
Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 23rd CIRP Conference on Life Cycle Engineering
doi: 10.1016/j.procir.2016.03.101 

 Procedia CIRP   48  ( 2016 )  236 – 241 

ScienceDirect

 

* Te

Ab

To 
mo
inv
stoc
mo
me
© 2
Pee
Eng

 Key

 
1. I

soc
goa
ma
ene
and
imp
sin

ma
reg
bas
[3]
too
phy

Sto

el.: +1-216-368-6

stract 

provide scienti
nitoring and s

variant machinin
chastic joint-sta
del is embedde
asured on a CN
2016 The Autho
er-review under
gineering. 

ywords: Tool we

Introduction 

Sustainable 
cietal safety b
als of sus
anufacturing e
ergy and reso
d occupation
portant role 

nce it has an al
The post-use

aterial consum
generating of 
sed on forme
, as shown in

ol wear prog
ysical nature c
• Predicting

tool, redu
unschedul

• Optimizin
machining
and increa

Past research

ochastic T

Department of M

6045; fax: +1-216

ific support for 
ervice life pre
ng settings in m
ate-and-parame
ed in a particle

NC milling mach
ors. Published b
r responsibility 

ar prediction; sto

manufacturin
besides econom
stainable m
efficiency, ex
ource improv

nal hazards. 
in achieving 
lmost 100 bill
e of machinin
mption and inc

retired tools
er performanc
n Fig. 1. Adv
gression and 
can benefit: 
g accurately t
ucing the cost 
led maintenan
ng machinin
g settings tha
ase manufactu
hes indicated 

23rd C

Tool We

Mechanical and A

6-368-6445; E-ma

decision-makin
diction are of 
modeling wear 
eter model with
e filter for recur
hine.  
by Elsevier B.V
of the scientific

ochastic modeling

ng purses e
mic benefit [1

manufacturing 
xtending prod
vement, minim
Machine too
the sustainab

ion consumpt
ng tool can s
crease econom
s, by recover
ce, remanufac
vanced monito

understandi

the tool rema
due to additi

nce; 
ng planning, 
at can increa
uring efficienc
that the tool

CIRP Confe

ear Predi

Peng Wan
Aerospace Engine

ail address: Robe

ng in critical ap
significance to
progression, h

h machining sett
rsive wear state

V. 
c committee of 

g; particle filter 

environmental
1]. Specificall

are impr
duct life, red
mizing toxic 
ol should pla
ble manufact
tions each yea
significantly r
mic benefit, th
, recycle, red
cture and red
oring of mach
ng its unde

ining useful l
onal downtim

finding op
se extend too
cy. 
l wear propag

erence on Li

iction fo

ng and Rob
eering, Case Wes

ert.Gao@case.edu

pplications such
o achieving su

hence is limited
tting as a param
e prediction. E

f the scientific c

l and 
ly, the 
roving 
ducing 
waste 

ay an 
turing, 
ar [2].  
reduce 
hrough 
design 
design 
hining 

erlying 

life of 
me and 

ptimal 
ol life 

gation 

wo
spe
exa
rate
and
exi
we
thr

ife Cycle En

or Sustai

bert X. Gao
stern Reserve Un

u 

h as maintenanc
ustainable manu
d in accurately 
meter that affect

ffectiveness of 

committee of th

ould vary wit
eed, feed rate
ample shown 
e and feed ra
d depth is qu
ists for longe
ar modelling
ough which it

Fig. 1 life cyc

ngineering 

nable M

o*
iversity, Clevelan

ce scheduling an
ufacturing. Pas
tracking varyin
ts the state evol
f this method is

e 23rd CIRP Co

th different m
e, cut depth a
in Fig. 2, the

ate under cert
uadratic, whic
est tool life. I
with respect t

t is expected to

les of machinin

Manufactu

nd, OH 44016, U

nd inventory m
st research typ
ng wear rates. T
lution or tool w
s verified throu

onference on L

machining set
and workpiec
e relationship 
tain cutting sp
ch means an
In this paper
to machining 
o optimize op

ng tool in sustai

uring 

 
USA 

management, too
ically assumed
This paper pres

wear propagatio
ugh experimenta

ife Cycle 

ttings (e.g. c
ce material). A

between tool
peed (in symb
 optimal feed

r the physics-
settings is foc

perating sched

inable manufact

ol wear 
d time-
sents a 

on. The 
al data 

cutting 
As an 
l wear 
bol v) 
d rate 
-based 
cused, 

duling.   

 
turing 

© 2016 The Authors. Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 23rd CIRP Conference on Life Cycle Engineering

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82342065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


237 Peng Wang and Robert X. Gao  /  Procedia CIRP   48  ( 2016 )  236 – 241 

M
relati
meas
prosp
equat
exam
prese
param
mech
are i
mach
as th
also 
exhau
based
mach
be i
there

Th
meas
emiss
mode
infere
embe
proce
partic
proce
provi
Comp
Gaus
non-l
techn

To

0

2

4

6

8
Fl

an
k

w
ea

r(
m

)

Fig. 2 Eff

Fig. 3 
Most studies o

ionships betw
sured by micro
perities, and 
tions with lar

mple, a gener
ented to pred
meters and 
hanisms, such 
investigated t
hining settings
e geometry o
been investi

ust the physic
d on the exp
hining situatio
iteratively ca
fore not pract
he other appr
surement (e.g
sion) to infer
el without in
ence can be a
eds the anal
ess (e.g. tool 
cle filter).  It
ess and nois
iding more 
pared to Ka

ssian assumpt
linear system
nique in this p
o achieve the 

0.1

Work piec

Crate

fect of feed rate

Mechanism fo
on wear mec
ween propag
oscope) and m

label/determ
rge amount o
ralized form 
dict the tool 

workpiece 
as abrasion (F

to describe to
s and material
f tool [8] and
igated. Since
cal nature of t
perimental da
ons. Under thi
alibrated, wh
ticable.  
roach, instead
g. current, fo
r the wear st
nterrupting t

achieved by a 
lytical model
wear) in a f

t can accoun
se embedded

explanation 
alman filter, 
tion and stron

m [11], thus i
aper. 
goal that dir

0.2 0
Feed rate

v =120m/min

v = 90m/min
v = 60m/min

Rake
face 

Flance

Friction

er wear

Cutting directio

e on tool flank w

r friction and to
chanism nume
gation of too
machining sett
mine the coe
of experimen
of extended 
life as a fun

hardness 
Fig. 3), adhes
ool wear rate
ls [7]. Additio

d cutting temp
e no derived
tool wear, lab

ata would var
is scenario, pa
hich is time

d, employs o
orce, vibratio
tatus and det
the machinin
model-based 

ls representin
filtering (e.g. 
nt for the sto
d in the me

on the pr
particle filte

nger capabili
t is investiga

rectly determi

0.3 0
e (mm/rev)

Abrasion
area

Tool 

e

nk wear 

on

wear [4] 

ool wear 
erically estab
ol wear (wi
tings and mate
efficients in 
tal data [5]. 
Taylor’s law

nction of cutt
[6]. Differ

ion and diffus
e under differ
onal factors, s
perature [9], h
d equations 
belled parame
ry with differ
arameters need
-consuming 

bservable sen
on, and acou
ermine the w

ng process. 
approach, wh

ng the dyna
Kalman filter
chasticity of 

easurement [
ediction resu
er (PF) has 
ity to describ
ated as the m

ine the tool w

.4 0.5

Clearance
face  

 

 
 
 
 

 
 
 
 
 

blish 
idth, 
erial 

the 
For 

w is 
tting 
erent 
sion 

erent 
such 
have 
can 

eters 
rent 
d to 
and 

nsor 
ustic 
wear 
The 
hich 
amic 
r or 
the 

10], 
ults.  

no 
be a 
main 

wear 

grow
manu
param
settin
based
wear 
relati
defin
mode
estim
achie
throu

2. Pa

A
infere
state 
repre
condi
speed
param
factor
of too

kx =

wher
xk con
samp
descr
mach

kz =

wher
betwe
degra
settin
by en
by v
nonli
availa
Dk c
proba
infere
illustr

(
(

k

k

p x

p x

(

(

,kp x

p z
=

wher

( kp z

5

wth with re
ufacturing pro
meter estimati
ngs as parame
d on past work

progression 
ionship betw
ned under th
els are assum

mated by an 
eve better es
ugh an adaptiv

article filter b

A dynamic sy
ence with a s
model descri

esenting tool 
itionally base
d, feed rate, 
meters (or c
rs) and proc
ol wear propag

( 1, ,k k kf x D θ−

e fk describes 
nsidering an o

pling time is 
ribe the relat
hining settings

( , , ,k k k kh x D φ

e hk is the me
een observab
adation state x
ngs in the mea
nvironmental n

k. Generally, 
inear in practi
able informati
can be achi
ability densit
ence through
rated in (3) an

1

1 1 1

, , | ,

, , |
k k k k

k k k

z D

z

θ φ

θ φ
−

− − −

)

) (

, , | ,

| , ,

k k k k

k k k k

z D

z x p x

θ φ

θ φ

=

e p(zk|zk-1) is c

)1| ,k kz D p− =

espect to m
cess, this pap

ion framework
eters that affec
k [12]. One sta

and one me
een wear an
e framework

med to vary 
improved pa
stimation acc

ve resampling 

based predicti

ystem can be
tate model an
ibes the evolu
wear in this

ed on machin
cutting dep

coefficients, de
cess noise w w
gation and we

),k kwθ    

the state trans
order-one Mar

denoted by 
ionship betwe
 and wear sev

)kv    

asurement fun
ble sensor ou
xk. �k denotes
asurement mod
noise and/or li

both state a
cal applicatio
ion of measure
ieved throug
ty function 
h two steps: 
nd (4). 

) (
)1 1 1

,k k

k k k

D p x

z dx

θ

θ φ− − −

=

( )
(

(
1

| , ,
|

, , | ,
|

k k k k

k

k k k k k

k k

p z x
p z

x x
p z z

θ φ

θ φ θ− −

−

=

an be calculat

( , , |k k k kp x zθ φ −

machining s
per a stochasti
k based on PF
cts the tool w
ate evolution 
easurement m
nd sensor m
k. Coefficient
with machin

article filter (
curacy with 
strategy. 

ion 

e estimated th
nd a measurem
ution of the s
s paper) over
ning settings 
pth, material 
describing the 
which denotes

ear modelling 

sition function
rkov process [
k. The mea

ween sensor m
verity is given 

nction represe
utput zk and 
s the effects o
del. Measurem
imitations of s
and measurem
ons. The estim
rement zk and m
gh calculatin

(pdf) p(xk|zk
 prediction 

1

1

, | ,k k k k

k

xθ φ θ

φ
−

−

) (
)

) (
)

1

1 1

1

, , |
,

, ,
,

k k k k

k k

k k k k

k

p x z
z D

D p x
D

θ φ

θ φ

−

−

− −

−

ted as: 

) (1, |k k kD p z x−

settings in 
ic joint-state-a
F with machin
wear propagat
model describ

model describ
measurements 

ts in these 
ning settings 
(PF), which 

fewer parti

hrough Bayes
ment model. 
state (variable
r time, which

D (e.g. spin
prosperity) 

effects of set
s the randomn
error.  

n from state xk-
[13]. The disc
surement mo

measurement 
by:   

enting the rela
an unobserva
of the machin

ment noise cau
sensors is deno
ment models 

mation of xk gi
machining set
g the poste

k) via Bayes
and update, 

)1 1, ,k k kDφ− −

)

)

1

1 1 1 1, , |k k kzθ φ

−

− − − −

), ,k k k k kdxθ φ θ φ

the 
and-
ning 
tion, 
bing 
bing 

are 
two 
and 
can 
cles 

sian 
The 
es x 
h is 
ndle 
and 

tting 
ness 

(1) 

k-1 to 
crete 
odel, 

and 

(2) 

tion 
able 
ning 
used 
oted 
are 

iven 
tting 
erior 
sian 

as 

 (3) 

)
(4) 

k   (5) 



238   Peng Wang and Robert X. Gao  /  Procedia CIRP   48  ( 2016 )  236 – 241 

Equation (3) employs the measurement in the last sampling 
time to predict the tool wear at current moment, which is then 
corrected by current measurement. It can be seen from (3) that 
unknown parameters k and �k are derived upon both the 
historical measurement and machining setting D, which means 
the parameters would vary with different machining settings. 
Hence, the objective of modeling wear progression considering 
time-variant machining settings can be achieved. Equations (3) 
and (4) translate the problem of posterior pdf estimation into 
the calculation of likelihood function p(zk|xk, k, �k) and prior 
distribution p(xk, k, �k |xk-1, k-1, �k-1). But an exact solution 
for (3) and (5) is usually intractable, due to the difficulty in 
calculating the integral especially when the state and 
measurement are described in high-dimensional space. 

The PF algorithm, based on Monte Carlo method, employs 
a set of random samples/particles { , ,i i i

k k kx θ φ , i = 1, 2, …, N} 
and associated importance weights i

kw to provide an 
approximated solution to the posterior pdf. The integral 
operation in (3) is approximated as the summation of these 
weighted random numbers as:  

( )

( ) ( )( ) ( )
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1 1 1 1 1 1 1
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1 1 1 1
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k k k k k k k
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p x z

w x x p x x

w p x x

θ φ

δ θ φ θ φ θ φ θ φ

θ φ θ φ

−

− − − − − − −
=

− − − −
=

≈ −

=

  (6) 

Equation (6) indicates that the estimation of the posterior 
pdf relies on a predefined prior pdf 

( )1 1 1, , | , ,i i i
k k k k k kp x xθ φ θ φ− − − , where particles are sampled 

initially, as the example shown in Fig. 4, where the circle and 
its size denote the particle and weight. The mapping from the 
prior pdf to the posterior pdf is regulated by the weights of 
particles. The adjustment of the weights is upon the new 
measurement, by calculating the likelihood of it given the 
predicted state from (6) 

( )1 ,| , ,i i i i
k k k k k kw w p z x Dφ−∝    (7) 

Fig. 4 Sampling, conventional resampling and enhanced adaptive 
resampling (circles represent the particles; positions of circles 
represent the estimated values of states and/or parameters; and 

dimensions of circles represent the weights of particles) 

An inherent problem of the above algorithm is particle 
degeneracy, which means after several iterations most of the 

computational load is wasted on the updating of particles with 
negligible contribution to the state update. A popular solution 
is importance resampling that removes particles with small 
weights (by comparing normalized weight to a predefined 
number within 0~1) and retains particles with large weights. 
However, this process introduces the particle impoverishment 
problem that the number of unique particles decreases greatly. 
These two problems are actually caused by the fact that the 
positions of particles sampled from the initial prior distribution 
are fixed throughout the estimation process [14], as described 
in Fig. 4. This also obstructs conventional PF on tracking a 
dynamic system with varying degradation rate. In addition, the 
estimation accuracy of posterior pdf can be greatly affected by 
the quality of initially selected prior pdf.   

To tackle the particle degeneracy and sample 
impoverishment problems associated with standard particle 
filter, the resampling strategy needs to be changed from 
discrete approximation to continuous approximation, while 
maintaining a balance between keeping particle diversity (a 
degree to quantify unique and active particles) and ensuring 
particles’ tracking performance (diverse particles may increase 
the confidence interval of the estimation, leading to reduced 
estimation accuracy). This can be done through dispersing the 
particles with large weights in the resampling process from 
fixed positions to a wider range by adding a perturbation to 
each particle [15]. The perturbation for each particle is 
sampled from a normal distribution, which is determined by 
their estimation accuracy in the last iteration step:   

 ( )( ) ( ) ( )( )1 1| | ,r l r l r li i
k k k k kp N hPθ θ θ θ+ +∝   (8) 

where P represent the variance of particles’ estimations: 

( ) ( ) ( )

1 1

1 1 TN N
r l r l r li i i i

k k k k k k k
i i

P E w w
N N

θ θ θ θ
= =

= − −   (9) 

where 

( )
1

:
l

j
k

i
r l w rand

=

≥   (10) 

represents the selected ith particle at iteration k+1 from 

iteration k and 
1

1 N
i i
k k

i
w

N
θ

=

 adopted as the best estimation at 

iteration k to determine each particle’s estimation accuracy. 
( )r l

kP  represents the variance of the normal distribution, from 
which a perturbation is generated for the ith particle at iteration 
k+1. The symbol h denotes the shrinkage coefficient, which 
decreases through the iteration process, to ensure convergence 
of estimation by PF.  

A particle associated with a larger weight will be assigned 
with a smaller search range when entering into the next 
iteration, due to its being closer to the relatively best 
estimation. Otherwise, a particle is assigned with a larger 
search range. Dispersing samples not only increases the 
number of unique and active particles, but also causes 
particles in the subsequent iterations to move to the global 
optimal solution (represented by the grey dash line in Fig. 4) 
continuously. Consequently, the final estimation result 
eliminates mismatch between the prior pdf and posterior pdf. 
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The decreasing shrinkage coefficient ensures samples to 
gradually converge to the optimal location, consequently 
narrowing down the confidence interval and provide more 
accurate prediction. 

3. Tool wear rate models 

3.1Tool wear evolution model 
Common types of wear include frank wear and crater wear, 

which are subjected to the abrasive or adhesive interaction 
between tool and workpiece, as shown in Fig. 3. Frank wear 
length is mainly investigated in this paper, since it is generally 
regarded as the tool life criterion to evaluate tool performance 
[7]. Tool wear propagation can be treated as a specific type of 
crack growth, and hence can be modeled based upon Paris’ 
law. 

mdx cx
dt

=    (11) 

Here, parameters c and m only consider the effect of 
machining materials. To include other machining settings, such 
as spindle speed, feed rate f, cutting depth d, (10) can be 
modified as: 

A B Cdx f d x
dt

=   (12) 

Coefficient A and B represent the effects of f and d on wear 
progression. Expression of wear x as a function of time can be 
obtained through integrating (11): 

( )
1

11A B Cx f d C t −= −   (13) 

A discretized version of (12) is: 

( )( )
1

1 1
1 11C A B C

k k k kx x f d C t t− −
− −= + − −   (14) 

One example demonstrating the effect of feed rate and 
cutting depth is shown in Fig. 5. It indicates the tool wear rate 
decreases with the decrease of the feed rate and cutting depth, 
and cutting depth influences more than feed rate. The 
influences of machining setting factors would be reflected in 
estimated coefficients/parameters A and B. It should be noted 
in this paper that these parameters are assumed to be constant 
under same machining setting. 
 

 

Fig. 5 Tool wear propagation with respect to machining settings 
3.2 Measurement model 

Typical measurements applied to tool wear monitoring 
include force, vibration, current and acoustic emission. For 
measurement such as force and power that can be derived 
with an explicit function with respect to wear, the 
measurement model can directly utilize the function. For 
example, the relationship between cutting force and wear 
under the effect of machining settings can be described as 
[16]: 

E GForce Ef d Hx= +   (15) 
where E, F, and G are the coefficient need to be estimated by 
PF. For other measurement, such as vibration and acoustic 
emission, feature extraction based on Kullback-Leibler (KL) 
divergence is investigated, by fully taking advantage of the 
fact that all measurements within one cut can be seen as a 
distribution [15]. It is assumed that the distribution shifts 
when tool wear deteriorates. Thus the distance between two 
distributions can be seen as an indicator to reveal the wear. 
Let p1(x) and p2(x) be two distributions, the information of 
KL divergence from p1 to p2 is defined as: 

( ) ( ) ( )
( )

1
1 2 1

2

,
p x

KL p p p x dx
p x

=    (16) 

Smaller values of the information quantity KL(p1, p2) mean 
that the distance between two distributions is smaller. That is, 
the larger the distance between two distributions, the larger 
the difference between two distributions.  In this paper, the 
distribution obtained from the initial time is taken as the 
reference distribution, and the new distribution is compared to 
the reference distribution to calculate the KL information, 
which is subsequently applied to estimate the tool wear. Due 
to quite the complex mechanisms of both tool wear and force 
or vibration measurement, it is difficult to establish definite 
relationship between wear and extracted KL information. The 
relationship can be obtained an empirical model: 

E F GKL Df d x=   (17) 
Therefore, there are seven parameters A~G to be estimated 

by PF. It should be noted the initial value of these parameters 
are obtained through a rough guess based on prior knowledge, 
and the initialization would not affect the estimation result 
much by the proposed PF. 

4. Experimental evaluation 

To evaluate the performance of proposed tool wear 
prediction method, data taken from a Matsuura milling 
machine MC-510V under different machining settings are 
processed and estimated. The Experimental setup and data 
acquisition are shown in Fig. 6. Data sampled by five different 
sensors, two acoustic emission sensor (one on table, one on 
the spindle), two vibration sensors and one current sensor are 
installed to determine the state of tool wear [17]. The 
evolution of acoustic emission data with respect to different 
wear severity is shown in Fig. 7 as an example. Two sets of 
data under four different machining settings (as shown in 
Table 1, and their effects on tool wear progression shown in 
Fig. 5) are investigated in this paper, with one used for 
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