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Abstract

Let thesignof a standardYoung tableau be the sign of the permutation you get by reading it row by
row from left to right, like a book. A conjecture by Richard Stanley says that the sum of the signs of
all SYTs withn squares is 2�n/2�. We present a stronger theorem with a purely combinatorial proof
using the Robinson–Schensted correspondence and a new concept called chess tableaux.

We also prove a sharpening of another conjecture by Stanley concerning weighted sums of squares of
sign-imbalances. The proof is built on a remarkably simple relation between the sign of a permutation
and the signs of its RS-corresponding tableaux.
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1. Introduction

Young tableaux are simple combinatorial objects with complex properties. They play a
central role in the theory of symmetric functions (see[1]) so they have been studied a lot,
but the subject is still very much alive. Recently, Richard Stanley came up with a very nice
conjecture on Young tableaux:
Let the sign of a standardYoung tableau be the sign of the permutation you get by reading

it row by row from left to right, like a book. The sum of the signs of all SYTs withn squares
is 2�n/2�.
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If we taken = 3 for example, there are four SYTs:
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Their signs sum up to 2= 2�3/2�.
The above conjecture is just a special case of another one which Stanley gave in[9]

(our Conjecture3.1(a)). That conjecture was proved by Lam[2] but we will prove an even
stronger theorem (our Theorem3.3). Part (b) of the same conjecture is also proved in a
stronger version (our Theorems3.4and3.5).

To settle the conjectures we use two tools: the Robinson–Schensted correspondence, and
a new concept called chess tableaux. Some of our results in developing these tools have the
flavour of an ad hoc lemma, but Proposition5.3, which is a link between signs of tableaux
and signs of permutations, may be of interest in its own right.

2. Preliminaries

An n-shape� = (�1, �2, . . .) is a graphical representation (a Ferrers diagram) of an
integer partition ofn =∑

i �i . We write� � n and we will not distinguish the partition itself
from its shape. Thecoordinatesof a square is the pair(r, c) wherer andc are the row and
column indices. Example:

(5, 3, 2, 2, 1) =
(3,2)

Theconjugate�′ of a shape� is the reflection of� in the main diagonal, i.e. exchanging
rows and columns.

A shape� is asubshapeof a shape� if �i ��i for all i. For any subshape� ⊆ � theskew
shape�/� is � with � deleted. Example:

(5, 3, 2, 2, 1)/(3, 2, 2) =

A dominois a rectangle consisting of two squares. Byv(�) we will denote the maximal
number of disjoint vertical dominoes that fit in the shape�. We leth(�) = v(�′).
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Fig. 1. The shaded squares form the fourling body and the white squares are the strip. Hered(�) = 2 and
vs(�) = hs(�) = 1.

A fourling is a 2×2-square. The maximal number of disjoint fourlings that fit in a shape
� is denoted byd(�). A fourling shapeis a (possibly empty) shape consisting of fourlings.
Thefourling bodyfb(�) of a shape� is its largest fourling subshape. The remaining squares
form thestripof the shape. By vs(�) we will denote the maximal number of disjoint vertical
dominoes that fit in the strip of�. We let hs(�) = vs(�′). See Fig.1.

A tableauon ann-shape� is a labelling of the squares of� with n different integers such
that every integer is greater than its neighbours above and to the left. Astandard Young
tableau(SYT) on ann-shape is a tableau with the numbers[n] = {1,2, . . . , n}. We let
SYT(�) denote the set of SYTs on the shape�. Here is an example:

10

3 11

8 13

12

7641

2 5 9

The shape of a tableauT is denoted by sh(T ).
By a k-word we will mean a sequence ofk integers, all different. Asorted wordis

a strictly increasing sequence of integers. Thesign of a word w = w1w2 · · ·wk is
(−1)|{(i,j) : i<j,wi>wj }|, so it is+1 for an even number of inversions,−1 otherwise.

Thesign sgn(T ) of a tableauT is the sign of the word you get by reading the integers
row by row, from left to right and from top to bottom, like a book. Our exale tableau has 18
inversions, so sgn(T ) = +1. Thesign-imbalanceI� of a shape� is the sum of the signs of
all SYTs on that shape.

Definition 2.1.

I� =
∑

T ∈SYT(�)

sgn(T ).

3. Stanley’s conjecture and our results

Richard Stanley gave the following conjecture in[9].
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Conjecture 3.1.

(a) For everyn�0∑
��n

qv(�)td(�)xh(�)I� = (q + x)�n/2�.

(b) If n /≡ 1 (mod 4)∑
��n

(−1)v(�)td(�)I2
� = 0.

The special caset = 0 of (a) goes like this:

Proposition 3.2. For all n�0we have∑
�=(n−i,1i )

qv(�)xh(�)I� = (q + x)�n/2�,

where� ranges over all hooks(n− i,1i ), 0� i�n− 1.

It tells us that the right-hand side(q+x)�n/2� comes from thehooks, i.e. the fourling-free
shapes, and was proved twice by Stanley in[9, Proposition 3.4]. We give a third proof in
Section6.

The rest of (a) says that, for fixedd�1, h andv, the sum of the sign-imbalances of all
n-shapes� with v(�) = v, h(�) = h andd(�) = d vanishes.

Part (a) of the conjecture has been proved by Lam[2]. We will prove a stronger version
of part (a) which lets us fix not only the number of fourlings but the whole fourling shape:

Theorem 3.3.Given a non-empty fourling shapeD and non-negative integersh, v ands,∑
I� = 0

where the sum is taken over all shapes� with fourling bodyD, s squares in the strip,
hs(�) = h, andvs(�) = v.

The proof will be found in Section6and is purely combinatorial. Fig.2shows an example.
In the same spirit, we have the following theorem which is a sharpening of (b) whenn is

even.

Theorem 3.4.Given a fourling shapeD and an even integern�0,∑
(−1)v(�)I2

� = 0,

where the sum is taken over alln-shapes� with fb(�) = D.

We will prove it in Section5.
The next theorem, which we prove in Section4, covers the rest of (b).
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Fig. 2. The imbalances of the 12-shapes� with fourling body and vs(�) = hs(�) = 1. You can check that
their sum vanishes.

Theorem 3.5. If n ≡ 2 or n ≡ 3 (mod 4)∑
��n

(−1)v(�)F (�) = 0

for any functionF : {n-shapes} → C such thatF(�) = F(�′) andI� = 0⇒ F(�) = 0
for all n-shapes�.

ChoosingF(�) = td(�)I2
� proves (b) forn ≡ 2 andn ≡ 3 (mod 4) since|I�| = |I ′�|

(see e.g. Stanley[9] or our Proposition6.6). Thus we have proved all parts of Stanley’s
conjecture.

Finally, the special caset = 1 of (b) will be proved also without the assumptionn �≡
1 (mod 4):

Theorem 3.6. For all n�2∑
��n

(−1)v(�)I2
� = 0.

This was proved independent of us by Reifegerste[3, Theorem 5.1]. Stanley proved it
for evenn [9, Theorem 3.2(b)].

The rest of this paper is composed as follows. In Section4 we introduce the concept of a
chess tableau and prove Theorem3.5. In Section5 we show how the signs of tableaux and
permutations are related by the Robinson–Schensted correspondence. The most important
result is Proposition5.3which we use to prove Theorems3.6and3.4. Finally, in Section6
we prove Theorem3.3using chess tableaux and the RS-correspondence.

4. Chess tableaux and Theorem 3.5

When working on sums of tableau signs one is naturally led to use domino tableaux (see
[9,6]). In this paper we choose a similar approach which turns out to be more successful in
settling the conjectures.
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Fig. 3. The white strip squares count the strip dominoes, vs(�)+ hs(�) = 2.

A chess colouringof a shape is a colouring of the squares such that a square(r, c) is black
if r + c is even and white ifr + c is odd. From now on we will frequently refer to white
and black squares of a shape, implicitly meaning the chess colouring. Achess tableauis an
SYT with odd integers in black squares and even in white.

Lemma 4.1. Given a shape�,
∑

T ∈SCT(�) sgn(T ) = I�, whereSCT(�) is the set of chess
tableaux on�.

Proof. There is a sign-alternating involution on the non-chess SYTs: Given a non-chess
SYT there are at least two consecutive integers of the same colour. Choose the least such pair
and switch the integers. This is allowed unless they are horizontal or vertical neighbours,
which they are not since neighbours have different colours.�

Proposition 4.2. If � is a shape withs strip squares, I� �= 0 only if it has equally many
white and black squares or onemore black square.This implies thaths(�)+vs(�) = �s/2�.

Proof. Let B andW be the number of black, respectively, white squares in the strip of�.
By Lemma4.1 we must haveB = W or W + 1 if I� �= 0 (otherwise there are no chess
tableaux). Every white strip square belongs to a certain strip domino, namely the one with
the black square above or to the left, soW = hs(�)+ vs(�), see Fig.3. Thus, for a� with
I� �= 0 we have hs(�)+ vs(�) = �s/2�. �

Proof of Theorem 3.5. We show that if� is ann-shape withn ≡ 2 orn ≡ 3 (mod 4), either
I� = 0 or v(�) /≡ h(�) (mod 2). This implies that the non-vanishing terms(−1)v(�)F (�)
come in cancelling pairs(−1)v(�)F (�)+ (−1)v(�

′)F (�′).
SupposeI� �= 0 and lets be the number of strip squares in�. Since the fourling body

consists of fourlings we haves ≡ 2 or s ≡ 3 (mod 4). By Proposition4.2we can assume
that hs(�) + vs(�) = �s/2� which is odd. The fourling body has equally many horizontal
and vertical dominoes sov(�) /≡ h(�) (mod 2). �

5. Robinson–Schensted correspondence and Theorems 3.6 and 3.4

Given a tableauT and a numbera different from all numbers inT, by (row) insertion
of a into Twe mean the usual Robinson–Schensted insertion (see for example[8, p. 316])
resulting in a tableau(T ← a) with one more squarex thanT. By (row) extractionof x
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Fig. 4. Insertion of a number. The shaded squares are counted by
∑k

i=2 (�i−1 − ci−1 + ci − 1) in the proof.

we mean the reverse process resulting inT anda. Insertion of a word into a tableau means
insertion of the integers in the word one by one from left to right.

We will use the following lemma later on.

Lemma 5.1. Givena tableauT and integersa �= b different fromall entries inT , the square
sh(T ← ab)/sh(T ← a) appears in a column somewhere to the right ofsh(T ← a)/sh(T )
if and only ifa < b.

Proof. Suppose thata < b. We can insert the two numbers in parallel row by row. If
a is greater than every number in the first row, the squaresx = sh(T ← a)/sh(T ) and
y = sh(T ← ab)/sh(T ← a) will be placed rightmost in that row withy to the right ofx.
If a pops a numbera2 in the first row,bwill either terminate leavingy rightmost in the first
row or pop a numberb2 > a2. The if part of the lemma follows by induction. The converse
is proved similarly. �

The next lemma tells us what insertion does to the sign of the tableau.

Lemma 5.2. If T is a tableau anda is a number different from all entries inT ,

sgn(T ← a) = (−1)l+w+u sgn(T ),

wherel is the number of entries inT less thana, w is 0 if sh(T ← a)/sh(T ) is black and
1 if it is white, andu is the number of squares in rows abovesh(T ← a)/sh(T ).

Proof. Let � = sh(T ) and look at Fig.4. During the insertiona1 = a pops a numbera2
at (1, c1) which pops a numbera3 at (2, c2) and so on. Finally the numberak fills a new
square(k, ck) = sh(T ← a)/sh(T ). For 2� i�k, the move ofai multiplies the sign of the
tableau by(−1)�i−1−ci−1+ci−1. Summation yields

k∑
i=2

(�i−1− ci−1+ ci − 1) = ck − c1+
k−1∑
i=1

(�i − 1) = u− k + 1+ ck − c1.
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The placing ofa = a1 in the first row multiplies the sign of the tableau by(−1)l−c1+1, so
the total factor is(−1)u−k+1+ck−c1+l−c1+1 = (−1)u+l+ck+k = (−1)u+l+w. �

Now the following natural question arises: How is the sign property transferred by the
RS-correspondence? The answer is quite beautiful:

Proposition 5.3. In the RS-correspondence�↔ (P,Q) we have

sgn(�) = (−1)v(�) sgn(P ) sgn(Q),

where� is the shape ofP andQ.

Proof. Suppose we have inserted the firstknumbers in� yielding tableauxP k andQk on the

shape�k, and sgn(�1 · · ·�k) = (−1)v(�
k) sgn(P k) sgn(Qk). This is certainly true fork = 0.

Now we argue by induction overk.We insert the next number�k+1 and look at what happens
according to Lemma5.2. We get sgn(P k+1) = (−1)l+w+u sgn(P k), and if�k+1/�k has co-
ordinates(r, c) we get sgn(Qk+1) = (−1)k−u−c+1 sgn(Qk) = (−1)k−u−w+r+1 sgn(Qk)

sincew is congruent tor + c modulo 2. Whether a new vertical domino will fit in�k+1

is only dependent onr, so(−1)v(�
k+1) = (−1)r+1(−1)v(�

k). Finally, sgn(�1 · · ·�k+1) =
(−1)k−l sgn(�1 · · ·�k).

Putting it all together yields at last

sgn(�1 · · ·�k+1)= (−1)k−l sgn(�1 · · ·�k) = (−1)k−l (−1)v(�
k) sgn(P k) sgn(Qk)

= (−1)r+1(−1)v(�
k)(−1)l+w+u sgn(P k)(−1)k−u−w+r+1 sgn(Qk)

= (−1)v(�
k+1) sgn(P k+1) sgn(Qk+1). �

The above result was also found by Reifegerste[3, Theorem 4.3]independent of us.

Remark. If we specialise to the RS-bijection� ↔ (P, P ) between involutions� ∈ Sn
andn-SYTsP, Proposition5.3 gives that sgn(�) = (−1)v(sh(P )). This is also a simple
consequence of a theorem by Schützenberger[5, p. 127] (see also[8, Exercise 7.28 a])
stating that the number of fix points in� equals the number of columns ofP of odd length.

As a simple consequence of Proposition5.3we get Theorem3.6.

Proof of Theorem 3.6. By Proposition5.3we have

∑
��n

(−1)v(�)I2
� =

∑
��n

(−1)v(�)


 ∑

P∈SYT(�)

sgn(P )




2

=
∑
��n

∑
P,Q∈SYT(�)

(−1)v(�) sgn(P ) sgn(Q)=
∑
�∈Sn

sgn(�)= 0. �

To prove Theorem3.4we will need the following much stronger theorem which is proved
in a manner similar to what we did above.
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Theorem 5.4.Given a setB of black squares and an even integern�0,∑
(−1)v(�)I2

� = 0,

where the sum is taken over alln-shapes� whose black squares are exactly the ones inB.

Proof. Let A be the set of shapes whose black squares are exactly the ones inB. For an
n-SYTQ, letQ \ n denote the(n− 1)-SYT we get by deleting the numbern fromQ. If Q
is a chess tableau, sh(Q) ∈ A⇔ sh(Q \n) ∈ A since sh(Q) and sh(Q \n) contain exactly
the same set of black squares (remember thatn is even). Then, by Lemma4.1,∑

��n
�∈A

(−1)v(�)I2
� =

∑
��n

(−1)v(�)I�
∑

Q∈SCT(�)
sh(Q\n)∈A

sgn(Q).

Now we take anyn-shape� and compute its contribution to the sum. If� does not have
equally many white and black squares,I� = 0 by Proposition4.2 and the contribution is
zero. If� has equally many white and black squares, then, forQ ∈ SYT(�), Q is a chess
tableau if and only ifQ\n is a chess tableau. Thus, we can write our expression in a slightly
different way:∑

��n

(−1)v(�)I�
∑

Q∈SYT(�)

Q\n is a chess tableau

sh(Q\n)∈A

sgn(Q).

By Proposition5.3this equals∑
��n

∑
P,Q∈SYT(�)

Q\n is a chess tableau

sh(Q\n)∈A

(−1)v(�) sgn(P ) sgn(Q) =
∑
�∈S

sgn(�),

whereS ⊆ Sn is the set of permutations corresponding ton-tableauxP andQ such that
Q \ n is a chess tableau whose shape is inA. (Note that we do not require thatQ is a chess
tableau.)

For ann-permutation�, let �′ be the(n− 1)-permutation defined by

�′i =
{

�i if �i < �n,

�i − 1 if �i > �n.

We can consider the setSn of n-permutations as a disjoint unionSn = ⋃
�∈Sn−1

S
�
n , where

S
�
n = {� ∈ Sn : �′ = �}. In the RS-correspondence�→ (P,Q) the locations of the first

n − 1 numbers inQ are only dependent on�′. Thus we can writeS as a disjoint union
S = ⋃

�∈S′ S
�
n , whereS′ is the set of(n − 1)-permutations corresponding to a chessQ-

tableau whose shape is inA. But
∑

�∈S�
n

sgn(�) = 0 since we can choose the last element
�n in an even number of ways.�
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Finally we show that Theorem3.4 is a simple consequence of the above theorem.

Proof of Theorem 3.4. Note that it is impossible to change the fourling body of a shape
by adding or removing only white squares.

LetB� denote the set of black squares in a shape� and letB = {B� : ��n, fb(�) = D}.
Then ∑

��n
fb(�)=D

(−1)v(�)I2
� =

∑
B∈B

∑
��n

B�=B

(−1)v(�)I2
� = 0

by Theorem5.4. �

6. The proofs of Proposition 3.2 and Theorem 3.3

First some definitions:

Definition 6.1. Given ann-shape� and an integerk�0, letT�,k be the set of tableaux on
� with numbers in[n+ k].

GivenT ∈ T�,k, let the complementaryk-wordwT,k of T be the sortedk-word of the
elements of[n+ k] not inT.

Let SWi,j denote the set of sortedj-words with letters in[i].
Given ak-wordw, let �(w) = (−1)L, whereL =∑k

i=1(wi − 1).
Given a skew shape�/�, let�(�/�) = (−1)W+U , whereWis the number of white squares

in �/� andU is the number of square pairs(x, y) ∈ � × �/� with x in a row somewhere
abovey.

Lemma 6.2. Let� be ann-shape. Insertion ofwT,k into T gives a bijection betweenT�,k
and the set of SYTs on(n+ k)-shapes� ⊇ � with v(�/�) = 0.We have

sgn(T ← wT,k) = �(wT,k)�(sh(T ← wT,k)/�) sgn(T ). (1)

Fig. 5 shows an example.

Proof. Let T ∈ T�,k and let� = sh(T ← wT,k). By Lemma5.1 the extra squares�/�
will appear from left to right, without any vertical dominoes. The inverse of the insertion
is extraction of the squares�/� from right to left. Clearly it is a bijection. Eq. (1) follows
from iteration of Lemma5.2, whereL stems froml,W fromw, andU from u. �

Lemma 6.3.

∑
w∈SWi,j

�(w) =
{

0 if i is even and j is odd,
(−1)�j/2�

(�i/2�
�j/2�

)
otherwise.

Proof. By definition, we have�(w) = (−1)L, whereL = (w1 − 1) + · · · + (wj − 1).
Since�(w1w2 · · ·wj) �= �((w1 + 1)w2 · · ·wj) we only have to consider words in which
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Fig. 5. Example of Lemma6.2.

w1+ 1= w2 and this value is even. By iteration of this argument we see that we only have
to consider words in whichw2k−1 + 1 = w2k for 1�k��j/2� and these values are even.
Every such pair gives an odd contribution toL.

If j is odd, the last letterwj may be anywhere in the interval(wj−1, i]. Since we have
�(w1 · · ·wn) �= �(w1 · · · (wn+ 1)) only words withwn = i odd remain. Thenwn gives an
even contribution toL so we can ignore it.

Thus, if i is even andj is odd the sum vanishes, otherwise we can place the�j/2� pairs
in �i/2� positions, and we get(−1)�j/2�

(�i/2�
�j/2�

)
. �

Remark. A referee has pointed out that, usingq-binomial coefficients, the sum in Lemma
6.3can be written as

(−1)(
j
2)

[
i

j

]
q=−1

.

This follows from the bijection between sorted wordsw1w2 · · ·wj ∈ SWi,j and weakly
increasing sequences 0�w1 − 1�w2 − 2� · · · �wj − j� i − j , and from the fact that
q-binomial coefficients enumerate lattice paths by area.

Proposition 6.4. Given ann-shape� whose strip consists of vertical dominoes, and a
non-negative integerk, let H� be the set of(n + k)-shapes� ⊇ � with fb(�) = fb(�),
vs(�) = vs(�), andhs(�) = �k/2�. Then

∑
�∈H�

I� =
(
n/2+ �k/2�
�k/2�

)
I�.



J. Sjöstrand / Journal of Combinatorial Theory, Series A 111 (2005) 190–203 201

Proof. Putm = n+ k and letH ∗� ⊇ H� be the set ofm-shapes� ⊇ � with fb(�) = fb(�)
and vs(�) = vs(�), i.e. the set ofm-shapes� ⊇ � with v(�/�) = 0. By Proposition4.2all
� ∈ H ∗� \H� haveI� = 0. Now we apply Lemma6.2to T�,k and get∑

�∈H�

I� =
∑

T ∈T�,k
sh(T←wT,k)∈H�

�(wT,k)�(sh(T ← wT,k)/�) sgn(T ). (2)

If sh(T ← wT,k) ∈ H� we haveW = �k/2� (by the proof of Proposition4.2) andU is even
in Definition6.1, which means that�(sh(T ← wT,k)/�) = (−1)�k/2�. By first considering
a summation of�(wT,k) sgn(T ) over the whole setH ∗� and then removing the contribution
fromH ∗� \H�, we can write (2) as

(−1)�k/2�


 ∑

w∈SWm,k

�(w)
∑

T ∈T�,k
wT ,k=w

sgn(T ) −
∑

�∈H ∗� \H�

∑
T ∈T�,k

sh(T←wT,k)=�

�(wT,k) sgn(T )




which equals

(−1)�k/2�

 ∑

w∈SWm,k

�(w)I� −
∑

�∈H ∗� \H�

I�

�(�/�)


 = (−1)�k/2�I�

∑
w∈SWm,k

�(w)

sinceI� = 0 for � ∈ H ∗� \ H�. By Lemma6.3,
∑

w∈SWm,k
�(w) = (−1)�k/2�

(
n/2+�k/2�
�k/2�

)
which gives the desired result.�

Proposition3.2 is now proved “for free”:

Proof of Proposition 3.2. If h + v = �n/2�, applying Proposition6.4 to (12v) andk =
n− 2v yields the coefficient ofqvxh:

∑
�∈H

(12v)

I� =
(
v + h

h

)
I(12v) =

(
v + h

h

)
.

By Proposition4.2, the coefficient ofqvxh vanishes ifh+ v �= �n/2�. �

For the proof of Theorem3.3we will need the following observation.

Lemma 6.5. A non-empty fourling shapeD has zero sign-imbalance, ID = 0.

Proof. By Lemma4.1 we only have to consider chess tableaux. But there are no chess
tableaux on a non-empty fourling shape since all outer corners (squares without neighbours
below or to the right) are black and the last number is even.�

We will also need the following fundamental proposition.
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Proposition 6.6. For all shapes� we have

I�′ = (−1)d(�)I�.

Proof. Let x = (rx, cx) andy = (ry, cy) be two squares in� sorted so thatrx �ry . After
transpositionx becomes(cx, rx) andy becomes(cy, ry) in �′. The book permutation order
betweenx andy is changed if and only ifrx < ry andcx > cy . ThusI�′ = (−1)pI�, where
p is the number of pairs(x, y) of squares in� with x north-east ofy.

Let n be the number of squares in�. By Proposition4.2we can assume that� has�n/2�
white squares. Take anyn-SYTTon�. For each numberi inT, letpi be the number of north-
east pairs containingi and a smaller number. It is easy to see that ifi is in the square(r, c)we
havepi = i−rc = (i+1)−(r+c+(r−1)(c−1)), wherer+c is odd if the square is white and
even if it is black, while(r−1)(c−1) is odd if and only if the square is the south-east corner
of a fourling in the fourling body. Thus,p =∑n

i=1pi ≡ n(n+3)
2 + �n/2� + d(�) (mod 2),

since there are�n/2� white squares in�. But n(n+3)
2 + �n/2� = �n(n + 4)/2� is always

even, sop ≡ d(�) (mod 2). �

Finally we have all the tools we need.

Proof of Theorem 3.3. By Proposition4.2, we can assume thath + v = �s/2�. Let V
be the set of shapes with fourling bodyD, 2v squares in the strip, andv vertical strip
dominoes. First we will show that

∑
�∈V I� = 0. LetV ′ = {�′ : � ∈ V }. By Proposition

6.6,
∑

�∈V I� = (−1)d(D)
∑

�∈V ′ I�, so it suffices to show that the latter sum vanishes.
Applying Proposition6.4toD′ andk = 2v yields

∑
�∈V ′

I� =
∑

�∈HD′
I� =

(
2d(D)+ v

v

)
ID′ = 0

by Lemma6.5. Finally, we apply Proposition6.4to every� ∈ V andk = s − 2v, and get

∑
�∈V

∑
�∈H�

I� =
(

2d(D)+ v + h

h

) ∑
�∈V

I� = 0. �

7. Possible generalizations

The concept of sign-imbalance generalizes naturally to general finite posets. Note that an
SYT is a linear extension of the partial order on the squares implied by coordinate pairs.

Let P be ann-element poset and let� : P → [n] = {1,2, . . . , n} be a bijection called
the labellingof P. A linear extensionof P is an order preserving bijectionf : P → [n]. If
we regardf as a permutation�f of [n] given by�f (i) = �(f−1(i)) we can talk about the
sign of f. Thesign-imbalanceof P is the sum of the signs of all linear extensions ofP. If
the sign-imbalance ofP is zero we say thatP is sign-balanced.

Note that the sign of a linear extension depends on the labelling�. However, this de-
pendence is not essential since changing the labelling ofP simply multiplies�f by a fixed
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permutation. For instance, the sign-imbalance ofP is defined up to a sign without specifying
�, and the notion of sign-balance is completely independent of the labelling.

There has been some work (see[9]) considering sign-imbalances of general posets and
identifying the sign-balanced ones. Unfortunately, the approach taken in this paper does not
seem applicable to this more general question.

If we specialise to partition shapes, however, we hope that our Robinson–Schensted
technique will be useful in future research. Some things to do:

• Characterise the sign-balanced partition shapes. There are some theorems on sign-
balanced posets (see[9]); a complete characterisation in the special case of partition
shapes may shed some light on this more general question.
• Find the “best” version of Theorem3.3, i.e. find the smallest classes ofn-shapes whose

imbalance sum vanishes. This is a generalization of the above and, as Fig.2 shows, there
is still work to do.
• Find a nice formula forI�, maybe in the same spirit as the hook length formula. This may

very well be impossible, as Stanley points out[9, p. 14].
• Study the imbalance of skew partitions. This is an interesting issue since most structural

properties of partitions generalize to skew partitions, including the RS-correspondence
(see e.g.[4]).
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