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1. Introduction

We consider the nonlinear wave equation

∂2
t u = ∂2

x u − u + u3 (1)

with t � 0, x ∈ R, and u = u(x, t) ∈ R. For this equation the ansatz

u(x, t) = εA(X, T )ei(kx−ωt) + c.c. +O
(
ε2), X = ε(x − ct), T = ε2t, (2)
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where k,ω ∈ R satisfy the linear dispersion relation ω2 = k2 + 1, where c = dω/dk = k/ω is the linear group velocity, and
where 0 < ε � 1 is a small perturbation parameter, leads to the nonlinear Schrödinger (NLS) equation

2iω∂T A = (
1 − c2)∂2

X A + 3|A|2 A

describing slow modulations in time and space of the underlying carrier wave ei(kx−ωt) . This procedure is common in
nonlinear optics and allows one to reduce the dimension of the problem in numerical simulations by a factor up to 105,
cf. [1]. In modern fiber optics, however, not only a single carrier wave, but a number of different carrier waves is used,
cf. [5].

In the particular case of two different carrier waves, i.e., kA �= kB , the ansatz is given by

u(x, t) = εA
(
ε(x − c At), ε2t

)
ei(kA x−ωAt) + εB

(
ε(x − cBt), ε2t

)
ei(kB x−ωB t) + c.c. +O

(
ε2),

leading to a system of coupled NLS equations

2iωA∂T A = (
1 − c2

A

)
∂2

X A
A + 3A|A|2 + 6A|B|2,

2iωB∂T B = (
1 − c2

B

)
∂2

XB
B + 3B|B|2 + 6B|A|2.

Since X A = ε(x − c At) = ε(x − cBt) − ε(c A − cB)t = XB − c A−cB
ε T and since the group velocities c A �= cB of the wave packets

are different, this system has still the multiple scale character of the original problem. However, the interaction of localized
wave packets will only happen on a very short time scale, such that asymptotically the interaction terms

6A(X A, T )
∣∣B(XB , T )

∣∣2 = 6A(X A, T )

∣∣∣∣B

(
X A − (cB − c A)

ε
T , T

)∣∣∣∣
2

and

6B(XB , T )
∣∣A(X A, T )

∣∣2 = 6B(XB , T )

∣∣∣∣A

(
XB − (c A − cB)

ε
T , T

)∣∣∣∣
2

are negligible. As a consequence, in lowest order we have a system of uncoupled NLS equations

2iωA∂T A = (
1 − c2

A

)
∂2

X A
A + 3A|A|2,

2iωB∂T B = (
1 − c2

B

)
∂2

XB
B + 3B|B|2,

or, in other words, each band is described independently by a single NLS equation.
In applications the neglection of the coupling terms is a common procedure, cf. [1]. There exist a number of mathematical

papers [2,3,9] which validate this procedure rigorously. Our research is dedicated to an improvement of existing estimates
for wave interaction aiming towards applications in optical communication lines which use wavelength division multiplexing
technologies, cf. [5].

In our previous work [3] we presented improved bounds for two waves modulated by NLS 1-solitons (in the following
called well-prepared pulses, see Fig. 1). Here, we further extend our results to waves whose envelopes are general localized
profiles evolving according to the NLS equation (in the following called non-well-prepared pulses, see Fig. 1). We show for
these general wave packets that the interaction leads to an O(ε)-phase shift of the carrier wave and to an O(ε)-shift of
the envelope. Thus, we improve the bound for the possible envelope shift caused by the interaction of general localized
NLS-described wave packets from O(1), cf. [9], to O(ε) and generalize the O(ε)-bound for the interaction of wave packets
with NLS 1-solitons as envelope to general NLS-described wave packets. Moreover, we prove the validity of a formula for
the envelope shift caused by the interaction of general wave packets.

In the same spirit there are approximation results describing the interaction of KdV-described long waves by higher-order
approximations in FPU-lattices [7], in Boussinesq models [12], and in the water wave problem [13].

Notation. Many possibly different constants which can be chosen independently of 0 < ε � 1 are denoted by C . The space
Hs(m) consists of s-times weakly differentiable functions for which ‖u‖Hs(m) = ‖uρm‖Hs = (

∑s
j=0

∫ |∂ j
x (uρm)|2 dx)1/2 with

ρ(x) = √
1 + x2 is finite, where we do not distinguish between scalar and vector-valued functions or real- and complex-

valued functions. The space C s
b consists of s-times continuously differentiable functions for which ‖u‖C s

b
= ∑s

j=0 supx∈R |∂ j
x u|

is finite. We sometimes write, e.g., ‖u(x)‖C s
b

for the C s
b-norm of the function x �→ u(x).

2. Approximate description of internal and interaction dynamics

In this and in the next section we derive approximation equations in order to describe the internal and interaction
dynamics of the wave packets. In order to make the concept of internal and interaction dynamics more precise let St be the
nonlinear evolution operator of the nonlinear wave equation (1). The evolution St(u A) of one single initial wave packet u A is
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Fig. 1. Left: A well-prepared pulse. The envelope (dashed line) is an NLS 1-soliton. Right: A non-well-prepared pulse. The envelope (dashed line) can be
anything “pulse like.” Here we chose an almost rectangular envelope.

called internal dynamics. The solution to the sum of two single initial wave packets u A and uB evolves as St(u A + uB). The
interaction dynamics is then the difference St(u A + uB) − St(u A) − St(uB). It is the purpose of this paper to give a precise
description of this difference. We are especially interested in improved estimates for carrier and envelope shifts caused by
the interaction.

In the following we consider two NLS-described wave packets u A and uB which are spatially localized, i.e. for the
envelope A there exist C > 0 and m ∈ N such that |A(x)| � C/(1 + |x|)m, x ∈ R, or more precisely, A ∈ Hs(m), s > 1/2.

Approximate description of internal dynamics. In the case of one single wave packet with a wavenumber kA the dynamics
can be described approximately by the ansatz (2). By adding higher-order terms to the ansatz the formal error, or more
precisely the later introduced residual, can be made arbitrarily small. The NLS equation is then accompanied by a system of
linear PDEs and algebraic equations.

Approximate description of interaction dynamics. In the case of two-wave propagation the nonlinearity leads to an interac-
tion between the wave packets which in turn result in a modification of the pure internal dynamics. We improve the ansatz
from [3] and seek solutions of the form

εΨ = (
εA1 + ε2 A2 + ε3 A3

)
E + (

εB1 + ε2 B2 + ε3 B3
)

F + c.c. + ε3Mmixed (3)

where the term Mmixed serves to cancel mixed and higher-order harmonic terms in the formal error and where

E = exp
(
i
(
kA x − ωAt + εΩA,1(Z B , T ) + ε2ΩA,2(Z B , T )

))
,

F = exp
(
i
(
kB x − ωBt + εΩB,1(Z A, T ) + ε2ΩB,2(Z A, T )

))
,

Z A = ε
(
x − c At + εψA(XB , T )

)
, (4)

Z B = ε
(
x − cBt + εψB(X A, T )

)
, (5)

A j = A j(Z A, T ), B j = B j(Z B , T ), X A = ε(x − c At), XB = ε(x − cBt). (6)

The internal dynamics of the wave packets will be described by the variables A j, B j , j = 1,2, whereas the interaction
dynamics is described by the phase shifts ΩA, j,ΩB, j , j = 1,2 and the envelope shifts ψA , ψB .

Remark 2.1. a) The ansatz (3) is more general than the one in [3] where we essentially chose A1 and B1 in the form of
NLS 1-solitons. Here we allow A1 and B1 to be more general solutions of the respective NLS equation, see Fig. 1. This then
requires the introduction of ε2 A2 E , ε2 B2 F to describe the internal dynamics.

b) The phase shifts ΩA,1, ΩB,1 turn out to be real functions. In order to describe the interaction dynamics in more detail
than in [3] we additionally introduce phase shift corrections ΩA,2, ΩB,2, which turn out to have an imaginary component,
and the envelope shifts ψA , ψB . These last ones have already been introduced in earlier works like [8] or [11] where they
are called pulse shifts. Our aim is to validate formulas for the envelope shifts by rigorous estimates.

c) Furthermore, we change the notation: The variables Y A , Y B from [3] are now called A3, B3, whereas A3, B3 from [3]
are here contained in the term Mmixed.

d) Finally, in the following we replace the arguments XB , X A of ψA , ψB by Z B , Z A . More rigorously we may define Z A ,
Z B implicitly by

Z A = ε
(
x − c At + εψ̃A(Z B)

)
, Z B = ε

(
x − cBt + εψ̃B(Z A)

)
. (7)
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Then ψA and ψ̃A respectively ψB and ψ̃B differ by O(ε) terms which we may discard for our purposes. Therefore, from
now on we write Z B , Z A for the arguments of ψA , ψB , respectively.

Remark 2.2. At this point the notion of an envelope shift is somewhat ambiguous since by Taylor-expansion w.r.t. ψA and ψB
we have with X A = ε(x − c At), XB = ε(x − cBt),

εΨ (x, t) = (
εA1(X A, T ) + ε2 A2(X A, T ) + ε3(A3(X A, T ) + ψA∂1 A1(X A, T )

))
E

+ (
εB1(XB , T ) + ε2 B2(XB , T ) + ε3(B3(XB , T ) + ψB∂1 B1(XB , T )

))
F + h.o.t.

The terms ε2 A2 and ε2 B2 do not contribute to envelope shifts caused by interaction since they are determined by internal
dynamics of the individual pulses (see (12)). The term A3 is of the same order as the envelope shift term ∂1 A1ψA , i.e., it ac-
counts for both internal and interaction dynamics, but it is neither clear to which amount A3 describes the interaction, nor
in which way—as phase or envelope correction. In other words, it has to be checked, if the derived formulas really quantify
the entire envelope shift in the particular order. The validity of the envelope shift formula is investigated numerically in
Section 5 and explained analytically in Section 6. This expansion obviously gives an O(ε)-bound for the envelope shift if we
can prove an O(ε3)-bound in L∞ for the terms indicated with h.o.t. and an O(1)-bound for A3 and B3. Then the vertical
bound O(ε3) only allows a ‘horizontal error’ of O(ε). The required bounds will be proven in Proposition 4.3 and Lemma 4.7.

Remark 2.3. Since ImΩA,2, ImΩB,2 are supposed to describe interaction dynamics we may assume that ΩA,2 = ΩB,2 = 0
initially. Moreover, due to the fact that ImΩA,2 and ImΩB,2 turn out to be spatially localized, E and F contain only phase
shifts for |x| → ∞, i.e. ImΩA,2 and ImΩB,2 play no role for the envelope shift. In detail, in Lemma 4.6 we prove the O(1)-
boundedness of ΩA,1, ΩB,1, ReΩA,2 and ReΩB,2 in L∞ and that ImΩA,2 and ImΩB,2 are O(1)-bounded in Hs(m). Thus,
for instance, |ImΩA,2(Z B , T )| � C/(1 + ε|x − cBt|)m due to Sobolev’s embedding theorem for s > 1/2. For the same reason
we have |A j(Z A, T )| � C/(1 + ε|x − c At|)m and so, for large t , i.e. for t > 1/ε,

∣∣A j(Z A, T )
∣∣ ImΩA,2(Z B , T ) =O

(
(εt)−m)

.

Moreover, for well-prepared pulses |A j(Z A, T )|Im ΩA,2(Z B , T ) is exponentially small. According to the last remark,
|A j(Z A, T )|ImΩA,2(Z B , T ) has to be o(ε), except during interaction. Thus we require (εt)−m = O(ε1+δm) with δ > 0 ar-
bitrary small but fixed. This yields t ∼ ε−(1+1/m+δ) � ε−2 for m � 2. In summary, for C1ε

−(1+1/m+δ) � t � C2ε
−2 the

corrections Im ΩA,2 and ImΩB,2 play no role for the envelope shifts. In case of well-prepared pulses this can be sharpened
to C1 ln(ε)ε−1 � t � C2ε

−2.

3. Derivation of approximation equations

The so-called residual

Res(εΨ ) = −∂2
t (εΨ ) + ∂2

x (εΨ ) − (εΨ ) + (εΨ )3 (8)

describes how much an ansatz εΨ fails to satisfy the nonlinear wave equation (1). Plugging the ansatz (3) into the residual

Res(εΨ ) =
∑
l,m,n

εl Resl,m,n Em F n (9)

leads to a number of conditions in order to make the residual as small as possible, in particular to nonlinear Schrödinger
equations for A1 and B1. (9) is a definition for the terms Resl,m,n which are the coefficients in an expansion of the residual
w.r.t. εl Em F n .

Remark 3.1. The term Mmixed = Mmixed(A1, A2, A3, B1, B2, B3, E, F ) in (3) accounts for terms involving higher-order or
mixed harmonics, i.e. for the frequencies which are generated by the nonlinearity according to the formula

(
εA1 E + ε2 A2 E + ε3 A3 E + εB1 F + ε2 B2 F + ε3 B3 F + c.c.

)3 =
∑

k1+...+k12=3,k j�0

3!
k1! · · ·k12! (εA1 E)k1 · · · (ε3 B3 F

)k12
,

however without the nonlinear terms generated at E or F . At ε3 E2 F for example the term A2
1 B1 appears. To cancel this

term we extend the ansatz by α21ε
3 A2

1 B1 E2 F and get an algebraic equation for α21 of the form
(
1 + (2iωA + iωB)2 + (2ikA + ikB)2)α21 = 3.

The procedure is essentially the same for each such term leading to equations of the form
(
1 + (lωA + jωB)2 + (lkA + jkB)2)αl j = βl j .

Now Mmixed contains all these extensions. Thus, we can concentrate on the remaining terms of the residual.
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Remark 3.2. Since A j , j = 1,2,3, depend on the same variables and belong to the same harmonic, the subsequent hierarchy
of conditions (10)–(15) reappears shifted in order, i.e. the residual actually contains much more terms, for example ε j(−k2

A +
ω2

A − 1)A j(Z A, T )E , j = 1,2,3, which we only list for j = 1. Hence choosing the dispersion relation as solvability condition
cancels all these terms. The exact same mechanism holds for the entire system of Eqs. (10)–(15), so we tacitly left out
repeated terms to simplify the exposition.

Using the notation Resl,m,n from (9) for the coefficients of εl Em F n we find the subsequent hierarchy of equations.

• At εE we find

Res1,1,0 = (−k2
A + ω2

A − 1
)

A1(Z A, T )
!= 0

which yields the linear dispersion relation

ω2
A = k2

A + 1.

• At ε2 E we find

Res2,1,0 = 2i(kA − c AωA)∂1 A1(Z A, T )
!= 0

which yields the linear group velocity

c A = kA/ωA .

• At ε3 E we find

Res3,1,0 = s31 + s32

with

s31 = 2iωA∂2 A1(Z A, T ) + (
1 − c2

A

)
∂2

1 A1(Z A, T ) + 3
∣∣A1(Z A, T )

∣∣2
A1(Z A, T ),

s32 = (
2(ωAcB − kA)(Z A, T )∂1ΩA,1(Z B , T ) + 6

∣∣B1(Z B , T )
∣∣2)

A1(Z A, T ).

Then s31
!= 0 yields the NLS equation

−2iωA∂2 A1(Z A, T ) = (
1 − c2

A

)
∂2

1 A1(Z A, T ) + 3
∣∣A1(Z A, T )

∣∣2
A1(Z A, T ), (10)

and s32
!= 0 yields the phase shift formula

ΩA,1(Z B , T ) = 3

kA − ωAcB

Z B∫ ∣∣B1(ζ, T )
∣∣2

dζ, (11)

so ΩA,1 is a real quantity and therefore a pure phase correction.
• At ε4 E we find

Res4,1,0 = 2ωA i∂2 A2(Z A, T ) + (
1 − c2

A

)
∂2

1 A2(Z A, T ) + s41 + s42 + s43 + s44 + s45 + s46

where

s41 = (
6A2(Z A, T )A1(Z A, T ) + 3A2(Z A, T )A1(Z A, T )

)
A1(Z A, T ),

s42 = 2c A∂1∂2 A1(Z A, T ),

s43 = 6
(

B2(Z B , T )B1(Z B , T ) + B2(Z B , T )B1(Z B , T )
)

A1(Z A, T ),

s44 = −2ωA A1(Z A, T )∂2ΩA,1(Z B , T ),

s45 = 2i∂1 A1(Z A, T )
(
(kA − cBωA)∂1ψA(Z B , T ) + (1 − c AcB)∂1ΩA,1(Z B , T )

)
,

s46 = (
i
(
1 − c2

B

)
∂2

1 ΩA,1(Z B , T ) + 2∂1ΩA,2(Z B , T )(ωAcB − kA)
)

A1(Z A, T ).

We are now left with a linear inhomogeneous evolution equation for A2,

−2ωA i∂2 A2(Z A, T ) = (
1 − c A

2)∂2
1 A2(Z A, T ) + s41 + s42. (12)

Here, no coupling with terms involving B-variables occurs such that A2 describes internal dynamics of a single pulse.
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The terms in s45 together with (11) give the envelope shift formula

ψA(Z B , T ) = 3(1 − c AcB)

(cBωA − kA)2

Z B∫ ∣∣B1(ζ, T )
∣∣2

dζ. (13)

The terms in s43 + s44 + s46 yield the second-order correction to the phase shift in the form

∂1ΩA,2(Z B , T ) = 1

2(kA − ωAcB)

(
i
(
1 − c2

B

)
∂2

1 ΩA,1(Z B , T ) − 6
(

B2(Z B , T )B1(Z B , T ) + B2(Z B , T )B1(Z B , T )
)

+ 2ωA∂2ΩA,1(Z B , T )
)
. (14)

This equation is separated in real and imaginary part, i.e.,

ReΩA,2(Z B , T ) =
Z B∫

1

2(kA − ωAcB)

(−6
(

B2(ζ, T )B1(ζ, T ) + B2(ζ, T )B1(ζ, T )
) + 2ωA∂2ΩA,1(ζ, T )

)
dζ,

ImΩA,2(Z B , T ) = 1

2(kA − ωAcB)
i
(
1 − c2

B

)
∂1ΩA,1(Z B , T ) = 3i(1 − c2

B)

2(kA − ωAcB)2

∣∣B1(Z B , T )
∣∣2

.

Only ReΩA,2 gives a phase correction, while Im ΩA,2 is an amplitude correction, which however is algebraically small
w.r.t. ε except during the collision of wave packets. In order to have an O(1)-bound of ReΩA,2(Z B , T ) subsequently
in L∞ we need that all terms under the integral

∫ Z B . . . dζ are spatially localized. This is clear for all terms except
∂2ΩA,1(ζ, T ). However, using the NLS equation (10) for B1 and the representation formula (11) for ΩA,1 we find that

∂2ΩA,1(Z B , T ) = i
3(1 − c2

A)

2ωA(kA − ωAcB)

(
∂1 B1(Z B , T )B1(Z B , T ) − ∂1 B1(Z B , T )B1(Z B , T )

)

is also spatially localized.
• At ε5 E we find

Res5,1,0 = 2ωA i∂2 A3(Z A, T ) + (
1 − c2

A

)
∂2

1 A3(Z A, T ) + s51 + s52 + s53 + s54 + s55 + s56

where

s51 = (
6A3(Z A, T )A1(Z A, T ) + 3A3(Z A, T )A1(Z A, T )

)
A1(Z A, T ),

s52 = −∂2
2 A1(Z A, T ) + 2c A∂1∂2 A2(Z A, T ),

s53 = 6A1(Z A, T )
∣∣A2(Z A, T )

∣∣2 + 3A2
2(Z A, T )A1(Z A, T ),

s54 = 6
(

B3(Z B , T )B1(Z B , T ) + B3(Z B , T )B1(Z B , T )
)

A1(Z A, T ),

s55 = (
1 − c2

B

)
∂1 A1(Z A, T )∂2

1 ψA(Z B , T ) + 2(1 − c AcB)∂2
1 A1(Z A, T )∂1ψA(Z B , T )

+ i
[(

1 − c2
B

)
A1(Z A, T )∂2

1 ΩA,2(Z B , T ) + 2(1 − c AcB)∂1 A1(Z A, T )∂1ΩA,2(Z B , T )
]

+ (
c2

B − 1
)

A1(Z A, T )
(
∂1ΩA,1(Z B , T )

)2
,

s56 = −2ωA A1(Z A, T )∂2ΩA,2(Z B , T ) + 6
∣∣B2(Z B , T )

∣∣2
A1(Z A, T )

+ 2i
[
cB∂2 A1(Z A, T )∂1ΩA,1(Z B , T ) + c A∂1 A1(Z A, T )∂2ΩA,1(Z B , T ) + cB A1(Z A, T )∂1∂2ΩA,1(Z B , T )

+ iωA∂1 A1(Z A, T )∂2ψA(Z B , T )
]
.

The terms s51, s52 and s53 describe internal dynamics, whereas s54, s55 and s56 are interaction terms in the same sense
as s43 and s44. We choose A3 to satisfy the linear PDE

−2iωA∂2 A3(Z A, T ) = (
1 − c2

A

)
∂2

1 A3(Z A, T ) + M0[A3, B3] + I(A1, A2, B1, B2,ΩA,ψA) (15)

where M0[A3, B3] = s51 + s54 is linear in its arguments and I(A1, A2, B1, B2,ΩA,ψA) = s52 + s53 + s55 + s56 contains
inhomogeneous terms which are O(1) bounded on the O(1/ε2)-time scale if A1, . . . ,ψB are O(1) bounded (up to
second derivatives for A1, B1).

Finally we choose B1, B2, B3, ΩB,1, ΩB,2, and ψB to satisfy the counterparts to (10)–(15).

Summary. The hierarchy of approximation equations consist of the linear dispersion relation and the relation for the linear
group velocity,

ω2
A = k2

A + 1, c A = kA/ωA,
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the NLS-equation, two inhomogeneous linear Schrödinger-equations

−2iωA∂2 A1(Z A, T ) = (
1 − c2

A

)
∂2

1 A1(Z A, T ) + 3
∣∣A1(Z A, T )

∣∣2
A1(Z A, T ),

−2ωA i∂2 A2(Z A, T ) = (
1 − c A

2)∂2
1 A2(Z A, T ) + s41 + s42,

−2iωA∂2 A3(Z A, T ) = (
1 − c2

A

)
∂2

1 A3(Z A, T ) + M0[A3, B3] + I(A1, A2, B1, B2,ΩA,ψA),

the phase shift formula, a second-order correction to phase shift and amplitude, and finally the envelope shift formula

ΩA,1(Z B , T ) = 3

kA − ωAcB

Z B∫ ∣∣B1(ζ, T )
∣∣2

dζ,

∂1ΩA,2(Z B , T ) = 1

2(kA − ωAcB)

(
i
(
1 − c2

B

)
∂2

1 ΩA,1(Z B , T ) − 6
(

B2(Z B , T )B1(Z B , T ) + B2(Z B , T )B1(Z B , T )
)

+ 2ωA∂2ΩA,1(Z B , T )
)
,

ψA(Z B , T ) = 3(1 − c AcB)

(cBωA − kA)2

Z B∫ ∣∣B1(ζ, T )
∣∣2

dζ.

Remark 3.3. Introducing higher-order corrections ε3ΩA,3, ε3ΩB,3 to the phase and higher-order corrections ε2ψA,2,
ε2ψB,2 to the envelope shift would give similar equations as the ones for ΩA,2 or ψA . However, there are three
terms in the equation of A3 which cannot be classified in this way, namely 2(1 − c AcB)∂2

1 A1(Z A, T )∂1ψA(Z B , T ),
−2ωA A2(Z A, T )∂2ΩA,1(Z B , T ), and 2icB∂2 A1(Z A, T )∂1ΩA,1(Z B , T ). Moreover, ψA,2 is proportional to ΩA,2, i.e. can become
imaginary. Hence the introduction of these correction terms would be of no use.

4. Validity of the approximation

As a consequence of the perturbation analysis of the last section the first nonvanishing terms in the residual are formally
of order O(ε6). Below we will prove the following:

Lemma 4.1. Let s � 2, m � 2, sA � s + 10, kA �= kB , kA,kB > 0, and let A1|T =0, B1|T =0 ∈ HsA (m) ∩ HsA+m(0). Then for all T0 > 0
there exist ε0 > 0, C > 0 such that for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε2]

∥∥Res(εΨ )
∥∥

Hs � Cε11/2.

The difference between the exponents of the formal error O(ε6) and O(ε11/2) in the lemma follows from the scaling
properties of the L2-norm. The weighted spaces Hs(m) are used to describe analytically the condition that the wave packets
are spatially localized. This is needed to estimate the interaction terms like for instance s43 and s44. The loss of regularity
from sA to s is explained below.

As a direct consequence of Lemma 4.1 and of the fact that our original system (1) does not contain quadratic terms,
with a simple application of Gronwall’s inequality [6] it follows that the original system really behaves as predicted by the
approximation.

Theorem 4.2. (Similar to [3, Theorem 3.6].) Under the assumptions of Theorem 4.2, for all T0 > 0 there exist ε0 > 0, C > 0 such that
for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε2]

∥∥u(x, t) − εΨ (x, t)
∥∥

Hs � Cε7/2.

From Theorem 4.2 we obtain Sobolev’s embedding theorem.

Proposition 4.3. Under the assumptions of Theorem 4.2 we have

sup
t∈[0,T0/ε2 ]

∥∥u(x, t) − εΨ (x, t)
∥∥

C s−1
b

� ε7/2. (16)

As explained in Remark 2.2 this last estimate together with the subsequent Lemma 4.7 allows us to bound the magnitude
of the envelope shift by Cε.

Hence it remains to give the proof of Lemma 4.1. The assertion obviously follows if we prove that the approximation
equations (10)–(15) possess order O(1)-bounded solutions on the O(1/ε2)-time scale. We have to solve three different
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kinds of equations. The first set of equations, (10) and (12), describes internal dynamics. Since these two equations are
independent of the small parameter 0 < ε � 1 we have

Lemma 4.4. Under the assumptions of Theorem 4.2 there exists a time T0 > 0 such that (10) has a unique solution

A1 ∈ C
([0, T0], HsA (m) ∩ HsA+m(0)

)
.

Proof. We apply the variation of constant formula and use the fact that i∂2
X is the generator of a strongly continuous

semigroup in HsA (m) ∩ HsA+m(0), cf. [4]. �
Note that T0 is independent of the weight. This can be proven like in [10, Lemma 6.4] such that the existence time is

determined only by the local existence and uniqueness in Hs-spaces. For completeness we remark that the time T0 > 0 can
be made arbitrary large by using the global well-posedness [14] in the space L2 which implies the global well-posedness in
Hs-spaces for every s � 0.

Since (12) is a linearized NLS equation for A2 with O(1)-bounded inhomogeneous terms s41 + s42 with exactly the same
arguments we find

Lemma 4.5. Under the assumptions of Theorem 4.2 the following holds. Let A1 ∈ C([0, T0], HsA (m)∩ HsA+m(0)) be a solution of (10).
Then for all initial conditions A2|T =0 ∈ HsA (m) ∩ HsA+m(0) there exists a unique solution of (12) with

A2 ∈ C
([0, T0], HsA−3(m) ∩ HsA−3+m(0)

)
.

The loss of regularity for A2, B2 comes from the inhomogeneous term s42 in (12). The second group of equations, namely
(11), (13), and (14), describes the essential interaction dynamics. By pure integration we find

Lemma 4.6. Under the assumptions of Theorem 4.2 the following holds. Let A1, B1 ∈ C([0, T0], HsA (m) ∩ HsA+m(0)) be a solution
of (10). Then

∂1ΩA,1, ∂1ΩB,1, ∂Z B ψA, ∂Z A ψB , ImΩA,2, ImΩB,2 ∈ C
([0, T0], HsA (m) ∩ HsA+m(0)

)
,

and ΩA,1,ΩB,1,ReΩA,2,ReΩB,2,ψA,ψB ∈ C([0, T0], C sA+m
b ).

In terms of local existence and uniqueness and O(1)-boundedness of solutions the only nontrivial equation is (15) which
is a linearized NLS equation for A3 with O(1)-bounded inhomogeneous terms and terms ε−1(s43 + s44). Since the last terms
are only O(ε−1) on an O(ε)-scale w.r.t. T we find

Lemma 4.7. Assume the conditions of Theorem 4.2. Then there exists C > 0 such that for all ε ∈ (0,1] the following holds. System (15)
with zero initial data has a unique solution A3, B3 ∈ C([0, T0], HsA−6(m) ∩ HsA−6+m(0)). It satisfies

sup
0�T �T0

∥∥(A3, B3)(T )
∥∥

HsA −6(m)∩HsA −6+m(0)
� C .

Proof. See [3, Lemma 4.2]. �
Due to the term ∂1∂2 A1 in the equation for A2 we have a loss of regularity from A1 to A2 of three derivatives. Similarly,

the loss of regularity of another three derivatives for A3, and B3 comes from the term s52. Finally, the terms with the
highest derivative in the residual are ∂2

2 A3 and ∂2
2 B3 which gives another loss of four derivatives. Consequently, we have to

choose sA − s � 10.

5. Numerical simulations

Before we discuss the validity of the envelope shift formula (13) we provide some numerical experiments to confirm
and illustrate the above analysis. The initial value of the numerical solution is defined on a large grid of equally spaced
points xm , m ∈ 1, . . . , N , and is defined as

unum(xm,0) = εΨ (xm,0), (17)

where εΨ (x, t) is defined in (3). The numerical solution is generated at equally spaced values of time tn , n ∈ N, by inte-
grating (1). The numerical scheme used is accurate enough so that the true differences between the analytical approximate
solutions and the actual (numerical in this case) solution can be detected. The scheme also conserves energy which is neces-
sary to have precise estimates, according to the lower bound |u − uapprox| � ||u| − |uapprox||. Due to the multiscale character
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Fig. 2. Left: Plot of error function, r(t), for ε = 0.9. Right: Plot of supx∈R r(t) for various ε.

Fig. 3. Plot of numerically computed phase and envelope shifts (markers) and the analytical values (lines); both shifts are O(ε) and the analytical shifts are
close to the computed ones.

of the problem such numerical computations are CPU and memory intensive and require extended periods of time to run.
Therefore, the analytical approximation solution is clearly preferable to the numerical one, which is computed here only to
draw comparisons. In the examples below kA,kB , xA , and xB are chosen such that pulse A will travel through pulse B .

Theorem 4.2 is confirmed numerically by computing the difference

r(tn) = sup
m

∣∣unum(xm, tn) − εΨ (xm, tn)
∣∣

as a function of time. Moreover, in order to numerically compute the phase shifts and the envelope shifts, the two-pulse
solution is compared with the sum of two corresponding single pulse solutions. The phase shift was computed by finding
the average difference between adjacent roots of the shifted (two-pulse solutions) and nonshifted solution (two single pulse
solutions). For kB = 0 the envelope shift can be estimated by looking at the position of the maximal amplitude. This is due
to the fact that the carrier wave with kB = 0 will be identical to its modulating envelope, which makes it easier to detect
the actual envelope shift. In the case that kB �= 0 the envelope was fit with an appropriate function including a parameter
for the envelope shift.

The confirmation and quantification of analytical results is as follows.

• It was shown in [3] that if εΨ is the sum of two well-prepared pulses with the corrections εΩA,1, εΩB,1 for the phase
shifts taken into account, then

sup
t∈[0,τ0/ε2]

r(t) =O
(
ε3).

We first numerically confirm this result and compare it to the standard ansatz without phase shift corrections. In the
left panel of Fig. 2 a plot of r(t) is shown. Before interaction the difference between the standard and the improved
solution is negligible. For times after the interaction the approximate solution with the ΩA,B corrections is O(ε3)

accurate and only O(ε2) without it. This procedure was carried out for various values of ε in order to deduce the
asymptotic behavior as ε → 0. The results are plotted in the right panel of Fig. 2, with the improved approximation
clearly superior. Fig. 3 shows a comparison of numerically computed shifts with those predicted by the formulas given
in (11) and (13).



M. Chirilus-Bruckner et al. / J. Math. Anal. Appl. 347 (2008) 304–314 313
Fig. 4. Left: Plot of error for non-well-prepared pulses. When taking into account the phase shift again an O(ε3) trend is shown. Right: Plot of numerically
computed phase and envelope shifts (markers) and analytical values (lines) for non-well-prepared pulses; both shifts are O(ε). The formulae and the
numerical approximations fit very well.

• We turn our attention to the case where the envelope is not described by a 1-soliton, but rather an arbitrary solution to
the NLS equation. These solutions are called non-well-prepared pulses, see Fig. 1 for an example. Using the ansatz (3)
we again achieve O(ε3)-order accuracy without the assumption that the envelope is well-prepared, see the left panel
of Fig. 4. The phase and envelope shifts are computed in the same way as described above. Both exhibit an O(ε)-trend
and both formulae make correct predictions.

6. The validity of the envelope shift formula

As already alluded to in Remark 2.2, it is not clear if the correction term A3 contributes to the description of the envelope
shift or not. Therefore, in order to distinguish between the parts of A3, which account for internal and interaction dynamics
respectively, we introduce the following definition.

Definition 6.1. Let A(c)
3 , B(c)

3 be the solution to the coupled system

2iωA∂2 A3(Z A, T ) = (
c2

A − 1
)
∂2

1 A3(Z A, T ) − M0[A3, B3] − I(A1, A2, B1, B2,ΩA,ψA),

2iωB∂2 B3(Z B , T ) = (
c2

B − 1
)
∂2

1 B3(Z B , T ) − M0[B3, A3] − I(B1, B2, A1, A2,ΩB ,ψB),

and let A(u)
3 , B(u)

3 be the solution to the uncoupled system

2iωA∂2 A3(X A, T ) = (
c2

A − 1
)
∂2

1 A3(X A, T ) − M0[A3,0] − I(A1, A2,0,0,0,0),

2iωB∂2 B3(XB , T ) = (
c2

B − 1
)
∂2

1 B3(XB , T ) − M0[B3,0] − I(B1, B2,0,0,0,0),

both with the same initial conditions. We call the envelope shift formula (13) valid, if

∥∥A(u)
3 − A(c)

3

∥∥
C s

b
� Cεα,

for α > 0, and respectively for B(u)
3 , B(c)

3 .

So the envelope shift formula (13) is only valid, if the correction terms A3, B3 only describe internal dynamics (at least
in leading order).

Above we found that the coupling terms which distinguish the coupled and uncoupled version of the evolution equations
for A3 are O(1) on an O(ε) time scale w.r.t. T . Thus, using the variation of constant formula we easily get

∥∥A(u)
3 − A(c)

3

∥∥
C s

b
=O(ε)

on every O(1)-time interval. Therefore, for general wave packets the envelope shift formula is valid for all t ∈
[1/ε1+2/m+δ, T0/ε

2] for δ > 0 arbitrary small, but fixed, where the lower bound comes from Remark 2.3. As explained
in the same remark this result can be improved for well-prepared pulses to O(lnε/ε) � t � T0/ε

2.

Conclusions. In leading order the two-wave propagation is given by a linear superposition of the individual waves as long
as they are well separated. The nonlinear behavior appears during collision which causes a phase shift that translates into an
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envelope shift. Hence, the solitary wave interaction is elastic in leading order—a scenario reminiscent of integrable equations.
Since

εg
(
ε(x + εa)

) − εg(εx) = εg′(εx)ε2a +O
(
ε
(
ε2a

)2) =O
(
ε3)

the estimate (16) immediately shows that an envelope shift larger than O(ε) is not possible. This estimate is valid both
for well- and non-well-prepared pulses. Moreover the derived envelope shift formula (14) turned out to be valid for well-
prepared pulses and general wave packets.
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