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Abstract 

Hasratian, AS. and N.K. Khachatrian, Stable properties of graphs, Discrete Mathematics 90 

(1991) 143-152. 

For many properties P Bondy and Chvatal (1976) have found sufficient conditions such that if a 

graph G + uu has property P then G itself has property P. In this paper we will give a 

generalization that will improve ten of these conditions. 

1. Introduction 

Our notation and terminology follows Berge [l] and Harary [7]. We denote the 
set of all graphs of order IZ by R,. The distance between vertices u and 2r in the 
graph G = (V(G), E(G)) ’ d is enoted by &(u, v). Let k be a positive integer. For 
each u E V(G) we denote by N:(U) and M$(u) the sets of all ZJ E V(G) with 
&(u, v) = k and d&u, v) s k, respectively. 

The k-closure of G is the graph Ck(G) obtained from G by recursively joining 
pairs of non-adjacent vertices whose degree-sum is at least k, until no such pair 
remains. 

For many properties P, Bondy and Chvatal [2] have found sufficient conditions 
such that if a graph G + ut~ has property P, then G itself has property P. In 
particular it is shown (by paraphrasing Ore’s proof [lo]) that if G E R,, 

LUJ$ E(G), k(u) + &(v) 2 n and G + UD is hamiltonian, then G is hamiltonian. 
Using this condition Bondy and Chvatal [2] have found the following sufficient 
condition for a graph to be hamiltonian: If the graph C,(G) is hamiltonian, then 
G is hamiltonian. In particular, if n 2 3 and C,(G) = K,, then G is hamiltonian. 
It was noted in [2], that many generalizations of Dirac’s condition [6] including 
those of Chvatal [4] and Las Vernas [9], guarantee that C,(G) = K,,. It was 
shown in [5], that if C,(G) = K,, then [E(G)1 3 [(n + 2)2/8]. 

0012-365X/91/$03.50 IQ 1991- Elsevier Science Publishers B.V. (North-Holland) 



144 A.S. Hasratian, N. K. Khachatrian 

In this paper we will give a generalization that will improve the conditions of 
Bondy-Chvatal for ten properties considered in [2]. For example, we prove that 
if G + uv is hamiltonian, d&u, V) = 2 and 

then G is hamiltonian. Using this condition, we define a new closure of the graph 
G, which has C,(G) as a spanning subgraph, and G is hamiltonian if and only if 
this new closure of G is hamiltonian. It is shown that for every n 2 6 there is 
G E R, such that IE(G)I = 2n - 3 and the new closure of G is a complete graph. 

These results can be viewed as a step towards a unification of the various 
known results on the existence of hamiltonian cycles in undirected graphs. 

We will use the methods of proof that were used in [2]. 

2. Stability and closures 

Let P be a property defined on R, and r be an integer. 

Definition 1. The property P is (k, r)-stable, k 2 2, if whenever G + ZAV has 

property P, d,(u, v) = 2 and 

d,(u) + d,(v) 2 IM”G(u)l+ IN&+‘(u) n iV&(v)l + r 

then G itself has property P. 

(2.1) 

Remark 1. If k > 3 and dc(u, V) = 2 then (2.1) is equivalent to 

Mu) +&Au) 2 Wkc(u)l + r 
because 

N$+r(U) n N&(v) = 0. 

Remark 2. If d&u, V) = 2 then (2.1) is equivalent to 

IN&(u) n Nk(v)lZ 1 + 5 INic(u)\N~(v)l + r 
j=2 

because 

N&(u)\&(v) = N’,(u), N&(U) n P&(v) = 0 for j 2 4. 

From Definition 1 we have the following. 
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Proposition 1. Zf property P is (k, r)-stable and m > k 2 2, t > r, then: 
(a) P is (m, r)-stable, 
(b) P is (k, t)-stable. 

A property P is called (n + r)-stable [2] if whenever G E R,, G + uv has 

property P and do(u) + do(v) 3 n + r, then G itself has property P. 

Proposition 2. Zf property P is (k, r)-stable, k Z= 2 and r 3 -1, then P is 
(n + r)-stable. 

Proof. Assume G E R,, G + UZI has property P and do(u) + do(v) an + r. 

Clearly, 

d&u, v) = 2 and d,(u) + do(v) a [Z@(u)1 + IN&++‘(u) f~ N&(v)1 + r. 

Hence G has property P which completes the proof. 0 

In [2], the smallest integer r(P) was found for many properties P such that P is 

(n + r(P))-stable. 

In this paper we will find for ten of these properties P the smallest integer 

k(P) 3 2 such that P is (k(P), r(P))-stable. 

Definition 2. Let G E R,, H E R, and let H be a supergraph of G. We shall say 

that H is a (k, r)-closure of G, k > 2, if 

dn(u) + dn(v) < [M&(u)] + IN;+;+‘(u) n Ath(v r 

for all uv $ E(H) with dn(u, v) = 2 and there exists a sequence of graphs 

KY..., H,,, such that ZY1 = G, H, = H and for 1 s i s m - 1 Hi+, = Hi + uiui, 

where dH,(ui, vi) = 2 and 

dHi(ui) + dH,(ui) 3 IM”H,,(ui)l + lNLT+‘(ui) I-J NL,(vi)l + r. 

A (k, r)-closure of a graph is certainly not unique. For example, the graph G in 

Fig. 1 has two (2, 0)-closures, namely G + uu and G + uw. 

It is not difficult to see that if r 3 -1 then C,+,(G) is a subgraph of each 

(k, r)-closure of G, k 3 2. 
From Definition 1 and 2 we have the following. 

Proposition 3. Zf P is (k, r)-stable, k a 2 and some (k, r)-closure of G has 
property P, then G itself has property P. 
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3. The hamiltonian property 

Lemma 1. Let G E R,, n 2 3. Zf ul, u2, . . . , u, is a hamiltonian path of G, 
d,(uI, u,) = 2, and 

d&u4 + d&J 3 W%u1)1 + I%%) n N%u,)l (3.1) 

then there is a m such that 2 s m s n - 2, u~u,+~ E E(G) and u,u, E E(G). 

PrOOf. Let N&(U,) = {Ui,, . . . , Ui,}. If u,u~,-~ $ E(G) for every j, 1 <j s t, then 

IN&,) n ~&,N + lN%uJ n N%4l< lK%4l- dcdud 

But then 

&Au,) < IM%uI)I + IW%4 n N&A - Mud 
because 

d&u,) = ,$i WicW n %unN 

This contradicts (3.1) and completes the proof. q 

Theorem 1. The property of containing a hamiltonian cycle is (2, O)-stable. 

Proof. Let G E R,, II 2 3, d,(u, v) = 2 and 

d,(u) + d,(u) 2 l#Au)l + IN%W n NkWl. 

Suppose that G + uv is hamiltonian, but G is not. Then, G has a hamiltonian 

path ul, u2, . . . , u, with u1 = u, u, = v. From Lemma 1, there is an integer m 
such that 2 s m s n - 2, u,u, E E(G) and u 1 u m+l E E(G). But then G has the 
hamiltonian cycle ulu2 - - * u,u,u,_~ - * * u,+~u~. This contradicts the hypothesis, 
and completes the proof. Cl 

From Theorem 1 and Proposition 1 it follows that the property of containing a 
hamiltonian cycle is (3,0)-stable. Hence, from Remark 1 we have the following. 

Corollary 1. Let G E R,, n 2 3. Zf d&u, v) = 2, do(u) + do(v) 2 (M&(u)( and 
G + uv is hamiltonian, then G is hamiltonian. 

Remark 3. If the (2,0)-closure of G has the hamiltonian cycle C, then, by using 
Lemma 1, one can transform C into a hamiltonian cycle in G in exactly the same 
way that the hamiltonian cycle in C,(G) was transformed into a hamiltonian cycle 
in G (see [2]). 

From Theorem 1 and Proposition 3 we obtain the following. 
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Corollary 2. Let G E R,, n 2 3. If K,, is the (2, O)-closure of G, then G is 
hamiltonian. 

Theorem 2. For every n 5 6 there is G E R, such that [E(G)/ = 2n - 3 and K, is 
the (2, 0)-closure of G. 

Proof. Let t be the integer part of the number n/2. Consider a sequence of 
graphs G,, . . . , G,, such that G, = K,,, V(G,) = {ul, z.+, . . . , u,}, i = 1, . . . , 

t and 

E(G,-_c+J = {uiuj I2k - 1 s i <j s n} 

U {uz-~uzi, u2i-lu;?i+l, uziuzi+l, u2iu2i+2 1 i = 1, . . . 7 k - 1) 

for every k, 2 s k s t. (For n = 8 the graphs Gi, G2, G, are shown in Fig. 2.) 
Clearly 

JE(G,)I = 2n - 3 and IE(GI-k+2)J - IE(Gf--k+l)J = 2n - 4k + 1, k = 2, . . . , t. 

We shall show that G, is a (2,0)-closure of Gi. For each k, 2 s k s t, define 

K,o, Hk,l, . . . > f&n--4k+l to be a sequence of graphs such that Hk,0 = Gt_k+l, 

&2n-4k+i = Gr-k+2 and 
(1) if k = t, n = 2t then Hk,l = G2 = G1 + u,,u,,_~, 
(2) if k < t or n = 2t + 1 then 

Hk,i+t = 1 
Hk,i + Un-iU2k-2 for i = 0, 1, . . . , n - 2k - 1, 

Hk,i i- u2”__2k-_iu2k__3 for i = n - 2k, . . . , 2n - 4k. 

It is not difficult to verify that if 2~ k s t, 0~ i < 2n - 4k + 1 and Hk,i+l = 
Hk,i i- U,,U,, then 

&,,,(u,, u,) = 2 
and 

d,=&+) + dn,,,(u,) 2 I~&&4 + IN?,&,) n Ni&4I. 
Hence G, is a (2,0)-closure of G, and this completes the proof. 0 

4. Other properties 

By C, and P, we mean a cycle and a path on s vertices, respectively. 

Theorem 3. Let n, s be positive integers with 4 =S s s n. Then the property of 
containing a C, is (2, n - s)-stable. 

Fig. 2. 
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Proof. Let G E R,, do(u, v) = 2 and 

d,(u) + d,(v) 3 IM”G(U)l + IN&(U) n zv&)l + It - s. (4.1) 

From Remark 2 we have that (4.1) is equivalent to 

IN,?&) r-l N&(v)1 > 1+ IN$(U)\N&(V)( + 12 -s. (4.2) 

If G + uu contains a C, but G does not, then G contains a path ul, uz, . . . , us 

with u1 = V, u, = U. Let H be the subgraph of G induced by {u,, u2, . . . , u,}. 

Then H + uv is hamiltonian but H is not. Clearly, Y E N&(u)\N&(v) and 

IN&) n N&(v)[ s Iz$&) n Nap + IZ -s. (4.3) 

From (4.2) and (4.3) we have INh(u) fl Nh(v)ls 1, and so &(u, V) = 2. Now 
from Theorem 1 and Remark 2, it follows that 

[No n N&)1 < 1 + p$&)\ivj&~)l. (4.4) 

It’s clear, that liV~(u)\N~(v)l s lN$(~)\N&(u)l. From (4.3) and (4.4) we can 
deduce that 

IN&(U) n iv&(t~)l s IivL(u) n ivh(t~)l + IZ -S 
(45) 

< JN&(u)\N~(v)l + n -s c IN&)\N&(@l+ 12 -s. 

This contradicts (4.2) and completes the proof. 0 

Theorem 4. Let n, s be positive integers such that s is even and 4 s s < n. Then the 

property of containing a C, is (4, n - s - 1)-stable. 

Proof. Let G E R,, d&u, v) = 2 and 

do(u) + d,(v) 3 JM&(u)I + n -s - 1. (4.6) 

From Remark 2 we have that (4.6) is equivalent to 

i%(u) n %(v)i 2 n -s +,t2 IA$&(u)\N&(v)l. (4.7) 

If G + uv contains a C, but G does not, then G contains a path ul, u2, . . . , u, 

with u1 = v, u, = u. Let H be the subgraph of G induced by {ui, u2, . . . , u,}. As 
in the proof of Theorem 3, we have (4.5). It’s clear, that (4.5) and (4.7) imply 

IN&(u)\N&(v)I = IN:(U)\N&(V)I = 0, 

ii%(u) n N&(v)1 = iM%~)\Wv)i = I~~G(u)W+J)I, (4.8) 
and 

[N&(U) n N&(v)1 = (N~(U) n Nk(v)l + n -s. 

Since n > s, u and v have a common neighbour W. 
Clearly, 

{k 1 2 <k S s - 2, u,uk E E(G), uluk+] E E(G)} = 0, (4.9) 
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because in fact if u,uk EE(G) and uIuk+i E,%(G) for some k, then 

UiU2 * * * U&,U,_~ * * . u~+~u~ is C, in G. 

In addition we have u1u3 4 E(G), for otherwise ulu3u4. . 1 u,wul is a C, in G. 

Similarly, we have u,u,_~ 4 E(G) for otherwise uluz * * . u,_2u,wul is a C, in G. 

Let A$,(u) n N;(v) = {u,,, . . . , u;,}, i. = 0 and il < . . . <i, if t 2 2. Then (4.9) 

and ul E NL(u)\N~(u) imply that for j, 0 c j c t - 1, there exist q, such that 

ii<q<ii+l and u,, E iV&(u)\NL(v). We can take r, = 1. 

We will now show that i, = s - 1. Suppose i, <s - 1. Then (4.9) and u,u,_~ 4 

E(G) imply that there exists r, such that i, < r, G s - 2, uu,_, E E(G), UU~ $ E(G) 

and VU,, $ E(G). But then {u, 1 i = 0, 1, . . . , t} G N~(u)\N~(u) and INk(u)\ 

Nh(v)l> t + 1, which contradicts (4.8). Therefore i, = s - 1. 

Next, note that if 2 c i s s - 3, then 

uiu.7 l E(G) + usui+l$ E(G). 

Otherwise U, . . * uiu,Ui+lUi+2. . . u,_,uI is a C, in G. 

We have that 

(4.10) 

dH(U3, u) s 4 and N&(u)\iV&(u)=N~(u)\N&(~)=0. 

Therefore dC(u3, u) 6 2. If dc(u3, U) = 1, then from (4.9) and (4.10) we have 

u4 E N&(u)\Nk(v). This implies {u4, u,,, . . . , u,_,} E N$(u)\Nh(v) and INg(u)\ 

NL(v)l 2 t + 1 which contradicts (4.8). 

If dc(u3, u) = 2 and il 34 then {u,, u,,, . . . , u,_,} c Nf,(u)\NQv), which 

contradicts (4.8). 

Let dc(u3, u) = 2 and il =2. Then t 32 and u,u,,+ $E(G), j = 1,. . . , t, 

because if ulu,,_i E E(G) for some j, then ului, . . . u,u~u~. . * ui,_,u, is a C, in G. 

It follows from (4.10) that u’,-, E N&(u)\Nh(u), j = 1, . . . , t. 

Also, ii+, -ij=2 for every j=l,. . . , t-l, because if ij+l-ij>2 for some j, 

then 

{ui,-,, . . . , Ui,-lr uI,~,} c NL(u)\NA(zI) and INL(u)\NQzI)I 2 t + 1, 

which contradicts (4.8). 

Therefore s = 2t + 1, which contradicts the hypothesis, that s is even, and 

completes the proof. 0 

Fig. 3 (with II = 10, s = 8) and its obvious generalization show that the property 

of containing a Cl, with s = 2p < rz is not (3, n - s - l)-stable for s 2 8. 

Fig. 3 
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Theorem 5. Let n, s be positive integers with 4 s s s n. Then the property of 
containing a P, is (4, -1)-stable. 

Proof. Let G E R,, d,(u, v) = 2 and 

d,(u) + d,(v) 2 IM”G(u)l - 1. 

From Remark 2 we have that (4.11) is equivalent to 

(N&(u) n N&(v)1 2 2 pv&(u)\iv&(~)l. 

j=2 

(4.11) 

(4.12) 

Suppose G + uv contains a P, but G does not. Then G + uv contains a path 

4, u2, . . . , u, with u, = u, u,,,+~ = v for some m, lCmCs-1. Let N&(u)fl 
N&(v) = {ui,, . . . , u,}, i,, = 1, i,,, = s, iO < iI < - * - <i,+, and let ik <m < &+I. 

Clearly, 

{j 1 1 cj c S, Umuj E E(G), U,+lUj+l E E(G)} = 0 

because if UmUj E E(G) and U,+lUj+l E E(G) for some j, then G contains a P, 
where 

P, = 
( 

UlU2. . . &!jU~Cf!~_~ ’ * * Uj+lU,+l . ’ . Us if j<m, 

UlU2 * * ’ U,UjUj-1 ’ ’ ’ U,+1Uj+l. . . U, if j>m. 

In addition we have u,u, $ E(G) and ulu,+] $ E(G). Then for each j, j # k, 
l<j<t, there is a u,, such that ij<q<ij+l, UU,,_~ E E(G), UU,, $ E(G) and 
vu,, $ E(G). Therefore u,, E NL(u)\iVk(v), j f k, 1 s j c t, and 

IN%4 f-l x%-J)l c I~2,Cu)\Nk(v)l. (4.13) 

It follows from (4.12) and (4.13) that N&(u)\N&(v) = N~(u)\N~(v) = 0 and 

1= IN&(u) f-l N&(v)1 = pv~(U)\iv~(V)I. (4.14) 

If uul $ E(G) then u1 E N$(u)\Nb(v). Then 

{u,lj#k, 1~j~k}U{u~,v}~N~(u)W~(v) 

and IN’&(u)\N&(v)I 3 1+ 1. This contradicts (4.14). 
If uul E E(G), then iI > m, for otherwise 

U l+it”2+i, * * * U,U~U2 * * * ~i,wn+1&?+2 * - - us 

is a P, in G. Therefore 

{ v, u,,, * * * , 4,) G ~2G(~w%(V) and IN&(u) \iV&(v)l5 f + 1. 

This contradicts (4.14) and completes the proof. q 

Fig. 4 (with n = s = 7) and its obvious generalization show that the property of 
containing a P, is not (3, -1)-stable for s 2 7. 
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Fig. 4. 

Theorem 6. Let n, s be positive integers with 4 ss s n. Then the property of 

containing a P, is (2, 0)-stable. 

Proof. Let G E R,, dc(u, v) = 2 and 

d,(u) + d,(u) 2 I%(u)1 + IN&) fl all. (4.15) 

From Remark 2 we have that (4.15) is equivalent to 

IN&(u) r-l N&(v)1 2 1+ IN$(u)\N&(v)(. (4.16) 

Suppose G + uv contains a P, but G does not. Then G + uv contains a path 
u, with u, = u, u,,,+~ = 

z;’ %eorkm 
v for some m, 1s m <s - 1. As in the proof 

5, we have IN&(u) fl N&(v)1 s IN$(u)\N&(v)I. This contradicts 
(4.16) and completes the proof. 0 

Corollary 3. Let n, s be positive integers with 4 s s s n. Then the property of 

containing a P, is (3, 0)-stable. 

Corollary 3 follows from Theorem 6 and Proposition 1. From Theorem 5, 
Corollary 3 and Remark 1 we have the following. 

corollary 4. Zf d,(u) + d,(v) 2 min{lM”,(u)l - 1, lM$(u)l}, &(u, v) = 2 and 

G + uv contains a P,, then G contains a P,. 

Theorem 7. Let n, s be positive integers with s c n - 3. Then the property of being 

s-hamiltonian (see [3]) is (2, s)-stable. 

Proof. Let G E R,, d&u, v) = 2 and 

d,(u) + &(v) 2 IM’G(u)l + IN&(u) l-l N&(v)1 + s. (4.17) 

From Remark 2 we have that (4.17) is equivalent to 

p&(u) n N&(v)1 2 1 + IN~(u)W&(V)I + S. (4.18) 

Suppose that for some set W of at most s vertices of G, (G + uv) - W is 
hamiltonian but H = G - W is not. We have 

pi.?&) n iv&)l s IN&4) n NL(v)I + S. 

Together with (4.18) this implies that 

INh(u) n Nh(v)la 1 and &(u, v) = 2. 
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Then from Theorem 1 and Remark 2 we have 

(i+(u) n N&)1 < 1+ IN&(u)\Nj&J)(. 
Hence 

(N&(u) n N&(v)1 S INh(u) n zv&J)l + S S IN~(u)\N~(v)l + s 

S IN&(u)\N&(21)1+ S. 

This contradicts (4.18) and completes the proof. q 

The following Theorems 8-12 are obtained by using the same arguments as in 

PI. 

Theorem 8. Let n, s be positive integers with s c n - 3. Then the property of being 
s-edge-hamiltonian (see [S]) is (2, s)-stable. 

Theorem 9. Let n, s be positive integers with s < n - 4. Then the property of being 
s-hamiltonian-connected (see [l]) is (2, s + 1)-stable. 

Theorem 10. Let n, s be positive integers with s G n - 2. Then the property of 

containing K2,s is (2, s - 2)-stable. 

Theorem 11. Let n, s be positive integers with s c n - 2. Then the property of 
being s-connected is (2, s - 2)-stable. 

Theorem 12. Let n, s be positive integers with s S n - 2. Then the property of 
being s-edge-connected is (2, s - 2)-stable. 
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