reduce the second drug to P1 and U1 may have been generated via different mechanisms, given that the two drugs had varying effects on sperm incorporation and pronuclear differentiations. Moreover, confocal imaging revealed Ca2+ oscillations were blocked by U7 but not by P2. Collectively, such data fail to support the view that SFK signaling is required for either GVBD or for initiating fertilization-induced Ca2+ oscillations in Cerebratulus and instead suggest that P2-mediated inhibitions of polar body formation and cleavage involve undetermined drug effects on processes other than oscillation generation.

doi:10.1016/j.ydbio.2010.05.352

Program/Abstract # 342
The mammalian Doublesex homolog DMRT1 controls the mitosis versus meiosis decision in males
David Zarkowera, Clinton K. Matsonb, Mark W. Murphya, Anthony D. Krentza, Shohei Yoshidab, Vivian J. Bardwella
aDepartment of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
bNational Institute of Basic Biology, Okazaki, Aichi 444-8787 Japan

Germ cells are uniquely capable of undergoing either mitotic divisions, like other cells, or meiotic divisions that permit gametogenesis. In mammals meiosis is triggered by retinoic acid (RA), which activates genes including the meiotic inducer Stra8. Fetal males avoid meiosis by degrading RA in the fetal testis. When meiosis begins in males at puberty it requires RA and Stra8, but how these are controlled in spermatogenesis has been unknown. We have found that the Doublesex-related transcription factor DMRT1 determines whether spermatogonia undergo meiosis or initiate meiosis. Spermatogonia lacking DMRT1 have abnormally active RA signaling and prematurely enter meiosis, independent of the normal spermatogenic cycle. Chromatin immunoprecipitation and other approaches show that control of meiotic initiation by DMRT1 involves direct transcriptional regulation of key RA metabolic enzymes and Stra8. Analysis of vitamin A depleted animals that lack RA reveals that DMRT1 also controls at least one retinoid-independent meiotic inducer. These results establish DMRT1 as an essential and direct regulator of the mitosis versus meiosis switch. The DM domain gene family to which DMRT1 belongs is deeply conserved in metazoan sexual regulation, including our findings also may have implications for meiotic control outside of mammals.

doi:10.1016/j.ydbio.2010.05.353

Program/Abstract # 343
The RNA-binding protein Nano2 is required to maintain spermatogonial stem cells
Aiko Sadaa, Atsushi Suzuki, Hitomi Suzuki, Yumiko Sagan
aDept. of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
bIRC, Yokohama National Univ., Hodogaya-ku, Yokohama, Japan
cDept. of Biological Sciences, Tokyo Univ., Bunkyo-ku, Tokyo, Japan
dDivision of Mammalian Development, NIG, Mishima, Shizuoka, Japan

In mice, spermatogenesis is initiated from a small number of stem cells belonging to undifferentiated spermatogonia. However, it remains unclear 1) which types of spermatogonia actually act as the stem cells and 2) how is the stem cell function regulated. Nanos, a zinc-finger RNA-binding protein, has been proposed as a conserved factor for germline stem cell function. In adult testes, Nanos2 is predominantly expressed in a subset of undifferentiated spermatogonia. However, the majority of Nano2-null germ cells die by apoptosis before birth, hindering functional studies of Nano2 during spermatogenesis. With the use of transgenic mouse strategies, I found that the RNA-binding protein Nanos2 is a key regulator for the maintenance of spermatogonial stem cells. Lineage-tracing analyses revealed that Nano2-expressing spermatogonia self-renew and generate the entire spermatogenic cell lineage. Conditional disruption of postnatal Nano2-depleted spermatogonial stem cell reserves, whereas mouse testes in which Nano2 had been overexpressed accumulated spermatogonia with undifferentiated, stem cell-like properties. Thus, Nano2 is expressed in self-renewing spermatogonial stem cells and maintains the stem cell state during murine spermatogenesis.

doi:10.1016/j.ydbio.2010.05.354

Program/Abstract # 344
Inhibitory action of Xenopus dicalcin on sperm–egg interaction during fertilization
Naofumi Miwaa, Motoyuki Ogawab, Yoshiki Hiraokac, Ken Takamatsua, Kaarlo Hinkkalaa,b, Aaron Taylorb, Gregory VandenHeuvelb
aDept. of Biology, Dordt College, Sioux Center, IA, USA
bDept. of Anatomy and Cell Biology, Univ. Kansas Med. Center, Kansas City KS, USA

eXenopus dicalcin is localized markedly in the egg-coating envelope (called vitelline envelope; VE), and exhibits a Ca2+-dependent binding to two glycoproteins that constitute polymeric filaments of VE. Since these VE glycoproteins are considered to function as sperm-receptors, we examined the effect of dicalcin on sperm–VE binding, sperm–VE penetration, and fertilization in vitro. Preincubation of Xenopus