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TRANSFORMATIONAL METHODOLOGY FOR PROVING 
TERMINATION OF LOGIC PROGRAMS* 

M. R. K. KRISHNA RAO, DEEPAK KAPUR, AND R. K. SHYAMASUNDAR 

t> A methodology for proving the termination of well-moded logic programs 
is developed by reducing the termination problem of logic programs to that 
of term rewriting systems. A transformation procedure is presented to 
derive a term rewriting system from a given well-moded logic program 
such that the termination of the derived rewrite system implies the 
termination of the logic program for all well-moded queries under a class 
of selection rules. This facilitates applicability of a vast source of termina- 
tion orderings proposed in the literature on term rewriting, for proving 
termination of logic programs. The termination of various benchmark 
programs has been established with this approach. Unlike other mechaniz- 
able approaches, the proposed approach does not require any preprocess- 
ing and works well, even in the presence of mutual recursion. The 
transformation has also been implemented as a front end to Rewrite Rule 
Laboratory (RRL) and has been used in establishing termination of 
nontrivial Prolog programs such as a prototype compiler for ProCoS, PL 0 
language. © Elsevier Science Inc., 1998 <3 

1. INTRODUCTION 

Termination is an important property of imperative as well as declarative pro- 
grams, and proving termination is one of the main steps in arriving at a sound 
methodology and for proving the correctness of programs. Recently, termination of 
logic programs has attracted a lot of attention, and many approaches are reported 
in the literature (see De Schreye and Decorte [14] for a comprehensive survey). In 
this paper, we present a transformational approach for proving termination of logic 
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programs by reducing the termination problem of logic programs to that of term 
rewriting systems. The termination problem of term-rewriting systems has been 
well studied, and many useful techniques and tools have been developed for 
proving termination of term-rewriting systems. The prime motivation of our ap- 
proach is to facilitate the use of this vast source of termination techniques and 
tools in proving termination of logic programs. 

Before describing our method, let us discuss the differences between the 
paradigms of logic programming and term rewriting and see why termination 
techniques of rewriting cannot be adopted for logic programs in a straightforward 

Unification is the basic step in the computations of logic programs, whereas 
matching plays a similar role in term rewriting. The backward propagation of 
substitutions due to unification complicates termination analysis of logic 
programs, and the termination techniques of rewriting are not directly 
applicable to logic programs (e.g., a logic program containing a clause 
p ( f (x) ) ,-- p (x) does not terminate for query ~ p (Y), whereas the corre- 
sponding term-rewriting system containing rule to ( f (x)) ~ p ( x ) terminates 
on all terms). 

2. Logic programs have local variables (variables that occur in the body but not 
in the head of a clause) playing the crucial role of sideways information 
passing, whereas in term-rewriting literature, it is generally assumed that all 
of the variables in the right-hand term also occur in the left-hand term of the 
rewrite rules. The reason for avoiding extra variables on the right-hand sides 
of rewrite rules is that they trivially lead to nontermination. Almost all of the 
termination techniques of rewriting work only under this restriction. 

3. In general, logic programs are not directed, in the sense that there is no 
notion of input and output. A variable (or an argument position) can be used 
as either input or output; for example, with the factorial program it is 
possible to ask, "What is factorial of 6?" ( ~  f a c t o r i a l  ( 6 , 0 ) )  as well as 
"What is the value of I if the factorial of z is 720?" ( ~  
f a c t o r i a l  ( I ,  72 0) ). In fact, this invertibility is often seen as the principal 
difference between logic and functional programming paradigms. Term 
rewriting is directional in the sense that left-hand terms are replaced by the 
corresponding right-hand terms. 

We present a transformation procedure to derive a term-rewriting system from a 
given logic program such that termination of the derived term-rewriting system 
implies termination of the logic program and thereby reduces the termination 
problem of logic programs to that of term-rewriting systems. To get the directional- 
ity, we assume that every predicate has an associated "mode" specifying which 
arguments are "input" and which are "output" and consider the class of well-moded 
programs, so that input terms of selected atoms are always ground and there is no 
backward propagation through input positions. The transformation removes the 
local variables present in the logic programs through a kind of Skolemization 
procedure, using mode information while deriving term-rewriting systems. The 
absence of backward propagation through input positions and the local variables in 
the derived term-rewriting systems facilitate the applicability of termination tech- 
niques of rewriting in proving termination of logic programs. The transformation 
derives the term-rewriting system in an incremental fashion by transforming each 

way. 

1. 
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clause in the program into a set of rewrite rules. In Section 5, we establish that the 
given logic program terminates for all well-moded queries under a class of 
selection rules if the derived term-rewriting system is terminating. To summarize, 
our method consists of two steps: (i) transforming the given well-moded logic 
program into a term-rewriting system and then (ii) proving termination of the 
resulting rewrite system using various techniques available in the literature on 
term-rewriting systems. 

The transformation procedure is purely syntactical and has been implemented 
as a front end to R R L - - a  theorem prover based on rewrite techniques---that 
supports techniques such as recursive path ordering for proving termination of 
term-rewriting systems in an interactive fashion. The tool developed has been used 
in establishing termination of a prototype compiler for ProCoS language PL 0. This 
compiler has been developed using Hoare's refinement algebra approach. Refine- 
ment algebra provides elegant proofs for partial correctness (ensuring that the 
compiler only generates correct code) of compilers developed in this approach. A 
proof of termination ensures that the compiler indeed generates an output (object 
code). In this respect, our tool plays an important role in the development of 
provably correct compilers. The fact that termination of this compiler cannot be 
established by the other mechanizable approaches available in the literature 
demonstrates the practicality of our approach. 

We follow the notations of Lloyd [29] and Apt [2] for logic programming 
concepts and Dershowitz and Jouannaud [19] for rewriting concepts. The rest of 
the paper is organized as follows. In Section 2, we give definitions of well-moded- 
ness and related concepts. In Section 3, the transformation of logic programs into 
rewriting systems is explained through examples. Section 4 provides a formal 
description of the transformation procedure. In Section 5, we prove that the 
termination of the derived term-rewriting system implies the termination of the 
logic program for well-moded queries; a brief review of important termination 
techniques of rewrite systems is also provided. Section 6 briefly discusses the 
automation of termination proofs of logic programs using our approach. The paper 
concludes by a comparative evaluation of the methods in Section 7. 

2. PRELIMINARIES 

In this section, first, we define the notion of well-moded logic programs (queries) 
and prove some properties of well-moded programs (queries). The moding informa- 
tion essentially specifies which arguments are input arguments and which are 
output arguments in a predicate. Second, we highlight the basic concepts underly- 
ing term-rewriting systems. 

2.1. Well-Modedness and Related Concepts 

Definition 1. A mode m of an n-ary predicate p is a function from {1 . . . . .  n} to the 
set {in, out). The set ( i lm(i)=in} is the set of input positions of p and 
(o I rn(o) = out} is the set of output positions of p. 

NOTATION. The terms invar(L) and outuar(L) denote the sets of variables occur- 
ring in the input and output positions of a literal L, respectively, and Var(L)= 
invar( L ) u outvar( L ). 
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REMARK 1. It may be noted that some predicates may be used in different modes 
in a single program. We use different subscripts to a predicate to differentiate 
between different modings (usages). 

In the rest of the paper, we assume that the moding information of all of the 
predicates is available. However, this does not mean that the programmer has to 
supply this information, as there are many techniques available in the literature 
(e.g., [15]) for deriving moding information from a given logic program. 

The notion of well-moded programs has been invented to constrain the "flow of 
data" and thereby obtain SLD-derivations with certain desirable properties. One of 
these desirable properties is the data-drivenness of computations, i.e., input terms 
of every selected atom are ground. Since groundness of input terms of the selected 
atom depends on the selection rule employed, two alternatives are possible: (i) to 
fix a selection rule and consider the class of programs for which the input terms of 
the selected atom are ground under this section rule and (ii) to consider the class 
of programs for which there exists at least one selection rule such that the input 
terms of the selected atom are ground. Obviously, the class of programs considered 
in the second alternative is larger than the class considered in the first alternative. 
Here  we adopt the second alternative and define the notion of well-modedness 
independent of the selection rule using the concepts of producers and consumers. 
Then we give a characterization of the class of selection rules suitable for the 
execution of any given well-moded program (i.e., computations under those selec- 
tion rules are data-driven). De Schreye and Decorte  [14] call our well-moded 
programs well-moded* programs to differentiate between the two notions of 
well-moded programs. 

Definition 2. Le t  A ~ B 1 . . . . .  B k be a clause and X be a variable occurring in B i. 
The atom B i is a consumer of X if X ~ invar(Bi),  otherwise B i is a producer of 
X (i.e., if X ~ Var(B i) - int)ar(Bi)). T h e  head A is a producer I of variable X if 
X E  invar (A) ,  and A is a consumer of X if X ~  V a r ( A ) -  invar(A) .  

REMARK 2. Note that we say that B i is a producer  of X if X ~ Var(B i) - invar(Bi))  
rather than X ~ outvar(Bi) ,  since we have to consider the possibility of a variable, 
X, occurring in input as well as output positions of an atom, say A. We resolve the 
conflict in the situation by saying that A is a consumer of X as we want all the 
input terms to be ground at the time of selection; in other words, X should have 
another producer  that binds X before A is selected. 

Definition 3. The producer-consumer relation of a clause c: A ~ B 1 , . . . ,  B k is 
defined as {(Bi,  B j ) I B  i and Bj are producer and consumer of a variable X in c 
respectively}. 

Definition 4 (Well-moded programs and queries). A clause c is well-moded if (a) its 
producer-consumer relation is acyclic and (b) every variable in c has at least one 
producer. A program P is well-moded if every clause in it is well-moded. A 
well-moded query is nothing but a well-moded clause without head. 

1 Our notion of producer is similar to the notion of generator used in Conery and Kibler [10] for 
studying AND/OR parallelism in logic programming. 
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Since the producer-consumer relation of a well-moded clause c : A  ~ B1,. . . ,  B, is 
acyclic, it defines a partial order < on the atoms in the body of c as follows: 
B~ < Bj if ( B~, Bj) is in the producer-consumer relation of c. 

Definition 5. A n  element a e A  is minimal  in the poset (A, < ) i f  V b e A ,  b ~ a .  
The following example illustrates these definitions. 

Example  1. Consider the following quick-sort program; here, _< and < are the 
built-in's with the usual moding information. 

moding:q(in, out);s(Ln, in, out, out)and a(in, in, out) 

I. q(nil, 

2. q(c(H, 
c (H, BI), 

3. s (nil, 
4. s(c(X, 
5. s ( c ( x ,  
6. a (nil, 
7. a(c(H, 

nil) ~- 
L), S)e-s(L, H A, B),q(A, AI), q(B, BI), a(Al, 

Ls, Bs ) 
Ls, Bs) 

s) 
Y, nil, nil) +- 
Xs), Y, c(X, Ls , Bs) ~--X_<Y, s(Xs, Y, 
Xs), Y, Ls, c(X, Bs)) ~--X>Y, s(Xs, Y, 

X, X) e- 
X), Y, c(H, Z)) *-a(X, Y, Z) 

Except for the second clause, the producer-consumer relation of all other 
clauses is empty. For the second clause, it is { (z (L ,  H, A, B) ,  q(A,  A1))),  
<s(L, H, A, B), q(B, BI)), (q(A, AI), a(Al, c(H, BI), S)), 

<q(B, B1) ,  a ( i l ,  c (H,  B1) ,  S))}. It is easy to see that for every clause, 
(i) the producer-consumer relation is acyclic and (ii) all the variables in it have at 
least one producer. So the program is well-moded. 

In the following lemmas, we capture some of the properties of well-modedness 
properties. 

L e m m a  1. I f  H *-- B~,. . . ,  Bn is a wel l-moded clause and X is a variable in outvar( H ), 
then ( a ) X ~ invar( H ) or ( b ) there exist a B i in the body such that X ~ outvar( Bi ). 

PROOF. By Definition 4, every variable in a well-moded clause has at least one 
producer, i.e., either (a) H is a producer of X or (b) some B i is a producer of X. 
By Definition 2, H is a producer of X only if X ~ i n v a r ( H )  and B~ is a producer of 
X only if X ~ (Var (B  i) - invar(Bi))  = (ou tvar (B  i) - invar(Bi)).  [] 

L e m m a  2. I f  H ~- is a wel l-moded unit clause, then outvar( H ) c_ invar( H ). 

PROOF. Follows from Definitions 2 and 4 and the above lemma. [] 

L e m m a  3. Let  A *-- B1,. . . ,  B n be a well-moded clause and B i be a minimal  element 
under the partial order defined by the producer-consumer relation o f  the clause. 
Then, invar( B i) c invar( A ). 

PROOF. Since B i is a minimal element under the partial order defined by the 
producer-consumer relation of the clause, there is no pair (B j, B i) in the. pro- 
ducer-consumer relation. Therefore, input variables of B i (if any) are not pro- 
duced by other atoms in the body. Hence they should be produced by A; that is, 
invar( B i) c_ invar( A ). [] 
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Lemma 4. Let ~ B 1 . . . .  , Bn be a well-moded query and B i be a minimal element 
under the partial order defined by the producer-consumer relation. Then the input 
terms of  B i are ground. 

PROOF. By Definition 4, well-moded query is a well-moded clause without head 
and by the above lemma invar(B i) c_ invar(head) = ~b. Therefore the set of input 
variables o f  B i is empty and hence the input terms of B i are ground. [] 

In the following, we characterize selection rules that are suitable for well-moded 
programs. First, we formally define the selection rule. 

Definition 6. A computation rule (or selection rule) [29] is a function from the set of 
goals to the set of atoms such that the value of the function for a goal is an 
atom, called selected atom, in that goal. 

If Go, G 1 . . . . .  G n is an SLD-derivation such that a i = aj, i 4:j, then the selected 
atoms of Gi and Gj are the same [29]. 2 This notion can be extended to the clauses 
in the following way: given a clause, the selection rule gives an evaluation order 
among the atoms in the body of the clause. It can be captured by a partial order (if 
l i < lj in the partial order, it means that l i should be selected before li is selected). 

The definition of well-moded programs (queries) given earlier is very concise 
and is a generalization of the existing notions. The earlier notions are closely 
linked to the Prolog's selection rule, and the producers of a variable should 
precede the consumers of that variable in the textual order [16]. Our notion is not 
linked with any selection rule. One of our aims has been to define the notion of 
well-modedness independent of selection rule, and we have been able to achieve 
this by saying that the producer-consumer relation is acyclic. Our definition is 
quite general as compared to other definitions. However, it still does not com- 
pletely capture some notions. For instance, in a well-moded Prolog program (using 
another notion), the producer-consumer relation can be cyclic; it can be seen that 
we exclude such a possibility. Once the selection rule is fixed, certain cycles can 
indeed be handled; for example, 

head(X, Y, Z,W):-al(X, Y), a2(Y, Z) a3(Z, W, Y) 

with modes 

head(in, out, out, out); al(in, out ; a2(in, out) 

and a3(in, out, out) 

is well-moded w.r.t. Prolog's selection rule, although its producer-consumer rela- 
tion is cyclic (z is produced by a2 and consumed by a3 and Y is produced by a3 
and consumed by a 2 ) .  In fact, we have used some of these notions in the context of 
application of our method to GHC programs. 

Now we characterize the class of selection rules suitable for the execution of a 
given well-moded logic program. 

2Apt  [2] considered a more  general  notion of selection rule that also takes the history of the 
derivation into account in selecting an a tom from the goal. With such a selection rule it is possible to 
select two different a toms in G i and Gj, even though G i = Gj. A selection rule that selects leftmost and 
r ightmost  a toms alternately is an example. 
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Example 3. The following permutation program is not well-moded according to 
earlier definitions (e.g., the definition given in [16, 32]--consumer apl(Xls ,  
c(X,  X2s) ,  Xs) of variables X l s  and ×2s  precede their producer ap  2 ( × l s ,  X2s,  
Z s)  ) but is well-moded according to our definition, and the right-to-left selection 
rule is implied by the moding information. 

moding: perm (in, out); apl (out, out, in) 

and ap2 (in, in, out). 

1. api(nil, X, X) 
2. aPi(C(H, X), Y, c(H, Z)) ~ api(X, Y, Z) 
3. ap2(nil, X, X) 
4. ap2(c(H, X), Y, c(H, Z)) ~ap2(X, Y, Z) 
5. perm(nil, nil) 
6. perm(Xs, c(X, Ys)) ~ aPi(Xls, c(X, X2s), 

X2s, Zs), perm(Zs, Ys). 
Xs), ap2(Xls, 

The clauses defining the predicates apz and ap  2 are essentially the clauses in 
the standard append program. 

In the following, we establish that the computations of well-moded programs 
under the implied selection rules are data-driven. 

Definition 8. Let P be a well-moded program and Q be a well-moded query. An 
evaluation (SLD-derivation) of P U {Q} is said to be data driuen if at every 
resolution step, the selected atom is ground on all of its input positions. 

Theorem 2. I f  P is a well-moded program, Q is a well-moded query and S is a selection 
rule implied by P U {Q}, then euery SLD-derivation of P U {Q} is a data-driuen 
eualuation. 

PROOF. See Appendix. [] 

2.2. Term-Rewriting Systems 

In this subsection, we briefly explain the basic concepts of term-rewriting systems. 

Definition 9. A term-rewriting system (TRS, for short) ~ is a pair (g,, R) consisting 
of a set ~r  of function symbols and a set R of rewrite rules of the form l -~ r 
satisfying 

(i) l, r ~ 3 ( ~ , ~ ) ,  the set of terms built from functions in J a n d  variables in ~ ,  
(ii) left-hand-side l is not a variable, and 

(iii) Vat(r) c_ Vat(l). 

A rule l -~  r applies to term t in J ( ~ , ~ )  if a subterm s of t matches with l 
through some substitution o-, i.e., s - lo-, and the rule is applied by replacing the 
subterm s in t by ro-, resulting in a new term u. This is formalized in the following 
definitions. 
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Definition 10. A context C[ . . . . .  ] is a term in .~5~-U { []} ,~) .  If C[ . . . . .  ] is a context 
containing n occurrences of [] and t a . . . . .  t~ are terms, then C[t~ . . . . .  6 ]  is the 
result of replacing the occurrences of [] f rom left to right by 6 , - - - ,  6 .  A context 
containing precisely one occurrence of [] is denoted C[ ]. 

Definition 11. The rewrite relation ~ induced by a TRS ~ is defined as flJlows: 
s ~,,p t if there is a rewrite rule l -~ r in ~ ' ,  a substitution o-, and a context C[ ] 
such that s - C[lo'] and t =- C[ro']. 

We say that s reduces to t in one rewrite ( or reduction) step if s ~ ¢  t and say s 
reduces to t if s ~ *.~ t (the relation ~ *e• is the reflexive-transitive closure of 
:::> ,)? ). 

Definition 12. A term-rewriting systems ~ is terminating if there is no infinite 
rewriting derivation t I ~ t 2 ~ : e  t 3 ~ "" .  

3. TRANSFORMING A LOGIC PROGRAM INTO A REWRITE SYSTEM 

Our main objective is to reduce the termination problem of logic programs to the 
termination problem of term-rewriting systems so that we can use the many 
techniques available in the rewriting literature. It  may be noted that term-rewriting 
systems do not have local variables, and all of the termination results of term- 
rewriting systems crucially depend on this property. With this as the motivation, 
we first eliminate local variables by introducing Skolem functions. 

For each n-ary predicate p having a moding with k output positions, we 
introduce k new function symbols pl  . . . . .  p~ of arity n -  k. These k-function 
symbols correspond to the k output positions of the predicate p. (If  k == 0, we 
introduce an n-ary function symbol p0.) Then we construct a set of rewrite rules to 
compute these new functions. For example, in Example 8 discussed in the sequel, 
we associate three binary function symbols r 1, r 2 and r 3 with the predicate r with 
moding ( i n ,  i n ,  o u t ,  o u t ,  ou t ) .  These functions take first two arguments of 
r as inputs and give one output each, corresponding to the third, fourth and fifth 
arguments of r .  Rewrite rules for these functions are constructed in Example 8. In 
the following, we illustrate the transformational approach through a series of 
examples. 

Example  4. Consider the following multiplication program: 

moding: add (in, in, out) and mult (in, in, out) 

add(O, Y, Y)~- 
add(s(X), Y, s(Z)) ~-add(X, Y, Z) 
mult(O, Y, O) ~- 
mult(s(X), Y, Z) ~-mult(X, Y, ZI), add(Zl, Y, Z) 

From these clauses and the moding information, we obtain the following rewrit- 
ing rules: 

1. Since the output  of  predicate add for inputs 0 and Y is Y, we get a d d  ~ ( 0, Y) 
---> y .  

2. Since the output of  mu i t  for inputs 0 and Y is 0, we get z u  1 c ~ ( 0, ~_~) ---, 0. 
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3. In the second clause, the output of a d d  for inputs s (X) and Y is s ( z ) ,  
where z is the output of add for the inputs x and Y. We get a d d  1 ( S (X),  Y) 
-~ s(add I ( X, Y ) ). 

4. In the last clause, the output of m u l t  for inputs s (x) and Y is z, where z is 
the output of a d d  for the inputs Zl  and Y, where Zl  is the output of m u l t  
for inputs x and Y. So we get m u l t l ( s ( X ) , Y ) ~  a d d a ( Z l , Y ) ,  where 
ZI ---- mult I (X, Y). 

The resulting rule is m u l t  ~ (s (x) ,Y) -~ ad d  I ( m u l t  1 (X, Y) ,Y).  

Example 5. Consider the permutation program given in Example 3. It was shown 
that the right-to-left selection rule is implied by the moding. First, we get the 
following rules from clauses 1 to 5: 

ap~ (nil,X) -~X 

ap~(c(H, X), Y)-*c(H, ap~(X, Y)) 

ap~ (X) -~ nil 

ap~(c(H, Z))-~c(H, ap~(Z)) 

ap~ (X) -~ X 

ap~(c(H, Z)) ~ap~ Z) 

perm I (nil) -* nil 

Let us now consider clause 6. The output of predicate p e r m  for input c (x ,  Ys) is 
xs ,  where x s  is the output of predicate ap~ for inputs Xl s ,  c ( x ,  x2  s ) ,  i.e., x s  

is ap~ ( X l s ,  c (x ,  X2s) ). Here,  X l s  and x 2 s  are outputs of predicate ap  2 for 

input z s  and zs  is the output of p e r m  for input Ys. Therefore,  we get the rewrite 
rule 

perm I (c (X, Ys) ) -~ ap~ (ap~ (perm I (Ys)) , c (X, ap~ (perm I (Ys)) ) ). 

When a nonvariable term appears in an output position of a body literal, we 
need to introduce inverse functions as illustrated in the following example. 

Example 6. Consider the permutation program given in Example 3 with moding 
p e r m ( i n ,  o u t ) ; a p ~ ( o u t ,  o u t ,  i n )  a n d a p  2 ( i n ,  i n ,  o u t  ) . It is easy to 
see that we get the following rules from the clauses 1 to 5: 

ap~ (X) -~ nil 

ap~(c(H, Z)) ~c(H,ap11(Z)) 

ap~ (X) ~ X 

ap~ (c (H, Z) ) -~ ap~ (Z) 

ap~ (nil, X) ~ X 

ap~(c(H, X), Y)~c(H, ap~(X, Y)) 

perm I (nil) -~ nil 

Let us now consider clause 6. The output of predicate p e r m  for input x s  is c ( x ,  
Ys ), where Ys is the output of predicate p e r m  for input z s  and x is a part of the 
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second output of predicate ap  1 for input xs .  How do we extract x and x2 s from 
c (x, X2s) ? 

They can be extracted through inverse functions of c. The operators c a r  and 
c d r  can be used as inverse functions of c, and we get a rewrite rule p e rm  ! (xs )  --* 

c ( c a r  (ap~ ( X s ) ) ,  p e r m  1 ( ap~  (ap~  ( X s ) ,  c d r  (ap~ ( X s ) ) ) ) ) .  To  evaluate the 

functions c a r  and c d r ,  we add the following rules: c a r  (c (H, T) ) --, H and 
c d r  (c (H, T) ) ~ T. Thus, for clause (6), we get the following rules: 

perm l(Xs) -~ c(car(ap~ (Xs)), perm I (ap~ (apl (Xs), 

cdr(ap~ (Xs))))) 

car(c(H, T)) -*H 
cdr(c(H, T)) -~T. 

As shown in the above example, inverse functions are needed when a nonvari- 
able term occurs in an output position of an atom in the body. Appropriate inverse 
functions are generated as follows: 

1. Build a representation of the nonvariable output term. 
2. Identify for each variable in this term (and consumed by other atoms in the 

clause) a path from root to an occurrence of that variable in the above tree. 
3. Traverse upward path (from leaf to root), collecting suitable inverse function 

symbols, which will be used in constructing the right-hand sides of the rewrite 
rules as illustrated in the following example. 

Example 7. Consider the following clause: 

m o d i n g :  a ( i n ,  o u t )  ; b ( i n ,  i n ,  o u t )  ; a n d  c ( i n ,  o u t )  

a(X, Y) *-b(X, 0, f(X, g(h(0, Z), X), X, i)), c(Z, Y) 

A nonvar i ab le  t e rm  f ( x ,  g ( h  ( 0 ,  Z) , X) , X,  1 ) is occurring in the output 
position of b and the local variable z occurring in this term is consumed by atom 
c ( z ,  Y). Function symbols f,  g, and h occur in the path from the root to variable 
Z, and the appropriate inverse functions are collected as follows. 

Since Z is the second argument of h, the inverse function h2 I is collected (and 
a rewrite r u l e  h2 1 (h (×1, X2) ) ~ X2 is added to the rewrite system). Since 
the subterm h ( 0, z) is the first argument of g, the inverse function symbol g l  1 
is collected (and a rewrite rule g l  I (g (×1, x2)  ) ~ ×1 is added). Since g( ... ) is 
the second argument of f ,  the inverse function symbol f2 -1 is collected land a 
rewrite rule f2 -1 ( f  (x1 ,  x2 ,  x3 ,  x 4 ) )  ----)x2 is added). The transformation 
procedure derives the following rewrite rules for the above clause: 

a~(X) - ~ c l ( h 2 - 1 ( g l - l ( f 2 - 1 ( b l ( X ,  0 ) ) ) ) )  
h 2 - 1 ( h ( X 1 ,  X2) ) -~X2 
g l  l ( g ( X 1 ,  X2) ) ~ K L  
f2 l ( f ( X 1 ,  X2, X3, X4))  -~X2 

In the above examples, all of the variables occurring in the output positions of an 
atom in the body are also occurring either in output positions of the head or in 
input positions of some other  atom in the body. And the rewrite systems derived in 
both of the examples capture the termination of the corresponding logic programs 
correctly. The above transformation is basically capturing the data flow in the 
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program execution. When there are some variables occurring only in output 
positions of atoms in the body, we need to add additional rewrite rules, as illustrated 
below. 

Examp& 8. Cons ider the  ~l lowing(nonterminat ing)  logic program: 

moding: a(in, out); b(in, out); c(in, out) and r(in, 

out, out). 
i n ,  

a(X, f(X)) ~- 
b (X, X) 
c(X, Y)~-a(X, Z), r(X, Z, Y, ZI) 
r(X, Y, 01, 02)~-b(X, 01), c(Y, 02) 

We get the following rewrite system according to the above transformation: 

a 1(x) -~ f(X) 
b1(X) -~X 
c i(x) -~r l(x, a I(x)) 

r I(x, Y) -~b I(x) 
r 2(x, Y) -~c l(Y) 

It is easy to see that this rewrite system captures the data flow in the program 
execution correctly. This rewrite system is terminating (it can be proved using 
recursive path ordering with precedence r 2 > c z > a z > f ,  c ~ > r 1 > b l ) ,  whereas 
the above program is a nonterminating one. 

For  the query ~ c ( t ,  Y), where t is a ground term, the program has an 
infinite SLD-derivation: 

~- c(t, Y) 
~-a(t, Z), r(t, Z, Y, 

~r(t, f(t), Y, ZI) 
~b(t, Y), c(f(t), ZI) 
~-c(f(t) , ZI) 

zl) 

~c('f(f(t) ) , Z') 

In the rewrite system, we compute el(t) for some ground term t through the 
rewrite derivation c ~ ( t )  ~ r ~ ( t ,  a ~ ( t ) )  ~ r ~ ( t ,  f ( t ) )  ~ b ~ ( t )  = t ,  
whereas for the execution of c ( t ,  Y) in the logic programming paradigm, we 
need to execute r ( t ,  f ( t ) ,  Y, z 1) ,  which in turn needs the execution of 
b ( t ,  Y) and c(f(t), Z1) - - t hus  leading to an infinite SLD-derivation. Computing 
c 1 in rewriting involves only a partial computation of r (i.e., computation of r 1 
only), whereas this kind of partial computation is not possible in logic programming 
and execution of r does not stop after computing r I but continues to evaluate r 2 
(here it needs to execute c, which leads to a loop). 

In the above example, the computation of the second output of r(---  ) causes the 
looping of the logic program, and the computation does not contribute anything 
useful to the evaluation of the initial query. The corresponding rewrite system does 
not enter any loop, as it does not involve the computation of the second output of 
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r ( . . . ) .  To cover all of the computation paths in the SLD-trees, we include 
additional rewrite rules reflecting the (possible) nontermination due to the compu- 
tation of unnecessary values (the computation of these values does not provide any 
information directly or indirectly to the head). The derivation of these rewrite rules 
will be clear in the next section. 

E x a m p l e  8 (continued). We include the following rewrite rules to capture the 
unnecessary computations: 

c (x) -~#(r 2(x, a ~(x)'~) 
c (x) -*#(r~(X, at(X))) 

It is easy to see that the resulting rewrite system is a nonterminating one. 

4. FORMAL DESCRIPTION OF THE TRANSFORMATION PROCEDURE 

Although input and output positions of a predicate can combine in all possible 
ways, for notational convenience we write all of the input positions first, followed 
by all of the output positions. We write p( t i ,  . . . . .  t%, to~ . . . . .  tok) to denote an atom 
p( - . . )  containing the terms ti,, . . . .  t~i in input positions and t,,, . . . . .  t(,~ in output 
positions. 

The main step in our transformation is the elimination of local variables. 
Basically, the right-hand sides of rewrite rules are derived from an output term of 
the head by repeatedly replacing a local variable (to be precise, variables in 
V a r ( c ) -  i n v a r ( h e a d ) )  by a term corresponding to one of its producers. When a 
variable has more than one producer, one has to consider all possible choices. The 
following function, ELIMINATE-LOC-VARS, has been designed to perform the 
elimination of local variables repeatedly until there is no local variable to replace. 
This function needs the computation of the set of producers for each local variable. 

It is easy to see that computation of an output term in the body does not provide 
any information directly or indirectly to the head or any other atom if and only if 
none of the variables in that output term have any consumer. Therefore, the 
unnecessary computations can be captured by computing the set of variables 
without consumers. To derive the rewrite rules corresponding to unnecessary 
computations, we compute the following sets C o n s v a r  and Unsry for each clause in 
the program. In all, the transformation procedure computes the following sets for 
each clause c : h e a d  ~ b o d y  in the program: 

1. P r o d ( X )  = {(  p t ( t  i . . . .  , t  i ), t o > p(t~ . . . . .  ti , to~ . . . . .  tok) is an atom in the body 
1 j I 1 ) 

of the clause c, X ~ Var ( to , )  and X ~ Var({ti~ . . . . .  ti))}, the set of producers, 
for each variable X not occurring in input positions of the head. 

2. C o n s v a r  = { X  ~ V a r ( c )  - i n v a r ( h e a d )  I X  ~ o u t v a r ( h e a d )  or X occurs in an 
input position of an atom in the body}, the set of variables in the clause 
c o n s u m e d  at  least  once .  

3. Unsry  = { p t (  ti~, . . . , t i )  I Var (  t o,) A C o n s v a r  = oh} U { q ° (  si~, . . . .  si~ ) I predicate q 
does not have output positions}, where p ( . . - )  and q(-.. ) are atoms in the 
body. 
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This set corresponds to the set of computations (we call them unnecessary 
computations) that do not contribute to the outputs of h e a d  directly or 
indirectly. 

The algorithm TRANSFORM and the function ELIMINATE-LOC-VARS are for- 
mally described below. 

algorithm T R A N S F O R M  (P :in; R e : out); 
begin 

R e  := th; {* R p contains rewrite rules.*} 

for each clause c: a( lil . . . .  , ti~, to1 . . . .  , t ok ,) ~- B~ . . . . .  B n ~ P do 
begin I N h e a d  :=  V a r ( { t i x , . . .  , lik}) 

Compute Consvar and Unsry; 
Compute P r o d ( X )  for every variable in Var(c)  - I N h e a d ;  
for j := 1 to k '  do 

begin 
S .'= ELIMINATE-LOC-VARS({to)) ;  

{ * S contains the right-hand sides o f  the rules in R e  * } 

R e := R e U {aJ(t i i  . . . . .  tik) ~ t It ~ S} 
end; 

{ * Following code derives rewrite rules corresponding to unnecessary computations. *} 

S := E L I M I N A T E - L O C - V A R S ( U n s r y ) ;  
R e :-- Rp u {ak'( t i l , . . . ,  t&)  ~ # ( t )  It ~ S} 

end 
end TRANSFORM.  
funetion ELIMINATE-LOC-VARS(T)  

{ * This function goes on replacing the local variables in the set o f  terms T by the terms corresponding to their 
producers as long as there are local variables. Since the producer-consumer relation o f  every well-moded 
clause is acyclic, this function is guaranteed to terminate. Here, I N h e a d  is a global variable. *} 

begin V:= Var( T ) - I N head; 
while V ~ ~, do 

begin 
for each X ~ V do 

begin T'  := ~b; 
for each (pZ( ... ), t )  ~ P r o d ( X )  do 

if t = X then T'  := T '  U T { X / p t (  ... )} 
{ * Replace local var X by its producer-term. * } 

else if t = f ( X )  then 
begin 

T'  := T '  U T { X / f - l ( p t (  ... ))}; {, Introduce inverse functions.*} 

R e  :=Rp U { f f l ( X ) )  ~ X }  
end; 

T : = T '  
end; 

V:= Var( T ) - I N head 
end; 
Return(T)  

end ELIMINATE-LOC-VARS;  

The following series of examples illustrates the transformation procedure. 
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Example 9. For  the quick-sort program given in Example 1, the algorithm TRANS- 
FORM derives the following term rewriting system: 

1. @(nil) -*nil 

2. qS(c(H, L)) --~aS(q1(s1(L, H)), c(H, ql(s2(L, H)))) 
3. s 1(nil, Y) -~nil 

3'. s 2(nil, Y) -*nil 

4. s~(c(X, Xs), Y)-~c(X, s1(Xs, Y)) 
4'. s 2 (c (x, Xs) , Y) -* s 2 (Xs, Y) 

5. s1(c(X, Xs), Y)-~s1(xs, Y) 

5'. s 2(c(x, Xs) , Y) -~c(X, s 2(xs, Y) ) 

6. a l(nil, x) -~x 

7. a ~ (c (H, X) , Y) --~ c (H, a i (X, Y) ) 

Here,  we explain how rule 2 is derived from the second clause. The other rules can 
be derived in a similar fashion. The head q ( c  (H, L ) ,  S) contains c (E, L) in 
the input position and variable S in the output  position; hence the left-hand side of 
the rewrite rule is q~ (c (H, L) .  Producers of variables not occurring in the input 
positions of the head are as follows: Prod(A)={(s  ~ (L, H) ,  A)}, Prod(B)= 
{(s2(L, H), B)}, Prod(Al) = {(qi(A), AI)}, Prod(Bl) = {(q:(B), BI)}, 
P r o d ( S ) = { ( a  1 ( i l ,  c ( H ,  B 1 ) ) ,  S)}. To  construct  the right-hand term, algo- 
rithm TRANSFORM calls function ELIMINATE-LOC-VARS with argument  T = {S}. 
Values of T at the end of various iterations of the while loop in ELIMINATE- 
LOC-VARS are given below. 

Iteration 1 T = { a  1 (A1, c ( H ,  B1) )] I,ariable S is replaced by its producer. 

Iteration 2 T = {a ~ (@ (A) c (H, q1 (B))  )} local variables At and s l  are replaced 

by their producers. 

I teration 3 T = { a S ( @ ( s  ~ L, H ) ) ,  c ( H ,  ( q l ( s 2 ( L ,  H ) ) ) ) }  localrariables 
i and B are replaced. 

Since there are no local variables in T after the third iteration, ELIMINATE-LOC 
VARS returns this T to TRANSFORM, which produces the rewrite rule 2 given above. 

Example 10. Let us consider the third clause of the program given in Example 8: 

c(X, Y) ~--a(X, Z), r(X, Z, Y, Zl, Z2) 

The following producers of the variables are computed: 

prod(z) = {(a s (x) , z)}, 

prod(Y) = {(r  ~ (x ,  z) Y)}, 

p r o d ( z l ) = { ( r  2 (x ,  z , z l )} ,  

prod(z2) = { ( P  (x ,  z , z2)}, 

and Unsry={r 2(x ,  z , z 3 ( x ,  z)}. 

The function ELIMINATE-LOC-VARS is first invoked with input T =  {Y}. The 
values of T at the end of various iterations of the while loop are {Y}, {r ~ ( X, z) }, 
{r ~(x,  a ~ ( x ) ) } a n d w e g e t t h e r e w r i t e r u l e c  s (x )  - , r  ~(x ,  a ~ ( x ) ) .  

The function ELIMINATE-LOC-VARS is then invoked with input T =  Unsry = 
{r > (X, z ) ,  P (X, Z)}. The value of T after the first iteration of the while loop 
is {r:' (X, a s ( x ) ) ,  r 3 (X, a ~ (X))}, which does not have any local variables. 
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Corresponding to this set, algorithm TRANSFORM adds the following two rewrite 
rules: 

c I (X) -* #(r 2 (X, a I (X)) ) and c ~ (x) -~ #(r 3 (x, a I (X)) ) 

Example 11. Let us consider the following program: 

p ~--- q ,  p 

Here, we have propositions (no in /out  arguments). So the associated function 
symbols {p0, q0} are of arity zero (i.e., constants). The value of Unsry is {p0, q0}. 
The algorithm TRANSF©RM derives R e with the following two rewrite rules: 

pO ~ # ( q O )  and pO ~ # ( p O ) .  

5. FORMAL CORRECTNESS 

In this section, we first prove that the algorithm TRANSFORM terminates for a given 
input and study some properties of the rewrite system derived by the algorithm 
TRANSF©RM from a given well-moded logic program. Then we establish that 
termination of the derived rewriting system implies termination of the logic 
program for all well-moded queries under all selection rules implied by the moding 
information. Figure 1 gives the interdependence of the technical lemmas and 
theorems leading to the proof of our main result (Theorem 5). 

Lemma 5. The algorithm TRANSFORM terminates. 

PROOF. Since there are only a finite number of clauses in the program and every 
predicate has a finite number of output positions, the number of iterations in the 
for-loop is finite. Since each body has a finite number of atoms, Unsry is finite for 
every clause. Therefore, there are only a finite number of calls to the function 
ELIMINATE-LOC-VARS, and it is enough to prove termination of ELIMINATE- 
LOC-VARS for proving termination of TRANSFORM. 

It is easy to see that for proving termination of ELIMINATE-LOC-VARS, it is 
enough to prove termination of the while loop. The main step in the while loop can 
be abstracted as follows: application of substitution (X/p] (  ... )} to the terms in T, 
where p J(... ) is a producer of X. That is, an occurrence of a variable in a term 
corresponding to its consumer is replaced by its producer. Since the producer- 
consumer relation of a well-moded clause is acyclic, the while loop is bound to 
terminate. [] 

5.1. Properties o f  the Derived TRS 

In this subsection we study certain properties of the derived term-rewriting systems 
using the transformation procedure from the given well-moded programs. Our 

S 
Lem. 7 ' Lem. 8 " Lem.  9 ' Lem. 11 ' Th .  4 

Lem. 10 

FIGURE 1. Road-map of the technical results. 

• T h .  5 ~ T h .  6 
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basic aim is to establish that the termination of the derived term-rewriting system 
implies the termination of the logic program. Toward such a goal, we show that 
corresponding to each resolution step in the SLD-derivations, there is at least one 
reduction step in the rewrite derivations. 

The following lemma establishes that there are no extra variables on the 
right-hand side of the rewrite rules in R e ,  and thus all of the termination 
techniques of rewriting systems can be used in proving the termination of logic 
programs. 

L e m m a  6. Var(r)  c_ Var(l)  for  each rewrite rule l ~ r in Rp.  

PROOF. Each rule associated with inverse funct ion is of the form 
f f l ( f ( X  L . . . . .  Xn))  ~ X  i, and hence the lemma holds for such rewrite rules. Other  
rewrite rules are of the form p J ( t - ~ ) ~ t  or pJ(t i-~)~ #( t ) ,  where tin l,; the 
sequence of input terms of a head and t is a term in the set T returned by 
ELIMINATE-LOC-VARS. The function ELININATE-LOC-VARS terminates with 
the condition ( V a r ( T ) - I N h e a d ) =  ~b. Therefore,  V a r ( T ) c _ I N h e a d  and hence 
Var( t ) c_ I N head = Var( pJ( Ti~ )) = Var(l). Thus, Var(r ) c_ Var( l) for each rule l --* r 
in Rt,. [] 

The basic ingredient in the transformation is the application o f  substitution 
{ X / p  J( ... )} to the terms in T, where p J( ... ) is a producer o f  X. A study of the 
derived rewrite rules involves a study of these substitutions and their effect. We 
need the following notation. 

Definition 13. Let c : h e a d  ~ body be a well-moded clause and V be the set of 
variables Var(c)  - i n v a r ( h e a d ) .  For any variable X, we denote by E L V ( X ) ,  the 
set of terms returned by the function ELIHINATE-LOC-VARS for input {X}. 
We denote by ® the set of substitutions {cr lXcr6  E L V ( X )  for each variable 
X 6  V}. For  any term t, ®(t)  denotes the  set { o ' I X ~ r 6 E L V ( X )  for each 
variable X ~ Var(t)}. We call the substitutions in 19 Skolem substitutions. 

REMARK 3. If X is a variable in a term s - C [ X ]  for some context C[ ], we can 
construct an appropriate context C'[ ] of inverse functions such that C'[C[X]]  can 
be reduced to X by the rewrite rules defining the inverse functions. In the sequel, 
we use the phrase "context of inverse functions" to mean the context built from 
the inverse functions as illustrated. 

L e m m a  7. Le t  c : head ~ body be a well-moded clause, ® be the set o f  its Skolem 
substitutions and X be a variable in Var( c ) - invar( head) such that (p t ( t i¢  . . . .  t i, ,), 
tol) is an element in P r o d ( X )  and q(si~ . . . . .  sik, so~, . . . .  Sok ,) is a consumer  o f  X .  
Then, 

1. There exists a Skolem substitution cr in ® such that X ~ r -  C[ pl(ti~ . . . . .  t; )~r ], 
where C is a context o f  inverse funct ions such that C[to,] ~ *X. 

2. Corresponding to every Skolem substitution o ' ~  @(pt( t i l , . . .  , t  i )) there is a 
substitution cr ~ tg(qm(ti . . . . .  t i )) such that X~r = C[pt( t i  ", . . . .  t i ),r '] =- 
C[pl( t i  . . . . .  ti )O" ] f or  each m ~ fl, k']. ~ " 

3. The output o f  the funct ion ELIMINATE-LOC-VARS for  input {t} is the set 
{ttrl ~ ~ 19} = {tyl  7 ~ 19(t)}. 

PROOF (sketch). In the function ELIHINATE-LOC-VARS, a local variable is re- 
placed by the terms corresponding to its producers. If a local variable (say, Y) 
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occurs in a nonvariable output term (say, t), the term corresponding to the 
producer is adorned with a context of inverse functions C1 such that Cl[t]  is 
reducible to Y by the rewrite rules defining the inverse functions. It can easily be 
seen that statement (1) of the lemma follows easily. Since the local variable X 
(with a producer ( p l ( t  6 . . . . .  t i ) ,  to,)) occurs in the input terms of the atom q(. .-) ,  
the variable X in any term qm(ti~ . . . .  , t i ) )  is replaced with C[pt(ti~ . . . . .  ti)] by the 
function ELIMTNATE-LOC-VARS. Statement 2 of the lemma now follows. State- 
ment 3 of the lemma follows from the above definition of t9. [] 

The following example illustrates this lemma: 

Example 12. Consider the following clause: 

m o d i n g : d ( i n ,  i n ,  o u t ) ; a ( i n ,  o u t ,  o u t ) ; a n d  q ,  b ,  c ( i n ,  o u t )  

q(X, W)~-a(X, O, U), b(X, U), c(O, V), d(U, V, W) 

For this clause, ELV(O)  = {a 1 (X)}, E L V ( u )  = {a 2 (x) , b 1 (X)}, E L V ( V )  = 
{ c ~ ( a l ( X ) ) } ,  and  E L V ( W ) =  { d l ( a 2 ( X ) ,  c l ( a Z ( X ) )  , d ~ ( b ~ ( X  , 
c ~ (a ~ (x) )  )}. 

The value of (9 is {0-1, 0-2, 0-3, 0-4}, where 

O ' l = { 0 / a l ( X ) ,  U / a 2 ( X ) ,  V / c l ( a l ( x ) ) ,  W/d l ( a2 (X)  cZ(a l (X) )  }, 

0-2={0/at(X), U/bI(X), V/cI(aI(X)), W/d1(a2(X) c1(a1(X)) }, 

6r3={0/aZ(X) , U/a2(X) , V/c1(a1(X)) , W/d1(b1(X) c1(a1(X)) }, 

o ' 4 = { 0 / a l ( X ) ,  U / b l ( X ) ,  V / c l ( a l ( X ) ) ,  W / d l ( b l ( X )  c l ( a l ( X ) ) ) } .  

The output of ELIMINATE-LOC-VARS for input {d ~ (U, V)} is the set 

{dl(a2( X ) , c l ( a l (  X )  )), dl(b~( X ) , c l ( a l (  X )  ) ) )  

which is equal to {d~(U, V)0-10-e19}. The term d~(U,  V) is an element in 
Prod(W) and substitutions 0-1 and 0- 4 satisfy the equation w0--- d z (U, V) 0-. 

The following lemma plays a crucial role in proving our main result. It shows 
that corresponding to each atom in the body of a clause there are some (sub)terms 
in the derived rewrite rules. 

L e m m a  8. Le t  c : head *- body be a well-moded clause and 19 be the set o f  Skolem 
substitutions. Then, for  every atom p(  t i,, . . . , t i~ , t ol . . . . .  t ok,) ~ body, for each or ~ 19 
and for each j such that 1 < j  < k '  4= 0 or j = k '  = O, the term pJ(til . . . . .  tik)O" 
occurs as a subterm of  the right-hand side o f  a rewrite rule derived from clause c. 

PROOF. There are two cases: 

(k '  = 0) In this case, the term p°(ti~ . . . . .  ti~) is included in the set Unsry and the 
function ELIMINATE-LOC-VARS is called with input Unsry. Rewrite 
rules are constructed with terms from the output of ELIMINATE-LOC- 
VARS on the right-hand sides. It follows from Lemma 7 that the lemma 
holds in this case. 

(k '  > 0) The lemma is proved in this case by using Noetherian induction with 
the following Noetherian relation < .  The relation -< is defined over 
the terms of the form pJ(ti, . . . . .  ti~), where p(ti~ . . . . .  tik, to~ . . . . .  tok ,) is an 
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atom in the body of c and 1 < j  __< k ' ,  as follows: 

l S q ( i , , ' " , % , )  <PJ(t i  1 . . . . .  tik) 

if and only if ( p f f t i , . . . , t  i ) , t  o ) is a producer  of a variable in 
Var(qt(sil . . . . .  s i ) )  - invar( head ). JSince the p roducer -consumer  rela- 
tion of a well-moded clause is acyclic, the relation -< is Noetherian. 

Minimal elements: A minimal e lement  (say, rk(ui,, . . . .  Uim)) in this relation is 
either a producer  of a variable in (ouWar(head) - invar(head)) or is a member  of 
Unsry. 

• If it is a member  of Unsry, the lemma holds for this element because the 
function ELIMINATE-LOC-VARS is called with unsry as the input and the 
output of this function is {to.I t c Unsry, o. ~ 19}. Each term in this set is a 
subterm of the right-hand term of a rewrite rule. 

• If  it is not a m em ber  of Unsry, it is a producer  of a variable (say, X ) i n  an 
output  term (say, t) of  the head. By Lemma  7, there is a substitution o. ~ 19 
such that X o - -  C[rk(ui,,  . . . .  uim)o. ], where C is a (possibly empty) context of 
inverse function symbols such that C[uo~] ~ *X. The output of the function 
ELIMINATE-LOC-VARS for input {t} is { t y l y  ~ 19}. Each term in this set is 
the right-hand te rm of a rewrite rule. Since X e Var(t), X o . -  
C[rk(ui,,  . . . .  u i ) o . ]  is a subterm of to-, the lemma holds. 

Nonminimal elements: Now we prove that the lemma holds for the element 
p J ( t 6 ,  . . . .  t 6) if it holds for an e l e m e n t  q t ( s i ,  . . . . .  Si ) , such t h a t  ql(si~,  . . . .  si, ,) -~ 
pJ(ti,, . . . .  ti~). From the definition of the relation < it follows that 

(pY(t i¢ . . . , t i~) , toj)  is a producer  of a variable (say, Y) in Var(q~(si, . . . . .  .%,))- 
invar(head). By L e m m a  7, corresponding to every substitution cr ~ 19(pJ(ti, . . . .  £ ) )  
there is a substitution o. '  ~ ®(qt(%,, . . . .  sin)), such that 

Yo.' =- C[ pi(ti~ . . . . .  t6)o . '  ] =- C[ pJ(til, . . . .  ti~)o. ] , 

for some (possibly empty) context C of inverse function symbols. Hence 
pJ(til . . . . .  ti~)o, is a subterm of qt(si~ . . . . .  si )o-'. By hypothesis, qt(%1, . . . .  si,)o.' 
occurs as a subterm of the right-hand side of a rewrite rule and hence the lemma 
holds for the element  pJ(ti, . . . .  ,ti ). [] 

The following lemma describes the structure of rewrite rules in Rp. It is shown 
that the function symbols pi and qJ occur in the right-hand side of rewrite rules in 
such a way that pi occurs inside qJ if q( . . .  ) is a consumer of a variable (say, X )  
that occurs in the ith output term of p ( - . .  ) (i.e., p(  ... ) is a producer  of X). In 
particular, the terms corresponding to the minimal atoms in the body of a clause 
occur at the innermost level of the right-hand terms of the rewrite rules. 

Lemma 9. Let  p( t i l , . . . ,  t 6 ,  to, . . . . .  to~.), q(sil . . . . .  Sin , So,,. . . ,  s o ) be two atoms in the 
body o f  a well-moded clause c such that q( . . .  ) is a consumer o f  a uariable X and 
( pl(ti,, . . . .  tik),to,) is an element in Prod(X) .  Then, for  each 1 <_j <_ n', the term 
qJ(sil , . . . .  sin)o- occurs as a subterm of  the right-hand side o f  a rewrite rule derit,ed 
from c, where o. is a substitution in 19 such that X o . -  C[ pl(ti~ . . . . .  t 6 )o. ] and C is 
a (possibly empty) context o f  intJerse functions such that C[to,] ~ *X. 
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PROOF. Follows from Lemma 7 (part 2) and Lemma 8. [] 
The following lemma establishes a correspondence between the computations of 

logic programs and the derivations of the derived term-rewriting systems. 

Lemma 10. Let P be a well-moded program, Q = ~ q(si , , . . . ,  sire, So~ . . . . .  Som.) , be a 
well-moded query and R p be the term rewriting system derived from P. I f  0 is a 
computed answer substitution of  P u {Q}, then qJ(si~ . . . . .  sire) ~Rp SojO, for each 
j ~ [1, m']. 

PROOF. Induction on the length l of the SLD-refutation of P u { ~ q(--.)}. [] 

5.2. Terminat ion o f  a Given Logic Program and  the Derived TR S  

Now we prove that the termination of Rp implies termination of the given program 
P for all well-moded queries under all selection rules implied by the moding 
information. For this purpose, we introduce the notion of a rewrite tree of a 
well-moded query and establish the relationship between the SLD tree starting 
with a query and the rewrite tree of that query. 

Definition 14 (Rewrite Tree). Let P be a well-moded program, R e be the term 
rewrite system derived from P by the transformation, Q = ~ ql( "" ) . . . . .  qn( "" ) 
be a well-moded query, and RQ be the set of rewrite rules derived from the 
clause q0 ~ q l ( " ' )  . . . . .  q , ( . . . ) ,  where q0 is a fresh predicate of arity "0" not 
occurring in P U {Q}. The rewrite tree RTeQ of P and Q is defined as follows: 

1. Root (RTeo)  = q° o 
2. Children of a node t ~ RTpQ are {s I t ~RQ u Rp S}. 

The rewrite tree RTpQ essentially contains all of the (rewriting) derivations of 
the rewrite system R 0 U Rp, starting from the initial term q0 °. The following 
theorems establish the relationship between RTpQ and the SLD-derivations of 
P u {Q}. Before giving the formal theorems, we illustrate the relationship between 
RTpo and the SLD-derivations through an example. 

Example 13. Consider the program given in Example 8 and query Q = ~ c ( t ,  
Y), where t is a ground term. Here we give two possible SLD-derivations and show 
their correspondence with RTpQ: 

~c(t,Y) ~-c(t 

~a(t, Z) , r(t, Z, Y, ZI, Z2) ~-a(t 

~r(t, f(t) , Y, ZI, Z2) ~r(t 

~-b(t, Y) , c(f(t), ZI), ~-b(t 

d(t, f(t), Z2) d(t 

~-c(f(t) , ZI), d(t, f(t), Z2) ~-b(t 

Y) 

Z) , r(t, Z, Y, Zl, Z2) 

f(t) , Y, ZI, Z2) 

Y), c(f(t), ZI), 

f(t), Z2) 

Y) , c(f(t), ZI) 

Figure 2 shows a (top) portion of the rewrite t r e e  RTpQ. The dots " . - - "  denote a 
subtree. Observe that corresponding to every selected atom in the SLD-derivations 
there is a term in RTpQ. 
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/1\  
FIGURE 2. 

In the following, we show that corresponding to every resolution step in 
SLD-derivations of P U {Q}, there is at least one rewrite step in RTpQ. For 
establishing this property, we need the following technical lemma. 

L e m m a  11. Let  G 0, G 1 . . . . .  G n be an SLD-derivation o f  a well-moded program P and 
a well-moded query Q under a selection rule implied by the moding information o f  P 
and Q. Furthermore assume that H ~ B 1 . . . . .  B m is the input clause and 0~ is the 
mgu used in deriving G~, + 1 f rom G,,,  and BiO is the selected atom in G~, +,,2' where 
0 is the composition o f  mgus used in the derivation Gnl , . . . ,G, ,+n 2. Then, 

pY(si~,. . . ,  si )o'On~ ~ *Repi(si,, . . . .  sik)O, i f  B i ~ p ( s i ? . . .  , sik , So,,. . .  , Sok .) for each 
o" ~ ®( p f f  si, . . . . .  sik )). 

PROOF. Induction on n 2. 
Basis: n 2 = 1. 
In this case, 0 =  0,, and B i is a minimal element in the producer -consumer  
relation of the clause H ~ B1, . . . ,  Bm. By definition, domain(o ' )  • i nvar (H)  = oh. 
Since B i is minimal, Var (pY( s i l , . . . . , s i ) )  = invar(B i) c i n v a r ( H ) ,  and hence 
pY(si,, . . . .  sO~r=pY(s i ,  . . . . .  s i ). Since BiO ~ is the selected atom in G, + ~, its input 
terms si O,~ . . . . .  si O,, are ground. Hence ~p)(si , , . . . ,  si )crOn, ~pJ(s i , , .  ~., sik)O. The 
lemma holds. 
Induction Hypothesis: Assume that the lemma holds for all n z < l. 
Induction Step: n 2 = 1. 
Let rYl(t~, . . . . .  t~r)~rO,~ be a maximal proper  subterm (having a Skolem function at 
the root)  of pJ(sil , ~ . . ,  s i )~rOn . Let  G,  +n be the goal in which 
r(t~, . . . .  ti~, t o e . . . ,  tok ' )0 is selected ~and 0' be the 'composit ion of mgus used in 
the derivation G~¢..  "~QI+,," It is clear from Lemma 9 that r(- . .  ) is a producer of 
a variable (say, X)  in invar(p(  ... )) and r( .-. ) should be selected before p(  .-. ) is 
selected, i.e., n r < n 2. By induction hypothesis, 

rJ l ( t i l  , . . . .  tikr) O'On, = *RprJl(ti l  , . . . .  t ikr)O' 
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By Lemma 10, rJl(t., ,t; ) 0 ' ~ *  to 0" - t .  O, where 0" is the ground com- 
J l I " " "  ~kr l . p  ~ j l  Vj l  

puted answer substitution of r( ... )0 ' .  Furthermore,  it is easy to see that C[t o 0"] 
*n XO" if C is the context of inverse function symbols around the  sub~erm 

r J l ( ÷  e j 
. ~ . t i l  . . . .  , tik )trOnl in p ( S i l  . . . .  , s i k ) o ' O  n • 

It is eas~ 'r to see t h a t  pJ(si~ . . . . .  Siklo'O n can be reduced t o  pJ(Sil,...,Sik)O by 
reducing each maximal proper  subterm u)h(sl, . . . . .  s'i~ ~) (having a Skolem function 

at the root) of p](si, . . . . .  s~)trO,~ to s' 0 and then reducing the contexts of inverse 
O j2 

functions. [] 
The above lemma establishes a correspondence between SLD-derivations and 

the derivations in the rewrite tree. Figure 3 depicts such a correspondence. 
In the following, we prove that corresponding to every selected atom in an 

SLD-derivation, there is at least one term in RTpo. This helps us to show that 
corresponding to every resolution step in the SLD-derivations of P u {Q}, there is 
at least one rewrite step in RTpQ. 

Theorem 3. If  P is a well-moded program, Q is a well-moded query and S is a selection 
rule implied by P U {Q}, then for each goal G i in any SLD-derivation G 1 . . . . .  G n of 
P u {Q} (under selection rule S), the following holds: for each minimal (under the 
evaluation order of G i) atom p(til, . . . ,  tik, to,, . . . .  tok,) in G i and for each j such that 
1 <j < k'  4:0 orj  = k' = O, the term pJ(til . . . . .  tik) occurs as a subterm of a node 
in the rewrite tree RTpQ of Q. 

PROOF. Let  query be a fresh predicate symbol of arity 0 and P '  be the well-moded 
program P U {query ,-- Q}. It is easy to see that Go, G1 . . . . .  Gn is a SLD-derivation 
of P '  U { ~ query} if G 1 . . . . .  G, is a SLD-derivation of P u {Q} and G O = ~ query. 
Now we prove the theorem using induction on i. 
Basis: i = 1. The goal G 1 is Q itself. From the validity of Lemma 8 over the rewrite 

G n l  : . .  A ,  " " ' 

G n l + l  : B l O n  I , ' , B i O n l , " ' , B m O n l , " "  

G n l + n  2 • , B i0 ,  " 

SLD-derivation of P U {Q} 

F I G U R E  3.  

Terms co r re spond ing  to  A ] 

/ X 

/ X 
p 1 ( 8 , 1 ,  " ", slk)O p k ' ( s i l ,  "" ",s ,~)O 

/ R e w r i t e t r e e R T P o ~  
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rules in RQ, it follows that a term pJ(t~, . . . . .  t~,)cr occurs as a subterm of the 
right-side of rewrite rule in R o and hence occurs as a subterm of a node in RTpQ. 
Since p ( . . .  ) is a minimal element in the well-moded query, it does not have any 
variable in input terms, and hence pJ(t~,, . . . .  ti~) =-pJ(t~, . . . .  t~,)cr for every substi- 
tution o-. 
Induction hypothesis: Let us assume that the theorem holds for all i < d. 
Induction step: Now we prove that the theorem holds for i = d. 
Let (i) ~ q~(--- ) , . . . ,  q, ,( .- .  ) be the goal G~_ ~, (ii) q~(.-- ) be the selected atom, 
(iii) H ~ B~ . . . . .  B m be the input clause, and (iv) 0~ be the mgu used in deriving G~ 
from G i_ 1. Then 

Gi i s  ~ q~( ... )O i . . . . .  qt a( ... )O~,BaO~ . . . . .  B mO~,qt+ ~( ... )O~ . . . . .  q~,( ... )O~. 

Now we have two cases: (a) m 4: 0, that is, the input clause is not a unit clause, and 
(b) m = 0, that is, the input clause is a unit clause. 

Case (a). By the assumption on selection rules, minimal elements, m i n ( G  i) = 
{qj( "-)0i  I q j ( ' - - )  ~ min(Gi_  1) and j 4: l} u min(BlO i . . . . .  BmOi}. For those minimal 
elements that are already in Gi_ 1, the theorem holds by the induction hypothesis. 
For minimal elements in B~O i . . . . .  B m 0~, the theorem holds because of I~rnma 8 
(argument similar to that in the base case). 

Case (b). The set of minimal elements, min(Gi) ,  contains {qj ( . . . )O i l q j ( . . . )  E 
min(G~_ ~) and j 4: l} and atoms ql'( "'" )Oi, l '4 :  l, such that qt'( "'" ) is only greater 
than ql(""  ) in the evaluation order  of G, 1. For  minimal elements that are already 
in min(G~ ~), the theorem holds by the induction hypothesis. 

Now assume that p(ti,  . . . . .  t~k, lo, . . . . .  tok ,) is an element in min(G~) but not in 
min(G~ ~). Since p ( - - - )  is an atom in the SLD-derivation, there must be an atom 
A =p(s~,, . . . .  si~,So,, . . . .  So~.) in the body of c'  such that p ( . . . ) - A O ,  where c'  is 
the input clause used in deriving the goal G~,+I from G~, for some i' < i and 0 is 
the composition of mgus used in G~,, . . . .  Gi. Let r!u~,, . . . .  ui,,,Uo,, . . . .  u~m) be the 
selected atom in G~,. By the induction hypothesis, rJ(u~, . . . . .  u~m), 1 < j  <_ m' ,  occurs 
as a subterm of a node in RZt,  Q. Now, by Lemma 8 and the construction of RTpQ, 

pJ(s~,, . . . .  sik)~rO~, occurs as a subterm of a node in RTpQ for each ~r~ 
®(pJ(si, ,  . . . .  si~)) and 1 < j  _< k ' ,  where 0 i, is the mgu used in deriving G~,+ 1 from 
Gi,. It follows from Lemma 11 that pJ(s~,, . . . .  s~k)oO i, reduces to pJ(t~,, . . . .  t~) by 
R e, that is, pJ(t,~,. . . ,  ti~) is a subterm of a node in RTt,  Q. [] 

The following theorem establishes that corresponding to every resolution step in 
SLD-derivations of P U {Q}, there are some rewriting steps in RTt, Q. 

Theorem 4. l f  P is a well-moded program, Q is a well-moded query and S is a selection 
rule implied by P U {Q}, then corresponding to every resolution step in every 
SLD-derivation o f  P t3 {Q} (under selection rule S), there are reduction steps in the 
rewrite-tree RTeQ o f  Q. 

PROOF. Let us consider a resolution step in which p( t i , , . . . ,  tik, to, . . . . .  to~), I 4:0 is 
resolved using an input clause c (case l = 0 can be handled similarly). By Theorem 
3, corresponding to this atom there are terms pJ(t~,, . . . .  tik), 1 < j  <_ l, occurring as 
subterms of nodes in the rewrite tree of Q. By Theorem 2, input terms t~,, ..... t~k of 
the selected atom p(- . .  ) are ground. 
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Let 0 be the mgu and p(sil . . . . .  sik, Sol . . . . .  Sol ) be the head of the input clause 
used in the resolution step. Corresponding to this clause, we have rewrite rules 
pi (  si~ . . . .  , si~ ) ~ r ~. By definition of the SLD-resolution, P( Si, . . . . .  sik, S o~ , . . . .  S o)O - 
p (  ti~ . . . . .  t~k, t o~ . . . . .  t o,)O. Therefore,  

pY(si~ . . . . .  Si , )O----pY(t i~, . . . , t ik)O--pJ(t i , , . . . , t ik) ,  1 <_j <_l 

(since til . . . . .  tik are ground). Hence terms pJ(tq . . . . .  tiQ, 1 < j  < l, in RTpQ match 
with the left-hand sides of rewrite rules derived from clause c and can be reduced. 

[] 

The following theorem establishes the relationship between the termination of a 
given well-moded logic program and that of the derived term-rewriting system. 
Informally, the theorem says that a well-moded logic program terminates for all 
well-moded queries under any selection rule implied by the moding information, if 
the derived term-rewriting system terminates. 

Theorem 5. I f  P is a well-moded program, Q is a well-moded query, S is a selection 
rule implied by P u {Q} and R e is the term rewriting system derived from P, then all 
the SLD-derivations (under S)  o f  P u {Q} are o f  finite length i f  R e is a terminating 
system. 

PROOF. Follows from Theorem 4 and K6nig's lemma. [] 

Before illustrating the application of this theorem in proving termination of 
logic programs, we briefly review important termination techniques of rewrite 
systems. 

5.3. Terminat ion  o f  Term-Rewri t ing  Sys tems 

Although termination of term-rewriting systems in general is undecidable, it has 
been proved that one can simulate a Turing machine by using a single rewrite rule 
[11]; several techniques and tools have been proposed in the literature for proving 
termination of term-rewriting systems. One standard technique is to look for a 
well-founded ordering >- over 3-  satisfying a condition: if s ~ *t then s >- t. If the 
well-founded ordering >- has the properties of monotonicity (t >- u implies C[t] >- 
C[u]) and stability (t >- u implies to->- uo-), it is enough to check that l >- r for each 
rewrite rule l ~ r  in the system. Dershowitz [18] has discussed several such 
well-founded orderings and techniques for proving termination of term-rewriting 
systems. Here  we explain two termination techniques, namely, recursive path 
ordering with status and interpretation-based techniques. 

Definition 15. A quasi-ordered set (S:, ~ )  consists of a set S :  and a transitive- 
reflexive binary relation ~ defined over S:. We define the associated equiva- 
lence relation = as s = t if and only if s ~ t and t ~ s, and the associated strict 
partial ordering >- as s >- t if and only if s ~ t but not t ~ s. 

We allow an operator  to have one of the following three statuses: multiset, 
lexicographic left-to-right (LR), and lexicographic right-to-left (RL). Multiset status 
is taken as default status of an operator  if its status is not specified. 
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Definition 16 (Recursive Path Ordering with Status [17, 22]). Let _~ be a quasi- 
ordering (called precedence) over a finite set J of  function symbols  The 
recursive path ordering >-mo~ on the set ~ ( ~ , S )  of terms induced by the 
precedence _~ is defined recursively as follows: 

s =f(s~ . . . . .  s,,) ~_rpo~ g (6  . . . . .  6 )  = t if and only if one of the following is true: 

(i) s~_W~po~ t for some i = l , . . . , m  or 
(ii) f > g  and S>~pos tj for all j =  1 . . . . .  n or 

(iii) f = g, f ,  g have multiset status and {s 1 . . . . .  Sin} hrpo~ {6 . . . . .  6}, or 
(iv) f = g, s >~po~ tj for all j = 1 . . . . .  n and 

(a) f and g have LR status and (s 1 . . . .  , s m) ~_ rpos(t 1 . . . . .  i n) or 
(b) f and g have RL status and (Sin, Sm 1 ' ' ' ' '  S1)--  >" *pos(tn, t. i,--- ,6 ) ,  

is the lexico- where >-rpos is the multiset ordering induced by > rpos, and >-* ~ ~ rpos 
graphic ordering induced by ~ rpos" 

Theorem 6. For any well-founded quasi-ordering ~_ and status on a given finite set of  
function symbols, the recursive path ordering with status > rpo~ is a monotonic and 
stable well-founded ordering [17, 22]. 

The above theorem makes the recursive path ordering with status a powerful 
tool in proving termination of rewrite systems. This ordering has been imple- 
mented in theorem provers like RRL,  REVE,  etc. 

Example 14. This example illustrates the use of recursive path ordering with status 
in proving termination of term-rewriting systems. To prove termination of the 
following term-rewriting system (derived from the multiplication program), take the 
precedence as m u l t  ~ > a d d  ~ > s: 

addi(O,  Y) - - . y  
a d d ~ ( s ( X ) ,  Y ) ~ s ( a d d  (X, Y))  
m u l t i ( O ,  Y) - ~ 0  
m u l t  : ( s ( X )  , Y) - ~ a d d  1 ( m u l t  l (X,  Y) , Y) 

Proving that l >wos r for rules 1 and 3 is easy. Consider rule 2. Since a d d  1 >- s, to 
prove that a d d  z ( s ( x ) ,  Y) >rpos s ( a d d ~ ( X ,  Y ) ) ,  it is enough to prove that 
a d d  1 ( s  ( X )  , Y )  > ' rpos  a d d ± ( X ,  Y ) "  And  to prove  a d d  ~ ( s  (x)  , Y) 
>rposaddl(X,  Y), we need to prove that { s ( X ) ,  Y} >rpo~ {X, Y}, which is 
indeed the case, because s (x) >wosx. 

Now consider rule 4. Since m u l t  z > add : ,  to prove that m u l t  ~ ( s (x) , Y) >rpo~ 
a d d  ~ ( m u l t  1 (X, Y) , Y), it is enough to prove that m u l t  1 (s  (x) , Y) 
> rposmul t l (X ,  Y) and m u l t ~ ( s ( x ) ,  Y) >'rpos Y. TO prove m u l t ~ ( s ( x ) ,  Y) 
>rpos m u l t i ( X ,  Y), we need to prove that { s ( x ) ,  Y} >-rpo~{X, Y}, which is 
indeed the case. Furthermore,  m u l t  ~ (s  (X) , Y) >rposY by the subterm property 
of recursive path ordering. This completes the termination proof. 

Example 15. This example illustrates the use of status information. To prove 
termination of the term-rewriting system with just one rule ( X  + Y ) +  Z--~ X + 
( Y +  Z),  we use recursive path ordering with status >rpos as follows. 

Since the two terms have the same function symbol at the top level, to prove 
that ( X + Y ) + Z > r p o s  X + ( Y + Z ) ,  it is enough to prove (i) ( X + Y , Z ) > - r p o s  



26 M . R . K .  KRISHNA RAO ET AL. 

*(X, Y+ Z), (ii) (X + Y) + Z >rpos X, and (iii) (X + Y) + Z >"rpos (Y+ Z). By the 
subterm property, X +  Y>rpos X, and hence (i) follows. Again by the subterm 
property (ii) follows. 

To prove (iii), it suffices to prove (a) ( X +  Y, Z)>~pos *(Y, Z), (b) ( X +  Y ) +  
Z >'wos Y, and (c) (X  + Y) + Z >'rpos Z. The conditions (b) and (c) follow directly 
from the subterm property, and (a) follows from the fact that X + Y>rpos Y" 

Interpretation-based termination proofs try to map the set of terms onto a 
well-founded, partially ordered set and prove that left-hand sides are mapped onto 
bigger elements than the corresponding right-hand sides. This is formally described 
below. 

Definition 17. A terminating function ~- from a set of terms ~9'(~,~) to a well- 
founded, partially ordered set (~'f, >-) is composed of a set of functions {f~: 
7 f  n ~ T f l f  is a function symbol of arity n in ~9"-} such that z ( f ( t  I . . . . .  6))  = 
f~(r(t 1) . . . . .  z(6)) for every term f(t  1 ..... t n) ~3-(~, ,~)  and w >- w' implies 
f~(.-- z (w) . . . )  >f~(.-- ~-(w')...) for all w, w' e T f a n d  f e ~ .  

Basically, terminating function consists of a set of monotonic mappings. Polyno- 
mial and exponential interpretations are special instances of terminating functions. 
A terminating function ~- from terms to natural numbers, where each f~ is a 
polynomial, is called a polynomial interpretation. Polynomial interpretations are 
implemented in REVE [27]. A terminating function ~- where each f~ is a polyno- 
mial or an exponential is called an exponential interpretation. Exponential inter- 
pretations are implemented in the ORME [28]. 

Example 16. To prove termination of the following system over a set of terms 
constructed from constants 0 and 1 and the function symbols + and x ,  

x ×  ( r + z )  --, ( x ×  r )  + ( x × z )  

( Y + Z )  × X ~  ( Y × X )  + ( Z × X )  

(x+Y)+Z- ,X+(Y+Z) ,  
we can use the following polynomial interpretation: 

z(O) = 2  ~'(s Xt)  = T ( s ) . r ( t )  

z(1) = 2  " r ( s + t ) = 2 z ( s ) + ' c ( t ) + l .  

5.4. Termination Proofs for Logic Programs 

Now we illustrate the application of our main theorem in proving termination of 
logic programs through examples. 

Example 17. In Example 14, using recursive path ordering, we proved termination 
of the rewrite system derived from the multiplication program. From Theorem 5, it 
follows that the mu i t  i p 1 i c a t  i on program terminates for all well-moded queries. 

Example 18. Termination of the quick-sort program for well-moded queries can be 
established by using the above theorem by proving termination of the derived 
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term-rewriting system given in Example 9. Termination of this term-rewriting 
system can be proved by using the following elementary interpretation in the 
ORME system [28]: 

[[a l l ] ( ( x , y ) , ( u , v ) )  = (x  + u,Zy + el 

[ [ s ' l ] ( ( x , y ) , ( u , v ) ) = ( x + u , 2 y + v )  [ [ q X l ] ( ( x , y ) ) = ( 2 ~ , y )  

[ [a2]] ( ( x , y ) , (u , v ) )  = ( x + u , 2 y + L ~ )  [[hi1]] = (0,0) 

[ [ c ] ] ( ( x , y ) , ( u , v ) )  = (x  + u + 2, y + c). 

Here, f o r f ~  {a 1, s ~, s 2, q ,  c, n i l} ,  the function [[f]] denotes the function 
f~ given by the elementary interpretation T. 

5.5. Converse o f  the Main Theon'm 

That the converse of Theorem 5 does not hold is demonstrated by the following 
example. 

Example 19. Let us consider the following well-moded logic program: 

m o d i n g :  p ( i n ,  o u t )  a n d  t c  ( i n ,  o u t )  

p ( a ,  b )  ~-  

p(b ,  c ) * -  
t c ( X ,  Y)* -p (X ,  Z),  t c ( Z ,  Y) 

It is easy to see that this program terminates for all weil-moded queries. But the 
term-rewriting system: 

p l ( a )  -*b 
p~(b) -*c  
tc i(X) -~ tc 1(p1(x) ) 

derived from the above program has an infinite derivation: 

tc ~ (a) ~ tc 1(p1(a) ) ~ tc !(p1(p:(a) ) ) 

= ... ~ tcl(pl( -.. p: (a)-..)~ ... 

In other words, termination of the derived term-rewriting system is not a 
necessary condition for termination of the logic program. Since our aim is to prove 
termination of logic programs using termination techniques of term rewriting 
systems, the sufficient conditions for termination of logic programs are more 
important than the necessary conditions, and the above theorem provides a 
sufficient condition for termination of logic programs. 

It is an interesting to find classes of programs for which the converse of 
Theorem 5 holds as well. In the following, we identify two such classes of programs. 

Definition 18. A logic program P is a non-cariable-includingprogram (nui program) 
if all of the clauses satisfy the property: all of the variables in the body occur in the 
head as well. 
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The following theorem establishes the converse of Theorem 5 for the class of 
nvi programs. 

Theorem 7. Let P, S, Q, and R e be as in Theorem 5 such that (i) P is an 
nvi-program, (ii) each variable in P has precisely one producer and (iii) the output 
terms in Q and the bodies of clauses in P are distinct variables. Then, all the 
SLD-derivations (under S) of P u {Q} are of finite length if and only if R e is 
terminating. 

PROOF. The if-part follows from Theorem 5. 
Only-if part: A nice property of SLD-derivations of P u {Q} is that the output 
terms of each goal are distinct variables. Therefore, a selected atom unifies with 
the head of any clause whose input terms can match with the input terms of the 
selected atom. A nice property of R e is that the Skolem functions are not nested 
on the right-hand sides of the rewrite rules. Therefore, nesting of Skolem functions 
is forbidden in all of the terms of any rewrite derivation of R e U~Q starting from 
Q0, and it is easy to exhibit an infinite SLD-derivation of P u {Q} corresponding to 
an infinite rewrite derivation of R e U~'Q starting from Q0- [] 

Another class of programs for which the converse of Theorem 5 holds is the 
following. 

Definition 19. A logic program P is a binary program if no clause in it has more 
than one atom in the body. 

The following theorem establishes the converse of Theorem 5 for the class of 
binary programs. 

Theorem 8. Let P, S, Q and R e be as in Theorem 5 such that (i) P is a binary 
program having just variables in the output positions in the body of each clause, ( ii) 
each variable in P has precisely one producer, and (iii) Q has only one atom and 
has distinct variables in the output positions. Then, all of the SLD-derivations 
(under S) of P u {Q} are of finite length if and only if R e is terminating. 

PROOV. Same as that of the above theorem. [] 
In fact, there is no sideways information passing in the execution of the above 

class of programs, and every selection rule is implied by the moding information. 
Therefore, termination of R e implies termination of P for Q under all selection 
rules (i.e., strong termination). 

6. A TOOL FOR PROVING TERMINATION 

In the previous sections, we have reduced the termination problem of logic 
programs to that of term-rewriting systems. The transformation procedure has 
been implemented as a front end to Rewrite Rule Laboratory (RRL); RRL is a 
theorem prover based on techniques developed by Kaput, Zhang, and Sivakumar 
[23] to obtain a semi-automatic interactive system for proving termination of 
term-rewriting systems. RRL supports techniques such as recursive path ordering 
for proving termination of term-rewriting systems in an interactive fashion. The 
block diagram in Figure 4 gives the module structure of the system. 
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FIGURE 4. Block diagram of the modules in the system. 

RRL 

6.1. Well-Modedness Module 

This module checks well-modedness of the given program, applying the following 
steps on each clause: 

1.1 A producer -consumer  graph with atoms in the body as nodes is constructed. 
1.2 The producer -consumer  graph is checked for acyclicity (using depth-first- 

search). 
1.3 If it is not acyclic, a warning is given saying that a particular clause is not 

well-moded. 
2.1 The set of producers of each variable in the clause is computed. 
2.2 It is checked whether every variable has at least one producer. 
2.3 If any variable has no producer, a warning is given saying that a particular 

variable has no producer. 

6.2. Occur-Check Module 

This module takes well-moded Prolog programs and checks whether they can be 
executed soundly on Prolog interpreters without an occur-check test. This module 
essentially checks whether any variable occurs more than once in output terms of 
head of any clause. If no variable occurs more than once in output terms of heads, 
the program is declared to be not subjected to occur-check (NSTO). If there is a 
variable occurring more than once in output terms of some head, this module 
notifies the user of the offending variable and the clause. 

6.3. Transformation Module 

This module implements the transformation procedure described in the previous 
section. For  each clause, it computes the sets Unsry and Consvar (as defined in the 
formal transformation given earlier) and the set of producers of each local 
variable. 3 The major submodule "eliminate-local-variable" implements the proce- 

3 Actually, a "well-modedness" module checks every clause for well-modedness and passes the set of 
producers of each variable to the "transformation" module. So, there is no repetition of work. 
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dure with the same name described earlier. In addition, there are two more 
modules, one for generating inverse functions, and the other for built-ins. 

6.4. Built-In Predicates 

Prolog has built-in predicates = ,  < ,  < = ,  > ,  > = ,  \ =  with moding ( in ,  in), 
and i s  with moding ( o u t ,  in). According to the definition of Unsry in the 
transformation algorithm, for each built-in atom b(tl, t2), b • {=,  < ,  < = ,  > ,  
> = ,  \ =} in a clause, b°(tl,  t2) is included in Unsry, and rewrite rules of the form 
lhs ~ #(b°( t l ,  t2)) will be present in Rp. Since we know that the above built-in 
atoms always terminate, our implementation does not make rules of the above 
form (this is achieved by removing the above terms from Unsry before making the 
# rules). An is -a tom is a producer of the variables occurring in its first argument, 
and the Skolem function is j occurs on the right-hand side of the derived rewrite 
rules. Because of the semantics of i s, the right-hand sides of the rules are reduced 
by the rule is l(X) ~ X  before outputting the rules i n  Rp. 

Rao, et al. [25] explored the application of our system as a verification tool in 
the development of provably correct compilers. In particular, they have established 
the termination of a prototype compiler for Pro-CoS level 0 language PL 0 using 
our tool. The compiler has been developed by using Hoare's refinement algebra 
approach. The fact that termination of this compiler cannot be shown by using 
other approaches to termination of logic programs (e.g., approaches of Ullman and 
van Gelder [35], Plfimer [32], De Schreye and Verschaetse [12]) demonstrates the 
practicality of the transformational approach. 

Consider, for instance, the following clause (from the compiler) with moding: 
c(in, in, out, out, in, in); ce (in, in, out, out, in, in); 
mtrans (in, in, out, out); psi (in, in, out) and flatten (in, 
out). It is not very difficult to check that this clause does not have an admissible 
solution graph. Therefore, the approaches of Ullman and van Gelder [35] and 
Pliimer [32] cannot be used in proving termination of the ProCoS compiler. 

c(OutputIE, S, F, M, Psi, Omega) ~- 
ce(E, S, LI, MI, Psi, Omega), 
psi (Psi, outputbuf, Psioutputbuf), 
psi(Psi, Output, PsiOutput), 
mtrans(stl(Psioutputbuf) , LI, L2, M2), 
mtrans(idlp(Psioutputbuf) , L2, L3, M3), 
mtrans(idc(PsiOutput), L3, L4, M4), 
mtrans(idc(4) , L4, L5, MS), 
mtrans(out, L5, F, M6), 
flatten([Ml, M2, M3, M4, M5, M6], M), !. 

The following clause (and two more similar clauses) is problematic 4 for the tool 

4 In this case, the problem appears to be due to the fact that in the method  it is not  possible to 
compare the two function symbols ( ) and eql. However, in this case, it is possible to handle the clause 
using "unfolding" techniques.  
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built by De Schreye and Verschaetse [12]: 

c e ( E l (  >E2, S ,  F ,  M, P s i ,  c o n s ( L o c ,  O m e g a ) )  
ce(El eql E2, S, LI, MI, Psi, cons(Loc, 
mtrans(eqc(0), LI, F, M2), 
append(Ml, M2, M), !. 

Omega)), 

7. RELATED WORKS 

In this section, we briefly survey the related works on termination analysis of logic 
programs. For more details on these works, the reader is referred to a recent 
survey on termination of logic programs by De Schreye and Decorte [14]. 

The results on termination of logic programs can be broadly classified into two 
categories: 

1. Characterizations of terminating programs. Papers in this category usually 
present a set of necessary and sufficient conditions for the termination of logic 
programs. Since logic programs have the expressive power of Turing machine, 
the termination is undecidable and hence these necessary and sufficient 
conditions are undecidable, too. Therefore, the approaches presented in 
these works may not be easily mechanizable. 

2. Automatic/semi-automatic procedures for proving termination of logic pro- 
grams. Papers in this category usually present a set of sufficient conditions 
(which can be easily tested) for the termination of logic programs. Again, 
because of the undecidability of termination of logic programs, none of these 
sufficient conditions can certify each and every terminating program--for 
every such sufficient condition there exists a terminating program that does 
not satisfy it. 

In the following, we briefly discuss the works in both of these categories. 

7.1. Characterizations of Terminating Programs 

Vasak and Potter [36] were the first ones (to our knowledge) to attempt to give a 
mathematical treatment to the termination problem of logic programs. They 
introduced various notions of termination, such as strong termination, weak 
termination, universal termination, and existential termination. However, there is 
no attempt toward automatic verification of termination. 

Baudinet [6] took a semantic approach to termination of logic programs. She 
associated with each program a system of equations whose least fixpoint is the 
meaning of the program. By analyzing this fixpoint, various termination properties 
of the program can be proved. Structural induction is used in her termination 
proofs. The approach is very general and can be used for studying termination of 
normal logic programs (i.e., with negation), existential termination (which cannot 
be studied by most of the other approaches), and the effect of cuts (!) in the 
programs. Baudinet [6] suggested the use of theorem provers for proving all of 
these properties. 
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Francez et al. [20] took an assertion-based approach to termination of logic 
programs. Proofs are very similar to the termination proofs of imperative logic 
programs. They give characterizations of both universal and existential termination. 
There is, however, not much effort toward automatic verification of termination. 

Using level mappings, Bezem [7] introduced the class of recurrent programs, 
which strongly terminate for a class of queries. He proved that every total recursive 
function can be computed by some recurrent program. Append and Merge are 
examples of recurrent programs, whereas Quick- sort, Merge- sort, etc. do not 
belong to the class of recurrent programs. Using models in addition to level 
mappings, Apt and Pedreschi [4] generalized the notion of recurrent programs to 
acceptable programs that terminate for a class of queries under Prolog's left-to-right 
selection rule. They called this notion of termination left-termination. Apt and 
Pedreschi [4] proved that a program terminates for all ground queries under 
Prolog's selection rule if and only if it is an acceptable program. The main steps in 
proving a program to be recurrent/acceptable involve finding a suitable level 
mapping and a model in the case of acceptability. 

Wang and Shyamasundar [38, 39] and Bossi et al. [8] use graph abstraction to 
localize the task of finding suitable mappings. These two approaches are very 
similar. With a given logic program P and a goal G, [38, 39] associated a U-graph 
and [8] associated a specific graph. The nodes in these graphs are atoms in the 
program P and goal G, and there are two kinds of edges, namely signed edges and 
unification edges. A signed edge goes from the head of a clause to an atom in the 
body of the same clause, whereas unification edges go from an atom in the body of 
a clause/query to a head of a (not necessarily the same) clause, with which it 
unifies. The problem of finding a suitable mapping is locally solved by analyzing 
each strongly connected component (SCC) of the graph. The main steps in proving 
termination of logic programs using these approaches are construction of the 
graph, finding a suitable mapping, associating suitable pre/post assertions, and 
proving their correctness and a few simple conditions. The approaches are quite 
interesting. However, their mechanizability is not very clear. 

Shyamasundar et al. [34] characterized strong termination of logic programs by 
using unification closures. The concept of unification closure is closely related to 
the concepts of forward closure and overlap closure used in term-rewriting litera- 
ture to characterize the termination of linear term-rewriting systems. With a given 
logic program P, they associate a term-rewriting system RR e and define unifica- 
tion closure of P for a given query Q (denoted UCe~) in terms of RR e and Q. 
Unification closure is a set of pairs of atoms of the form (A,B)  such that 
corresponding to every atom in SLD-derivations of P starting with Q, there is a 
pair in the unification closure UCe~ and vice versa. This relationship between 
SLD-derivations and the unification closures led to the following characterization 
of strong termination: a logic program P is strongly terminating for a query Q if 
and only if UC e is finite and does not contain any pair of the form (al, a 2 ) such 

Q . . 

that a 1 = a 2 Or for some substltut~on o-. 

7.2. Automatic / Semi-Automatic Procedures 

We classify approaches proposed in this direction into two categories: (a) ap- 
proaches based on linear inequalities and (b) transformational approaches. 
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Ullman and van Gelder's work [35] is the first to propose an automatic 
procedure for proving termination of logic programs. Their approach is to generate 
a set of linear predicate inequalities (of the form Pi + c >_pj) from a given 
well-moded program and a goal so that the satisfiability of these inequalities 
implies the termination of that program for that goal. The intended meaning of the 
inequality Pi + c >pj is that the size of the jth argument of predicate p is greater 
than the size of the ith argument of p by at most c units. The size of a term is 
defined as the number of function symbols in the term, with an assumption that the 
only function symbol available is '.', the cons operator. Ullman and van Gelder [35] 
presented an algorithm to generate a set of such inequalities using data flow 
analysis through variable/argument graphs. For this algorithm to work, all of the 
clauses in the program must satisfy the "uniqueness" property. A rule violates this 
property if a variable occurs more than once in the input positions of the literals in 
the body (see [35] for details). 

Pliimer [32] improved this method by generalizing the form of inequalities to 
2pi + c > Zpj and allowing function symbols other than the cons '.' operator. This 
resulted in a more powerful method. The method also uses data-flow analysis for 
deriving the inequalities, some (not all) of the programs violating the "uniqueness" 
property can be handled, and it uses A N D / O R  data flow graphs to generate the 
linear predicate inequalities. The algorithm for generating linear predicate inequal- 
ities from a given logic program with the above programs requires that the 
associated A N D / O R  data-flow graph satisfies the condition that each OR node 
has exactly one incoming edge. A graph satisfying this condition is called an 
admissible solution graph. This condition is in general violated by (not all) programs 
having a variable occurring in input positions of more than one atom in the body of 
a clause. (See [32] for an example program with a variable occurring in input 
positions of more than one atom in the body of a clause and having an admissible 
solution graph.) Apparently, this requirement is placed to get an efficient algo- 
rithm. This approach cannot handle programs with mutual recursion. Termination 
of Append, Merge, Quick-sort, and Permutation under Prolog's selection 
rule can be proved by using this approach, whereas termination proofs for multipli- 
cation and ProCoS compiler are beyond its scope, as some clauses in these 
programs do not have admissible solution graphs. 

In contrast to our approach, Pliimer's approach is automatic. Our approach 
often needs precedence information or polynomial/elementary interpretations 
from the user, whereas Pliimer's algorithm derives the linear predicates from the 
program and moding information. The time complexity of Pliimer's algorithm as 
well as our transformation procedure are linear in the number of atoms in the 
program, and both process the given program clause by clause. The transformation 
procedure has to analyze the literal dependency graph of each clause, which is 
simpler than the A N D / O R  data flow graph (of the clause) used by Pli]mer. 
Therefore, the running time of the transformation might be shorter than that of 
the algorithm for deriving linear predicate inequalities. 

De Schreye and Verschaetse [12] proposed an amalgamated approach for 
termination analysis of logic programs using level mappings, linear inequalities, 
and abstract interpretation. This work is motivated by the difficulties involved in 
deriving automatic proofs of recurrences [7] and acceptability [4] of logic programs. 
It is pointed out by the authors that the difficulty is mainly due to the requirement 
that the level of the head is greater than the levels of all of the atoms in the body 
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(in the context of acceptability, this is needed when all of the predecessors are 
satisfiable in the model), despite the fact that nontermination is possible only 
through reeursion in logic programming. By relativizing the notions of recurrent 
and acceptable programs with respect to the set of queries, they refine these 
notions in such a way that the level of the head has to be greater than the levels of 
(only) those atoms in the body that are in (mutual) recursion with the head. Given 
a logic program, they try to derive a system of linear inequalities using abstract 
interpretation, so that the unsatisfiability of these inequalities implies acceptability 
of that program. Termination of Append, Merge, Quick-sort, Multipli- 

cation, and Permutation under Prolog's selection rule can be proved with this 
approach. However, termination of ProCoS compiler cannot be proved with this 
approach--the algorithm needs some of the clauses in the compiler to be unfolded 
to derive a suitable set of linear inequalities. 

7.3. Related Work in the Transformational Approach 
Our main result in the previous sections deals with termination of logic programs 
under a class of selection rules rather than a particular selection rule. In fact, the 
notion of implied selection rules suggests a class of suitable selection rules for the 
execution of a given well-moded program; furthermore, the termination of the 
derived rewrite system implies the termination of the logic program under all of 
these selection rules. In this sense, the result is stronger than the other results on 
termination of a logic program, which deal with termination under a particular 
selection rule (typically, Prolog's leftmost selection rule). However, it is also 
desirable to study termination under a particular selection rule, as the program 
need not be terminating under all of the implied selection rules, but can be 
terminating under a particular selection rule (typically, one of the implied selection 
rules). Our transformation returns a nonterminating rewriting system in that case, 
and we cannot establish termination under the particular selection rule. In the 
following, we discuss the results obtained using Prolog's leftmost selection rule. 

As illustrated below, Krishna Rao et al. [24] proposed a transformation of a 
given logic program, so that only the Prolog's selection rule is implied by the 
moding information. Then one can use the results presented in the previous 
sections for proving termination of the transformed program, which in turn implies 
termination of the original program under Prolog's selection rule. 

Example 20. Consider the following reachability program. Given a graph G(I/, Ed) 
with set of vertices V and set of edges Ed represented as list of pairs f(X, Y), the 
problem is to find all of the vertices reachable from a given vertex. 

moding: r (in, out 

r(X, Y, Ed, V) ~-e 
r(X, Y, Ed, V) *-e 
e(X, [f(X, Y)IT], 
e(X, [f(Xl, Y) IT] , 
nm(X, ~) *- 
nm (X, 

in, in), e (in, in, out) and nm (in, in) 

X, Ed, Y) 
X, Ed, Z), nm(Z, V), r(Z, Y, Ed, [ZIV]) 
Y)~ 
Z) ~X~Xl, e(X, T, Z) 

[ H I T ] )  ~ - - X ~ H ,  n m ( X ,  T) 
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This program terminates for the query ~- r(a,  Y,  [ f (a ,  b), f ( b ,  c), f ( c ,  a), f ( c ,  d)], 
[]) under Prolog's selection rule, even though it has an infinite evaluation under 
the rightmost a tom selection rule (which is also an implied selection rule). In [24], 
the following program is derived from the above program. The new program 
essentially encodes Prolog's selection rule into the original program. 

moding: r .... (in, in, out, in, in), e ...... (in, in, in, out) 

and nmn~ w (in, in, in, out) 

r~,e,,,(true, X, Y, Ed, V)+-e~ew(true, X, Ed, Y) 

rnew(true, X, Y, Ed, V)+-enew(true, X, Ed, Z), n~,ew(true, Z, 

V, T),r~w(T, Z, Y, Ed, [ZIV]) 

e ..... (true, X, [f(X, Y)IT], Y)+- 

enew(true, X, [f(Xl, Y)IT], Z) +-noteq(X, XI, S), e ...... (S , X, 

T, Z) 

nn~ew(true, X, ~, true) +- 

nn~,ew(true, X, [HIT], SI)+-noteq(X, H, S), nmnew(8, X, T, SI) 

The transformation derives the following rewrite system: 

r I (true, X, Ed V)-~e ~ (true, X, Ed) 
n <w ' n~ w 

r I (true, X, Ed V)-~r~<~(nm)~w(true e)~,w(true, X, Ed) Vl 
u(w ' :. ' ' ' 

e I (true, X, Ed) Ed [e l (true, X Ed) IV]) 
new , r new ' 

e ~ (true, X, [f(X, Y)IT]) -*Y 
new 

e: .... (true, X, [f(Xl, Y) IT]) -~ei~ (noteq(X, XI), X, T) 

nm ~ (true, X, ~)-~true 
new 

nm I (true, X, [HIT])-*nm i (noteq(X, H) X T) 
new new ' ' 

It is easy to observe that this rewrite system terminates because the first two 
rules can be applied only when the first argument of r ~ew is true, which is passed by 
nm~, ..... and the value of nm~now is true only when × is not a member of the visited 
vertices. So once all of the vertices in a cycle are visited, nm~.ew will not pass t r u e  
to the r ~ preventing it from entering into a cycle. 

new ~ 

Oanzinger and Waldmann [21] proposed to transform a given logic program into 
a conditional term-rewriting system such that termination of the conditional 
term-rewriting system implies termination of the logic program under Proiog's 
selection rule. The most appealing thing about this transformation is that there is 
no need to introduce inverse functions. Their  transformation can be explained as 
follows. They introduce two function symbols pin and pO,, of arities n and m, 
respectively, for each predicate symbol p with n input positions and m output 
positions. If p ( t  4, . . . .  t~ to,, . . . .  t o.,) is an atom, pin[t] denotes pin(%,, . . . .  %°) and 
p°U'[t] denotes p°" ' ( t  . . . . . .  t o ), where t is the tuple of terms %1' . . . .  tz , to, . . . . .  t o . 
From each clause A~i(to)<--A~(tl)  . . . .  , A k ( t k ) ,  they derive a conditional rewrit~e 
rule, 

i n  o u t  " i n  o u t  
. . . . .  A o [ t o ] ~ A  o [ t o ] = A ' , n [ t l l - - ~ A ~ " t [ t l ]  --*A k [ 
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Example 21. For the transitive-closure program given in Example 19, the following 
terminating conditional term rewriting system is derived: 

pin(a) _+pOUt (b) 
pin (b) -+ pOUt (c) 
tc in (X) --) tc °ut (Y) ~pin (X) --) pOUt (y) 

tcin(x) -+ tc°Ut (y) ¢=pin (x ) --)p°ut(z), tcin(z) --)tc°Ut (m) . 

As demonstrated by the above example, the class of programs for which the 
transformation of [21] derives a terminating CTRS properly contains the class of 
programs for which our transformation derives a terminating TRS. 

The fact that the termination of general term-rewriting systems is well studied 
and easier to understand than the termination of conditional term-rewriting 
systems motivated Aguzzi and Modigliani [1] and Chtourou and Rusinowitch [9] to 
derive a term-rewriting system from a given logic program (rather than a condi- 
tional term-rewriting system), such that its termination implies the termination of 
the logic program under Prolog's selection rule. Aguzzi and Modigliani [1] and 
Chtourou and Rusinowitch [9] independently came up with two similar transforma- 
tions. Basically, [1, 9] derive a term-rewriting system from the conditional term- 
rewriting system derived by Ganzinger and Waldmann. From a non-unit clause 
A 0(t0) (--- A l(tl) . . . . .  A k (tk), they derive the following set of rewrite rules: 

{A~n[t0 ] - - ) f l ( ~ o , A i l n [ t l ] ) }  
k-1 

in 
~J {fj (V/o, ~ ,  . . . . .  V/}j_I,A;"'[tj])---)fj+I(~'o,T1,...,~,A]+~[tj+I])} 

j= l  

U {fk(~0'~V'l . . . . .  ~U'k l ' A ° k U t [ t k ] ) " - ) A ; U ' [ l o ] }  ' 

where ~ is the sequence (without repetitions) of variables produced by the atom 
Ai(t i) and fl . . . . .  fk are distinct function symbols not occurring in the program and 
the rewrite rules derived from other clauses. From a unit clause Ao(t o) +--, they 
derive a rewrite rule Aion[to] ---~A°oUt[to]. 

Example 22. The following term-rewriting system is derived by [1, 9] from the 
transitive-closure program given in Example 19: 

pin(a) ___+pOUt (b) 

pin(b) __+pOUt (c) 

tc in(x) -+ f1(X, pin(x)) 
f1(x' poUt(y)) _+tcOUt(y) 
tc in(X) -+g1(X, pin(x) ) 
gl (mr pOUt (Z)) --) g2 (X, Z, tc in (Z)) 
g2(X' Z, tc °ut(Y) ) -+ tc °mr(Y). 

As the basic idea of [1, 9] is to derive a TRS from the CTRS derived by [21], the 
class of programs for which the above transformation derives terminating TRSs is 
same as that of [21]. 

Aguzzi and Modigliani [1] identified a class of programs, called input-driven 
programs, for which the derived TRS terminates if and only if the logic program 
terminates for well-moded queries. Arts and Zantema [5] worked on this issue 
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further and investigated the classes of programs for which the derived TRS (their 
transformation is essentially same as that of [1, 9]) can be proved to be terminating 
by using recursive path ordering and semantic labeling. Using the results of 
Zantema [40], they show that their transformation derives from any structural 
recursive program (cf. [32]) a terminating TRS whose termination can be proved by 
using semantic labeling. 

Using the results of [31] on unification-freeness, Marchiori [30] presented 
transformations for two subclasses (called simply well-moded and flatly well-moded 
programs) of the class of well-moded programs such that they derive a terminating 
TRS from any terminating program in these classes. The added advantage of 
uniflcation-freeness of these classes of programs helps in proving the termination 
of logic programs, which cannot be proved by the other results in the field. The 
following program with moding p ( i n ,  o u t  ) is an example of this: 

p(X, g(X))  ~-- 
p(X, f ( Y ) )  e - p ( X ,  g ( y ) ) .  

8. CONCLUSION 

A transformational approach to the termination analysis of logic programs has 
been presented by reducing the termination problem of logic programs to that of a 
term-rewriting system. Unlike the methods of Ullman and van Gelder [35], Plfimer 
[32], and De Schreye and Verschaetse [12], our method does not need any 
preprocessing and can prove termination of programs that cannot be handled by 
them. Mutual recursion does not present a problem for the proposed method. The 
proposed transformation is purely syntactical and has been implemented as a front 
end to RRL. Using this tool, we have successfully proved termination of a 
prototype compiler for ProCoS language PL 0, which cannot be proved by the other 
mechanizable approaches. 

We study a stronger notion of termination, i.e., termination under a class of 
selection rules, whereas almost all of the other approaches available in the 
literature deal with termination with respect to a particular selection rule, typically 
Prolog's leftmost atom selection rule. In fact, our notion of implied selection rules 
characterizes the class of selection rules suitable for a given well-moded logic 
program. 

Although we have considered only well-moded queries in the previous sections, 
our results hold for a larger class of queries. The well-modedness ensures that the 
input terms of every selected atom are ground and the unification of input terms is 
one-sided (i.e., matching). This is the main property that enables applicability of 
termination techniques of rewriting in proving termination of logic programs. 
However, unification of input terms is one-sided for many non-well-moded queries. 
For example, this is true for queries with (not necessarily ground) lists as inputs in 
the queries to programs such as append, permutation, reverse, etc. In fact, 
our results extend to all unification-free programs and queries, where unification of 
input terms is always a matching (see [3, 31, 26] for many classes of unification- 
free programs). This extension of our main result is comparable to the results of 
Pliimer [33]. 
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APPENDIX 

The following lemma plays a crucial role in proving that the computations of 
well-moded programs under  implied selection rules are data-driven. 

L e m m a  12. I f  P is a well-moded program, G O is a well-moded query and S is a 
selection rule implied by P tA {Go} and G o , G  1 . . . . .  Gn be a SLD-derivation o f  
P td {Go} , then all the goals (queries) G i satisfy the following property: I f  an atom A 
in G i contains a variable X in its input terms then there exists a producer (say B )  o f  
X in G i such that B "<G, A ,  where "<G, is the evaluation order o f  the goal G i. 

PROOF. Induction on i. 
Basis: i = 0. By the hypothesis of the lemma, G o is well-moded. By definition 4, 
variable X has a producer  (call it B). It remains to show that B "<G, A. By the 
hypothesis of the lemma, the evaluation order of Go is an extension of the 
producer-consumer relation of G 0. Hence B "<ai A. 
Induction hypothesis: Assume that lemma holds for i = n. 
Induction step: i = n + 1. Let  Gn be ~ q l ( ' " )  . . . . .  qm( ' " ) "  Let  q j ( . . . )  be the 
selected atom, H ~ B  1 . . . . .  B t be the input clause and tr be the mgu in the nth 
resolution step. Goal Gn+ 1 will be ~ q l ( . - . ) o - , . . . , q j  1(---)o-, Blo- . . . .  ,Bltr ,  
q j + l ( ' " ) O "  . . . .  ,qm('")O r. 

We make a few observations before continuing with the proof. The mgu o- 
instantiates only those variables in Gn that occur in q j( ... ). The selection rule 
always selects a minimal element, so qj ( . . .  ) is minimal and hence its input terms 
are ground by the induction hypothesis. Now we prove the lemma case by case. 

Consider an atom qk( "'" )~r, k 4:j containing a variable X in input position. 
There  are two cases: (i) X is occurring in G~ and (ii) X does not occur in G,. In 
case (i), by the induction hypothesis there is a producer  (say, C) of X such that 
C ~G, q k ( ' " ) .  There are two subcases: (a) C is q j ( . . . )  or (b) C is q k ' ( ' " ) ,  
k :g k '  4:j. In subcase (a), since qj( ... )tr = Htr ,  X occurs in Htr  and therefore X 
occurs in the well-moded clause H o - ~  Bltr  . . . .  , Bttr. By Definition 4, X has a 
producer  in the clause. Since input terms of H o - ( -  = qj(-. .  )or) are ground, Htr  is 
not a producer  of X. So some atom in the body (say B t, or) is a producer  of X, i.e., 
X occurs in output positions of Br t r  and by the above construction, Bt,~r-<G°÷~ 
q~(---)or. In subcase (b), qk'( "'" )or is a producer of X and the lemma holds. This 
completes case (i). 

Case (ii): X does not occur in G n. That is, or replaces a variable (say, Y) in qk("" ) 
by a term containing X. By the above observation, variable Y occurs in output 
terms of q j(--- ) (note that input terms are ground). Proof  of the lemma in this case 
is similar to that of subcase (a) of case (i). 

Consider an atom B m or, 1 < m <_ l, containing a variable X in input terms. It is 
obvious that there is a variable Y in the input clause H ~  B l . . . . .  Bz such that 
X ~ Var(Yo').  By Definition 4, Y has a producer in well-moded clause H 
B1 . . . . .  B t. Since input terms of Ho- are ground, Y does not occur in input terms of 
H, and hence H is not a producer of Y. Therefore,  some atom (say Bm,) in the 
body is a producer  of Y and hence B m, o- is a producer of every variable in Yo-; in 
particular it is a producer  of X. By the definition of the implied selection rule, 
B m,or-<G.+l B,~ o-. This completes the proof  of the lemma. [] 

Now we can prove Theorem 2 (cf. Section 2.2). 
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Theorem 2. I f  P is a well-moded program, Q is a well-moded query and S is a selection 
rule implied by P U {Q}, then ec, ery SLD-derivation of  P U {Q} is a data-driven 
evaluation. 

PROOF (By Contradiction). Assume that the selected atom at a resolution step has 
variables in its input positions. By the above lemma, there are producers that are 
smaller (under the evaluation order) than the selected a tom contradicting the 
minimality of  the selected atom. Therefore,  input terms of the selected atom are 
ground at every resolution step. Hence every SLD-derivation starting with a 
well-moded query is a data-driven evaluation. [] 
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