
NORTH - HOILAND

TRANSFORMATIONAL METHODOLOGY FOR PROVING
TERMINATION OF LOGIC PROGRAMS*

M. R. K. KRISHNA RAO, DEEPAK KAPUR, AND R. K. SHYAMASUNDAR

t> A methodology for proving the termination of well-moded logic programs
is developed by reducing the termination problem of logic programs to that
of term rewriting systems. A transformation procedure is presented to
derive a term rewriting system from a given well-moded logic program
such that the termination of the derived rewrite system implies the
termination of the logic program for all well-moded queries under a class
of selection rules. This facilitates applicability of a vast source of termina-
tion orderings proposed in the literature on term rewriting, for proving
termination of logic programs. The termination of various benchmark
programs has been established with this approach. Unlike other mechaniz-
able approaches, the proposed approach does not require any preprocess-
ing and works well, even in the presence of mutual recursion. The
transformation has also been implemented as a front end to Rewrite Rule
Laboratory (RRL) and has been used in establishing termination of
nontrivial Prolog programs such as a prototype compiler for ProCoS, PL 0
language. © Elsevier Science Inc., 1998 <3

1. INTRODUCTION

Termination is an important property of imperative as well as declarative pro-
grams, and proving termination is one of the main steps in arriving at a sound
methodology and for proving the correctness of programs. Recently, termination of
logic programs has attracted a lot of attention, and many approaches are reported
in the literature (see De Schreye and Decorte [14] for a comprehensive survey). In
this paper, we present a transformational approach for proving termination of logic

* This is a revised and extended version of [24].
Address correspondence to Dr. R. K. Shyamasundar, Tata Institute of Fundamental Research,

Computer Science Group, Hom] Bhabha Road, Bombay 400 005, India, Email: shyam@tcs.tifr.res.in.
Received March 1995; revised February 199 ;~ 'ccepted March 1997.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1998
655 Avenue of the Americas, New York, NY 10010

0743-1066/98/$19.00
PII S0743-1066(97)00028-9

M. R. K. KRISHNA RAO E~ AL.

programs by reducing the termination problem of logic programs to that of term
rewriting systems. The termination problem of term-rewriting systems has been
well studied, and many useful techniques and tools have been developed for
proving termination of term-rewriting systems. The prime motivation of our ap-
proach is to facilitate the use of this vast source of termination techniques and
tools in proving termination of logic programs.

Before describing our method, let us discuss the differences between the
paradigms of logic programming and term rewriting and see why termination
techniques of rewriting cannot be adopted for logic programs in a straightforward

Unification is the basic step in the computations of logic programs, whereas
matching plays a similar role in term rewriting. The backward propagation of
substitutions due to unification complicates termination analysis of logic
programs, and the termination techniques of rewriting are not directly
applicable to logic programs (e.g., a logic program containing a clause
p (f (x)) ,-- p (x) does not terminate for query ~ p (Y), whereas the corre-
sponding term-rewriting system containing rule to (f (x)) ~ p (x) terminates
on all terms).

2. Logic programs have local variables (variables that occur in the body but not
in the head of a clause) playing the crucial role of sideways information
passing, whereas in term-rewriting literature, it is generally assumed that all
of the variables in the right-hand term also occur in the left-hand term of the
rewrite rules. The reason for avoiding extra variables on the right-hand sides
of rewrite rules is that they trivially lead to nontermination. Almost all of the
termination techniques of rewriting work only under this restriction.

3. In general, logic programs are not directed, in the sense that there is no
notion of input and output. A variable (or an argument position) can be used
as either input or output; for example, with the factorial program it is
possible to ask, "What is factorial of 6?" (~ f a c t o r i a l (6 , 0)) as well as
"What is the value of I if the factorial of z is 720?" (~
f a c t o r i a l (I , 72 0)). In fact, this invertibility is often seen as the principal
difference between logic and functional programming paradigms. Term
rewriting is directional in the sense that left-hand terms are replaced by the
corresponding right-hand terms.

We present a transformation procedure to derive a term-rewriting system from a
given logic program such that termination of the derived term-rewriting system
implies termination of the logic program and thereby reduces the termination
problem of logic programs to that of term-rewriting systems. To get the directional-
ity, we assume that every predicate has an associated "mode" specifying which
arguments are "input" and which are "output" and consider the class of well-moded
programs, so that input terms of selected atoms are always ground and there is no
backward propagation through input positions. The transformation removes the
local variables present in the logic programs through a kind of Skolemization
procedure, using mode information while deriving term-rewriting systems. The
absence of backward propagation through input positions and the local variables in
the derived term-rewriting systems facilitate the applicability of termination tech-
niques of rewriting in proving termination of logic programs. The transformation
derives the term-rewriting system in an incremental fashion by transforming each

way.

1.

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 3

clause in the program into a set of rewrite rules. In Section 5, we establish that the
given logic program terminates for all well-moded queries under a class of
selection rules if the derived term-rewriting system is terminating. To summarize,
our method consists of two steps: (i) transforming the given well-moded logic
program into a term-rewriting system and then (ii) proving termination of the
resulting rewrite system using various techniques available in the literature on
term-rewriting systems.

The transformation procedure is purely syntactical and has been implemented
as a front end to R R L - - a theorem prover based on rewrite techniques---that
supports techniques such as recursive path ordering for proving termination of
term-rewriting systems in an interactive fashion. The tool developed has been used
in establishing termination of a prototype compiler for ProCoS language PL 0. This
compiler has been developed using Hoare's refinement algebra approach. Refine-
ment algebra provides elegant proofs for partial correctness (ensuring that the
compiler only generates correct code) of compilers developed in this approach. A
proof of termination ensures that the compiler indeed generates an output (object
code). In this respect, our tool plays an important role in the development of
provably correct compilers. The fact that termination of this compiler cannot be
established by the other mechanizable approaches available in the literature
demonstrates the practicality of our approach.

We follow the notations of Lloyd [29] and Apt [2] for logic programming
concepts and Dershowitz and Jouannaud [19] for rewriting concepts. The rest of
the paper is organized as follows. In Section 2, we give definitions of well-moded-
ness and related concepts. In Section 3, the transformation of logic programs into
rewriting systems is explained through examples. Section 4 provides a formal
description of the transformation procedure. In Section 5, we prove that the
termination of the derived term-rewriting system implies the termination of the
logic program for well-moded queries; a brief review of important termination
techniques of rewrite systems is also provided. Section 6 briefly discusses the
automation of termination proofs of logic programs using our approach. The paper
concludes by a comparative evaluation of the methods in Section 7.

2. PRELIMINARIES

In this section, first, we define the notion of well-moded logic programs (queries)
and prove some properties of well-moded programs (queries). The moding informa-
tion essentially specifies which arguments are input arguments and which are
output arguments in a predicate. Second, we highlight the basic concepts underly-
ing term-rewriting systems.

2.1. Well-Modedness and Related Concepts

Definition 1. A mode m of an n-ary predicate p is a function from {1 n} to the
set {in, out). The set (i lm(i)=in} is the set of input positions of p and
(o I rn(o) = out} is the set of output positions of p.

NOTATION. The terms invar(L) and outuar(L) denote the sets of variables occur-
ring in the input and output positions of a literal L, respectively, and Var(L)=
invar(L) u outvar(L).

4 M. R. K. KRISHNA RAO ET tEL.

REMARK 1. It may be noted that some predicates may be used in different modes
in a single program. We use different subscripts to a predicate to differentiate
between different modings (usages).

In the rest of the paper, we assume that the moding information of all of the
predicates is available. However, this does not mean that the programmer has to
supply this information, as there are many techniques available in the literature
(e.g., [15]) for deriving moding information from a given logic program.

The notion of well-moded programs has been invented to constrain the "flow of
data" and thereby obtain SLD-derivations with certain desirable properties. One of
these desirable properties is the data-drivenness of computations, i.e., input terms
of every selected atom are ground. Since groundness of input terms of the selected
atom depends on the selection rule employed, two alternatives are possible: (i) to
fix a selection rule and consider the class of programs for which the input terms of
the selected atom are ground under this section rule and (ii) to consider the class
of programs for which there exists at least one selection rule such that the input
terms of the selected atom are ground. Obviously, the class of programs considered
in the second alternative is larger than the class considered in the first alternative.
Here we adopt the second alternative and define the notion of well-modedness
independent of the selection rule using the concepts of producers and consumers.
Then we give a characterization of the class of selection rules suitable for the
execution of any given well-moded program (i.e., computations under those selec-
tion rules are data-driven). De Schreye and Decorte [14] call our well-moded
programs well-moded* programs to differentiate between the two notions of
well-moded programs.

Definition 2. Le t A ~ B 1 B k be a clause and X be a variable occurring in B i.
The atom B i is a consumer of X if X ~ invar(Bi), otherwise B i is a producer of
X (i.e., if X ~ Var(B i) - int)ar(Bi)). T h e head A is a producer I of variable X if
X E invar (A) , and A is a consumer of X if X ~ V a r (A) - invar(A) .

REMARK 2. Note that we say that B i is a producer of X if X ~ Var(B i) - invar(Bi))
rather than X ~ outvar(Bi) , since we have to consider the possibility of a variable,
X, occurring in input as well as output positions of an atom, say A. We resolve the
conflict in the situation by saying that A is a consumer of X as we want all the
input terms to be ground at the time of selection; in other words, X should have
another producer that binds X before A is selected.

Definition 3. The producer-consumer relation of a clause c: A ~ B 1 , . . . , B k is
defined as {(Bi, B j) I B i and Bj are producer and consumer of a variable X in c
respectively}.

Definition 4 (Well-moded programs and queries). A clause c is well-moded if (a) its
producer-consumer relation is acyclic and (b) every variable in c has at least one
producer. A program P is well-moded if every clause in it is well-moded. A
well-moded query is nothing but a well-moded clause without head.

1 Our notion of producer is similar to the notion of generator used in Conery and Kibler [10] for
studying AND/OR parallelism in logic programming.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 5

Since the producer-consumer relation of a well-moded clause c : A ~ B1,. . . , B, is
acyclic, it defines a partial order < on the atoms in the body of c as follows:
B~ < Bj if (B~, Bj) is in the producer-consumer relation of c.

Definition 5. A n element a e A is minimal in the poset (A, <) i f V b e A , b ~ a .
The following example illustrates these definitions.

Example 1. Consider the following quick-sort program; here, _< and < are the
built-in's with the usual moding information.

moding:q(in, out);s(Ln, in, out, out)and a(in, in, out)

I. q(nil,

2. q(c(H,
c (H, BI),

3. s (nil,
4. s(c(X,
5. s (c (x ,
6. a (nil,
7. a(c(H,

nil) ~-
L), S)e-s(L, H A, B),q(A, AI), q(B, BI), a(Al,

Ls, Bs)
Ls, Bs)

s)
Y, nil, nil) +-
Xs), Y, c(X, Ls , Bs) ~--X_<Y, s(Xs, Y,
Xs), Y, Ls, c(X, Bs)) ~--X>Y, s(Xs, Y,

X, X) e-
X), Y, c(H, Z)) *-a(X, Y, Z)

Except for the second clause, the producer-consumer relation of all other
clauses is empty. For the second clause, it is { (z (L , H, A, B) , q(A, A1))),
<s(L, H, A, B), q(B, BI)), (q(A, AI), a(Al, c(H, BI), S)),

<q(B, B1) , a (i l , c (H, B1) , S))}. It is easy to see that for every clause,
(i) the producer-consumer relation is acyclic and (ii) all the variables in it have at
least one producer. So the program is well-moded.

In the following lemmas, we capture some of the properties of well-modedness
properties.

L e m m a 1. I f H *-- B~,. . . , Bn is a wel l-moded clause and X is a variable in outvar(H),
then (a) X ~ invar(H) or (b) there exist a B i in the body such that X ~ outvar(Bi).

PROOF. By Definition 4, every variable in a well-moded clause has at least one
producer, i.e., either (a) H is a producer of X or (b) some B i is a producer of X.
By Definition 2, H is a producer of X only if X ~ i n v a r (H) and B~ is a producer of
X only if X ~ (Var (B i) - invar(Bi)) = (ou tvar (B i) - invar(Bi)). []

L e m m a 2. I f H ~- is a wel l-moded unit clause, then outvar(H) c_ invar(H).

PROOF. Follows from Definitions 2 and 4 and the above lemma. []

L e m m a 3. Let A *-- B1,. . . , B n be a well-moded clause and B i be a minimal element
under the partial order defined by the producer-consumer relation o f the clause.
Then, invar(B i) c invar(A).

PROOF. Since B i is a minimal element under the partial order defined by the
producer-consumer relation of the clause, there is no pair (B j, B i) in the. pro-
ducer-consumer relation. Therefore, input variables of B i (if any) are not pro-
duced by other atoms in the body. Hence they should be produced by A; that is,
invar(B i) c_ invar(A). []

6 M . R . K . KRISHNA RAO ET AL.

Lemma 4. Let ~ B 1 , Bn be a well-moded query and B i be a minimal element
under the partial order defined by the producer-consumer relation. Then the input
terms of B i are ground.

PROOF. By Definition 4, well-moded query is a well-moded clause without head
and by the above lemma invar(B i) c_ invar(head) = ~b. Therefore the set of input
variables o f B i is empty and hence the input terms of B i are ground. []

In the following, we characterize selection rules that are suitable for well-moded
programs. First, we formally define the selection rule.

Definition 6. A computation rule (or selection rule) [29] is a function from the set of
goals to the set of atoms such that the value of the function for a goal is an
atom, called selected atom, in that goal.

If Go, G 1 G n is an SLD-derivation such that a i = aj, i 4:j, then the selected
atoms of Gi and Gj are the same [29]. 2 This notion can be extended to the clauses
in the following way: given a clause, the selection rule gives an evaluation order
among the atoms in the body of the clause. It can be captured by a partial order (if
l i < lj in the partial order, it means that l i should be selected before li is selected).

The definition of well-moded programs (queries) given earlier is very concise
and is a generalization of the existing notions. The earlier notions are closely
linked to the Prolog's selection rule, and the producers of a variable should
precede the consumers of that variable in the textual order [16]. Our notion is not
linked with any selection rule. One of our aims has been to define the notion of
well-modedness independent of selection rule, and we have been able to achieve
this by saying that the producer-consumer relation is acyclic. Our definition is
quite general as compared to other definitions. However, it still does not com-
pletely capture some notions. For instance, in a well-moded Prolog program (using
another notion), the producer-consumer relation can be cyclic; it can be seen that
we exclude such a possibility. Once the selection rule is fixed, certain cycles can
indeed be handled; for example,

head(X, Y, Z,W):-al(X, Y), a2(Y, Z) a3(Z, W, Y)

with modes

head(in, out, out, out); al(in, out ; a2(in, out)

and a3(in, out, out)

is well-moded w.r.t. Prolog's selection rule, although its producer-consumer rela-
tion is cyclic (z is produced by a2 and consumed by a3 and Y is produced by a3
and consumed by a 2) . In fact, we have used some of these notions in the context of
application of our method to GHC programs.

Now we characterize the class of selection rules suitable for the execution of a
given well-moded logic program.

2Apt [2] considered a more general notion of selection rule that also takes the history of the
derivation into account in selecting an a tom from the goal. With such a selection rule it is possible to
select two different a toms in G i and Gj, even though G i = Gj. A selection rule that selects leftmost and
r ightmost a toms alternately is an example.

8 M . R . K . KRISHNA RAO ET AL.

Example 3. The following permutation program is not well-moded according to
earlier definitions (e.g., the definition given in [16, 32]--consumer apl(Xls ,
c(X, X2s) , Xs) of variables X l s and ×2s precede their producer ap 2 (× l s , X2s,
Z s)) but is well-moded according to our definition, and the right-to-left selection
rule is implied by the moding information.

moding: perm (in, out); apl (out, out, in)

and ap2 (in, in, out).

1. api(nil, X, X)
2. aPi(C(H, X), Y, c(H, Z)) ~ api(X, Y, Z)
3. ap2(nil, X, X)
4. ap2(c(H, X), Y, c(H, Z)) ~ap2(X, Y, Z)
5. perm(nil, nil)
6. perm(Xs, c(X, Ys)) ~ aPi(Xls, c(X, X2s),

X2s, Zs), perm(Zs, Ys).
Xs), ap2(Xls,

The clauses defining the predicates apz and ap 2 are essentially the clauses in
the standard append program.

In the following, we establish that the computations of well-moded programs
under the implied selection rules are data-driven.

Definition 8. Let P be a well-moded program and Q be a well-moded query. An
evaluation (SLD-derivation) of P U {Q} is said to be data driuen if at every
resolution step, the selected atom is ground on all of its input positions.

Theorem 2. I f P is a well-moded program, Q is a well-moded query and S is a selection
rule implied by P U {Q}, then euery SLD-derivation of P U {Q} is a data-driuen
eualuation.

PROOF. See Appendix. []

2.2. Term-Rewriting Systems

In this subsection, we briefly explain the basic concepts of term-rewriting systems.

Definition 9. A term-rewriting system (TRS, for short) ~ is a pair (g,, R) consisting
of a set ~r of function symbols and a set R of rewrite rules of the form l -~ r
satisfying

(i) l, r ~ 3 (~ , ~) , the set of terms built from functions in J a n d variables in ~ ,
(ii) left-hand-side l is not a variable, and

(iii) Vat(r) c_ Vat(l).

A rule l -~ r applies to term t in J (~ , ~) if a subterm s of t matches with l
through some substitution o-, i.e., s - lo-, and the rule is applied by replacing the
subterm s in t by ro-, resulting in a new term u. This is formalized in the following
definitions.

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 9

Definition 10. A context C[.] is a term in .~5~-U { []} ,~) . If C[.] is a context
containing n occurrences of [] and t a t~ are terms, then C[t~ 6] is the
result of replacing the occurrences of [] f rom left to right by 6 , - - - , 6 . A context
containing precisely one occurrence of [] is denoted C[].

Definition 11. The rewrite relation ~ induced by a TRS ~ is defined as flJlows:
s ~,,p t if there is a rewrite rule l -~ r in ~ ' , a substitution o-, and a context C[]
such that s - C[lo'] and t =- C[ro'].

We say that s reduces to t in one rewrite (or reduction) step if s ~ ¢ t and say s
reduces to t if s ~ *.~ t (the relation ~ *e• is the reflexive-transitive closure of
:::> ,)?).

Definition 12. A term-rewriting systems ~ is terminating if there is no infinite
rewriting derivation t I ~ t 2 ~ : e t 3 ~ "" .

3. TRANSFORMING A LOGIC PROGRAM INTO A REWRITE SYSTEM

Our main objective is to reduce the termination problem of logic programs to the
termination problem of term-rewriting systems so that we can use the many
techniques available in the rewriting literature. It may be noted that term-rewriting
systems do not have local variables, and all of the termination results of term-
rewriting systems crucially depend on this property. With this as the motivation,
we first eliminate local variables by introducing Skolem functions.

For each n-ary predicate p having a moding with k output positions, we
introduce k new function symbols pl p~ of arity n - k. These k-function
symbols correspond to the k output positions of the predicate p. (If k == 0, we
introduce an n-ary function symbol p0.) Then we construct a set of rewrite rules to
compute these new functions. For example, in Example 8 discussed in the sequel,
we associate three binary function symbols r 1, r 2 and r 3 with the predicate r with
moding (i n , i n , o u t , o u t , ou t) . These functions take first two arguments of
r as inputs and give one output each, corresponding to the third, fourth and fifth
arguments of r . Rewrite rules for these functions are constructed in Example 8. In
the following, we illustrate the transformational approach through a series of
examples.

Example 4. Consider the following multiplication program:

moding: add (in, in, out) and mult (in, in, out)

add(O, Y, Y)~-
add(s(X), Y, s(Z)) ~-add(X, Y, Z)
mult(O, Y, O) ~-
mult(s(X), Y, Z) ~-mult(X, Y, ZI), add(Zl, Y, Z)

From these clauses and the moding information, we obtain the following rewrit-
ing rules:

1. Since the output of predicate add for inputs 0 and Y is Y, we get a d d ~ (0, Y)
---> y .

2. Since the output of mu i t for inputs 0 and Y is 0, we get z u 1 c ~ (0, ~_~) ---, 0.

10 M. R. K. K R I S H N A R A O E T AL.

3. In the second clause, the output of a d d for inputs s (X) and Y is s (z) ,
where z is the output of add for the inputs x and Y. We get a d d 1 (S (X), Y)
-~ s(add I (X, Y)).

4. In the last clause, the output of m u l t for inputs s (x) and Y is z, where z is
the output of a d d for the inputs Zl and Y, where Zl is the output of m u l t
for inputs x and Y. So we get m u l t l (s (X) , Y) ~ a d d a (Z l , Y) , where
ZI ---- mult I (X, Y).

The resulting rule is m u l t ~ (s (x) ,Y) -~ ad d I (m u l t 1 (X, Y) ,Y).

Example 5. Consider the permutation program given in Example 3. It was shown
that the right-to-left selection rule is implied by the moding. First, we get the
following rules from clauses 1 to 5:

ap~ (nil,X) -~X

ap~(c(H, X), Y)-*c(H, ap~(X, Y))

ap~ (X) -~ nil

ap~(c(H, Z))-~c(H, ap~(Z))

ap~ (X) -~ X

ap~(c(H, Z)) ~ap~ Z)

perm I (nil) -* nil

Let us now consider clause 6. The output of predicate p e r m for input c (x , Ys) is
xs , where x s is the output of predicate ap~ for inputs Xl s , c (x , x2 s) , i.e., x s

is ap~ (X l s , c (x , X2s)). Here, X l s and x 2 s are outputs of predicate ap 2 for

input z s and zs is the output of p e r m for input Ys. Therefore, we get the rewrite
rule

perm I (c (X, Ys)) -~ ap~ (ap~ (perm I (Ys)) , c (X, ap~ (perm I (Ys)))).

When a nonvariable term appears in an output position of a body literal, we
need to introduce inverse functions as illustrated in the following example.

Example 6. Consider the permutation program given in Example 3 with moding
p e r m (i n , o u t) ; a p ~ (o u t , o u t , i n) a n d a p 2 (i n , i n , o u t) . It is easy to
see that we get the following rules from the clauses 1 to 5:

ap~ (X) -~ nil

ap~(c(H, Z)) ~c(H,ap11(Z))

ap~ (X) ~ X

ap~ (c (H, Z)) -~ ap~ (Z)

ap~ (nil, X) ~ X

ap~(c(H, X), Y)~c(H, ap~(X, Y))

perm I (nil) -~ nil

Let us now consider clause 6. The output of predicate p e r m for input x s is c (x ,
Ys), where Ys is the output of predicate p e r m for input z s and x is a part of the

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 11

second output of predicate ap 1 for input xs . How do we extract x and x2 s from
c (x, X2s) ?

They can be extracted through inverse functions of c. The operators c a r and
c d r can be used as inverse functions of c, and we get a rewrite rule p e rm ! (xs) --*

c (c a r (ap~ (X s)) , p e r m 1 (ap~ (ap~ (X s) , c d r (ap~ (X s))))) . To evaluate the

functions c a r and c d r , we add the following rules: c a r (c (H, T)) --, H and
c d r (c (H, T)) ~ T. Thus, for clause (6), we get the following rules:

perm l(Xs) -~ c(car(ap~ (Xs)), perm I (ap~ (apl (Xs),

cdr(ap~ (Xs)))))

car(c(H, T)) -*H
cdr(c(H, T)) -~T.

As shown in the above example, inverse functions are needed when a nonvari-
able term occurs in an output position of an atom in the body. Appropriate inverse
functions are generated as follows:

1. Build a representation of the nonvariable output term.
2. Identify for each variable in this term (and consumed by other atoms in the

clause) a path from root to an occurrence of that variable in the above tree.
3. Traverse upward path (from leaf to root), collecting suitable inverse function

symbols, which will be used in constructing the right-hand sides of the rewrite
rules as illustrated in the following example.

Example 7. Consider the following clause:

m o d i n g : a (i n , o u t) ; b (i n , i n , o u t) ; a n d c (i n , o u t)

a(X, Y) *-b(X, 0, f(X, g(h(0, Z), X), X, i)), c(Z, Y)

A nonvar i ab le t e rm f (x , g (h (0 , Z) , X) , X, 1) is occurring in the output
position of b and the local variable z occurring in this term is consumed by atom
c (z , Y). Function symbols f, g, and h occur in the path from the root to variable
Z, and the appropriate inverse functions are collected as follows.

Since Z is the second argument of h, the inverse function h2 I is collected (and
a rewrite r u l e h2 1 (h (×1, X2)) ~ X2 is added to the rewrite system). Since
the subterm h (0, z) is the first argument of g, the inverse function symbol g l 1
is collected (and a rewrite rule g l I (g (×1, x2)) ~ ×1 is added). Since g(...) is
the second argument of f , the inverse function symbol f2 -1 is collected land a
rewrite rule f2 -1 (f (x1 , x2 , x3 , x 4)) ----)x2 is added). The transformation
procedure derives the following rewrite rules for the above clause:

a~(X) - ~ c l (h 2 - 1 (g l - l (f 2 - 1 (b l (X , 0)))))
h 2 - 1 (h (X 1 , X2)) -~X2
g l l (g (X 1 , X2)) ~ K L
f2 l (f (X 1 , X2, X3, X4)) -~X2

In the above examples, all of the variables occurring in the output positions of an
atom in the body are also occurring either in output positions of the head or in
input positions of some other atom in the body. And the rewrite systems derived in
both of the examples capture the termination of the corresponding logic programs
correctly. The above transformation is basically capturing the data flow in the

12 M. R. K. K R I S H N A RAO E T AL.

program execution. When there are some variables occurring only in output
positions of atoms in the body, we need to add additional rewrite rules, as illustrated
below.

Examp& 8. Cons ider the ~l lowing(nonterminat ing) logic program:

moding: a(in, out); b(in, out); c(in, out) and r(in,

out, out).
i n ,

a(X, f(X)) ~-
b (X, X)
c(X, Y)~-a(X, Z), r(X, Z, Y, ZI)
r(X, Y, 01, 02)~-b(X, 01), c(Y, 02)

We get the following rewrite system according to the above transformation:

a 1(x) -~ f(X)
b1(X) -~X
c i(x) -~r l(x, a I(x))

r I(x, Y) -~b I(x)
r 2(x, Y) -~c l(Y)

It is easy to see that this rewrite system captures the data flow in the program
execution correctly. This rewrite system is terminating (it can be proved using
recursive path ordering with precedence r 2 > c z > a z > f , c ~ > r 1 > b l) , whereas
the above program is a nonterminating one.

For the query ~ c (t , Y), where t is a ground term, the program has an
infinite SLD-derivation:

~- c(t, Y)
~-a(t, Z), r(t, Z, Y,

~r(t, f(t), Y, ZI)
~b(t, Y), c(f(t), ZI)
~-c(f(t) , ZI)

zl)

~c('f(f(t)) , Z')

In the rewrite system, we compute el(t) for some ground term t through the
rewrite derivation c ~ (t) ~ r ~ (t , a ~ (t)) ~ r ~ (t , f (t)) ~ b ~ (t) = t ,
whereas for the execution of c (t , Y) in the logic programming paradigm, we
need to execute r (t , f (t) , Y, z 1) , which in turn needs the execution of
b (t , Y) and c(f(t), Z1) - - t hus leading to an infinite SLD-derivation. Computing
c 1 in rewriting involves only a partial computation of r (i.e., computation of r 1
only), whereas this kind of partial computation is not possible in logic programming
and execution of r does not stop after computing r I but continues to evaluate r 2
(here it needs to execute c, which leads to a loop).

In the above example, the computation of the second output of r(---) causes the
looping of the logic program, and the computation does not contribute anything
useful to the evaluation of the initial query. The corresponding rewrite system does
not enter any loop, as it does not involve the computation of the second output of

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 13

r (. . .) . To cover all of the computation paths in the SLD-trees, we include
additional rewrite rules reflecting the (possible) nontermination due to the compu-
tation of unnecessary values (the computation of these values does not provide any
information directly or indirectly to the head). The derivation of these rewrite rules
will be clear in the next section.

E x a m p l e 8 (continued). We include the following rewrite rules to capture the
unnecessary computations:

c (x) -~#(r 2(x, a ~(x)'~)
c (x) -*#(r~(X, at(X)))

It is easy to see that the resulting rewrite system is a nonterminating one.

4. FORMAL DESCRIPTION OF THE TRANSFORMATION PROCEDURE

Although input and output positions of a predicate can combine in all possible
ways, for notational convenience we write all of the input positions first, followed
by all of the output positions. We write p(t i , t%, to~ tok) to denote an atom
p(- . .) containing the terms ti,, t~i in input positions and t,,, t(,~ in output
positions.

The main step in our transformation is the elimination of local variables.
Basically, the right-hand sides of rewrite rules are derived from an output term of
the head by repeatedly replacing a local variable (to be precise, variables in
V a r (c) - i n v a r (h e a d)) by a term corresponding to one of its producers. When a
variable has more than one producer, one has to consider all possible choices. The
following function, ELIMINATE-LOC-VARS, has been designed to perform the
elimination of local variables repeatedly until there is no local variable to replace.
This function needs the computation of the set of producers for each local variable.

It is easy to see that computation of an output term in the body does not provide
any information directly or indirectly to the head or any other atom if and only if
none of the variables in that output term have any consumer. Therefore, the
unnecessary computations can be captured by computing the set of variables
without consumers. To derive the rewrite rules corresponding to unnecessary
computations, we compute the following sets C o n s v a r and Unsry for each clause in
the program. In all, the transformation procedure computes the following sets for
each clause c : h e a d ~ b o d y in the program:

1. P r o d (X) = {(p t (t i , t i), t o > p(t~ ti , to~ tok) is an atom in the body
1 j I 1)

of the clause c, X ~ Var (to ,) and X ~ Var({ti~ ti))}, the set of producers,
for each variable X not occurring in input positions of the head.

2. C o n s v a r = { X ~ V a r (c) - i n v a r (h e a d) I X ~ o u t v a r (h e a d) or X occurs in an
input position of an atom in the body}, the set of variables in the clause
c o n s u m e d at least once .

3. Unsry = { p t (ti~, . . . , t i) I Var (t o,) A C o n s v a r = oh} U { q ° (si~, si~) I predicate q
does not have output positions}, where p (. . -) and q(-..) are atoms in the
body.

14 M.R. IC KRISHNA RAO ET AL.

This set corresponds to the set of computations (we call them unnecessary
computations) that do not contribute to the outputs of h e a d directly or
indirectly.

The algorithm TRANSFORM and the function ELIMINATE-LOC-VARS are for-
mally described below.

algorithm T R A N S F O R M (P :in; R e : out);
begin

R e := th; {* R p contains rewrite rules.*}

for each clause c: a(lil , ti~, to1 , t ok ,) ~- B~ B n ~ P do
begin I N h e a d := V a r ({ t i x , . . . , lik})

Compute Consvar and Unsry;
Compute P r o d (X) for every variable in Var(c) - I N h e a d ;
for j := 1 to k ' do

begin
S .'= ELIMINATE-LOC-VARS({to)) ;

{ * S contains the right-hand sides o f the rules in R e * }

R e := R e U {aJ(t i i tik) ~ t It ~ S}
end;

{ * Following code derives rewrite rules corresponding to unnecessary computations. *}

S := E L I M I N A T E - L O C - V A R S (U n s r y) ;
R e :-- Rp u {ak'(t i l , . . . , t&) ~ # (t) It ~ S}

end
end TRANSFORM.
funetion ELIMINATE-LOC-VARS(T)

{ * This function goes on replacing the local variables in the set o f terms T by the terms corresponding to their
producers as long as there are local variables. Since the producer-consumer relation o f every well-moded
clause is acyclic, this function is guaranteed to terminate. Here, I N h e a d is a global variable. *}

begin V:= Var(T) - I N head;
while V ~ ~, do

begin
for each X ~ V do

begin T' := ~b;
for each (pZ(...), t) ~ P r o d (X) do

if t = X then T' := T ' U T { X / p t (...)}
{ * Replace local var X by its producer-term. * }

else if t = f (X) then
begin

T' := T ' U T { X / f - l (p t (...))}; {, Introduce inverse functions.*}

R e :=Rp U { f f l (X)) ~ X }
end;

T : = T '
end;

V:= Var(T) - I N head
end;
Return(T)

end ELIMINATE-LOC-VARS;

The following series of examples illustrates the transformation procedure.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 15

Example 9. For the quick-sort program given in Example 1, the algorithm TRANS-
FORM derives the following term rewriting system:

1. @(nil) -*nil

2. qS(c(H, L)) --~aS(q1(s1(L, H)), c(H, ql(s2(L, H))))
3. s 1(nil, Y) -~nil

3'. s 2(nil, Y) -*nil

4. s~(c(X, Xs), Y)-~c(X, s1(Xs, Y))
4'. s 2 (c (x, Xs) , Y) -* s 2 (Xs, Y)

5. s1(c(X, Xs), Y)-~s1(xs, Y)

5'. s 2(c(x, Xs) , Y) -~c(X, s 2(xs, Y))

6. a l(nil, x) -~x

7. a ~ (c (H, X) , Y) --~ c (H, a i (X, Y))

Here, we explain how rule 2 is derived from the second clause. The other rules can
be derived in a similar fashion. The head q (c (H, L) , S) contains c (E, L) in
the input position and variable S in the output position; hence the left-hand side of
the rewrite rule is q~ (c (H, L) . Producers of variables not occurring in the input
positions of the head are as follows: Prod(A)={(s ~ (L, H) , A)}, Prod(B)=
{(s2(L, H), B)}, Prod(Al) = {(qi(A), AI)}, Prod(Bl) = {(q:(B), BI)},
P r o d (S) = { (a 1 (i l , c (H , B 1)) , S)}. To construct the right-hand term, algo-
rithm TRANSFORM calls function ELIMINATE-LOC-VARS with argument T = {S}.
Values of T at the end of various iterations of the while loop in ELIMINATE-
LOC-VARS are given below.

Iteration 1 T = { a 1 (A1, c (H , B1))] I,ariable S is replaced by its producer.

Iteration 2 T = {a ~ (@ (A) c (H, q1 (B)))} local variables At and s l are replaced

by their producers.

I teration 3 T = { a S (@ (s ~ L, H)) , c (H , (q l (s 2 (L , H)))) } localrariables
i and B are replaced.

Since there are no local variables in T after the third iteration, ELIMINATE-LOC
VARS returns this T to TRANSFORM, which produces the rewrite rule 2 given above.

Example 10. Let us consider the third clause of the program given in Example 8:

c(X, Y) ~--a(X, Z), r(X, Z, Y, Zl, Z2)

The following producers of the variables are computed:

prod(z) = {(a s (x) , z)},

prod(Y) = {(r ~ (x , z) Y)},

p r o d (z l) = { (r 2 (x , z , z l)} ,

prod(z2) = { (P (x , z , z2)},

and Unsry={r 2(x , z , z 3 (x , z)}.

The function ELIMINATE-LOC-VARS is first invoked with input T = {Y}. The
values of T at the end of various iterations of the while loop are {Y}, {r ~ (X, z) },
{r ~(x, a ~ (x)) } a n d w e g e t t h e r e w r i t e r u l e c s (x) - , r ~(x , a ~ (x)) .

The function ELIMINATE-LOC-VARS is then invoked with input T = Unsry =
{r > (X, z) , P (X, Z)}. The value of T after the first iteration of the while loop
is {r:' (X, a s (x)) , r 3 (X, a ~ (X))}, which does not have any local variables.

16 M . R . K . KRISHNA RAO ET AL.

Corresponding to this set, algorithm TRANSFORM adds the following two rewrite
rules:

c I (X) -* #(r 2 (X, a I (X))) and c ~ (x) -~ #(r 3 (x, a I (X)))

Example 11. Let us consider the following program:

p ~--- q , p

Here, we have propositions (no in /out arguments). So the associated function
symbols {p0, q0} are of arity zero (i.e., constants). The value of Unsry is {p0, q0}.
The algorithm TRANSF©RM derives R e with the following two rewrite rules:

pO ~ # (q O) and pO ~ # (p O) .

5. FORMAL CORRECTNESS

In this section, we first prove that the algorithm TRANSFORM terminates for a given
input and study some properties of the rewrite system derived by the algorithm
TRANSF©RM from a given well-moded logic program. Then we establish that
termination of the derived rewriting system implies termination of the logic
program for all well-moded queries under all selection rules implied by the moding
information. Figure 1 gives the interdependence of the technical lemmas and
theorems leading to the proof of our main result (Theorem 5).

Lemma 5. The algorithm TRANSFORM terminates.

PROOF. Since there are only a finite number of clauses in the program and every
predicate has a finite number of output positions, the number of iterations in the
for-loop is finite. Since each body has a finite number of atoms, Unsry is finite for
every clause. Therefore, there are only a finite number of calls to the function
ELIMINATE-LOC-VARS, and it is enough to prove termination of ELIMINATE-
LOC-VARS for proving termination of TRANSFORM.

It is easy to see that for proving termination of ELIMINATE-LOC-VARS, it is
enough to prove termination of the while loop. The main step in the while loop can
be abstracted as follows: application of substitution (X/p] (...)} to the terms in T,
where p J(...) is a producer of X. That is, an occurrence of a variable in a term
corresponding to its consumer is replaced by its producer. Since the producer-
consumer relation of a well-moded clause is acyclic, the while loop is bound to
terminate. []

5.1. Properties o f the Derived TRS

In this subsection we study certain properties of the derived term-rewriting systems
using the transformation procedure from the given well-moded programs. Our

S
Lem. 7 ' Lem. 8 " Lem. 9 ' Lem. 11 ' Th . 4

Lem. 10

FIGURE 1. Road-map of the technical results.

• T h . 5 ~ T h . 6

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 17

basic aim is to establish that the termination of the derived term-rewriting system
implies the termination of the logic program. Toward such a goal, we show that
corresponding to each resolution step in the SLD-derivations, there is at least one
reduction step in the rewrite derivations.

The following lemma establishes that there are no extra variables on the
right-hand side of the rewrite rules in R e , and thus all of the termination
techniques of rewriting systems can be used in proving the termination of logic
programs.

L e m m a 6. Var(r) c_ Var(l) for each rewrite rule l ~ r in Rp.

PROOF. Each rule associated with inverse funct ion is of the form
f f l (f (X L Xn)) ~ X i, and hence the lemma holds for such rewrite rules. Other
rewrite rules are of the form p J (t - ~) ~ t or pJ(t i-~)~ #(t) , where tin l,; the
sequence of input terms of a head and t is a term in the set T returned by
ELIMINATE-LOC-VARS. The function ELININATE-LOC-VARS terminates with
the condition (V a r (T) - I N h e a d) = ~b. Therefore, V a r (T) c _ I N h e a d and hence
Var(t) c_ I N head = Var(pJ(Ti~)) = Var(l). Thus, Var(r) c_ Var(l) for each rule l --* r
in Rt,. []

The basic ingredient in the transformation is the application o f substitution
{ X / p J(...)} to the terms in T, where p J(...) is a producer o f X. A study of the
derived rewrite rules involves a study of these substitutions and their effect. We
need the following notation.

Definition 13. Let c : h e a d ~ body be a well-moded clause and V be the set of
variables Var(c) - i n v a r (h e a d) . For any variable X, we denote by E L V (X) , the
set of terms returned by the function ELIHINATE-LOC-VARS for input {X}.
We denote by ® the set of substitutions {cr lXcr6 E L V (X) for each variable
X 6 V}. For any term t, ®(t) denotes the set { o ' I X ~ r 6 E L V (X) for each
variable X ~ Var(t)}. We call the substitutions in 19 Skolem substitutions.

REMARK 3. If X is a variable in a term s - C [X] for some context C[], we can
construct an appropriate context C'[] of inverse functions such that C'[C[X]] can
be reduced to X by the rewrite rules defining the inverse functions. In the sequel,
we use the phrase "context of inverse functions" to mean the context built from
the inverse functions as illustrated.

L e m m a 7. Le t c : head ~ body be a well-moded clause, ® be the set o f its Skolem
substitutions and X be a variable in Var(c) - invar(head) such that (p t (t i¢ t i, ,),
tol) is an element in P r o d (X) and q(si~ sik, so~, Sok ,) is a consumer o f X .
Then,

1. There exists a Skolem substitution cr in ® such that X ~ r - C[pl(ti~ t;)~r],
where C is a context o f inverse funct ions such that C[to,] ~ *X.

2. Corresponding to every Skolem substitution o ' ~ @(pt(t i l , . . . , t i)) there is a
substitution cr ~ tg(qm(ti t i)) such that X~r = C[pt(t i ", t i),r '] =-
C[pl(t i ti)O"] f or each m ~ fl, k']. ~ "

3. The output o f the funct ion ELIMINATE-LOC-VARS for input {t} is the set
{ttrl ~ ~ 19} = {tyl 7 ~ 19(t)}.

PROOF (sketch). In the function ELIHINATE-LOC-VARS, a local variable is re-
placed by the terms corresponding to its producers. If a local variable (say, Y)

18 M. R. K. KRISHNA RAO ET AL.

occurs in a nonvariable output term (say, t), the term corresponding to the
producer is adorned with a context of inverse functions C1 such that Cl[t] is
reducible to Y by the rewrite rules defining the inverse functions. It can easily be
seen that statement (1) of the lemma follows easily. Since the local variable X
(with a producer (p l (t 6 t i) , to,)) occurs in the input terms of the atom q(. .-) ,
the variable X in any term qm(ti~ , t i)) is replaced with C[pt(ti~ ti)] by the
function ELIMTNATE-LOC-VARS. Statement 2 of the lemma now follows. State-
ment 3 of the lemma follows from the above definition of t9. []

The following example illustrates this lemma:

Example 12. Consider the following clause:

m o d i n g : d (i n , i n , o u t) ; a (i n , o u t , o u t) ; a n d q , b , c (i n , o u t)

q(X, W)~-a(X, O, U), b(X, U), c(O, V), d(U, V, W)

For this clause, ELV(O) = {a 1 (X)}, E L V (u) = {a 2 (x) , b 1 (X)}, E L V (V) =
{ c ~ (a l (X)) } , and E L V (W) = { d l (a 2 (X) , c l (a Z (X)) , d ~ (b ~ (X ,
c ~ (a ~ (x)))}.

The value of (9 is {0-1, 0-2, 0-3, 0-4}, where

O ' l = { 0 / a l (X) , U / a 2 (X) , V / c l (a l (x)) , W/d l (a2 (X) cZ(a l (X)) },

0-2={0/at(X), U/bI(X), V/cI(aI(X)), W/d1(a2(X) c1(a1(X)) },

6r3={0/aZ(X) , U/a2(X) , V/c1(a1(X)) , W/d1(b1(X) c1(a1(X)) },

o ' 4 = { 0 / a l (X) , U / b l (X) , V / c l (a l (X)) , W / d l (b l (X) c l (a l (X))) } .

The output of ELIMINATE-LOC-VARS for input {d ~ (U, V)} is the set

{dl(a2(X) , c l (a l (X))), dl(b~(X) , c l (a l (X))))

which is equal to {d~(U, V)0-10-e19}. The term d~(U, V) is an element in
Prod(W) and substitutions 0-1 and 0- 4 satisfy the equation w0--- d z (U, V) 0-.

The following lemma plays a crucial role in proving our main result. It shows
that corresponding to each atom in the body of a clause there are some (sub)terms
in the derived rewrite rules.

L e m m a 8. Le t c : head *- body be a well-moded clause and 19 be the set o f Skolem
substitutions. Then, for every atom p(t i,, . . . , t i~ , t ol t ok,) ~ body, for each or ~ 19
and for each j such that 1 < j < k ' 4= 0 or j = k ' = O, the term pJ(til tik)O"
occurs as a subterm of the right-hand side o f a rewrite rule derived from clause c.

PROOF. There are two cases:

(k ' = 0) In this case, the term p°(ti~ ti~) is included in the set Unsry and the
function ELIMINATE-LOC-VARS is called with input Unsry. Rewrite
rules are constructed with terms from the output of ELIMINATE-LOC-
VARS on the right-hand sides. It follows from Lemma 7 that the lemma
holds in this case.

(k ' > 0) The lemma is proved in this case by using Noetherian induction with
the following Noetherian relation < . The relation -< is defined over
the terms of the form pJ(ti, ti~), where p(ti~ tik, to~ tok ,) is an

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 19

atom in the body of c and 1 < j __< k ' , as follows:

l S q (i , , ' " , % ,) <PJ(t i 1 tik)

if and only if (p f f t i , . . . , t i) , t o) is a producer of a variable in
Var(qt(sil s i)) - invar(head). JSince the p roducer -consumer rela-
tion of a well-moded clause is acyclic, the relation -< is Noetherian.

Minimal elements: A minimal e lement (say, rk(ui,, Uim)) in this relation is
either a producer of a variable in (ouWar(head) - invar(head)) or is a member of
Unsry.

• If it is a member of Unsry, the lemma holds for this element because the
function ELIMINATE-LOC-VARS is called with unsry as the input and the
output of this function is {to.I t c Unsry, o. ~ 19}. Each term in this set is a
subterm of the right-hand term of a rewrite rule.

• If it is not a m em ber of Unsry, it is a producer of a variable (say, X) i n an
output term (say, t) of the head. By Lemma 7, there is a substitution o. ~ 19
such that X o - - C[rk(ui,, uim)o.], where C is a (possibly empty) context of
inverse function symbols such that C[uo~] ~ *X. The output of the function
ELIMINATE-LOC-VARS for input {t} is { t y l y ~ 19}. Each term in this set is
the right-hand te rm of a rewrite rule. Since X e Var(t), X o . -
C[rk(ui,, u i) o .] is a subterm of to-, the lemma holds.

Nonminimal elements: Now we prove that the lemma holds for the element
p J (t 6 , t 6) if it holds for an e l e m e n t q t (s i , Si) , such t h a t ql(si~, si, ,) -~
pJ(ti,, ti~). From the definition of the relation < it follows that

(pY(t i¢ . . . , t i~) , toj) is a producer of a variable (say, Y) in Var(q~(si,%,))-
invar(head). By L e m m a 7, corresponding to every substitution cr ~ 19(pJ(ti, £))
there is a substitution o. ' ~ ®(qt(%,, sin)), such that

Yo.' =- C[pi(ti~ t6)o . '] =- C[pJ(til, ti~)o.] ,

for some (possibly empty) context C of inverse function symbols. Hence
pJ(til ti~)o, is a subterm of qt(si~ si)o-'. By hypothesis, qt(%1, si,)o.'
occurs as a subterm of the right-hand side of a rewrite rule and hence the lemma
holds for the element pJ(ti, ,ti). []

The following lemma describes the structure of rewrite rules in Rp. It is shown
that the function symbols pi and qJ occur in the right-hand side of rewrite rules in
such a way that pi occurs inside qJ if q(. . .) is a consumer of a variable (say, X)
that occurs in the ith output term of p (- . .) (i.e., p(...) is a producer of X). In
particular, the terms corresponding to the minimal atoms in the body of a clause
occur at the innermost level of the right-hand terms of the rewrite rules.

Lemma 9. Let p(t i l , . . . , t 6 , to, to~.), q(sil Sin , So,,. . . , s o) be two atoms in the
body o f a well-moded clause c such that q(. . .) is a consumer o f a uariable X and
(pl(ti,, tik),to,) is an element in Prod(X) . Then, for each 1 <_j <_ n', the term
qJ(sil , sin)o- occurs as a subterm of the right-hand side o f a rewrite rule derit,ed
from c, where o. is a substitution in 19 such that X o . - C[pl(ti~ t 6)o.] and C is
a (possibly empty) context o f intJerse functions such that C[to,] ~ *X.

20 M . R . K . KRISHNA RAO ET AL.

PROOF. Follows from Lemma 7 (part 2) and Lemma 8. []
The following lemma establishes a correspondence between the computations of

logic programs and the derivations of the derived term-rewriting systems.

Lemma 10. Let P be a well-moded program, Q = ~ q(si , , . . . , sire, So~ Som.) , be a
well-moded query and R p be the term rewriting system derived from P. I f 0 is a
computed answer substitution of P u {Q}, then qJ(si~ sire) ~Rp SojO, for each
j ~ [1, m'].

PROOF. Induction on the length l of the SLD-refutation of P u { ~ q(--.)}. []

5.2. Terminat ion o f a Given Logic Program and the Derived TR S

Now we prove that the termination of Rp implies termination of the given program
P for all well-moded queries under all selection rules implied by the moding
information. For this purpose, we introduce the notion of a rewrite tree of a
well-moded query and establish the relationship between the SLD tree starting
with a query and the rewrite tree of that query.

Definition 14 (Rewrite Tree). Let P be a well-moded program, R e be the term
rewrite system derived from P by the transformation, Q = ~ ql("") qn("")
be a well-moded query, and RQ be the set of rewrite rules derived from the
clause q0 ~ q l (" ') q , (. . .) , where q0 is a fresh predicate of arity "0" not
occurring in P U {Q}. The rewrite tree RTeQ of P and Q is defined as follows:

1. Root (RTeo) = q° o
2. Children of a node t ~ RTpQ are {s I t ~RQ u Rp S}.

The rewrite tree RTpQ essentially contains all of the (rewriting) derivations of
the rewrite system R 0 U Rp, starting from the initial term q0 °. The following
theorems establish the relationship between RTpQ and the SLD-derivations of
P u {Q}. Before giving the formal theorems, we illustrate the relationship between
RTpo and the SLD-derivations through an example.

Example 13. Consider the program given in Example 8 and query Q = ~ c (t ,
Y), where t is a ground term. Here we give two possible SLD-derivations and show
their correspondence with RTpQ:

~c(t,Y) ~-c(t

~a(t, Z) , r(t, Z, Y, ZI, Z2) ~-a(t

~r(t, f(t) , Y, ZI, Z2) ~r(t

~-b(t, Y) , c(f(t), ZI), ~-b(t

d(t, f(t), Z2) d(t

~-c(f(t) , ZI), d(t, f(t), Z2) ~-b(t

Y)

Z) , r(t, Z, Y, Zl, Z2)

f(t) , Y, ZI, Z2)

Y), c(f(t), ZI),

f(t), Z2)

Y) , c(f(t), ZI)

Figure 2 shows a (top) portion of the rewrite t r e e RTpQ. The dots " . - - " denote a
subtree. Observe that corresponding to every selected atom in the SLD-derivations
there is a term in RTpQ.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 21

qg

#(~'(t))

#(b'(t)) #(~(t,¢(t)))

I [
#(t) #(bl(t))

#(#(~(t . ~'(t)))) #(#(?(t , ~'(t))))

(# (c t (at (t,)))) # (# (r~ (t , f(l:))))#(#(dt (i;, ~t (t,))))#(#(r3 (t, f(t'))))

/1\, I
. # (# (c t (f(t)))) # (# (g (t , ~t (t))))#(#(d t 0;, f(~))))

/1\
FIGURE 2.

In the following, we show that corresponding to every resolution step in
SLD-derivations of P U {Q}, there is at least one rewrite step in RTpQ. For
establishing this property, we need the following technical lemma.

L e m m a 11. Let G 0, G 1 G n be an SLD-derivation o f a well-moded program P and
a well-moded query Q under a selection rule implied by the moding information o f P
and Q. Furthermore assume that H ~ B 1 B m is the input clause and 0~ is the
mgu used in deriving G~, + 1 f rom G,,, and BiO is the selected atom in G~, +,,2' where
0 is the composition o f mgus used in the derivation Gnl , . . . ,G, ,+n 2. Then,

pY(si~,. . . , si)o'On~ ~ *Repi(si,, sik)O, i f B i ~ p (s i ? . . . , sik , So,,. . . , Sok .) for each
o" ~ ®(p f f si, sik)).

PROOF. Induction on n 2.
Basis: n 2 = 1.
In this case, 0 = 0,, and B i is a minimal element in the producer -consumer
relation of the clause H ~ B1, . . . , Bm. By definition, domain(o ') • i nvar (H) = oh.
Since B i is minimal, Var (pY(s i l , , s i)) = invar(B i) c i n v a r (H) , and hence
pY(si,, sO~r=pY(s i , s i). Since BiO ~ is the selected atom in G, + ~, its input
terms si O,~ si O,, are ground. Hence ~p)(si , , . . . , si)crOn, ~pJ(s i , , . ~., sik)O. The
lemma holds.
Induction Hypothesis: Assume that the lemma holds for all n z < l.
Induction Step: n 2 = 1.
Let rYl(t~, t~r)~rO,~ be a maximal proper subterm (having a Skolem function at
the root) of pJ(sil , ~ . . , s i)~rOn . Let G, +n be the goal in which
r(t~, ti~, t o e . . . , tok ')0 is selected ~and 0' be the 'composit ion of mgus used in
the derivation G~¢.. "~QI+,," It is clear from Lemma 9 that r(- . .) is a producer of
a variable (say, X) in invar(p(...)) and r(.-.) should be selected before p(.-.) is
selected, i.e., n r < n 2. By induction hypothesis,

rJ l (t i l , tikr) O'On, = *RprJl(ti l , t ikr)O'

22 M. R. K. KRISHNA RAO ET AL.

By Lemma 10, rJl(t., ,t;) 0 ' ~ * to 0" - t . O, where 0" is the ground com-
J l I " " " ~kr l . p ~ j l Vj l

puted answer substitution of r(...)0 ' . Furthermore, it is easy to see that C[t o 0"]
*n XO" if C is the context of inverse function symbols around the sub~erm

r J l (÷ e j
. ~ . t i l , tik)trOnl in p (S i l , s i k) o ' O n •

It is eas~ 'r to see t h a t pJ(si~ Siklo'O n can be reduced t o pJ(Sil,...,Sik)O by
reducing each maximal proper subterm u)h(sl, s'i~ ~) (having a Skolem function

at the root) of p](si, s~)trO,~ to s' 0 and then reducing the contexts of inverse
O j2

functions. []
The above lemma establishes a correspondence between SLD-derivations and

the derivations in the rewrite tree. Figure 3 depicts such a correspondence.
In the following, we prove that corresponding to every selected atom in an

SLD-derivation, there is at least one term in RTpo. This helps us to show that
corresponding to every resolution step in the SLD-derivations of P u {Q}, there is
at least one rewrite step in RTpQ.

Theorem 3. If P is a well-moded program, Q is a well-moded query and S is a selection
rule implied by P U {Q}, then for each goal G i in any SLD-derivation G 1 G n of
P u {Q} (under selection rule S), the following holds: for each minimal (under the
evaluation order of G i) atom p(til, . . . , tik, to,, tok,) in G i and for each j such that
1 <j < k' 4:0 orj = k' = O, the term pJ(til tik) occurs as a subterm of a node
in the rewrite tree RTpQ of Q.

PROOF. Let query be a fresh predicate symbol of arity 0 and P ' be the well-moded
program P U {query ,-- Q}. It is easy to see that Go, G1 Gn is a SLD-derivation
of P ' U { ~ query} if G 1 G, is a SLD-derivation of P u {Q} and G O = ~ query.
Now we prove the theorem using induction on i.
Basis: i = 1. The goal G 1 is Q itself. From the validity of Lemma 8 over the rewrite

G n l : . . A , " " '

G n l + l : B l O n I , ' , B i O n l , " ' , B m O n l , " "

G n l + n 2 • , B i0 , "

SLD-derivation of P U {Q}

F I G U R E 3.

Terms co r re spond ing to A]

/ X

/ X
p 1 (8 , 1 , " ", slk)O p k ' (s i l , "" ",s ,~)O

/ R e w r i t e t r e e R T P o ~

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 23

rules in RQ, it follows that a term pJ(t~, t~,)cr occurs as a subterm of the
right-side of rewrite rule in R o and hence occurs as a subterm of a node in RTpQ.
Since p (. . .) is a minimal element in the well-moded query, it does not have any
variable in input terms, and hence pJ(t~,, ti~) =-pJ(t~, t~,)cr for every substi-
tution o-.
Induction hypothesis: Let us assume that the theorem holds for all i < d.
Induction step: Now we prove that the theorem holds for i = d.
Let (i) ~ q~(---) , . . . , q, ,(.- .) be the goal G~_ ~, (ii) q~(.--) be the selected atom,
(iii) H ~ B~ B m be the input clause, and (iv) 0~ be the mgu used in deriving G~
from G i_ 1. Then

Gi i s ~ q~(...)O i qt a(...)O~,BaO~ B mO~,qt+ ~(...)O~ q~,(...)O~.

Now we have two cases: (a) m 4: 0, that is, the input clause is not a unit clause, and
(b) m = 0, that is, the input clause is a unit clause.

Case (a). By the assumption on selection rules, minimal elements, m i n (G i) =
{qj("-)0i I q j (' - -) ~ min(Gi_ 1) and j 4: l} u min(BlO i BmOi}. For those minimal
elements that are already in Gi_ 1, the theorem holds by the induction hypothesis.
For minimal elements in B~O i B m 0~, the theorem holds because of I~rnma 8
(argument similar to that in the base case).

Case (b). The set of minimal elements, min(Gi) , contains {qj (. . .)O i l q j (. . .) E
min(G~_ ~) and j 4: l} and atoms ql'("'")Oi, l '4 : l, such that qt'("'") is only greater
than ql("") in the evaluation order of G, 1. For minimal elements that are already
in min(G~ ~), the theorem holds by the induction hypothesis.

Now assume that p(ti, t~k, lo, tok ,) is an element in min(G~) but not in
min(G~ ~). Since p (- - -) is an atom in the SLD-derivation, there must be an atom
A =p(s~,, si~,So,, So~.) in the body of c' such that p (. . .) - A O , where c' is
the input clause used in deriving the goal G~,+I from G~, for some i' < i and 0 is
the composition of mgus used in G~,, Gi. Let r!u~,, ui,,,Uo,, u~m) be the
selected atom in G~,. By the induction hypothesis, rJ(u~, u~m), 1 < j <_ m' , occurs
as a subterm of a node in RZt, Q. Now, by Lemma 8 and the construction of RTpQ,

pJ(s~,, sik)~rO~, occurs as a subterm of a node in RTpQ for each ~r~
®(pJ(si, , si~)) and 1 < j _< k ' , where 0 i, is the mgu used in deriving G~,+ 1 from
Gi,. It follows from Lemma 11 that pJ(s~,, s~k)oO i, reduces to pJ(t~,, t~) by
R e, that is, pJ(t,~,. . . , ti~) is a subterm of a node in RTt, Q. []

The following theorem establishes that corresponding to every resolution step in
SLD-derivations of P U {Q}, there are some rewriting steps in RTt, Q.

Theorem 4. l f P is a well-moded program, Q is a well-moded query and S is a selection
rule implied by P U {Q}, then corresponding to every resolution step in every
SLD-derivation o f P t3 {Q} (under selection rule S), there are reduction steps in the
rewrite-tree RTeQ o f Q.

PROOF. Let us consider a resolution step in which p(t i , , . . . , tik, to, to~), I 4:0 is
resolved using an input clause c (case l = 0 can be handled similarly). By Theorem
3, corresponding to this atom there are terms pJ(t~,, tik), 1 < j <_ l, occurring as
subterms of nodes in the rewrite tree of Q. By Theorem 2, input terms t~,, t~k of
the selected atom p(- . .) are ground.

24 M . R . K . KRISHNA RAO ET AL.

Let 0 be the mgu and p(sil sik, Sol Sol) be the head of the input clause
used in the resolution step. Corresponding to this clause, we have rewrite rules
pi (si~ , si~) ~ r ~. By definition of the SLD-resolution, P(Si, sik, S o~ , S o)O -
p (ti~ t~k, t o~ t o,)O. Therefore,

pY(si~ Si ,)O----pY(t i~, . . . , t ik)O--pJ(t i , , . . . , t ik) , 1 <_j <_l

(since til tik are ground). Hence terms pJ(tq tiQ, 1 < j < l, in RTpQ match
with the left-hand sides of rewrite rules derived from clause c and can be reduced.

[]

The following theorem establishes the relationship between the termination of a
given well-moded logic program and that of the derived term-rewriting system.
Informally, the theorem says that a well-moded logic program terminates for all
well-moded queries under any selection rule implied by the moding information, if
the derived term-rewriting system terminates.

Theorem 5. I f P is a well-moded program, Q is a well-moded query, S is a selection
rule implied by P u {Q} and R e is the term rewriting system derived from P, then all
the SLD-derivations (under S) o f P u {Q} are o f finite length i f R e is a terminating
system.

PROOF. Follows from Theorem 4 and K6nig's lemma. []

Before illustrating the application of this theorem in proving termination of
logic programs, we briefly review important termination techniques of rewrite
systems.

5.3. Terminat ion o f Term-Rewri t ing Sys tems

Although termination of term-rewriting systems in general is undecidable, it has
been proved that one can simulate a Turing machine by using a single rewrite rule
[11]; several techniques and tools have been proposed in the literature for proving
termination of term-rewriting systems. One standard technique is to look for a
well-founded ordering >- over 3- satisfying a condition: if s ~ *t then s >- t. If the
well-founded ordering >- has the properties of monotonicity (t >- u implies C[t] >-
C[u]) and stability (t >- u implies to->- uo-), it is enough to check that l >- r for each
rewrite rule l ~ r in the system. Dershowitz [18] has discussed several such
well-founded orderings and techniques for proving termination of term-rewriting
systems. Here we explain two termination techniques, namely, recursive path
ordering with status and interpretation-based techniques.

Definition 15. A quasi-ordered set (S:, ~) consists of a set S : and a transitive-
reflexive binary relation ~ defined over S:. We define the associated equiva-
lence relation = as s = t if and only if s ~ t and t ~ s, and the associated strict
partial ordering >- as s >- t if and only if s ~ t but not t ~ s.

We allow an operator to have one of the following three statuses: multiset,
lexicographic left-to-right (LR), and lexicographic right-to-left (RL). Multiset status
is taken as default status of an operator if its status is not specified.

M E T H O D O L O G Y FOR T E R M I N A T I O N OF LOGIC P R O G R A M S 25

Definition 16 (Recursive Path Ordering with Status [17, 22]). Let _~ be a quasi-
ordering (called precedence) over a finite set J of function symbols The
recursive path ordering >-mo~ on the set ~ (~ , S) of terms induced by the
precedence _~ is defined recursively as follows:

s =f(s~ s,,) ~_rpo~ g (6 6) = t if and only if one of the following is true:

(i) s~_W~po~ t for some i = l , . . . , m or
(ii) f > g and S>~pos tj for all j = 1 n or

(iii) f = g, f , g have multiset status and {s 1 Sin} hrpo~ {6 6}, or
(iv) f = g, s >~po~ tj for all j = 1 n and

(a) f and g have LR status and (s 1 , s m) ~_ rpos(t 1 i n) or
(b) f and g have RL status and (Sin, Sm 1 ' ' ' ' ' S1)-- >" *pos(tn, t. i,--- ,6) ,

is the lexico- where >-rpos is the multiset ordering induced by > rpos, and >-* ~ ~ rpos
graphic ordering induced by ~ rpos"

Theorem 6. For any well-founded quasi-ordering ~_ and status on a given finite set of
function symbols, the recursive path ordering with status > rpo~ is a monotonic and
stable well-founded ordering [17, 22].

The above theorem makes the recursive path ordering with status a powerful
tool in proving termination of rewrite systems. This ordering has been imple-
mented in theorem provers like RRL, REVE, etc.

Example 14. This example illustrates the use of recursive path ordering with status
in proving termination of term-rewriting systems. To prove termination of the
following term-rewriting system (derived from the multiplication program), take the
precedence as m u l t ~ > a d d ~ > s:

addi(O, Y) - - . y
a d d ~ (s (X) , Y) ~ s (a d d (X, Y))
m u l t i (O , Y) - ~ 0
m u l t : (s (X) , Y) - ~ a d d 1 (m u l t l (X, Y) , Y)

Proving that l >wos r for rules 1 and 3 is easy. Consider rule 2. Since a d d 1 >- s, to
prove that a d d z (s (x) , Y) >rpos s (a d d ~ (X , Y)) , it is enough to prove that
a d d 1 (s (X) , Y) > ' rpos a d d ± (X , Y) " And to prove a d d ~ (s (x) , Y)
>rposaddl(X, Y), we need to prove that { s (X) , Y} >rpo~ {X, Y}, which is
indeed the case, because s (x) >wosx.

Now consider rule 4. Since m u l t z > add : , to prove that m u l t ~ (s (x) , Y) >rpo~
a d d ~ (m u l t 1 (X, Y) , Y), it is enough to prove that m u l t 1 (s (x) , Y)
> rposmul t l (X , Y) and m u l t ~ (s (x) , Y) >'rpos Y. TO prove m u l t ~ (s (x) , Y)
>rpos m u l t i (X , Y), we need to prove that { s (x) , Y} >-rpo~{X, Y}, which is
indeed the case. Furthermore, m u l t ~ (s (X) , Y) >rposY by the subterm property
of recursive path ordering. This completes the termination proof.

Example 15. This example illustrates the use of status information. To prove
termination of the term-rewriting system with just one rule (X + Y) + Z--~ X +
(Y + Z), we use recursive path ordering with status >rpos as follows.

Since the two terms have the same function symbol at the top level, to prove
that (X + Y) + Z > r p o s X + (Y + Z) , it is enough to prove (i) (X + Y , Z) > - r p o s

26 M . R . K . KRISHNA RAO ET AL.

*(X, Y+ Z), (ii) (X + Y) + Z >rpos X, and (iii) (X + Y) + Z >"rpos (Y+ Z). By the
subterm property, X + Y>rpos X, and hence (i) follows. Again by the subterm
property (ii) follows.

To prove (iii), it suffices to prove (a) (X + Y, Z)>~pos *(Y, Z), (b) (X + Y) +
Z >'wos Y, and (c) (X + Y) + Z >'rpos Z. The conditions (b) and (c) follow directly
from the subterm property, and (a) follows from the fact that X + Y>rpos Y"

Interpretation-based termination proofs try to map the set of terms onto a
well-founded, partially ordered set and prove that left-hand sides are mapped onto
bigger elements than the corresponding right-hand sides. This is formally described
below.

Definition 17. A terminating function ~- from a set of terms ~9'(~,~) to a well-
founded, partially ordered set (~'f, >-) is composed of a set of functions {f~:
7 f n ~ T f l f is a function symbol of arity n in ~9"-} such that z (f (t I 6)) =
f~(r(t 1) z(6)) for every term f(t 1 t n) ~3-(~, ,~) and w >- w' implies
f~(.-- z (w) . . .) >f~(.-- ~-(w')...) for all w, w' e T f a n d f e ~ .

Basically, terminating function consists of a set of monotonic mappings. Polyno-
mial and exponential interpretations are special instances of terminating functions.
A terminating function ~- from terms to natural numbers, where each f~ is a
polynomial, is called a polynomial interpretation. Polynomial interpretations are
implemented in REVE [27]. A terminating function ~- where each f~ is a polyno-
mial or an exponential is called an exponential interpretation. Exponential inter-
pretations are implemented in the ORME [28].

Example 16. To prove termination of the following system over a set of terms
constructed from constants 0 and 1 and the function symbols + and x ,

x × (r + z) --, (x × r) + (x × z)

(Y + Z) × X ~ (Y × X) + (Z × X)

(x+Y)+Z- ,X+(Y+Z) ,
we can use the following polynomial interpretation:

z(O) = 2 ~'(s Xt) = T (s) . r (t)

z(1) = 2 " r (s + t) = 2 z (s) + ' c (t) + l .

5.4. Termination Proofs for Logic Programs

Now we illustrate the application of our main theorem in proving termination of
logic programs through examples.

Example 17. In Example 14, using recursive path ordering, we proved termination
of the rewrite system derived from the multiplication program. From Theorem 5, it
follows that the mu i t i p 1 i c a t i on program terminates for all well-moded queries.

Example 18. Termination of the quick-sort program for well-moded queries can be
established by using the above theorem by proving termination of the derived

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 27

term-rewriting system given in Example 9. Termination of this term-rewriting
system can be proved by using the following elementary interpretation in the
ORME system [28]:

[[a l l] ((x , y) , (u , v)) = (x + u,Zy + el

[[s ' l] ((x , y) , (u , v)) = (x + u , 2 y + v) [[q X l] ((x , y)) = (2 ~ , y)

[[a2]] ((x , y) , (u , v)) = (x + u , 2 y + L ~) [[hi1]] = (0,0)

[[c]] ((x , y) , (u , v)) = (x + u + 2, y + c).

Here, f o r f ~ {a 1, s ~, s 2, q , c, n i l} , the function [[f]] denotes the function
f~ given by the elementary interpretation T.

5.5. Converse o f the Main Theon'm

That the converse of Theorem 5 does not hold is demonstrated by the following
example.

Example 19. Let us consider the following well-moded logic program:

m o d i n g : p (i n , o u t) a n d t c (i n , o u t)

p (a , b) ~-

p(b , c) * -
t c (X , Y)* -p (X , Z), t c (Z , Y)

It is easy to see that this program terminates for all weil-moded queries. But the
term-rewriting system:

p l (a) -*b
p~(b) -*c
tc i(X) -~ tc 1(p1(x))

derived from the above program has an infinite derivation:

tc ~ (a) ~ tc 1(p1(a)) ~ tc !(p1(p:(a)))

= ... ~ tcl(pl(-.. p: (a)-..)~ ...

In other words, termination of the derived term-rewriting system is not a
necessary condition for termination of the logic program. Since our aim is to prove
termination of logic programs using termination techniques of term rewriting
systems, the sufficient conditions for termination of logic programs are more
important than the necessary conditions, and the above theorem provides a
sufficient condition for termination of logic programs.

It is an interesting to find classes of programs for which the converse of
Theorem 5 holds as well. In the following, we identify two such classes of programs.

Definition 18. A logic program P is a non-cariable-includingprogram (nui program)
if all of the clauses satisfy the property: all of the variables in the body occur in the
head as well.

28 M . R . K . K R I S H N A R A O E T AL.

The following theorem establishes the converse of Theorem 5 for the class of
nvi programs.

Theorem 7. Let P, S, Q, and R e be as in Theorem 5 such that (i) P is an
nvi-program, (ii) each variable in P has precisely one producer and (iii) the output
terms in Q and the bodies of clauses in P are distinct variables. Then, all the
SLD-derivations (under S) of P u {Q} are of finite length if and only if R e is
terminating.

PROOF. The if-part follows from Theorem 5.
Only-if part: A nice property of SLD-derivations of P u {Q} is that the output
terms of each goal are distinct variables. Therefore, a selected atom unifies with
the head of any clause whose input terms can match with the input terms of the
selected atom. A nice property of R e is that the Skolem functions are not nested
on the right-hand sides of the rewrite rules. Therefore, nesting of Skolem functions
is forbidden in all of the terms of any rewrite derivation of R e U~Q starting from
Q0, and it is easy to exhibit an infinite SLD-derivation of P u {Q} corresponding to
an infinite rewrite derivation of R e U~'Q starting from Q0- []

Another class of programs for which the converse of Theorem 5 holds is the
following.

Definition 19. A logic program P is a binary program if no clause in it has more
than one atom in the body.

The following theorem establishes the converse of Theorem 5 for the class of
binary programs.

Theorem 8. Let P, S, Q and R e be as in Theorem 5 such that (i) P is a binary
program having just variables in the output positions in the body of each clause, (ii)
each variable in P has precisely one producer, and (iii) Q has only one atom and
has distinct variables in the output positions. Then, all of the SLD-derivations
(under S) of P u {Q} are of finite length if and only if R e is terminating.

PROOV. Same as that of the above theorem. []
In fact, there is no sideways information passing in the execution of the above

class of programs, and every selection rule is implied by the moding information.
Therefore, termination of R e implies termination of P for Q under all selection
rules (i.e., strong termination).

6. A TOOL FOR PROVING TERMINATION

In the previous sections, we have reduced the termination problem of logic
programs to that of term-rewriting systems. The transformation procedure has
been implemented as a front end to Rewrite Rule Laboratory (RRL); RRL is a
theorem prover based on techniques developed by Kaput, Zhang, and Sivakumar
[23] to obtain a semi-automatic interactive system for proving termination of
term-rewriting systems. RRL supports techniques such as recursive path ordering
for proving termination of term-rewriting systems in an interactive fashion. The
block diagram in Figure 4 gives the module structure of the system.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 29

~ VELL-MODEDNESS~ _[TRANSFORMATION [

MODULE /] -I MODULE]

51 / I,
lv~ / r T I I Eliminate-Local-Var I .I

L o I , I

n G / M / MODULE] I ~ " L " ' ~ , / ,
gP / s / / II Inverse I Built i.,s
~i | s] /IF""cti°nsll -]
f r / e I
.Oa s
:..t~.1 ~ : Precedence~status suggestion~
: U S E R i~.
: .. User's Choice

FIGURE 4. Block diagram of the modules in the system.

RRL

6.1. Well-Modedness Module

This module checks well-modedness of the given program, applying the following
steps on each clause:

1.1 A producer -consumer graph with atoms in the body as nodes is constructed.
1.2 The producer -consumer graph is checked for acyclicity (using depth-first-

search).
1.3 If it is not acyclic, a warning is given saying that a particular clause is not

well-moded.
2.1 The set of producers of each variable in the clause is computed.
2.2 It is checked whether every variable has at least one producer.
2.3 If any variable has no producer, a warning is given saying that a particular

variable has no producer.

6.2. Occur-Check Module

This module takes well-moded Prolog programs and checks whether they can be
executed soundly on Prolog interpreters without an occur-check test. This module
essentially checks whether any variable occurs more than once in output terms of
head of any clause. If no variable occurs more than once in output terms of heads,
the program is declared to be not subjected to occur-check (NSTO). If there is a
variable occurring more than once in output terms of some head, this module
notifies the user of the offending variable and the clause.

6.3. Transformation Module

This module implements the transformation procedure described in the previous
section. For each clause, it computes the sets Unsry and Consvar (as defined in the
formal transformation given earlier) and the set of producers of each local
variable. 3 The major submodule "eliminate-local-variable" implements the proce-

3 Actually, a "well-modedness" module checks every clause for well-modedness and passes the set of
producers of each variable to the "transformation" module. So, there is no repetition of work.

30 M. R. K. KRISHNA RAO ET AL.

dure with the same name described earlier. In addition, there are two more
modules, one for generating inverse functions, and the other for built-ins.

6.4. Built-In Predicates

Prolog has built-in predicates = , < , < = , > , > = , \ = with moding (in , in),
and i s with moding (o u t , in). According to the definition of Unsry in the
transformation algorithm, for each built-in atom b(tl, t2), b • {=, < , < = , > ,
> = , \ =} in a clause, b°(tl, t2) is included in Unsry, and rewrite rules of the form
lhs ~ #(b°(t l , t2)) will be present in Rp. Since we know that the above built-in
atoms always terminate, our implementation does not make rules of the above
form (this is achieved by removing the above terms from Unsry before making the
rules). An is -a tom is a producer of the variables occurring in its first argument,
and the Skolem function is j occurs on the right-hand side of the derived rewrite
rules. Because of the semantics of i s, the right-hand sides of the rules are reduced
by the rule is l(X) ~ X before outputting the rules i n Rp.

Rao, et al. [25] explored the application of our system as a verification tool in
the development of provably correct compilers. In particular, they have established
the termination of a prototype compiler for Pro-CoS level 0 language PL 0 using
our tool. The compiler has been developed by using Hoare's refinement algebra
approach. The fact that termination of this compiler cannot be shown by using
other approaches to termination of logic programs (e.g., approaches of Ullman and
van Gelder [35], Plfimer [32], De Schreye and Verschaetse [12]) demonstrates the
practicality of the transformational approach.

Consider, for instance, the following clause (from the compiler) with moding:
c(in, in, out, out, in, in); ce (in, in, out, out, in, in);
mtrans (in, in, out, out); psi (in, in, out) and flatten (in,
out). It is not very difficult to check that this clause does not have an admissible
solution graph. Therefore, the approaches of Ullman and van Gelder [35] and
Pliimer [32] cannot be used in proving termination of the ProCoS compiler.

c(OutputIE, S, F, M, Psi, Omega) ~-
ce(E, S, LI, MI, Psi, Omega),
psi (Psi, outputbuf, Psioutputbuf),
psi(Psi, Output, PsiOutput),
mtrans(stl(Psioutputbuf) , LI, L2, M2),
mtrans(idlp(Psioutputbuf) , L2, L3, M3),
mtrans(idc(PsiOutput), L3, L4, M4),
mtrans(idc(4) , L4, L5, MS),
mtrans(out, L5, F, M6),
flatten([Ml, M2, M3, M4, M5, M6], M), !.

The following clause (and two more similar clauses) is problematic 4 for the tool

4 In this case, the problem appears to be due to the fact that in the method it is not possible to
compare the two function symbols () and eql. However, in this case, it is possible to handle the clause
using "unfolding" techniques.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 31

built by De Schreye and Verschaetse [12]:

c e (E l (>E2, S , F , M, P s i , c o n s (L o c , O m e g a))
ce(El eql E2, S, LI, MI, Psi, cons(Loc,
mtrans(eqc(0), LI, F, M2),
append(Ml, M2, M), !.

Omega)),

7. RELATED WORKS

In this section, we briefly survey the related works on termination analysis of logic
programs. For more details on these works, the reader is referred to a recent
survey on termination of logic programs by De Schreye and Decorte [14].

The results on termination of logic programs can be broadly classified into two
categories:

1. Characterizations of terminating programs. Papers in this category usually
present a set of necessary and sufficient conditions for the termination of logic
programs. Since logic programs have the expressive power of Turing machine,
the termination is undecidable and hence these necessary and sufficient
conditions are undecidable, too. Therefore, the approaches presented in
these works may not be easily mechanizable.

2. Automatic/semi-automatic procedures for proving termination of logic pro-
grams. Papers in this category usually present a set of sufficient conditions
(which can be easily tested) for the termination of logic programs. Again,
because of the undecidability of termination of logic programs, none of these
sufficient conditions can certify each and every terminating program--for
every such sufficient condition there exists a terminating program that does
not satisfy it.

In the following, we briefly discuss the works in both of these categories.

7.1. Characterizations of Terminating Programs

Vasak and Potter [36] were the first ones (to our knowledge) to attempt to give a
mathematical treatment to the termination problem of logic programs. They
introduced various notions of termination, such as strong termination, weak
termination, universal termination, and existential termination. However, there is
no attempt toward automatic verification of termination.

Baudinet [6] took a semantic approach to termination of logic programs. She
associated with each program a system of equations whose least fixpoint is the
meaning of the program. By analyzing this fixpoint, various termination properties
of the program can be proved. Structural induction is used in her termination
proofs. The approach is very general and can be used for studying termination of
normal logic programs (i.e., with negation), existential termination (which cannot
be studied by most of the other approaches), and the effect of cuts (!) in the
programs. Baudinet [6] suggested the use of theorem provers for proving all of
these properties.

32 M . R . K . K R I S H N A RAO E T AL.

Francez et al. [20] took an assertion-based approach to termination of logic
programs. Proofs are very similar to the termination proofs of imperative logic
programs. They give characterizations of both universal and existential termination.
There is, however, not much effort toward automatic verification of termination.

Using level mappings, Bezem [7] introduced the class of recurrent programs,
which strongly terminate for a class of queries. He proved that every total recursive
function can be computed by some recurrent program. Append and Merge are
examples of recurrent programs, whereas Quick- sort, Merge- sort, etc. do not
belong to the class of recurrent programs. Using models in addition to level
mappings, Apt and Pedreschi [4] generalized the notion of recurrent programs to
acceptable programs that terminate for a class of queries under Prolog's left-to-right
selection rule. They called this notion of termination left-termination. Apt and
Pedreschi [4] proved that a program terminates for all ground queries under
Prolog's selection rule if and only if it is an acceptable program. The main steps in
proving a program to be recurrent/acceptable involve finding a suitable level
mapping and a model in the case of acceptability.

Wang and Shyamasundar [38, 39] and Bossi et al. [8] use graph abstraction to
localize the task of finding suitable mappings. These two approaches are very
similar. With a given logic program P and a goal G, [38, 39] associated a U-graph
and [8] associated a specific graph. The nodes in these graphs are atoms in the
program P and goal G, and there are two kinds of edges, namely signed edges and
unification edges. A signed edge goes from the head of a clause to an atom in the
body of the same clause, whereas unification edges go from an atom in the body of
a clause/query to a head of a (not necessarily the same) clause, with which it
unifies. The problem of finding a suitable mapping is locally solved by analyzing
each strongly connected component (SCC) of the graph. The main steps in proving
termination of logic programs using these approaches are construction of the
graph, finding a suitable mapping, associating suitable pre/post assertions, and
proving their correctness and a few simple conditions. The approaches are quite
interesting. However, their mechanizability is not very clear.

Shyamasundar et al. [34] characterized strong termination of logic programs by
using unification closures. The concept of unification closure is closely related to
the concepts of forward closure and overlap closure used in term-rewriting litera-
ture to characterize the termination of linear term-rewriting systems. With a given
logic program P, they associate a term-rewriting system RR e and define unifica-
tion closure of P for a given query Q (denoted UCe~) in terms of RR e and Q.
Unification closure is a set of pairs of atoms of the form (A,B) such that
corresponding to every atom in SLD-derivations of P starting with Q, there is a
pair in the unification closure UCe~ and vice versa. This relationship between
SLD-derivations and the unification closures led to the following characterization
of strong termination: a logic program P is strongly terminating for a query Q if
and only if UC e is finite and does not contain any pair of the form (al, a 2) such

Q . .

that a 1 = a 2 Or for some substltut~on o-.

7.2. Automatic / Semi-Automatic Procedures

We classify approaches proposed in this direction into two categories: (a) ap-
proaches based on linear inequalities and (b) transformational approaches.

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 33

Ullman and van Gelder's work [35] is the first to propose an automatic
procedure for proving termination of logic programs. Their approach is to generate
a set of linear predicate inequalities (of the form Pi + c >_pj) from a given
well-moded program and a goal so that the satisfiability of these inequalities
implies the termination of that program for that goal. The intended meaning of the
inequality Pi + c >pj is that the size of the jth argument of predicate p is greater
than the size of the ith argument of p by at most c units. The size of a term is
defined as the number of function symbols in the term, with an assumption that the
only function symbol available is '.', the cons operator. Ullman and van Gelder [35]
presented an algorithm to generate a set of such inequalities using data flow
analysis through variable/argument graphs. For this algorithm to work, all of the
clauses in the program must satisfy the "uniqueness" property. A rule violates this
property if a variable occurs more than once in the input positions of the literals in
the body (see [35] for details).

Pliimer [32] improved this method by generalizing the form of inequalities to
2pi + c > Zpj and allowing function symbols other than the cons '.' operator. This
resulted in a more powerful method. The method also uses data-flow analysis for
deriving the inequalities, some (not all) of the programs violating the "uniqueness"
property can be handled, and it uses A N D / O R data flow graphs to generate the
linear predicate inequalities. The algorithm for generating linear predicate inequal-
ities from a given logic program with the above programs requires that the
associated A N D / O R data-flow graph satisfies the condition that each OR node
has exactly one incoming edge. A graph satisfying this condition is called an
admissible solution graph. This condition is in general violated by (not all) programs
having a variable occurring in input positions of more than one atom in the body of
a clause. (See [32] for an example program with a variable occurring in input
positions of more than one atom in the body of a clause and having an admissible
solution graph.) Apparently, this requirement is placed to get an efficient algo-
rithm. This approach cannot handle programs with mutual recursion. Termination
of Append, Merge, Quick-sort, and Permutation under Prolog's selection
rule can be proved by using this approach, whereas termination proofs for multipli-
cation and ProCoS compiler are beyond its scope, as some clauses in these
programs do not have admissible solution graphs.

In contrast to our approach, Pliimer's approach is automatic. Our approach
often needs precedence information or polynomial/elementary interpretations
from the user, whereas Pliimer's algorithm derives the linear predicates from the
program and moding information. The time complexity of Pliimer's algorithm as
well as our transformation procedure are linear in the number of atoms in the
program, and both process the given program clause by clause. The transformation
procedure has to analyze the literal dependency graph of each clause, which is
simpler than the A N D / O R data flow graph (of the clause) used by Pli]mer.
Therefore, the running time of the transformation might be shorter than that of
the algorithm for deriving linear predicate inequalities.

De Schreye and Verschaetse [12] proposed an amalgamated approach for
termination analysis of logic programs using level mappings, linear inequalities,
and abstract interpretation. This work is motivated by the difficulties involved in
deriving automatic proofs of recurrences [7] and acceptability [4] of logic programs.
It is pointed out by the authors that the difficulty is mainly due to the requirement
that the level of the head is greater than the levels of all of the atoms in the body

34 M. R. K. KRISHNA RAO ET AL.

(in the context of acceptability, this is needed when all of the predecessors are
satisfiable in the model), despite the fact that nontermination is possible only
through reeursion in logic programming. By relativizing the notions of recurrent
and acceptable programs with respect to the set of queries, they refine these
notions in such a way that the level of the head has to be greater than the levels of
(only) those atoms in the body that are in (mutual) recursion with the head. Given
a logic program, they try to derive a system of linear inequalities using abstract
interpretation, so that the unsatisfiability of these inequalities implies acceptability
of that program. Termination of Append, Merge, Quick-sort, Multipli-

cation, and Permutation under Prolog's selection rule can be proved with this
approach. However, termination of ProCoS compiler cannot be proved with this
approach--the algorithm needs some of the clauses in the compiler to be unfolded
to derive a suitable set of linear inequalities.

7.3. Related Work in the Transformational Approach
Our main result in the previous sections deals with termination of logic programs
under a class of selection rules rather than a particular selection rule. In fact, the
notion of implied selection rules suggests a class of suitable selection rules for the
execution of a given well-moded program; furthermore, the termination of the
derived rewrite system implies the termination of the logic program under all of
these selection rules. In this sense, the result is stronger than the other results on
termination of a logic program, which deal with termination under a particular
selection rule (typically, Prolog's leftmost selection rule). However, it is also
desirable to study termination under a particular selection rule, as the program
need not be terminating under all of the implied selection rules, but can be
terminating under a particular selection rule (typically, one of the implied selection
rules). Our transformation returns a nonterminating rewriting system in that case,
and we cannot establish termination under the particular selection rule. In the
following, we discuss the results obtained using Prolog's leftmost selection rule.

As illustrated below, Krishna Rao et al. [24] proposed a transformation of a
given logic program, so that only the Prolog's selection rule is implied by the
moding information. Then one can use the results presented in the previous
sections for proving termination of the transformed program, which in turn implies
termination of the original program under Prolog's selection rule.

Example 20. Consider the following reachability program. Given a graph G(I/, Ed)
with set of vertices V and set of edges Ed represented as list of pairs f(X, Y), the
problem is to find all of the vertices reachable from a given vertex.

moding: r (in, out

r(X, Y, Ed, V) ~-e
r(X, Y, Ed, V) *-e
e(X, [f(X, Y)IT],
e(X, [f(Xl, Y) IT] ,
nm(X, ~) *-
nm (X,

in, in), e (in, in, out) and nm (in, in)

X, Ed, Y)
X, Ed, Z), nm(Z, V), r(Z, Y, Ed, [ZIV])
Y)~
Z) ~X~Xl, e(X, T, Z)

[H I T]) ~ - - X ~ H , n m (X , T)

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 35

This program terminates for the query ~- r(a, Y, [f (a , b), f (b , c), f (c , a), f (c , d)],
[]) under Prolog's selection rule, even though it has an infinite evaluation under
the rightmost a tom selection rule (which is also an implied selection rule). In [24],
the following program is derived from the above program. The new program
essentially encodes Prolog's selection rule into the original program.

moding: r (in, in, out, in, in), e (in, in, in, out)

and nmn~ w (in, in, in, out)

r~,e,,,(true, X, Y, Ed, V)+-e~ew(true, X, Ed, Y)

rnew(true, X, Y, Ed, V)+-enew(true, X, Ed, Z), n~,ew(true, Z,

V, T),r~w(T, Z, Y, Ed, [ZIV])

e (true, X, [f(X, Y)IT], Y)+-

enew(true, X, [f(Xl, Y)IT], Z) +-noteq(X, XI, S), e (S , X,

T, Z)

nn~ew(true, X, ~, true) +-

nn~,ew(true, X, [HIT], SI)+-noteq(X, H, S), nmnew(8, X, T, SI)

The transformation derives the following rewrite system:

r I (true, X, Ed V)-~e ~ (true, X, Ed)
n <w ' n~ w

r I (true, X, Ed V)-~r~<~(nm)~w(true e)~,w(true, X, Ed) Vl
u(w ' :. ' ' '

e I (true, X, Ed) Ed [e l (true, X Ed) IV])
new , r new '

e ~ (true, X, [f(X, Y)IT]) -*Y
new

e: (true, X, [f(Xl, Y) IT]) -~ei~ (noteq(X, XI), X, T)

nm ~ (true, X, ~)-~true
new

nm I (true, X, [HIT])-*nm i (noteq(X, H) X T)
new new ' '

It is easy to observe that this rewrite system terminates because the first two
rules can be applied only when the first argument of r ~ew is true, which is passed by
nm~, and the value of nm~now is true only when × is not a member of the visited
vertices. So once all of the vertices in a cycle are visited, nm~.ew will not pass t r u e
to the r ~ preventing it from entering into a cycle.

new ~

Oanzinger and Waldmann [21] proposed to transform a given logic program into
a conditional term-rewriting system such that termination of the conditional
term-rewriting system implies termination of the logic program under Proiog's
selection rule. The most appealing thing about this transformation is that there is
no need to introduce inverse functions. Their transformation can be explained as
follows. They introduce two function symbols pin and pO,, of arities n and m,
respectively, for each predicate symbol p with n input positions and m output
positions. If p (t 4, t~ to,, t o.,) is an atom, pin[t] denotes pin(%,, %°) and
p°U'[t] denotes p°" ' (t t o), where t is the tuple of terms %1' tz , to, t o .
From each clause A~i(to)<--A~(tl) , A k (t k) , they derive a conditional rewrit~e
rule,

i n o u t " i n o u t
. A o [t o] ~ A o [t o] = A ' , n [t l l - - ~ A ~ " t [t l] --*A k [

36 M.R.K. KRISHNA RAO ET AL.

Example 21. For the transitive-closure program given in Example 19, the following
terminating conditional term rewriting system is derived:

pin(a) _+pOUt (b)
pin (b) -+ pOUt (c)
tc in (X) --) tc °ut (Y) ~pin (X) --) pOUt (y)

tcin(x) -+ tc°Ut (y) ¢=pin (x) --)p°ut(z), tcin(z) --)tc°Ut (m) .

As demonstrated by the above example, the class of programs for which the
transformation of [21] derives a terminating CTRS properly contains the class of
programs for which our transformation derives a terminating TRS.

The fact that the termination of general term-rewriting systems is well studied
and easier to understand than the termination of conditional term-rewriting
systems motivated Aguzzi and Modigliani [1] and Chtourou and Rusinowitch [9] to
derive a term-rewriting system from a given logic program (rather than a condi-
tional term-rewriting system), such that its termination implies the termination of
the logic program under Prolog's selection rule. Aguzzi and Modigliani [1] and
Chtourou and Rusinowitch [9] independently came up with two similar transforma-
tions. Basically, [1, 9] derive a term-rewriting system from the conditional term-
rewriting system derived by Ganzinger and Waldmann. From a non-unit clause
A 0(t0) (--- A l(tl) A k (tk), they derive the following set of rewrite rules:

{A~n[t0] - -) f l (~ o , A i l n [t l]) }
k-1

in
~J {fj (V/o, ~ , V/}j_I,A;"'[tj])---)fj+I(~'o,T1,...,~,A]+~[tj+I])}

j= l

U {fk(~0'~V'l ~U'k l ' A ° k U t [t k]) " -) A ; U ' [l o] } '

where ~ is the sequence (without repetitions) of variables produced by the atom
Ai(t i) and fl fk are distinct function symbols not occurring in the program and
the rewrite rules derived from other clauses. From a unit clause Ao(t o) +--, they
derive a rewrite rule Aion[to] ---~A°oUt[to].

Example 22. The following term-rewriting system is derived by [1, 9] from the
transitive-closure program given in Example 19:

pin(a) ___+pOUt (b)

pin(b) __+pOUt (c)

tc in(x) -+ f1(X, pin(x))
f1(x' poUt(y)) _+tcOUt(y)
tc in(X) -+g1(X, pin(x))
gl (mr pOUt (Z)) --) g2 (X, Z, tc in (Z))
g2(X' Z, tc °ut(Y)) -+ tc °mr(Y).

As the basic idea of [1, 9] is to derive a TRS from the CTRS derived by [21], the
class of programs for which the above transformation derives terminating TRSs is
same as that of [21].

Aguzzi and Modigliani [1] identified a class of programs, called input-driven
programs, for which the derived TRS terminates if and only if the logic program
terminates for well-moded queries. Arts and Zantema [5] worked on this issue

METHODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 37

further and investigated the classes of programs for which the derived TRS (their
transformation is essentially same as that of [1, 9]) can be proved to be terminating
by using recursive path ordering and semantic labeling. Using the results of
Zantema [40], they show that their transformation derives from any structural
recursive program (cf. [32]) a terminating TRS whose termination can be proved by
using semantic labeling.

Using the results of [31] on unification-freeness, Marchiori [30] presented
transformations for two subclasses (called simply well-moded and flatly well-moded
programs) of the class of well-moded programs such that they derive a terminating
TRS from any terminating program in these classes. The added advantage of
uniflcation-freeness of these classes of programs helps in proving the termination
of logic programs, which cannot be proved by the other results in the field. The
following program with moding p (i n , o u t) is an example of this:

p(X, g(X)) ~--
p(X, f (Y)) e - p (X , g (y)) .

8. CONCLUSION

A transformational approach to the termination analysis of logic programs has
been presented by reducing the termination problem of logic programs to that of a
term-rewriting system. Unlike the methods of Ullman and van Gelder [35], Plfimer
[32], and De Schreye and Verschaetse [12], our method does not need any
preprocessing and can prove termination of programs that cannot be handled by
them. Mutual recursion does not present a problem for the proposed method. The
proposed transformation is purely syntactical and has been implemented as a front
end to RRL. Using this tool, we have successfully proved termination of a
prototype compiler for ProCoS language PL 0, which cannot be proved by the other
mechanizable approaches.

We study a stronger notion of termination, i.e., termination under a class of
selection rules, whereas almost all of the other approaches available in the
literature deal with termination with respect to a particular selection rule, typically
Prolog's leftmost atom selection rule. In fact, our notion of implied selection rules
characterizes the class of selection rules suitable for a given well-moded logic
program.

Although we have considered only well-moded queries in the previous sections,
our results hold for a larger class of queries. The well-modedness ensures that the
input terms of every selected atom are ground and the unification of input terms is
one-sided (i.e., matching). This is the main property that enables applicability of
termination techniques of rewriting in proving termination of logic programs.
However, unification of input terms is one-sided for many non-well-moded queries.
For example, this is true for queries with (not necessarily ground) lists as inputs in
the queries to programs such as append, permutation, reverse, etc. In fact,
our results extend to all unification-free programs and queries, where unification of
input terms is always a matching (see [3, 31, 26] for many classes of unification-
free programs). This extension of our main result is comparable to the results of
Pliimer [33].

38 M. R. K. KRISHNA RAO ET AL.

APPENDIX

The following lemma plays a crucial role in proving that the computations of
well-moded programs under implied selection rules are data-driven.

L e m m a 12. I f P is a well-moded program, G O is a well-moded query and S is a
selection rule implied by P tA {Go} and G o , G 1 Gn be a SLD-derivation o f
P td {Go} , then all the goals (queries) G i satisfy the following property: I f an atom A
in G i contains a variable X in its input terms then there exists a producer (say B) o f
X in G i such that B "<G, A , where "<G, is the evaluation order o f the goal G i.

PROOF. Induction on i.
Basis: i = 0. By the hypothesis of the lemma, G o is well-moded. By definition 4,
variable X has a producer (call it B). It remains to show that B "<G, A. By the
hypothesis of the lemma, the evaluation order of Go is an extension of the
producer-consumer relation of G 0. Hence B "<ai A.
Induction hypothesis: Assume that lemma holds for i = n.
Induction step: i = n + 1. Let Gn be ~ q l (' ") qm(' ") " Let q j (. . .) be the
selected atom, H ~ B 1 B t be the input clause and tr be the mgu in the nth
resolution step. Goal Gn+ 1 will be ~ q l (. - .) o - , . . . , q j 1(---)o-, Blo- ,Bltr ,
q j + l (' ") O " ,qm('")O r.

We make a few observations before continuing with the proof. The mgu o-
instantiates only those variables in Gn that occur in q j(...). The selection rule
always selects a minimal element, so qj (. . .) is minimal and hence its input terms
are ground by the induction hypothesis. Now we prove the lemma case by case.

Consider an atom qk("'")~r, k 4:j containing a variable X in input position.
There are two cases: (i) X is occurring in G~ and (ii) X does not occur in G,. In
case (i), by the induction hypothesis there is a producer (say, C) of X such that
C ~G, q k (' ") . There are two subcases: (a) C is q j (. . .) or (b) C is q k ' (' ") ,
k :g k ' 4:j. In subcase (a), since qj(...)tr = Htr , X occurs in Htr and therefore X
occurs in the well-moded clause H o - ~ Bltr , Bttr. By Definition 4, X has a
producer in the clause. Since input terms of H o - (- = qj(-. .)or) are ground, Htr is
not a producer of X. So some atom in the body (say B t, or) is a producer of X, i.e.,
X occurs in output positions of Br t r and by the above construction, Bt,~r-<G°÷~
q~(---)or. In subcase (b), qk'("'")or is a producer of X and the lemma holds. This
completes case (i).

Case (ii): X does not occur in G n. That is, or replaces a variable (say, Y) in qk("")
by a term containing X. By the above observation, variable Y occurs in output
terms of q j(---) (note that input terms are ground). Proof of the lemma in this case
is similar to that of subcase (a) of case (i).

Consider an atom B m or, 1 < m <_ l, containing a variable X in input terms. It is
obvious that there is a variable Y in the input clause H ~ B l Bz such that
X ~ Var(Yo'). By Definition 4, Y has a producer in well-moded clause H
B1 B t. Since input terms of Ho- are ground, Y does not occur in input terms of
H, and hence H is not a producer of Y. Therefore, some atom (say Bm,) in the
body is a producer of Y and hence B m, o- is a producer of every variable in Yo-; in
particular it is a producer of X. By the definition of the implied selection rule,
B m,or-<G.+l B,~ o-. This completes the proof of the lemma. []

Now we can prove Theorem 2 (cf. Section 2.2).

M E T H O D O L O G Y F O R T E R M I N A T I O N O F L O G I C P R O G R A M S 39

Theorem 2. I f P is a well-moded program, Q is a well-moded query and S is a selection
rule implied by P U {Q}, then ec, ery SLD-derivation of P U {Q} is a data-driven
evaluation.

PROOF (By Contradiction). Assume that the selected atom at a resolution step has
variables in its input positions. By the above lemma, there are producers that are
smaller (under the evaluation order) than the selected a tom contradicting the
minimality of the selected atom. Therefore, input terms of the selected atom are
ground at every resolution step. Hence every SLD-derivation starting with a
well-moded query is a data-driven evaluation. []

We thank Prof. K. R. Apt and Prof. J. W. Klop of CWI for their helpful comments. Thanks are also due
to the anonymous referees, whose comments have greatly improved the presentation. Dr. Kaput was
partially supported by National Science Foundation Grant CCR-9303394 and National Science Founda-
tion Indo-US Grant INT-9416687. Dr. Shyamasundar was partially supported by National Science
Foundation lndo-US Grant INT-9416687.

REFERENCES
1. Aguzzi, (3. and Modigliani, U., Proving Termination of Logic Program by Transforming

Them into Equivalent Term Rewriting Systems, in: Proc. 13th Conf. Foundations
Software Technol. Theoret. Comput. Sci. (FST&TCS'93), Lecture Notes in Computer
Science 761, Springer Verlag, New York, 199~3,'1~i~. 114-124.

2. Apt, K. R., Logic Programming, in: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, North-Holland, Amsterdam, 1990, Vol. B, pp. 493-574.

3. Apt, K. R. and Etalle, S., On the Unification Free Prolog Programs, in: Proc. MFCS'93,
Lecture Notes in Computer Science 711, Springer Verlag, New York, 1993, pp. 1-19.

4. Apt, K. R. and Pedreschi, D., Reasoning about Termination of Pure Prolog Programs,
Information Computation 106:109-157 (1993).

5. Arts, T. and Zantema, H., Termination of Logic Programs via Labelled Term Rewrite
Systems, TR UU-CS-1994-20, Utrecht University, 1994.

6. Baudinet, M., Proving Termination Properties of Prolog Programs: A Semantic Ap-
proach, Proc. LICS'88 (revised version in J. Logic Programming 15:1-29 (1988)).

7. Bezem, M., Strong Termination of Logic Programs, J. Logic Programming 15::79-98
(1989).

8. Bossi, A., Cocco, N., and Fabris, M., Proving Termination of Logic Programs by
Exploiting Term Properties, Proc. TAPSOFT'91, Lecture Notes in Computer Science 494,
Springer Verlag, New York, 1991, pp. 153-181.

9. Chtourou, M. and Rusinowitch, M., A Transformation from Logic Programs to Term
Rewrite Systems and Its Application to Termination, draft, CRIN-INRIA, Lorraine,
France, 1993.

10. Conery, J. S. and Kibler, D. F., AND Parallelism and Nondeterminism in Logic
Programming, New Generation Comput. 3:43-70 (1985).

11. Dauchet, M., Simulation of Turing Machines by a Left-Linear Rewrite Rule, Proc.
RTA'89, Lecture Notes in Computer Science 355, Springer Verlag, New York, 1989, pp.
109-120.

12. De Schreye, D. and Verschaetse, K., Termination Analysis of Definite Logic Programs with
Respect to Call Patterns, TR CW 138, Department of Computer Science, K. U. Leuven,
Belgium, 1992.

13. De Schreye, D., Verschaetse, K., and Bruynooghe, M., A Framework for Analyzing the
Termination of Definite Logic Programs, Proc. FGCS92, ICOT, 1992, pp. 481-488.

40 M. R. K. K R I S H N A R A O E T AL.

/

14. De Schreye, D. and Decorte, S., Termination of Logic Programs: The Never-Ending
Story, J. Logic Programming 19/20:199-260 (1993).

15. Debray, S. K. and Warren, D. S., Automatic Mode Inference for Logic Programs,
J. Logic Programming 5:207-229 (1988).

16. Dembinski, P. and Maluszinski, J., And-Parallelism with Intelligent Backtracking for
Annotated Logic Programs, Int. Symp. Logic Programming, 1985.

17. Dershowitz, N., Orderings for Term-Rewriting Systems, TCS 17:279-301 (1982).
18. Dershowitz, N., Terminiation of Rewriting, J. Symb. Comp. 3:69-116 (1987).
19. Dershowitz, N. and Jouannaud, J.-P., Rewrite Systems, in: J. van Leeuwen (ed.),

Handbook of Theoretical Computer Science, North-Holland, Amsterdam, 1990, Vol. B, pp.
243-320.

20. Francez, N., Grumberg, O., Katz, S., and Pnueli, A., Proving Termination of Prolog
Programs, in: Proc. Logics Programs, Lecture Notes in Computer Science 193, Springer
Verlag, New York, 1985, pp. 89-105.

21. Ganzinger, H. and Waldmann, U., Termination Proofs of Well-Moded Logic Programs
via Conditional Rewrite Systems, in: Proc. CTRS'92, Lecture Notes in Computer Science
656, Springer Verlag, New York, 1992, pp. 430-437.

22. Kamin, S. and Levi, J.-J., Two Generalizations of Recursive Path Ordering, Unpublished
note, Department of Computer Science, University of Illinois, Urbana, IL, 1980.

23. Kapur, D. and Zhang, H., An Overview of Rewrite Rule Laboratory (RRL), in: Proc.
RTA'89, Lecture Notes in Computer Science 355, Springer Verlag, New York, 1989, pp.
559-563.

24. Krishna Rao, M. R. K., Kapur, D., and Shyamasundar, R. K., A Transformational
Methodology for Proving Termination of Logic Programs, in: Proc. Comput. Sci. Logic,
CSL'91, Lecture Notes in Computer Science 626, Springer Verlag, New York, 199l, pp.
213-226.

25. Krishna Rao, M. R. K., Pandya, P. K., and Shyamasundar, R. K., Verification Tools in
the Development of Provably Correct Compilers, in: Proc. 5th Syrup. Formal Methods
Europe, FME'93, Lecture Notes in Computer Science 670, Springer Verlag, New York,
1993, pp. 442-46l.

26. Krishna Rao, M. R. K. and Shyamasundar, R. K., Unification-Free Execution of
Well-Moded and Well-Typed Prolog Programs, in: Proc. Static Analysis Symp., SAS'95,
Lecture Notes in Computer Science 983, Springer Verlag, New York, 1994, pp. 243-260.

27. Lescanne, P., Computer Experiments with the REVE Term Rewriting Systems Genera-
tor, in: Proc. lOth ACMPOPL'83, 1983, pp. 99-108.

28. Lescanne, P., Termination of Rewriting Systems by Elementary Interpretations, in: Proc.
Algebraic Logic Prog., ALP'92, Lecture Notes in Computer Science 632, Springer Verlag,
New York, 1992, pp. 21-36.

29. Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, New York, 1987.
30. Marchiori, M., Logic Programs as Term Rewriting Systems, in: Proc. Algebraic Logic

Prog. ALP '94, Lecture Notes in Computer Science 850, Springer Verlag, New York, 1994,
pp. 223-241.

31. Marchiori, M., Localizations of Unification Freedom Trough Matching Directions, Proc.
Int. Syrup. Logic Programming, ILPS '94, MIT Press, Cambridge, MA, 1994.

32. Pliimer, L., Termination Proofs for Logic Programs, Ph.D. Thesis, University of Dort-
mund (also appears as Lecture Notes in Computer Science 446, Springer Verlag, New
York, 1990).

33. Pliimer, L., Automatic Termination Proofs for Prolog Programs Operating on Non-
ground Terms, in: Proc. ILPS'91, MIT Press, Cambridge, MA, 1991, pp. 503-517.

34. Shyamasundar, R. K., Krishna Rao, M. R. K., and Kapur, D., Rewriting Concepts in the
Study of Termination of Logic Programs, in: K. Broda (ed.), Proc. ALPUK'92 Conf.
Workshops in Computing Series, Springer Verlag, New York, 1990, pp. 3-20. j

35. Ullman, J. D. and van Gelder, A., Efficient Tests for Top-Down Termination of Logical
Rules, JACM 35:345-373 (1988).

METI~ODOLOGY FOR TERMINATION OF LOGIC PROGRAMS 41

36. Vasak, T. and Potter, J., Characterization of Terminating Logic Programs, Third IEEE
Symp. Logic Programming 140-147 (1986).

37. Verschaetse, K., Static Termination Analysis for Definite Horn Clause Logic Programs,
Ph.D. Thesis, K. U. Leuven, Leuven, Belgium, 1992.

38. Wang, B. and Shyamasundar, R. K., Towards a Characterization of Termination of
Logic Programs, in: Proc. PLILP'90, Lecture Notes in Computer Science 456, Springer
Verlag, New York, 1990, pp. 203-221.

39. Wang, B. and Shyamasundar, R. K., Methodology for Proving the Termination of Logic
Programs, in: Proc. STACS'91, Lecture Notes in Computer Science 480, Springer Verlag,
New York, 1991, pp. 214-227.

40. Zantema, H., Termination of Term Rewriting by Semantic Labelling, Fundamenta
lnforrnaticae 24:89-105 (1995).

