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a b s t r a c t

The Bayes Shtarkov predictor can be defined and used for a variety of data sets that
are exceedingly hard if not impossible to model in any detailed fashion. Indeed, this
is the setting in which the derivation of the Shtarkov solution is most compelling. The
computations show that anytime the numerical approximation to the Shtarkov solution is
‘reasonable’, it is better in terms of predictive error than a variety of other general predictive
procedures. These include two forms of additive model as well as bagging or stacking with
support vector machines, Nadaraya–Watson estimators, or draws from a Gaussian Process
Prior.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

What kind of inference canwe dowhenwe do not believe the datawere generated by amodel? Themost obvious answer
to this question is prediction1: As long as there is something to measure we can make a guess as to its next value. The act of
making the guess does not by itself even require there be anything stable enough about the data generator (DG) tomake good
prediction feasible. Moreover, predicting ismore general thanmodeling because everymodel corresponds to a predictor but
not every predictor corresponds to a model. Hence, if there is no model for a given DG we are essentially forced to predict
using a larger class of predictors than models represent, i.e., it is not reasonable to limit ourselves to models for prediction.
One effect of this in a Bayes context is to change the meaning of the prior.

This situation is far from unusual. Indeed, one can argue that many of the most important data that are gathered were
not generated by amodel, or, more precisely, theywere not generated by anymechanism for whichmodeling per se is likely
to be helpful. We use the term M-open to label this class of problems, see Bernardo and Smith (2000) and Clyde and Iversen
(2013). Specifically, we say a problem isM-openwhen there is nomodel that accurately describes themechanism bywhich
the DG generated the data. Operationally, when we say this we mean that on intuitive and pragmatic grounds it is more
reasonable to abandon rather than continue the search for a true model.

Let us review three techniques that have been proposed for M-open data.
One of the earliest techniques intended for M-open data is due to Shtarkov (1987). He recognized that if there is no

model it may make sense to imagine a collection of ‘experts’ regarded as density functions who issue predictions. Then, at
each time step the best expert can be identified in the sense of regret under log-loss. This approach has been extended in
Vovk (2001) and Cesa-Bianchi and Lugosi (2006). Techniques for computing the Shtarkov solution were first presented in
Kontkanen and Myllymaki (2007). Although Shtarkov’s formulation was not Bayesian, the frequentist Shtarkov predictor
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1 R code for generating Bayes Shtarkov predictions presented here is in given in an annex to the electronic version of this paper.
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is asymptotically Bayes (see Clarke, 2007) and it is easy to write down the Bayes version. (Here and below, we abbreviate
‘Bayesian’ to ‘Bayes’ wherever possible, for brevity.)

A second approach for prediction is stacking, due to Wolpert (1992). Given a list of candidate models, weights for
their predictions can be derived by minimizing a criterion similar to cross-validation. There are several versions of this
minimization problemdepending on the constraints imposed on theweights. Stacking has been studied by Breiman (1996b),
Ting and Witten (1999) amongst others and explicitly extended to M-open problems by Clyde and Iversen (2013). Le and
Clarke (2015) showed that stacking can be asymptotically regarded as the Bayes action under several loss functions.

A third technique is bagging, see Breiman (1996a). Despite its origins in classification, bagging has also been used, usually
without comment, for regression problems that are M-open. For instance, Strobl et al. (2009) provide several examples as
well as a good discussion of the key features of bagging in practice. It can be shown that bagging is asymptotically a specific
form of Bayes model averaging (BMA), see Le and Clarke (unpublished).

A separate issue from how predictions from components are combined is the selection of the components themselves.
While it is desirable to choose components that will yield good predictors, this cannot be known in advance. So, for M-open
DG’s we want components that are flexible.

For bagging and stackingwe have used three classes of components. First is the Nadaraya–Watson (NW) estimator. Given
a data set, we can draw, say, ten bootstrap samples and therefore generate ten NW estimators. In the M-open case it does
not make sense to call them estimators since there is nothing to estimate. However, we do so for convenience. Now we can
‘bag’ the ten NW estimators by taking the average of the predictions they make at a new value of the explanatory variables.
Alternatively, we can stack the ten NW estimators or more precisely the predictors they generate. NW estimators can be
regarded as Bayes by using a prior on the smoothing parameter. This is computationally infeasible for the scale of our work
here.

Second, given a kernel function, we can obtain the posterior from a Gaussian process prior (GPP) and use it to generate
predicted values similar to the way NW estimators were used.

A third class of components that we use is support vector machines (SVM’s). These are also based on kernel functions.
Although it does not seem to have been formally proved, SVM regression andGaussian process regression are not equivalent,
see Rasmussen andWilliams (2006) Sec. 6.4.1. Moreover, while more familiar from classification than regression, SVM’s do
give a regression function under an ϵ-insensitive loss. Again, taking ten bootstrap samples leads to ten SVM regression
functions that can be bagged or stacked. The form of solution is based on the Representer Theorem, see Kimeldorf and
Wahba (1973). More recently, Chakraborty et al. (2012) developed Bayes estimation in this context.

A fourth class of components that we use only with the Shtarkov predictor is the multinomial. Even though the experts
combined in a Shtarkov predictor may be discrete or continuous, here we must discretize any explanatory variables so that
predictions can be computed. For independent data, the ‘experts’ then naturally assume a multinomial distribution. The
dependent variable must also be discretized to minimize computational difficulties and avoid having to choose specific
parametric forms for the experts. While the computational procedure was proposed by Kontkanen and Myllymaki (2007)
in the frequentist case, we are the first to evaluate how well it performs in contrast to other techniques.

Given independent data of the form (yi, xi)|ni=1 where xi is a vector of explanatory variables, we form various predictors
ŷi+1(·) for Yi+1(xi+1) using the first i data points. We evaluate these predictors by their cumulative squared prediction error,
namely

CPE =

n
i=1

(ŷi(xi) − yi)2. (1)

Thus our evaluation is prequential, see Dawid (1984).
For a sequence ofM-open data setswe compare the CPE’s of 10 different predictors using up to two explanatory variables

(chosen by highest correlation with the yi’s). Six predictors come from the combination of bagging or stacking with NW,
GPP, and SVM predictors. The other four are forms of the Shtarkov predictor: no side information, one of two explanatory
variables as side information, and two explanatory variables as side information. For comparison purposes, we also generate
predictions using additive models via the Bayes LASSO and the horseshoe prior, even though these are intended for use
outside the class of M-open problems. To get a better assessment of CPE, often (1) is averaged over several permutations of
the data. Also, if several permutations of the data are used the standard deviation of the errors can be found at each time
step, i = 1, . . . , n. We have not done this here because it was too computationally demanding and probably not necessary
given the sample sizes we have used in our examples.

Our main finding here is that when Bayes Shtarkov solutions are feasible to compute reliably at least one of them
outperforms the other sixmethods.We attribute this to the fact that the optimality property satisfied by Shtarkov predictors
is the most desirable one for M-open problems. This is not to say that the naive use of Bayes Shtarkov solutions will always
be the best. Indeed, we found many cases where side information made for a worse predictor than the absence of side
information. Moreover, computing Shtarkov solutions reliably is very difficult with existing data storage. Amongst the other
predictors, we also noted some regularities but they were not as strong. First, for M-open problems, stacking with SVM’s
tended to do well in the sense that stacked SVM’s were always one of the top three methods in terms of CPE. Second, in
some cases (not shown here) where the problems were M-open but not as hard the best results were typically obtained by
stacking NW estimators.
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From a high level, these findings are not a surprise. We expect that for more complex problems a more flexible method
such as stacking SVM’s should perform well and we expect that for a slightly less complex problem a slightly less flexible
method such as stacking NW estimators should perform well. However, our results suggest that if enough data and
computing power were available then the Shtarkov predictors would always be the best in the hardest M-open problems.

The structure of this paper is as follows. In Section 2we formally present the predictorswewill compare computationally.
In particular, we provide a Bayes version of the Shtarkov predictor and indicate how to find it computationally. In Section 3
we explain exactlywhatwe have computed and present our results for five data sets. In a brief conclusion sectionwe discuss
the broader implications of our work. Technical details not germane to the main flow of the paper are relegated to the two
Appendices.

2. Model averages

Here we list threemodel averages—the Bayes Shtarkov predictor, stacking, and bagging. Even though the Bayes Shtarkov
we use is immediately derivable from published results on the frequentist case, we present the details for the sake
of completeness. We only discuss stacking and bagging to provide their definitions and comment on their Bayesian
interpretation.

2.1. Bayes Shtarkov predictors

2.1.1. Bayes Shtarkov predictors without side information
Start by considering online prediction of arbitrary sequences y1, y2, . . . , drawn from a finite discrete set Y. Interest

focusses on the case that no probability distribution can be assumed for a sequence of length n, say yn = (y1, y2, . . . , yn).
This is the paradigm M-open statistical prediction problem for random variables taking values in a finite set.

This problem can be regarded as a sequential game between Nature, N , and a Forecaster, F , permitting F to access a
collection of experts indexed by θ ∈ Θ ⊂ Rk for some k. In the special case of log-loss, each round of the game proceeds
as follows. Each expert announces a density say pθ . Given this, F announces a density q(·) that will be used to predict the
value N issues. Finally, N issues y and pays F log q(y). If this number is negative, it is the amount of money F pays N and this
concludes the round. See Shtarkov (1987) and Cesa-Bianchi and Lugosi (2006) for details of this game and its properties.

Now suppose n independent rounds of this game are to be played. At the nth round each expert θ announces a density
p(yn | θ) for yn. F receives these pθ ’s and chooses the density q(yn) by trying to match the performance of the best expert θ
for predicting yn. Then, N reveals yn and incurs the loss (or gain) log q(yn). How should F use the pθ ’s to choose q? Obviously,
the best expert will incur the loss minθ log 1/p(yn | θ).

In the Bayes version of the game between N and F , F has access to experts that are weighted by a priorw(θ). So, we want
to choose q to minimize the maximum regret

sup
yn


log

1
q(yn)

− inf
θ

log
1

w(θ)p(yn | θ)


= sup

yn


sup

θ

log
w(θ)p(yn | θ)

q(yn)


. (2)

The solution qopt to (2) that we henceforth call the Bayes Shtarkov predictor (for the discrete case) is given in the following
theorem.

Theorem 2.1. The optimum of (2) is

qopt(yn) = argq


inf
q∈P


sup
yn

sup
θ

log
w(θ)p(yn | θ)

q(yn)



=
w(θ̃(yn))p(yn | θ̃ (yn))

yn
w(θ̃(yn))p(yn | θ̃ (yn))

, (3)

where θ̃ is the posterior mode.

Proof. This is a straightforward modification of Shtarkov (1987). �

In the continuous case, the sum is replaced by the corresponding integral and (3) becomes

qopt(yn) =
w(θ̃(yn))p(yn | θ̃ (yn))
w(θ̃(yn))p(yn | θ̃ (yn))dyn

. (4)

Our next result gives sufficient conditions for (4) to exist and is adapted from Rissanen (1996).
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Theorem 2.2. Assume the following.

(i) Let In(θ) be the nth stage Fisher information and suppose there is an I(θ) so that

In(θ) = −
1
n
E


∂2 log p(Y n
| θ)

∂θi∂θj


→ I(θ) as n → ∞,

and ∃c1, c2 so that 0 < c1 ≤ |I(θ)| ≤ c2 < ∞ for all θ ∈ Θ .
(ii) The elements of I(θ) are continuous in Θ .
(iii) 

Θ


|I(θ)|dθ < ∞.

(iv) The posterior mode, θ̃ , satisfies the central limit theorem,

ξ =
√
n(θ̃(yn) − θ)

L
−→ N(0, I−1(θ)),

uniformly for θ ∈ Θ .
(v)

I(yn, θ̃ ) =


−

1
n


∂2 log p(yn | θ)

∂θi∂θj


θ=θ̃


i,j=1,...,k

< C0 < ∞,

where C0 is a positive-definite matrix. In addition, the family

Iij(yn, θ(ξ)) = −
1
n

∂2 log p(yn | θ(ξ))

∂ξi∂ξj
,

as a function of the standardized variable ξ is equicontinuous at ξ = 0 for n ≥ 1, 1 ≤ i, j ≤ k.

Then, the integral in (4) is finite.

Remark. For IID processes, Ferguson (2002) gives conditions under which assumption (iv) holds.

Proof. See Appendix A. �

Regardless of how qopt(yn) is computed, Bayes Shtarkov predictors are ratios

qopt(yn+1 | yn) =
qopt(yn+1)

qopt(yn)
, (5)

and can be used prequentially.
In general, using the Bayes Shtarkov predictor requires that we compute the normalizing constant, i.e., the denominator,

in (3) or (4). Here, however, we will only use the mode of (5) (see Section 3 for a justification). So, it will be enough to ignore
computing the denominator in (3) or (4). For the sake of completeness, we indicate in Appendix B how the denominator in
(3) or (4) would be computed if it were desirable to use, say, the mean or median of (5) rather than its mode.

2.1.2. Bayes Shtarkov predictors with side information
So far we have not included any explanatory variables when predicting Yn+1. However, it is common in practice to have

explanatory variables; these are usually called side informationwhen Shtarkov predictors are used since the functional form
of the dependence of Yn+1 on xn+1 is unspecified.

When the Y ’s and x’s are discrete, qopt can be found as follows. Let (xi, yi)|ni=1 where xj ∈ X = {1, 2, . . . ,M} and
yj ∈ Y = {1, 2, . . . , K}, j = 1, . . . , n. Now divide yn into M subsequences ynm corresponding to each value x = m,
m = 1, . . . ,M , i.e., ynm is the subsequence of yn for which the corresponding value of the explanatory variable is m. The
form of qopt derived in Xie and Barron (2000) Sec. IX is stated in the next result; see also Cesa-Bianchi and Lugosi (2006)
Chap. 9.

Theorem 2.3. Let qopt(ynm) be of the form given in Theorem 2.1. Then,

qopt(yn | xn) =

M
m=1

qopt(ynm).

General Bayes Shtarkov predictors for continuous Y ’s or x’s do not seem to have been derived except in the sense that
they can be regarded as limits of discrete cases. However, Cesa-Bianchi and Lugosi (2006) Chap. 11 review prediction with
side information using restricted families of predictors.
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2.2. Stacking

Stacking was first introduced by Wolpert (1992) and studied primarily as a predictor in numerous contexts such as
regression (Breiman, 1996b; Clarke, 2003; Sill et al., 2009), classification and distance learning (Ting andWitten, 1999; Ozay
and Vural, 2012), and density estimation (Smyth and Wolpert, 1999). Stacking has also been used to estimate error rates
(Rokach, 2010).

The basic idea is that if J candidate signal plus noise models of the form Y = fj(x) + ϵ for j = 1, . . . , J are available then
they can be usefully combined to give the predictor

Ŷstack(x) =

J
j=1

ŵj f̂j(x),

where f̂j is an estimate of fj. The ŵj’s are obtained by invoking an optimality property similar to cross-validation (CV). More
formally, let f̂j,−i be the estimate of fj using n − 1 of the n data points and dropping the ith one. Then the estimated weight
vector ŵ = (ŵ1, . . . , ŵJ) is

ŵ = arg min
w∈RJ

n
i=1


yi −

J
j=1

wj f̂j,−i(xi)

2

. (6)

Expression (6) corresponds to leave-one-out CV but can be readily modified to correspond to leave-K -out CV. A Bayesian
interpretation of stacking can be found in Le and Clarke (2015).

2.3. Bagging

Bagging (‘bootstrap aggregating’), introduced by Breiman (1996a), is a general strategy to improve the accuracy ofmodel-
based predictors. Usually, themodel is thought to be good in the sense of being unbiased but gives predictors that are highly
variable so that bagging will help stabilize it. The basic strategy is as follows. Given a sample, fit a model f̂ (x) and consider
predicting the response for a new value of the explanatory variable x. A bagged predictor for Y at x is found by drawing B
bootstrap samples from the training data, using each sample to produce an f̂b(x), and taking an average

Ŷbag(x) =
1
B

B
b=1

f̂b(x).

Bagging has receivedmuch attention and is frequently used, especially in classification. However, there remains relatively
little understanding how bagging works apart from the results in Breiman (1996b) and Buhlmann and Yu (2002). It has also
been argued that bagging is asymptotically a form of BMA, see Le and Clarke (unpublished).

3. Presentation of computational results

In this section we apply the techniques described in Section 2 to five data sets. All of these data sets have explanatory
variables that we have only used when benchmarking our ten nonlinear predictors to additive models. For simplicity, we
chose the two explanatory variables that had the largest correlations to the response variable. The reason we reduced to
two variables, generically denoted x1 and x2, was that the techniques based on Bayes Shtarkov predictor had to be dis-
cretized to be computed and this required that no cells be empty to ensure that the right hand side of Theorem 2.3 would
always be well-defined as a density. When we tried more variables, or a finer discretization, Bayes Shtarkov predictors
were impossible to compute; in the results below there are several cases where we had to make other adjustments so the
Bayes Shtarkov predictors could be found. Unless remarked otherwise, our Bayes Shtarkov predictors use a discretization
of the response into 20 cells and a discretization of single variable side information into 20 cells but discretization of two
variable side information into 16 cells (four for each variable). In all cases, the appropriate percentiles were used as break
points for the discretizations. In addition, we always used the Dirichlet distribution with α = 1 as a prior for choosing the
hyper-parameters in the multinomial resulting from the discretization of Y . This is just the uniform distribution over the
parameters in the multinomial; computational details are given in Appendix B.

The ten nonlinear methods that we compared are as follows. Six came from using stacking and bagging with GPP’s,
NW’s, and SVM’s. All kernels used were the default radial basis function kernels with the analog of the variance/bandwidth
estimated internally to the R programs, in this case kernlab, np and e1071. The other four were Bayes Shtarkov predictors
with (i) no side information, (ii) one of two variables as side information (two cases), and (iii) two variables as side
information. The two variables chosen as side information for the Bayes Shtarkov were used in all cases of GPP’s, NW’s,
and, SVM’s to improve comparability of results. For the stacking point predictor we used the weights from the optimization
in Section 2.2 and for the bagging predictors we used the formula in Section 2.3. We obtained point predictors from the
Shtarkov optimization by choosing themode of qopt(· | yn) in (5). This is reasonable because themode typically summarized
the location of the qopt(· | yn)’s better than the median or mean did.
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Fig. 1. Plots of the conditional density (5) for the 517th data point given the previous 516 data points for the data set Online News Popularity.

An example of this is seen in Fig. 1 in which graphs of the final predictive densities from our first example, i.e., the
conditional densities (5) for our first data set in which the four panels correspond to the four types of side information
that we considered. Since the densities in Fig. 1 are strongly skewed to the right, the mean of (5) is not reasonable. Also,
the median often occurs where the density is very low. Moreover, even though the median may naively seem the most
representative of the location of qopt(· | yn) among the common location measures, using the discretization usually makes
themidpoint of themodal cell well-defined and a better predictor than themidpoint of themedian cell. Since graphs similar
to Fig. 1 can be generated for the other data sets we used, and strongly skewed graphs such as those in the bottom row of
Fig. 1 predominated, the mode seemed best for general usage even though it is not ideal. A more delicate analysis would
adaptively choose the best predictor for a given stage in the predictive sequence. However, this is difficult to automate and
confounds the comparison of methods with the choice of predictor.

The final two methods we included in our comparisons were additive models using the Bayes LASSO and the horseshoe
prior. We used these in two ways. First, we restricted them to the same two explanatory variables as we used in each
example. Then we recomputed the CPE’s using all the explanatory variables thereby allowing the Bayes LASSO or horseshoe
prior to do the variable selection automatically.

As noted earlier, our results suggest that when the Shtarkov predictors can be found effectively, they are best for
genuinely M-open data sets. However, the impediments to computing increase with the number of iterations i.e., the
number of predictions to be made is high, and the discretization required to compute good approximations may be too
fine. Consequently, to obtain some of our comparative statements about Bayes Shtarkov predictors we have had to limit the
number of iterations. One of the unusual features of the Shtarkov predictors is that often side information i.e., explanatory
variables, was harmful. This may be an artifact of the computing or it may be that the side information was misleading. We
return to this issue in Section 4.

In the next subsections we present our CPE results for five M-open data sets, namely, Online News Popularity, Abalone
Female, CompActiv, Soil Moisture, and Abalone Male data sets. We separated the entire Abalone data set into Abalone Male
and Abalone Female because sex had a large effect on size and we only permitted two explanatory variables. Wherever
possible we used a sample size of 517 with a burn-in of 267 and hence 250 predictions could be used to calculate the CPE.
(This was chosen as reasonable given the wide variety of data sets we explored.)

3.1. Online News Popularity, n = 517

As our first example, consider theOnline News Popularity data set publicly available from the UC IrvineMachine Learning
Repository. There are 58 non-trivial explanatory variables related to the number of shares in social networks (popularity).
We took x1 to be the ‘maximum of the average keyword shares’ and x2 to be the ‘average of the average keyword shares’;
details and references can be found at http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity. The actual sample
size is 39797 but for computational convenience, we randomly selected n = 517 data points.

The CPE’s for the 14 predictors are in Tables 1, 2, and 3. The lowest three CPE’s are in bold and the lowest CPE is starred. The
numbers in the tables are truncated to the four most significant digits; fewer digits are given only when this is not possible.

http://archive.ics.uci.edu/ml/datasets/Online%2BNews%2BPopularity
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Table 1
CPE’s for six averaging methods for Online News Popularity, scaled in millions.

GPP using x1 and x2 NW using x1 and x2 SVM using x1 and x2

Stacking 8752 9764 5187
Bagging 9478 9487 5597

Table 2
CPE’s for four Shtarkov predictors for Online News Popularity, scaled in millions.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

5062 3432 × 10 4904 4806∗

Table 3
CPE’s for Bayes LASSO and Bayes horseshoe predictors forOnline News Popularity, scaled in millions.

Bayes LASSO using x1 and x2 Bayes horseshoe using x1 and x2

1067 × 10 9988

Bayes LASSO using all variables Bayes horseshoe using all variables

2905 × 10 3028 × 10

Table 4
CPE’s for six averaging methods for Abalone Female.

GPP using x1 and x2 NW using x1 and x2 SVM using x1 and x2

Stacking 2041 2050 1467
Bagging 2073 2144 1684

Table 5
CPE’s for four Shtarkov predictors for Abalone Female. In this case, we used 50 iterations, adding five
data points per iteration. We then multiplied the result by five.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

650∗ 9613 8441 1534 × 10

Table 1 shows that among themodel average predictors, stackingwith SVM’s does best and baggingwith SVM’s is second
best. The best results, however, are seen in Table 2. The Shtarkov predictor with no side information or with one of x1 and x2
did best. The Shtarkov predictor with both x1 and x2 as side information was the worst of the ten methods. We suggest that
this occurs because when one variable is used as side information we discretized into 20 cells but when two variables were
used as side information we discretized each of them into four cells giving 16 total. Had we been able to use a substantially
finer discretization for the two variable side information predictor, and been able to compute it effectively, it might have
done best. For instance, if we used 20 cells for x1 and for x2 we would have 400 cells total and many would be empty, for
our sample size, making computation impossible.

Table 3 shows that conventional additive models do very poorly for complex data. Moreover, permitting automatic
variable selection in Bayes LASSO or horseshoe gives the worst results. This pattern suggests that combining variable
selection with prediction in one additive procedure is generally going to give inadequate predictive performance. In the
one example where this ordering was reversed (Abalone Male), the performance of all four additive methods was so poor
none were worth considering.

3.2. Abalone Female, n = 517

As our second example, we consider the Abalone Female data set publicly available from the UC Irvine Machine
Learning Repository. There are 7 non-trivial explanatory variables related to the age of a female abalone. We took x1 to
be ‘wholeweight’ and x2 to be ‘shellweight’; details and references can be found at http://archive.ics.uci.edu/ml/datasets/
Abalone. The sample size is 1307 but for computational convenience, we randomly selected n = 517 data points. The CPE’s
for the ten predictors are in Tables 4 and 5. The lowest three CPE’s are in bold and the lowest CPE is starred.

Table 4 shows that, as expected, stacking with SVM’s and bagging with SVM’s did best among the six averaging methods.
When we computed the Shtarkov predictors, we encountered problems with data storage because some cells, while not
void, had few points in them resulting is very small values that were below the accuracy threshold of our computing. As a
result, the computations for the Shtarkov predictors for Abalone Female could not be done as for the first data set.

http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
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Table 6
CPE’s for Bayes LASSO and Bayes horseshoe predictors for Abalone Female.

Bayes LASSO using x1 and x2 Bayes horseshoe using x1 and x2

1672 × 10 1671 × 10

Bayes LASSO using all variables Bayes horseshoe using all variables

2242 × 10 2281 × 10

Table 7
CPE’s for four Shtarkov predictors forAbalone Female. In this case, we used ten iterations, adding five
data points per iteration.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

556 601 686 707

Table 8
CPE’s for six averaging methods for CompActiv.

GPP using x1 and x2 NW using x1 and x2 SVM using x1 and x2

Stacking 4034 × 10 1759 × 10 1382 × 10∗

Bagging 4159 × 10 1983 × 10 2062 × 10

Table 9
Row II: CPE’s for three Shtarkov predictors for CompActiv. In this case, we used 50 iterations, adding
five data points per iteration. We then multiplied the resulting CPE by five. Row III: CPE’s for four
Shtarkov predictors for CompActiv. In this case, we used ten iterations, adding five data points per
iteration.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

1823 × 102 1098 × 102 1346 × 102

1780 1226 1263 1408

Instead, at each iteration we added five data points rather than one so that the number of predictions was one-fifth
of before, i.e., 50 rather than 250. Thus, after the burn-in of 267, we predicted y268 and then added five more data points
to predict y273, and so on. To compensate for this, we multiplied the CPE’s by five; these values are in Table 5 and can be
regarded as roughly comparable to those in Table 4. If this reasoning is valid, the Shtarkov predictorwith no side information
is best and the poor performance of the other three Shtarkov predictor can be explained as before: The discretization is so
crude that the extra information is misleading.

Table 6 is qualitatively identical to Table 3. Hence, additive model predictors may be ignored in this example.

3.2.1. Abalone Female computations for later comparisons
For the three data sets CompActiv, Soil Moisture, and Abalone Malewe were unable to compute the Shtarkov predictors

for 250 iterations and in some cases not even for 50 iterations. So, to permit comparisons for those three data sets with
Abalone Female we record Table 7. We chose a new set of 517 data points at random from the original 1307. We used a
burn-in of 267 and performed the same computations as went into Table 5 but stopped at ten iterations (five extra data
points per iteration) and recorded the CPE. We get similar results in that side information is not helpful at this level of
discretization. However, the variability of the CPE is seen in that without side information the 10-iteration Shtarkov CPE
is not much smaller than the 50-iteration Shtarkov CPE so it likely grows slowly with the number of iterations. However,
when side information is used, it is damaging at a much faster rate.

3.3. CompActiv, n = 517

As our third example, we consider the CompActiv data set. The response variable is the portion of time that CPU’s run in
user mode. There are twenty one explanatory variables related to the response variables; we took x1 to be the number of
page faults caused by address translation and x2 the number of disk blocks available for page swapping; the data, details,
and references can be found at www.cs.toronto.edu/~delve/data/comp-activ. The sample size is 8192 but for computational
convenience, we randomly selected n = 517 data points. CPE’s for six of the ten predictors are in Table 8. CPE’s for the other
four (Shtarkov) predictors are in Table 9 for two settings. The lowest three CPE’s are in bold and the lowest CPE is starred.
Since the predictors from the additive models again performed so poorly (see Table 10) we ignore them for the purposes of
the present discussion.

Table 8 shows that, as expected, stacking SVM’s has the lowest CPE among themodel average predictors. In this example,
however, the second and third lowest CPE’s are from stacking or bagging with NW. Since the data are complex, it is no

http://www.cs.toronto.edu/%7Edelve/data/comp-activ
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Table 10
CPE’s for Bayes LASSO and Bayes horseshoe predictors for CompActiv.

Bayes LASSO using x1 and x2 Bayes horseshoe using x1 and x2

7103 × 102 7060 × 102

Bayes LASSO using all variables Bayes horseshoe using all variables

1702 × 103 1707 × 103

Table 11
CPE’s for six averaging methods for Soil Moisture.

GPP using x1 and x2 NW using x1 and x2 SVM using x1 and x2

Stacking 359 356 339∗

Bagging 377 356 349

surprise that sometimes amethod that does not involve stacking or SVM’s does reasonably well. However, note that the CPE
for stacking SVM’s is much lower than the second or third best methods.

In this example, it was impossible to compute any of the Shtarkov predictors for all 250 single data point iterations
so we had no choice but to consider 50 iterations (five data points per iteration) and scale up the results by multiplying
by five as in row II of Table 9. Indeed, even for this restricted case, we were unable to compute the CPE in the absence
of side information. However, the CPE’s in this case were much worse than for the predictors in Table 8. This shows that
naively scaling is inappropriate. Hence we regard the performance of Shtarkov in row III of Table 9 are most reliable and
representative.

To get a complete series of CPE’s that we could compare we had to reduce to ten iterations as in Table 7. In this setting,
we argued Bayes Shtarkov is the best. Note that as in the other examples, naively scaling errors give results that are not
representative. What seems to be more reasonable i.e., representative of the CPE performance of Bayes Shtarkov is that
when the CPE is small, it is muchmore accurate and stable thanwhen it is extremely large. Otherwise put, it is unreasonable
to compare these CPE’s with those in Table 8 or with row II in Table 9 because the degree of extrapolation is so high.

In the present case, using side information x1 and x2 is best. This corresponds to our usual intuition thatmore information
is better but this is the only examplewhere two side variables actually produce the best Shtarkov predictor given the fineness
of discretization wewere able to implement computationally. As before, themain impediment to getting good performance
from the Shtarkov predictors remains computational – too many numbers that are too small arise – but the discrepancy
between the CPE’s for Shtarkov and, say, stacking SVM’s is so large that it is difficult to regard Shtarkov predictors as likely
to be best outside the exceptional cases where they can be readily computed. In the Soil Moisture and Abalone Malewe also
computed Shtarkov predictors using ten iterations and we discuss those comparisons later.

3.4. Soil Moisture, n = 517

As our fourth example, consider the Soil Moisture data set. The response variable is an interpolated measure of topsoil
moisture. There are six explanatory variables; three are for location (two for location on a grid, one for elevation), two for soil
electrical resistivity, and one for a standard ‘wetness index’ that is a function of elevation; see Franz et al. (2015) for a detailed
description.We took x1 as the north–south location of a point where ameasurement was taken and x2 as the wetness index.
The sample size is 18973 but for computational convenience, we randomly selected n = 517 data points. CPE’s for six of
the ten predictors are in Table 11. CPE’s for the other four (Shtarkov) predictors are in Table 12 for two settings. The lowest
three CPE’s are in bold and the lowest CPE is starred. From this point onwe omit further discussion of the additive predictors
because their performances in terms of CPE were worse than the worst of the other 10 methods by factors of five or higher.

The results for this data set are qualitatively nearly the same as for the CompActiv data set even though the origins of
the data are very different. That is, Table 11 shows that stacking with SVM’s is best, bagging with SVM’s is second best and
baggingwith NW is third best among themodel averages. The actual CPE values aremuch closer to each other than in Table 8
but the best methods are the same apart from stacking with NW being in third place for the CompActiv data.

As before, themost reliable and representative CPE’s from the Bayes Shatarkovmethod show are the ones that are lowest,
evenwhenwehad to reduce the number of iterations or increase the number of data points per iterations. Hence,we surmise
from Table 12 that Bayes Shtarkov with either sources of side information are predictively the best.

Likewise, row II in Table 12 shows that using x1 as side information does best (apart from the Shtarkov predictor in the
absence of side information that could not be effectively computed). On the other hand, row III shows that taking x1 as side
information is best (but only by a small margin) and for CompActiv using both x1 and x2 was best. As before, the impediment
to comparing the Shtarkov predictors to the other six predictors directly was computational. One other difference between
our analyses of the CompActiv and the Soil Moisture data is that the best of the rescaled Shtarkov predictors for the Soil
Moisture data had a CPE of 518 which is higher than the CPE’s of the other six predictors, but much closer in performance
than for the CompActiv data.
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Table 12
Row II: CPE’s for four Shtarkov predictors for Soil Moisture. In this case, we used 50 iterations, adding
five data points per iteration. We then multiplied the resulting CPE by five. Row III: CPE’s for four
Shtarkov predictors for Soil Moisture. In this case, we used ten iterations, adding five data points per
iteration.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

3338 518 701
33 94 21 23

Table 13
CPE’s for six averaging methods for Abalone Male.

GPP using x1 and x2 NW using x1 and x2 SVM using x1 and x2

Stacking 1776∗ 2619 1854
Bagging 1842 2809 2162

Table 14
Row II: CPE’s for four Shtarkov predictors forAbaloneMale. In this case,weused ten iterations, adding
five data points per iteration. Row III: The corresponding results for Abalone Female.

Sht, no side info. Sht, side info. x1 and x2 Sht, side info. x1 Sht, side info. x2

321 311 130 298
556 601 686 707

3.5. Abalone Male, n = 517

As a finalM-open example,we consider theAbaloneMaledata set publicly available from theUC IrvineMachine Learning
Repository. There are 7 non-trivial explanatory variables related to the age of male abalone. We took x1 to be ‘height’ and x2
to be ‘shellweight’; details and references can be found at http://archive.ics.uci.edu/ml/datasets/Abalone. The sample size is
1528 but for computational convenience, we randomly selected n = 517 data points. The CPE’s for the ten predictors are in
Tables 13 and 14. The lowest three CPE’s are in bold and the lowest CPE is starred.

Table 13 shows that the six averagingmethods separate into two classes of three based on CPE’s. Specifically, bagging and
stacking with GPP’s had the lowest CPE’s while stacking with SVM’s was third best and their CPE’s were relatively similar.
The other three methods did noticeably worse even though they had CPE’s that were not too different from each other.

This data setwas themost refractory of the data setswe analyzed here. So, it is not necessarily surprising that the stacking
GPP’swas unexpectedly effective. That is, given sufficiently difficult data, it is no surprise that sometimes amethod that does
not involve stacking or SVM’s does best. It may be that in this example GPP’s put more mass around good predictors than
NW does because NW is more flexible than GPP’s.

Oneway inwhichAbaloneMalewas refractory is thatwewere unable to do even 50 iterations for the Shtarkov predictors.
We were only able to do ten reliably. So, we only compare our results here with row III from Tables 9 and 12 (for CompActiv
and Soil Moisture) and computed the corresponding results for Abalone Female. For Abalone Male using x1 only is best
(lowest CPE) and at this number of iterations it seemsdecisive. ForAbalone Femaleusing no side information is best although
by a smaller margin. For CompActiv, using x1 and x2 is best, but using only x1 is not much worse. For Soil Moisture, using
x1 only is best, using x2 only is nearly as good, and the other two cases are decisively worse. From these, the only summary
statement that seems possible is that using x2 alone in a Shtarkov predictor is generally a poor choice, whereas there are
cases in which the other three possibilities outperform. This is not a surprise because x2 has a lower correlation with the
response than x1 does. However, the facts that (i) no side information can be best and (ii) using both x1 and x2 can be worst
are counterintuitive although we have suggested that part of the problem arises from the discretization.

Note that the Shtarkov solutions for Abalone Femalewere best and the Shtarkov solutions for Abalone Male are actually
better, suggesting again the Bayes Shtarkov predictors are best for M-open data. That is, the principle remains that when
the Bayes Shtarkov results are convincing, they outperform the model averaging methods on difficult problems.

4. Conclusions

Overall, we found that in a series of examples, Bayes Shtarkov solutions essentially always performed best for M-open
problems when they could be effectively computed. The problems with finding good approximations to exact, formal Bayes
Shtarkov solutions are exactly what one would expect: Any discretization has to have enough data points in each cell that
the approximation is valid. It is unclear how to assure this in general although many of our examples succeed in doing so
and hence give Bayes Shtarkov solutions that outperform model average solutions that should work well for complex data.
Unsurprisingly, the finer the discretization, the longer the running time.

We found the surprising result that Bayes Shtarkov predictors with no side information often performed better than the
Bayes Shtarkov predictor with side information. We explain this by the increased problems due to discretization that occur

http://archive.ics.uci.edu/ml/datasets/Abalone
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when more explanatory variable are used although other explanations may be possible, too. Likely these points apply to
the non-Bayes Shtarkov predictors as well. Indeed, examples not shown here suggest that (i) the more cells that are used in
the discretization, the better, provided they are populated, and (ii) the effect on the CPE can be very large—certainly large
enough to change the performance ordering of the techniques.

As a secondary point, we found that among the six non-Shtarkov predictors stacking with SVM’s was always one of the
best choices. For less difficult data sets (not examined here) we also found that among these six predictors that stacking
with NW was the best choice. Consequently, we recommend that if the Bayes Shtarkov (or non-Bayes Shtarkov) predictors
are infeasible to compute, these other predictors may be next best.

Our comparisons were made in squared error distance and hence our conclusions would likely be valid for many other
Lp-type distances as well. Would they be the same for, say, a general invariant measure of prediction such as log-loss? The
answer ismaybe. The reason is that the performance of predictive techniques can varywidely depending onwhich invariant
measure is used. For instance, Gneiting et al. (2007) and Gneiting (2011) recognize different scoring functions can lead to
different predictors being optimal and that bringing in scoring functions without a specific motivation is merely introducing
more variability that will be similar to model uncertainty.

Here, log-loss is the sense of distance used to derive the Shtarkov-type predictors so it would be circular to argue
‘optimizing with respect to log-loss gives something optimal with respect to log-loss’. Hence, there is good reason to use a
different distance. Moreover, log-loss does not make sense for point predictors that do not arise from a density such as our
use of SVM’s or GPP’s. So, while we have defaulted to squared error, we recognize that its main justification stems from the
Prequential Principle that we think is a fundamental link between observables and predictions.

To conclude, let us clarify the concept of ‘model’ as it has been used in an atypical sense throughout this paper. One point
of view is that a model is any computable probability distribution. We do not disagree with this, but we do prefer a more
general setting in which a model is essentially an action, possibly a conditional action e.g., given side information, in an
action space, in a predictive decision theory problem. The problem does not even have to be fully specified. At root, for us,
a model is something that emits predictions that can be compared with outcomes of a data generator. Thus, qopt(yn) is a
probability density and hence a model—even though it does not correspond to a stochastic process. (Marginalizing out Yn
from qopt(yn) does not yield qopt(yn−1).) Also, SVM’s are merely the solution to an optimization problem. Here we regard
them as models even though (i) they do not correspond to a computable distribution and (ii) there is no obvious sense in
which they converges to a limit as the sample size increases (due to the presence of xi in the argument of the kernel function).
Indeed, the dependence of an SVM on the data make it incompatible with the traditional statistical notion of a parametric
or non-parametric family.

Our general notion of a model seems warranted by the complexity and lack of systematic properties data sets such as
those we have analyzed here and is consistent with regarding the data as coming from a data generator that is not a priori
describable in any particular terms.
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Appendix A. Proof of Theorem 2.2

The proof in Rissanen (1996) still holds up to the inequality labeled (26) with θ̂ replaced by θ̃ . That is, we suppose
the k-dimensional parameter space is discretized into k-dimensional rectangles R(θd, dn) with axes parallel to the axes
of the parameter space, sidelength rn, and centered at values denoted θd. Write d = dn = rn/

√
n so that d = o(1/

√
n) if

r = rn → 0. To be specific, let θ̃d
= θ̃d(yn) i.e., θ̃ quantized to precision d. Now, for θ̃ ∈ R(θd, dn), Taylor expanding gives

log
w(θ̃)p(yn | θ̃ )

w(θd)p(yn | θd)
= (θd − θ̃ )T


∂2

∂θi∂θj
logw(θ∗)


i,j

(θd − θ̃ ) −
n
2
(θd − θ̃ )T Î(θ∗)(θd − θ̃ )

for some θ∗ on the line joining θ̃ and θd where Î(·) denotes the empirical Fisher informationmatrix. Re-arranging and upper
bounding give

log
p(yn | θ̃ )

p(yn | θd)
≤ Cr2,

for some positive constant C using both clauses of Assumption (v). Let

Pd(θd) =


{θ̃ (yn)∈R(θd,dn)}

p(yn | θd)dyn.

Since p(· | θ) is a probability density for every θ ,

p̂d(yn) =
p(yn | θ̃d)
θd

Pd(θd)
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is well defined, and we can write the decomposition

log
w(θ̃d)p(yn | θ̃d)

p̂d(yn)
= log

w(θ̃)p(yn | θ̃ )

p̂d(yn)
+ log

p(yn | θ̃d)

p(yn | θ̃ )
+ log

w(θ̃d)

w(θ̃)
. (7)

Since w(θ) is continuous, the last term in (7) satisfies | logw(θ̃d)/w(θ̃)| ≤ η for any η > 0 provided the discretization is
fine enough.

Given (7), the proof in Rissanen (1996) establishes there is a c > 0 and a K > 0 so that as n increaseslog p(yn | θ̃ )w(θ̃)

p̂d(yn)
−

k
2
log n2π − log


Θ


|I(θ)|dθ

 ≤ Kr + (c + C)r2 + η,

cf. inequality (27) in Rissanen (1996). The rest of the proof in Rissanen (1996) holds to give that for ϵ(r) = Kr + (c + C)r2,

e−ϵ(r)−η
≤


w(θ̃(yn))p(yn | θ̃ (yn))dyn

(n/2π)k/2


Θ

√
|I(θ)|dθ

≤ eϵ(r)+η,

as n increases, thereby establishing the theorem.

Appendix B. Computing the constant in a Shtarkov solution

As noted in Section 2.1.1, and argued at the beginning of Section 3, we used the mode of the Shtarkov solution. Therefore
we did not need to compute the constant in the denominators of (3) or (4). However, for predictors such as the mean or
median, it is necessary to compute the constant. We start with the case of discrete Y since it is easier than the case of
continuous Y . In our computing,weused the discrete case only because our algorithmsonly permit discrete side information.

For the discrete case, the sum in (3) is over all | Y |
n terms which is intractable when n is large. Kontkanen and

Myllymaki (2007) and Barron et al. (2014) have proposed algorithms for computing the denominators for frequentist
Shtarkov predictors. Here, we extend Kontkanen and Myllymaki (2007) to the Bayes Shtarkov case, (3) and (4), since it
is more general. We also describe the Roos (2008) method for the continuous case for the sake of completeness.

Case I (Discrete Y ). Let Y = {1, 2, . . . , k, . . . , K}, hk be the number of occurrences of k in yn, and the prior w(θ) be the
Dirichlet distribution Dir(α, . . . , α). Then θ̃ is

θ̃k =
α + hk − 1
αK + n − K

.

We want to compute the denominator in (3),

S(K , n) =


yn

w(θ̃(yn))p(yn | θ̃ (yn)).

Arguments similar to those used (Kontkanen and Myllymaki, 2007) give

S(K , n) =


n1+n2=n

n!
n1!n2!


αK1 + n1 − 1
αK + n − 2

n1 αK2 + n2 − 1
αK + n − 2

n2
S(K1, n1)S(K2, n2),

where K1 + K2 = K , and

S(K + 2, n) = S(K + 1, n) +
n
K
S(K , n).

Therefore, we have the following algorithm for computing qopt(yn); the running time of this algorithm is O(n + K) = O(n)
i.e., linear, provided K is fixed.

Step 1. Count the occurrence h1, . . . , hK form the sequence yn.
Step 2. Compute the numerator in (3) from

w(θ̃(yn))p(yn | θ̃ (yn)) =

K
k=1


α + hk − 1
αK + n − K

α+hk−1

.

Step 3. Set S(1, n) = 1.
Step 4. Compute

S(2, n) =


n1+n2=n

n!
n1!n2!


α + n1 − 1
2α + n − 2

n1  α + n2 − 1
2α + n − 2

n2
.
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Step 5. For k = 1 to K − 2, compute

S(k + 2, n) = S(k + 1, n) +
n
k
S(k, n).

Step 6. Set

qopt(yn) =
result in Step 2
result in Step 5

.

Case II (Continuous Y ). As noted in Roos (2008), the integral in (4) can only be solved in closed form for some specific
models so it is important to have a more general computational procedure. If we do not discretize Y , Roos (2008) provides
a Monte Carlo style approximation. Implementing this would require choosing a specific form for the ‘experts’ p(yn | θ).
Choosing such a form is akin to model selection and hence an open question although it is tempting to suggest that the
Pearson distributions, see Giuard (1984) for a summary, can be regarded as a sort of ‘universal’ parametric family.

Let f (yn) = w(θ̃(yn))p(yn | θ̃ (yn)) assuming p is known. As a default, the natural choice for w is an objective prior such
as Jeffreys’ truncated to a compact set of θ ’s and normalized. Now, the denominator S =


Yn f (z)dz can be found as follows.

Step 1. Compute the numerator w(θ̃(yn))p(yn | θ̃ (yn)) in (4).
Step 2. Draw a sample z1, . . . , zm from the distribution f /S by using MCMC (see Roos, 2008) without knowing S.
Step 3. Compute

1
m|Yn|

m
i=1

1
f (zi)

−1

. (8)

This converges to S almost everywhere asm → ∞.
Step 4. Set

qopt(yn) ≈
result in Step 1
result in Step 3 .

The estimator in (8) is sometimes called the harmonic mean estimator; see Neal (2008) who argued that in many cases
(8) would not perform well due to lack of convergence. In fact, Roos (2008) proves that (8) does converge as m → ∞. The
resolution between these two positions may be that the convergence rate is very slow. Effectively, this is another reason
why we used discretization. We comment that if there are cases where (8) converges quickly, then, for the continuous case
without side information we would be able to bypass the problems with the fineness of the discretization and in principle
get better results. However, the continuous case with side information would remain unresolved.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2016.06.018.
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