begin{aligned}
\left|N_{G}^{1}(u) \cap N_{G}^{1}(v)\right| & \leqslant\left|N_{H}^{1}(u) \cap N_{H}^{1}(v)\right|+s \leqslant\left|N_{H}^{2}(u) \backslash N_{H}^{1}(v)\right|+s \\
& \leqslant\left|N_{G}^{2}(u) \backslash N_{G}^{1}(v)\right|+s .
\end{aligned}
$$

This contradicts (4.18) and completes the proof.
The following Theorems 8 - 12 are obtained by using the same arguments as in [2].

Theorem 8. Let n, s be positive integers with $s \leqslant n-3$. Then the property of being s-edge-hamiltonian (see [8]) is ($2, s$)-stable.

Theorem 9. Let n, s be positive integers with $s \leqslant n-4$. Then the property of being s-hamiltonian-connected (see [1]) is ($2, s+1$)-stable.

Theorem 10. Let n, s be positive integers with $s \leqslant n-2$. Then the property of containing $K_{2, s}$ is (2,s-2)-stable.

Theorem 11. Let n, s be positive integers with $s \leqslant n-2$. Then the property of being s-connected is ($2, s-2$)-stable.

Theorem 12. Let n, s be positive integers with $s \leqslant n-2$. Then the property of being s-edge-connected is ($2, s-2$)-stable.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[3] G. Chartrand, S.F. Kapoor and D.R. Lick, N-Hamiltonian graphs, J. Combin. Theory 9 (1970) 308-312.
[4] V. Chvátal, On Hamiltonian's ideals, J. Combin. Theory 12 (1972) 163-168.
[5] L. Clark, R.C. Etringer and D.E. Jackson, Minimum graphs with complete k-closure, Discrete Math. 30 (1980) 95-101.
[6] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 68-81.
[7] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[8] H.V. Kronk, Variations on a theorem of Posa, in: G. Chartrand and S.F. Kapoor, eds., The Many Facets of Graph Theory (Springer, Berlin, 1969) 193-197.
[9] M. Las Vergnas, Sur une propriété des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris, 272 (1971) 1297-1300.
[10] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

