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Abstract 

Lindner, C.C. and C.A. Rodger, 2-Perfect m-cycle systems, Discrete Mathematics 104 (1992) 

83-90. 

The spectrum for 2-perfect m-cycle systems of K, has been considered by several authors in the 
case when m =G 7. In this paper we essentially solve the problem for 2-perfect m-cycle systems 
of K, in the case where m is prime and 2m + 1 is a prime power. In particular we settle the 
problem form = 11 and 13 except for two or one possible exceptions respectively. The problem 
for m = 9 is also considered. 

1. Introduction 

An m-cycle is a cycle of length m, which we denote by (v,,, . . . , v,_,); so 

v~v~+~ is an edge for 0 < i cm, reducing the subscripts modulo m. An m-cycle 
system of K,, is an ordered pair (V, C) where V is the vertex set of K,, and C is a 

set of m-cycles which induce a partition of the edge set of K,,; so the m-cycles in 

C form an edge-disjoint decomposition of K,. If c is an m-cycle then define c(i) 

to be the graph formed by joining vertices that are distance i apart in c. 

If m is odd then a 2-perfect m-cycle system of K,, is an m-cycle system of K,,, 
(V, C) with the additional property that (V, {c(2) 1 c E C}) is also an m-cycle 
system of K,. So if an m-cycle system (V, C) is 2-perfect then each pair of 

vertices is distance 2 apart in exactly one m-cycle in C. Throughout this paper we 

assume that m = 2t + 1 is an odd integer. 

Associated with any 2-perfect m-cycle system of K,,, (V, C) there is a natural 

binary operation - defined by x . y = z if and only if (x, y, z, vg, . . . , v,_i) E C. It 

is not hard to see that the binary operation defined in this way actually produces a 

quasigroup. In fact, this quasigroup will also satisfy the following identities: 

x2=x for all x E V, 

(YX)X = Y for all x, y E V, 
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and some further identities depending on the length of the cycles. For example, 
one further identity can be obtained by recognizing that there are two directions 
that one can proceed around a given m-cycle, so the products defined must be 
consistent regardless of which direction is chosen. This further identity becomes 
complicated as m gets large but we illustrate it for some small values of m: 

whenm=3itisxy=yxforallx,yinV; 
when m = 5 it is x(yx) = y(xy) for all x, y in V; and 
when m = 7 it is (xy)(y(xy)) = (yx)(x(yx)) for all x, y in V. 

In fact, when m E (3, 5,7} there are no further identities since it has been 
shown that [6] 2-perfect m-cycle systems produce quasigroups satisfying the three 
identities mentioned, but the converse is also true; that is, to any quasigroup 
satisfying the three given identities there naturally corresponds a 2-perfect 
m-cycle system. For further information concerning connections between 2- 
perfect m-cycle systems of K,, and related quasigroups, see [6]. 

Perhaps the most natural problem concerning 2-perfect m-cycle systems of K,, 
is the spectrum problem: for which values of n do there exist 2-perfect m-cycle 
systems of K,? Recent progress in this area has essentially settled the spectrum 
problem for 2-perfect m-cycle systems of K, when m E {5,7} (of course for 
m = 3, every 3-cycle system of K,, is 2-perfect): the spectrum for 2-perfect 5-cycle 
systems of K,, (also called Steiner pentagon systems) is all n = 1 or 5 (mod 10) 
except for it = 15 [8], and the spectrum for 2-perfect 7-cycle systems of K,, is all 
n = 1 or 7 (mod 14) except possibly for n E (21, SS} [9]. In this paper we consider 
the spectrum problem for 2-perfect m-cycle systems of K,: we actually solve the 
problem except possibly for two or one values of n when m = 11 or 13 
respectively, and except for 3 possible values in the case where m is a prime and 
2m + 1 is a prime power. We also obtain some results when m = 9. 

Clearly some necessary conditions for the existence of just an m-cycle system of 
K,, are: 

(Nl) if IZ > 1 then IZ 2 m; 
(N2) n is odd (each vertex has even degree); and 
(N3) 2m divides n(n - 1) (since m divides the total number of edges). 
It is likely that these conditions are sufficient for the existence of a 2-perfect 

m-cycle system of K, except for some small values of n (for example, there is no 
2-perfect 5-cycle system of K15 (since no (15,5,2) BIBD exists)). However, even 
showing that these conditions are sufficient for the existence of an m-cycle system 

has yet to be proved [3, lo]. 
It is worth remarking here that it is not necessary to restrict one’s attention to 

the case where m is odd, nor just to 2-perfect m-cycle systems of K,,. For 
1 G i 6 m / 2 we can define an i-perfect m-cycle system of K,, (V, C) to be an 
m-cycle system of K,, with the additional property that (V, {c(i) 1 c E C}) is an 
x-cycle system of K,, for some integer x. So for example, a 2-perfect 6-cycle 
system of K, is a 6-cycle system of K,, (V, C) with the additional property that 
(V, {c(2) 1 c E C}) is a 3-cycle system of K,, (or if you prefer, a Steiner triple 
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system). The spectrum for 2-perfect 6-cycle systems of K, has been shown to be 
all n = 1 or 9 (mod 12) except for n = 9 and possibly for n E (45, 57) [7]. Notice 
also that if (V, C) is a 2-perfect 7-cycle system of K, then (V, {c(2) 1 c E C}) is a 
3-perfect 7-cycle system of K,. Similarly, 3-perfect 7-cycle systems of K,, produce 
2-perfect 7-cycle systems of K,, so their spectra are identical (see [lo] for this and 
related problems). We point out one last generalization: one might look for 
m-cycle systems that are i-perfect for more than one value of i. Indeed, when m is 
odd a Steiner m-cycle system of K,, is defined to be an m-cycle system of K,, that is 
i-perfect for 1 <i G m/2 (hence the name Steiner pentagon system, mentioned 
earlier). Determining the spectrum of Steiner m-cycle systems is a very difficult 
problem. 

Finally, we remark that m-cycle systems have been used in the design of 
experiments for use in serology. In this application, the cycles are permitted to be 
degenerate, in which case they are called neighbor designs. However avoiding 
degeneracy or having the additional structure of being 2-perfect are properties of 
some use in this application [4,5]. 

Throughout the rest of this paper, m = 2t + 1 is an odd integer. Let Z, = 
(0, 1, . . . , x - l}. 

2. Preliminary results 

We begin with some well-known constructions of Steiner m-cycle systems. 

Lemma 2.1. Zf m is a prime then there exists a Steiner m-cycle system of K,,,. 

Proof. A Steiner m-cycle system (Z,, C) is defined by 

C={(O,x,& ,..., -x)[lsx<m/2}, 

where, of course, each component of each m-cycle is reduced modulo m. 0 

Lemma 2.2 [2]. Zf n = 1 (mod 2m) is a prime power then there exists a Steiner 

m-cycle system of K,,. 

Proof. Let /3 be a primitive element of GF(n). Then a Steiner m-cycle system of 
K,, is formed by the cycles 

(pi + ~, pi+(n-1)/m + (y, )6i++--lYm + (y, . . . , pi+@-l)(n--Wm + a) 

for 0 < i < (n - 1)/2m and for each field element (Y. 0 

The following 2-perfect 9-cycle system will be used in Section 4. 

Lemma 2.3. There exists a 2-perfect 9-cycle system of K,,. 
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Proof. Define a 2-perfect 9-cycle system ((00) U (Z, x Z13), C) as follows: 

C{(m> (0, O), (0, 3), (0, I), (1,4), (0,4), (1, S), (1, 2), (1, 0)) + (0, i), 

((0, O), (0, I), (095) (0,12), (1, O), (1, I), (0,4), (0,9), (1,7)) + (0, i), 

((0, O), (1,2), (1,7), (1,4), (0, S), (1,3), (1,12), (0,6), (1,5)) + (0, i) 1 

OGiC12) 

where c + (0, i) is the m-cycle formed by adding (0, i) to each vertex in c, 
reducing the second component modulo 13 and defining m + (0, i) = m. 0 

The constructions developed in Section 3 make use of commutative quasi- 
groups with holes of size 2, self-orthogonal quasigroups and self-orthogonal 
quasigroups with holes of size 2. 

Let H = { (0, l}, {2,3}, . . . , (2s - 2, 2.~ - l}}. The 2-element subsets in H are 
called holes. Let (Z,, a) be a commutative quasigroup with the property that, for 
each hole h E H, (h, *) is a subquasigroup; such a quasigroup is called a 
commutative quasigroup with holes H and of order 2 (it is common in other 
settings to leave the subquasigroup products undefined). A commutative quas- 
igroup with holes H = ((0, l}, (2, 3}, (4, 5}, (6, 7)) is shown in Fig. 1. 

Lemma 2.4 [l]. There exists a commutative quasigroup with holes H and of order 

2.~ for all s 2 3. 

A pair of quasigroups with the same holes H, say (Q, el) and (Q, m2) are 
orthogonal provided that when the partial latin squares obtained by deleting the 
symbols in the cells in h x h, h E H are superimposed, the resulting set of ordered 
pairs is precisely 

<Q x Q>\{<-G Y) ( {A Y> EHI; 

if, in addition, these partial latin squares are transposes of each other then (Q, a1) 
is a self -orthogonal quasigroup with holes H. 

Fig. 1 
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Lemma 2.5 [ll]. There exists a self-orthogonal quasigroup of order 2s + 1 for all s 

except s = 1. There exists a self -orthogonal quasigroup with holes H and of order 
2s for all s 2 4. 

3. Constructing 2-perfect m-cycle systems 

Recall that m = 2t + 1 is an odd integer. Define an m-sequence to be a 
sequence (ao, . . . , a2J of t + 1 distinct elements of Z, satisfying 

(1) a,_, = a,,, for 1 S 2 S t, 

(2) {a, - a,_, 1 z E Z,,,} = Z,, and 

(3) {a, - az-2 ) z E Z,> = Z,, 
where, of course, both the subscript x - y and the difference a, - aY are reduced 
modulo m. 

Example 3.1. (0, 2, 3, 7, 4, 7, 3, 2, 0) is a 9-sequence. (3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 

3) is an 11-sequence. 

Lemma 3.2. Zf m is a prime then there exists an m-sequence. 

Proof. Define an m-sequence (a,, . . . , a2r) by a, E Z, and a,_, = 

a I+X =x’(modm) for OGxCt. El 

We now define an m-cycle c(x, y, a, 0) where x, y E Z, and (Z,, 0) and (Z,, 0) 
are particular quasigroups. Let 

c(x, Y, 0) 0) = (h b0h h b,), . . . , ht, b2J) 

where (a,, a,, . . . , a2r) is an m-sequence and where for k 3 0, 

6, =xoy, 

b -b t+1+3k - t-2-3k = x~ 

b -b t+2+3k - t-l-3k = Yt 

b r+3k = x * Y, and 

br-3k = Y . X 

except that if m = 1 or 5 (mod 6) then we redefine b, = y, b, =x . y, b2,-, = y . x 

and b2r =x. 

Using the 9-sequence (0,2,3,7,4,7,3,2,0) from Example 3.1, when m = 9, 

c(x, y, *, 0) can be depicted as in Fig. 2, and using the 11-sequence (3, 5, 9, 4, 1, 
0, 1, 4, 9, 5, 3), when m = 11, c(x, y, ., 0) can be depicted as in Fig. 3, so 
hopefully these pictures will help the reader. 

The two important properties that c(x, y, ., 0) possesses are that for 1 s z G t, 
(i) if b,_, =x, y, x * y or y . x then b,,, is y, x, y . x orx . y respectively, and 

(ii) b,_, # 6,_,_, and b,_, # br-z-2. 

Clearly property (i) implies that c(x, y, ., 0) = c(y, x, -, 0). 
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Fig. 2 

Theorem 3.3. If there exists an m-sequence and a 2-perfect m-cycle system of K,,, 
then there exists a 2-petfect m-cycle system of K,, for all n = m (mod 2m) except 

possibly n = 3m. 

Proof. Let n = (2.~ + 1)m where s # 1. Let (Za+i, *) be a self-orthogonal 
quasigroup (see Lemma 2.5) and let (Z,,,, 0) be a commutative idempotent 
quasigroup. Let (ao, . . . , a2J be an m-sequence. Define a 2-perfect m-cycle 
system of K,, (Z, x Z&+i, C) as follows: 

(i) for each x E Z 2F+1 let (Z,,, x {x}, C,) be a 2-perfect m-cycle system of K,,, 
and let C, G C; and 

(ii) for each x, y E Za+i, x #y and for each j E Z,,, let c(x, y, *, 0) + (j, 0) be in 
C (where, of course, c(x, y, ., 0) + (j, 0) is formed by adding (j, 0) to each vertex 
of c(x, y, e, o), reducing the first component modulo m). 

To see that this defines an m-cycle system, consider the edge {(k, u), (1, v)}. If 
u = v then this edge occurs in an m-cycle in C,,. Suppose that u # V. By property 
(2) of m-sequences, there exists a w E Z, so that a, - a,_, = k - 1 (mod m). 

Replacing w = t - z and using property (1) of sequences shows that 

k - 1 = a,_, - a,_,_, = a,,, - a,,,,, (mod m). 

Therefore there exists a j so that k = a,_, + j and 1 = a,_,_, + j. Now, from 
property (i) of c(x, y, a, 0) If b,_, = x, y, x * y or y * x then b,,, is y, x, y - x or x . y 
respectively, and similarly for bt_z_-l and b,,,,,. Also from property (ii) of 

4, Y, mY o)Lz + b,+, and bf-_,-l + b,+z+l. So we have several cases to consider. 
If b,_, =x (or y) and bl_,_I = y (or x) then {(k, u), (I, v)} is in c(k, I, -, 0) + 

(j, 0). If b,_, =x and if bl_,_I =x . y (or y *x) then let a E Zl+l be the unique 

Fig. 3 
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element so that u - a = v (or a . u = v); {(k, u), (I, v)} is in c(u, a, *, 0) + (j, 0). If 
b,_, =x .y and b,_,_, =y -x then let a, b E Z2r+l be the unique elements 
satisfying a . b = u and b . u = u (this uses the self-orthogonality of (Z&+i, 0)); 
then {(k, u), (I, v)} is in c(u, b, *, 0) + (j, 0). If b,_, =xoy and b(_-,-, =x (so 

z = 0), then let a E Zh+i be the unique element so that vou = uo v = u; then 

{(k, u), (I, u)> is in c(a, u, e7 0). The remaining cases follow in the same way as 
the cases considered so far. 

To see that this defines a 2-perfect m-cycle system, one can apply the same 
argument as we just used except that property (3) of m-sequences is used instead 
of property (2), and then u~_,_~, u,+,+~, bt_r_2 and b,,,,, are considered instead 

of G-~, a,+,+,, k,-r and b,+,+l. 0 

Theorem 3.4. Zf there exists an m-sequence and a 2-perfect m-cycle system of 

K 2m+1 then there exists a 2-perfect m-cycle system for all n = 1 (mod 2m) except 
possibly n E (4m + 1, 6m + l}. 

Proof. Let n = 2sm + 1 where s $ (2, 3). Let (Z,, *) be a self-orthogonal 
quasigroup with holes H (see Lemma 2.5) and let (Z,, 0) be a commutative 
quasigroup with holes H (see Lemma 2.4). Let (uo, . . . , u2t) be an m-sequence. 
Define a 2-perfect m-cycle system of K,, ((00) U (Z, x Z,), C) as follows: 

(i) for each h E H let ((03) U (Z,,, X h), C,) b e a 2-perfect m-cycle system of 
K 2m+l and let C, G C; and 

(ii) for each x, y E Zti that belong to different holes of H, and for each j E Z, 
let c(x, y, *, 0) + (j, 0) be in C. 
The proof that this indeed defines a 2-perfect m-cycle system of K,, is almost 
identical to the proof of Theorem 3.3. •i 

Corollary 3.5. Zf m is a prime and if 2m + 1 is a prime power then the spectrum for 

2-perfect m-cycle systems is n = 1 or m (mod 2m) except possibly for n E 

{3m, 4m + 1,6m + 1). 

Proof. By Lemmas 2.1 and 2.2 there exist 2-perfect m-cycle system of K, and of 
K 2m+1. By Lemma 3.2 there exists an m-sequence. Therefore, by Theorems 3.3 
and 3.4 there exist 2-perfect m-cycle system of K,, for all n = 1 or m (mod 2m) 

except possibly for n E {3m, 4m + 1, 6m + l}. The result follows since the 
necessary conditions (Nl), (N2) and (N3) require that n = 1 or m (mod 2m). q 

Corollary 3.6. The spectrum for 2-perfect 11-cycle systems of K, is n = 1 or 
11 (mod 22) except possibly for n E (33, 45). The spectrum for 2-perfect 13-cycle 
systems of K,, is n = 1 or 13 (mod 26) except possibly for n = 39. 

Proof. By Lemma 3.2 there exist an 11-sequence and a 13-sequence. By Lemmas 
2.1 and 2.2 there exist 2-perfect 11-cycle systems of K,,, Ku and K6, and there 
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exist 2-perfect 13-cycle system of K13, K2,, K53 and KT9. Therefore the result 
follows from Theorems 3.3 and 3.4. 0 

4. Conclusions 

The careful reader might at first wonder why the case when m = 9 has not been 
considered, especially since Example 3.1 exhibits a 9-sequence. The answer is 
that there is no 2-perfect 9-cycle system of KS. One method of settling the 
spectrum problem for 2-perfect 9-cycle systems of K, would simply (!) be to find a 
2-perfect 9-cycle system of Kz7 - K,; that is, of the graph on 27 vertices in which 
all pairs of vertices are adjacent except for pairs occurring in a distinguished set of 
9 vertices (here we are using the obvious generalization to 2-perfect m-cycle 
systems of graphs other than K,). Together with the 2-perfect 9-cycle system of 
K2, exhibited in Lemma 2.3, this would completely solve the spectrum problem 
for 2-perfect 9-cycle systems. 

Using this more general notation of 2-perfect m-cycle systems of a graph G, 
one could regard the cycles c(n, y, *, 0) in Theorems 3.3 and 3.4 as forming 
2-perfect m-cycle systems of KE+’ and of K;m respectively (K; is the complete 
y-partite graph with x vertices in each part). As when considering the spectrum 
problem for m-cycle systems [3], results concerning 2-perfect m-cycle systems of 
K, - K,, can be used in conjunction with such decompositions of KE+’ and of K&,, 

to great effect. 
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