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Abstract 

A new bijection between the diagonally convex directed (dai-) polyominoes and ternary 
trees makes it possible to enumerate the dcd-polyominoes according to several parameters 
(sources, diagonals, horizontal and vertical edges, target cells). For a part of these results we 
also give another proof, which is based on Raney’s generalized lemma. Thanks to the fact 
that the diagonals of a dcd-polyomiuo can grow at most by one, the problem of 4~n~eration 
of this object can be solved by an application of Gessel’s q-analog of the Lagrange inversion 
formula. 

Une nouvelle bijection entre les polyominos dirigbs diagonalement convexes (polyominos 
d.d.c.) et les arbres ternaires permet l%num&ration des polyominos d.d.c. suivant plusieur 
paramhtres (sources, diagonales, a&es horizontales et verticales, cellules cibles). Pour une 
partie de ces r&Mats nous douuons une preuve supp~~rnen~~, qui est bash sur le lemme 
g&nkralis&e & Raney. G&e au fait que les diagonales d’un polyomino d.d.c. croissent au plus 
d’une unit& leur qdnum~ration peut &re r&solue en utilisant le q-analogue de la formule 
d’inversion de Lagrange dO B Gessel. 

1. Definitions, conventions and notations 

1.1. Binomiai coefficients 

Generally, we adopt the convention: if a binomial coefficient has a negative 
numerator or denominator, then the value of the coefficient is zero. Exceptionally, 
for those binomial coefficients which are indicated by an arrow Y we stipulate: 
(I:), = 1. 
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The Gaussian polynomials are defined by 

k [I = (1 - #)(l - qk-‘)...(l - qk-‘+I) 

r (1 -q)(l -$)“‘(l --Cjr) * 

If k -C 0 or r < 0, we agree that [i] = 0. Again, the only exception is [I i] I = 1. 

1.2. Formal sums 

Let h(z) = h(z; 4) be a formal power series in z, whose coefkients are formal 
Laurent series in q. For n 2 0 we set 

(z”)h(z):= the coefficient of z” in h(z), 

P(z):= h(z)h(qz) ‘a. h(q”_“z), 

P(z):= h(z; q-l)h(q_‘z; q-l) . . . h(q_‘“-“z; q-l). 

By convention, the empty products defining h[*](z) and k[*](z) are equal to 1. 

1.3. Sets of integers 

For n E N, g denotes the set (i E N: 1 < i < n>. 
By the plane lattice we mean the set Z x Z. 

1.4. Lattice paths 

Unless the contrary is explicitly stated, the lattice paths occurring in this paper are 
on the step-set ((JO), (0, l)>. A path with vertices vo, vl, . , . , u, is ‘l/2-good’ if all the 

vertices v 1, . . . , v, lie in the half-plane y < fx. 

1.5. Ternary trees 

Given a ternary tree ii, we first visit the root and then traverse its subtrees from left 
to right. Let u and Y be two vertices of rfi. We put u e u iff the first visit to u precedes 
the first visit to tt. Thus we obtain the prefix order on T (Fig. 1, left). Further, we say 
that 1 is an odd (resp. even) leaf of T if 1 (k leaf of T: k < I > 1 is an odd (resp. even) 
number. We call a leaf 1 a jkal leaf if there are no internal nodes u such that I < v 
(Fig. 1, right). 

1.6. Directed a~imais 

Let A^ be a finite subset of the plane lattice. A nonempty intersection between A^ and 
a diagonal line y = --x + b (b E Z) is called a diagonal of _& We shall say that the 
points of the southwesternmost (resp. northeasternmost) diagonal of A^ are the 
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0 e 0 

Fig. 1. A ternary tree T. Left: The vertices are labeled after the prefix order. Right: The odd and even leaves 
are labeled by o and e. The final leaves are starred as well. 

SW-points (resp. NE-points) of A. The set Ais a directed animal if every point of Acan 
be reached from some of the SW-points of A^ by a lattice path whose vertices all lie 
in .$. If A^ is a directed animal, the SW-points of A^ are called the sources and the 
NE-points of A^ are called the target points. A directed animal whose diagonals consist 
of consecutive points is called a diagonally convex directed animal (a &d-animal for 
short). 

A ceff is a unit square [i, i + l] x [j, j + 11, where i, j E Z. 

Suppose we are given a directed animal A^ and we replace each point p E A^ by the 
elementary cell of which p is the bottom left comer. We say that the resulting plane 
figure A is a directed uni~~i~o. By definition, the diagonals (resp. sources, target cells) 
of a directed animalino are what the diagonals (resp. sources, target points) of the 
underlying directed animal become in consequence of the thickening. ‘The directed 
animalinoes obtained from the dcd-animals will be called do-animalino~. See Fig. 2. 

A polyornino is a finite union of cells which has a connected interior. 
By a directed (resp. dcd-) polyomino we mean a directed (resp. dcd-) anim~ino which 

is a polyomino. From Fig. 5 we see that not every directed anima~no is a directed 
polyomino. This is related to the fact that every point of a directed animal is required 
to be connected to some of the sources, but the sources are not required to be 
connected among themselves. However, all the l-source directed animalinoes are 
directed polyominoes. Further, when dealing with the directed objects having several 
sources it is natural to begin with deriving the results for the animalinoes, and then 
obtain the corresponding results for the polyominoes. 

The main topic of this paper is the enumeration of the dcd-polyominoes. The 
dcd-animals are admittedly a more classical combinatorial object, but they have 
a flaw: being a dcd-animal a finite set of points, it is immaterial to count its horizontal 
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Fig. 2. Left: a dcd-animal with one source, nine diagonals and two target points. Right: the corresponding 
dcd-animalino. 

I+ Piio P@ P&J P,po 5,=x Pm=1 P,30 P,,” 

Fig. 3. The path kV = S,(P), where P is the polyomino of Fig. 2. The steps of W are numbered in the 
reverse order because this will help us to draw the tree E&(w) in the next figure. 

and vertical edges. But in the setting of dcd-polyominoes the enumeration by the 
perimeter can be legitimately carried out, and it gives interesting results as well. 

As usual in the literature, when enumerating the figures like animals, animdinoes 
and polyominoes we make no difference between two of them which can be trans- 
formed into one other by a translation. 
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Fig. 4. The ternary tree 7’ = &(W), where kf’ is the path shown in the preceding figure. 

Y-l_ *... 
4 ; 5 

,..,. :**... 

1;2;3:4 

Fig. 5. 

2. IntrWIuctIoa 

Polyominoes are used in physics and chemistry to model crystal growth, polymers, 
etc. Despite strenuous efforts over the past 40 years, counting the general polyominoes 
remains an unsolved problem. However, considerable progress has been made in 
solving various simpler, but nontrivial models. For instance, nice results are known 
for the classes of parallelo~am, column-convex, convex, directed and diagonally 
convex directed polyominoes. See [2] or [ 1 S] for a survey. 

The dcd-polyominoes model was used for the first time by the physicists Privman 
and Svrakic [14] and [15, p. 993, who obtained the area generating function for the 
i-source case. The enumeration by the perimeter was carried out later by Delest and 
F&dou [3] and Penaud [13]. 

In Section 3 we introduce the sequences of losses, which are a kind of coding 
for the dcd-polyominoes. In Section 4 we define a new bijection between the 
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dcd-polyominoes and ternary trees. This bijection is helpful in the perimeter enumer- 
ation of dcd-polyominoes (Section 5). In Section 6 the main theorem of Section 5.1 is 
proved again by using Raney’s generalized lemma. Section 7 is about the q-enumer- 
ation (i.e. the area and perimeter enumeration) of dcd-polyominoes. Gessel’s ,I- 
Lagrange inversion formula plays a decisive part in this context. 

3. The sequence of losses and some facts about it 

Let P be a l-source dcd-polyomino with k diagonals. Let, forj E k, Xj and Yj be the 
maximal abscissa and the maximal ordinate of thejth diagonal of I’. Observe that, for 
2 < i < k, the largest possible values of Xi and yi’ are Xi-i + 1 and Yi_l -I- 1, 
respectively. Consider the sequence ( pl,. . . , pzk) defined by 

Pi =?k? =4 

~~i-l=Xi_lfl-Xi (ZGiik), p2i = Yj- 1 + 1 - Yi (2 < i < k). 

Evidently, this is a sequence of nonnegative integers. For 2 < i < k, pzi- 1 (resp. pZi) is 
the number of cells that could have been included in, but yet remained below (resp. 
above) the ith diagonal of p. For this reason we shall call ( pl, . . . , & the sequence of 
losses of P. 

Example 1. The sequence of losses of the dcd-polyomino on the right-hand side of 
Fig. 2 is 

p1 = . . . =p4 =o, &=2, p,j= “’ =pll=o, pi2=2, 

P13 = PM = 1% PlS = Pi6 = 4 P17 = 1, PlS = 0. 

For instance, p1 1 is zero and p 12 is two because the sixth diagonal occupies all the 
available sites at the bottom and leaves two sites free at the top. 

Now it is useful to state two simple propositions about the sequences of 
losses, which can easily be proved by induction on k. The first proposition tells us 
how the area and perimeter of a dcd-polyomino can be read off from its sequence of 
losses. 

Proposition 1. Let P be a l-source dcd-poZyo~~~o with k diagonals.~d let (pi, . . . , f&> 

be its sequence of losses. Then 
(a) for j E k, the jth diagonal of P contains j - CfL 1 pi cells; 
(b) the boundary of P consists of 2({j E &: p2j-i = 011 horizontal edges and 

211 j E &: pzj‘= O> 1 vertical edges. 
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The second proposition gives a characterization of those integer sequences which 
are sequences of losses. 

Proposition 2. A sequence of nonnegative integers (pi, . . . , pzk) is the sequence of losses 
of some l-source dcd-polyomino if and only if J$i 1 pi < j (V j E &). 

4. A new bijection between the l-source dcd-polyominoes and ternary trees 

Using Schfitzenberger’s methodology, Delest and Ftdou, in [3], obtained the 
following interesting result: the number of l-source dcd-polyominoes with k diagonals 
is equal to (1/(3k + 1)) ( 3kl I), which is also the number of ternary trees with k internal 
nodes. A result such as this naturally calls for a bijective proof and two such proofs 
have actually been given in [3,13]. Nevertheless, we believe that our simple new 
bijection between the l-source do-polyominoes and ternary trees still deserves to be 
mentioned. 

First we need some notation. 

Notation 1. We write Y(k) to denote the family of l-source dcd-polyominoes with 
k diagonals. By W(k) we denote the family of l/2-good paths which start at (0,O) and 
terminate at (2k + 1, k). By T(k) we denote the family of ternary trees with ;k internal 
nodes. 

Our bijection consists of two steps. 
Step 1: Let P be an element of 48(k) and let <pl, . . . , pZk) be its sequence of losses. 

We associate with P the lattice path B,(P) which starts at (0,O) with a horizontal step, 
makes pi vertical steps with abscissa i (Vi E 2) and ends at (2k + 1, k). 

The northmost points of B,(P) with abscissas 2j - 1 and 2j(j E k) are 
Qj = (2j - 1, C;2;(;1pi) and Rj = (2j, C&pi), respectively. By Proposition 2, 
CF$ 1 pi < Cfi 1 pi < j. So the ordinates of Qj and Ri are at most j - 1 and those two 
points lie below the line y = &x. This shows that B,(P) is a l/2-good path. 

Let fr E B(k) and let @ = B,(P). The sequence of losses of P can be uniquely read 
off from r*v and P is uniquely determined by its sequence of losses. Therefore, & is an 
injection. Further, Bl is also a surjection, as it can be readily shown with the aid of 
Proposition 2. Thus we have 

Proposition 3. B1 is a bijection between P(k) and W(k). 

Step 2: What remains to do now is to define a bijection between the families W(k) 
and F(k). Since the lattice paths are certainly a more classical ~mbinato~al object 
than the dcd-polyominoes, at this stage it is useful to refer to the literature. So in [4] 
one can find a list of bijections between the ordered trees with n edges and various 
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other objects. For instance, there is a bijection between those trees and the set of 
lattice paths from (0,O) to (n, n) which entirely lie in the half-plane y 3 x. Adapting 
(with no claim to originality) this bijection to our case, where the ordered trees are 
ternary, we arrived at the following conclusion. 

Proposition 4. For every path W E W(k) there is a unique ternary tree Bz(W) E: F(k) 
such that the ith (i E: 3k + 1) vertex of B,(W) in prefix order is an internal node i$the ith 
step from the endpoint of IV is a vertical step, 

Moreover, B2 is a b~ection between W(k) and Y(k). 

Quite obviously, Propositions 3 and 4 imply the following theorem. 

Theorem 1. The composition Bz 0 B1 is a bijection between S’(k) and F(k). 

Thus, we have got a new bijection between the l-source dcd-polyominoes and 
ternary trees. An example is shown in Figs. 2-4. 

5. The new bijection put to use 

5.1. Enumeration by the perimeter in the case of one source 

Notation 2. By B(k, 1, m, e) we denote the set of l-source dcd-polyominoes with 
k diagonals, 21 ho~zont~ edges, 2m vertical edges and e target cells. By Y(k, 1, m, e) we 
denote the set of ternary trees rfi which have the following properties: 

(i) iii has k internal nodes, 
(ii) the event ‘the prefix order successor of an even (resp. odd) leaf of T is again 

a leaf’ takes place 1 (resp. m) times, 
(iii) the left branch of T is of length e. 

Proposition 5. B2 0 B1 is a bijective correspondence between @(k, 1, m, e) and 

y(k, 1, m, e). 

Proof. The statement can be established by using Proposition 1 and closely examin- 
ing the correspondence B z~B,.Indeed,letP~B(k,I,m,e)andlet(p,,...,pz,)bethe 
sequence of losses of P. Let Y’ = (& o&)(P). Since P’ has e cells in the last (kth) 
diagonal, Proposition l(a) tells us that k - Cft I pi = e. The path t5i = B,(P) goes 
along the line x = 2k up to the point (2k, Cfi 1 pi) = (2k, k - e) and then it moves one 
step to the right. Hence, to reach its endpoint (2k + 1, k), the path IV must make 
another e upward steps with abscissa 2k + 1. This implies that the prefix order list of 
vertices of T = B,(W) begins with e internal nodes. In other words, the left branch of 
T is of length e. Thus, we have seen that T possesses the property (iii). The proof that it 
also possesses the property (ii) is left to the reader. 0 
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So we have }iP(k, Z, m, e)l = (J(k, 1, m, e)l. Let 

F(d, x, y, t) = C IB(k, I, m, e)l dkxtymte, 
k,l,m.e>i 1 

155 

(1) 

and 

f(4 x, Y) = F;(d, x, Y, 1). (2) 

In order to get an algebraic equation for the function F, we now partition 
the nontrivial ternary trees into eight classes FOoo, &,,,i, . . . , Sz 1 1 : the trees belong- 
ing to the class .T& have a nontrivial left (resp. middle, right) subtree if and only 
if tl (resp. fl, y) is 1. Recall that a ternary tree with k internal nodes has 2k + 1 leaves, 
so that the number of leaves is always odd. Hence, the last leaf of the left (resp. 
middle, right) subtree of a ternary tree T is an odd (resp. even, odd) leaf of T. 
With this in mind, it is not hard to read off from Fig. 6 that the contributions 
to I; are: 

But 

from 9&: dtxy from Ye0 i : dtyf 

from 3&: dtxf(d, y, x) from TOii: &f(d> Y, x1.f 

from Tree: dtxyZ; from Trot: dtyFf 

from Yi 1o: dtxFf(d, y, x) from Yi 1 1 : dtFf(d, y, x)f: 

clearly, there is a bijection between B(k, 1, m, e) and @(k, m, 2, e) (reflection 
in the line y = x). Consequen~y, we have F(& x, y, r) = F(d, y, x, t) and 
f(d, x, y) =f(d, y, x). Using this remark, we find that the eight contributions to F sum 
up to 

F = dr(f; + 1)(f+ x) (f+ Y), 

whence 

(3) 

f= d(f+ l)(f+ x)(f+ Y). 

Let fi =f/(l +f). Solving (3) for F and using (4) we obtain 

(4) 

Mf+ x)tf+ Y) tf/(l +f) tf1 
F = 1 - td(f+ x) (f + y) = 1 - tf/(l +f) = 1. (5) 

Hence the coefficients of F and fI are related by 

(d’x’yV)F = (dkx’ymte) c t’f; = (d’x’y”t’)t”f~ = (dkx’y”) f I’. 
i21 

(6) 

Dividing (4) by f+ 1 and using f = fi/(l -ft ), we get 

fi - dCf,l(l -fi) + xl Cfi/(l -fi) + ~1. (7) 
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Fig. 6. The eight classes of nontrivial ternary trees. ‘1’ and ‘t’ stand for a leaf and a nontrivial ternary tree, 
respectively. 

Theorem 2 The number of l-source ~~~-polyo~inoes having k diagonals, 21 horizontal 
edges, 2m vertical edges and e target cells is equal to 

(8) 

Proof. Applying the Lagrange inversion formula (see, e.g., [9]) to (7), we obtained (8) 
as the coefficient of dkx’ym in ff. By (6), (1) and Notation 2, this coefficient of fl is 
equal to the number of dcd-polyominoes which have the required properties. 0 

Proposition 6, The number of l-source dcd-polyominoes having k diagonals, 21 
horizontal edges and 2m vertical edges is 

k k 

>( >( > 1 m ’ 
(9) 

Proof. Formula (9) can be proved in two ways: either by using Vandermonde’s 
convolution to sum over e > 1 in (S), or by applying the Lagrange inversion formula 

to (4). cl 

Thus, we have generalized the results of Delest and Fedou [3] and Penaud [13], 
who obtained the coefficients of F(d, 1, 1, l), F(1, x, x, 1) and F(d, t, 1,l). 

5.2. Enumeration by the perimeter in the case of several sources 

Notation 3. We write &(r, k, 1, m, e) (resp. P(r, k, S, m, e)) for the set of dcd- 
animalinoes (resp. dcd-polyominoes) which have r sources, k diagonals, 21 horizontal 
edges, 2m vertical edges and e target cells. The symbol A, denotes the dcd-polyomino 
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. * . 

Fig. 7. The triangle A.+. 

with r diagonals and with i-cells in the ith diagonal, for every i E r (Fig. 7). By 
F(k, 1, m, e, u) we denote the subfamily of Y(k, l, m, e) consisting of those trees which 
have precisely u final leaves. 

Let 

P(a d, x, R 0 = C }B(r, k, 1, m, e)ls’dkxtym,te. (11) 
r.k.1.m.e 2 1 

Let I E N be fixed. To every A E &(r, k, 1, m, e) we associate the l-source dcd- 

polyomino Cl,(A) obtained by replacing the first diagonal of A by the ‘triangle’ A, 
(Fig. 8). The polyomino Cl,.(A) has k -t t - 1 diagonals. It again has 21 horizontal 
edges, 2m vertical edges and e target cells. Next, for i E E, Cl,(A) has i cells in the ith 
diagonal. This means that the sequence of losses of Cl,(A) begins with at least 2r zeros. 

Proposition 7. Cl, is a bijection between d(r, k, 1, m, e) and the set of l-source poly- 

ominoes which belong to 9;0(k + I - 1, 1, m, e) and have a sequence sflosses with at &east 

2r initial zeros. 

Further examination of the bijection Bz 0 B1 (defined in Section 4) yields the 

following result. 

Proposition 8. The set of l-source polyominoes which belong to B(k + r - 1, 1, m, e) 
and have a sequence of losses with at least 2r initial zeros is in bijection with 

UZ2r+ 1 _“(k i- r - 1, I, m, e, u). 

Propositions 7 and 8 imply 

Id@, k, 1, m, e)l = 
.,:+I “(k + 

r - 1,-l, m, e, u)!. (12) 
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8 

r!l 

. . . . 

7 i 8 

Fig. 8. The animalinoes A and Cl.&). 

Now we shall first derive the function 

Knowing H, we shall be able to obtain A; knowing A, we shall be able to obtain P. 
Let h(d, x, y, z) = Hfd, x, y, 1, z) and h(d, x, y, z) = h(d, y, x, z). Note that h(d, x, y, 1) 

is the function f(d, x, y) of Section 5.1. Also note that f(d, x, y) is equal to f(d, y;x), 
but h(d, x, y, z) is not equal to h(d, y, x, z). Now we rescan the eight classes of ternary 
trees (Fig. 6) reading off their cont~butions to the function H. The contributions are: 

from 9&-,,: dtxyz3 

from .9&o: d&i 

from YIOO: dtxyz’fi 

from YIlo: dtxzF& 

from 9&: dtyh 

from Yell: dtfh 

from fIo,: dtyFh 

from YI r r : dtFf h. 

Summing these contributions we find 

(1 - dtxyz’)H = dtxyz3 + dt(F + l)[(f+ y)h + xzi;]. (14) 

Putting t = 1 in (14) produces 

[l - dxyz2 - d(f+ l)(f+ y)]*h - dxz(f+ l)*h = dxyz3. (15) 

Since the function f is (implicitly) given by (4), we may regard (15) as a linear equation 
in the two unknowns h and ii. Swapping x and y in (IS), we obtain another linear 
equation 

-dyz(f-t- l)*h + [l - dxy2 - d(f+ l)(f+ x)‘J*i; = dxyzj. (16) 

Now we solve the linear system (15), (16) and then work out the expression 
(f + y)h + x6, which appears on the right-hand side of (14). Using (4) to simplify the 
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numerator, we find 

(f+ y)h + xd 

dxyz3 [(xz + y)(l - dxyz2) -I- dxyz2] 

= [l - dxyz2 - d(f+ l)(f+ x)1 Cl - dxyz2 - d(f+ l)(f+ y)] - d2xyzz(f+ 1)2 
- (17) 

Next we multiply the numerator and denominator of (17) by (f -I- x)(f + y) - xyz2, 

use (4) to simplify the denominator and patiently calculate to reach the formula 

(f+ y)h + xzh = dz3[(xz + y)(l - ffxyz2) + dxy.z2][(f+ x)(f+ y) - xyzq 
(1 - dxyz’ + dxz')(l - dxyz2 + dyz2) - z2(1 - d~yz’)~ ’ 

(18) 

Formulas (14) and (18), along with an application of (3) to simplify the numerator, 
produce 

H= 
dxyz3t 

1 - dxyz% 

d2 [(x2 f y) (1 - dxyzq + dxyz2-j [( 1 - dxyz%) F - dxyz?J 

+[(1-~xyz2+dxz2)(1-dxyz2+dyz2)-z2(1-dxyz2)2](1-dxyz2t)~ 

(1% 

Now that we know H, our next goal is to find the function A. It turns out that we get 
the desired result if we compute the following sequence of functions: 

W x, Y, t, 4 = CH(4 x, Y, t, 4 - H(4 x, Y, t, -WZ 

44 x, Y, t, 4 = CW, x, Y, t, 4 + WA x, Y, t, -.W2 

f201 

w 
K(d, x, y, t, z) = zl + J, 

L(s, d, x, y, t) = K(d, x, Y, t, ~~‘~1, 

WY, 4 x, Y, t) = (SF - U’(I - ~1, 

N(s,d,x,y,t)=d*M(sd-‘,d,x,y,t). 

Namely, the above definitions imply 

(srdkxrymte)N = c (dk+r-lxiymtQzY)H. 
u,2r+l 

(22) 

(23) 

(24) 

(25) 

(26) 

Now it follows from (26), (13), (12) and (10) that 

(s’dkxgymtS)N = c JF(k + r - 1, 5 m, e, u)l 
u*Zr+l 

= Id@, k, 1, m, e)l = (s’dkxzymtS)A. 
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Hence N = A. Noting that, we proceed to the effective computation of I, J, . . . , N = A 
from (19)-(25). In conclusion, the following lemma is obtained. 

Lemma 1. We have 

A = [l + xs/(l 

s [F - xyst/( 1 - xyst)] 

- xys)] [ 1 + ys/( 1 - xys)] r sd - ’ ’ (27) 

where F is given by (4) and (5). 

Now there is yet one goal ahead of us: we have to find the function P. But we are 
already near to this goal. Namely, the function P is closely related to the function A, as 
it will shortly be seen. 

For A a dcd-animalino with at least n diagonals, we shall (again) write X,(A) and 
Y,(A) to denote the maximal abscissa and the maximal ordinate of the nth diagonal of 
A. Let s#+ be the set of dcd-animalinoes which have at least two diagonals. For 
i, j E No, let 

+%$=(AE~+:X&?)+l-X~(A)=i,Yi(A)+l-Y,(A)=j}. (28) 

To put it into words, &ij is the set of those dcd-animalinoes whose second diagonal 
misses to occupy i of the sites available on the bottom side and j of the sites available 
on the top side. The collection of sets {&ij: i, j E Ne)is evidently a partition of A#+, 
Next, as soon as i 3 2 or j 3 2 (or both), every 2 E &ij has some cut points in its first 
diagonal. So in this case the elements of &ij are not polyominoes. On the other hand, 
ifi3E&&uJ&&J‘%&$J~~r, then B has no cut points in the%rst diagonal. More- 
over, it is not hard to see that B is in fact a polyomino. 

Let B be the set of all dcd-polyominoes. Obviously, B contains only one l- 
diagonal polyomino: it is the one-cell polyomino A,. The dcd-polyominoes with 
two or more diagonals lie in J;s,. Hence, by the above discussion, they lie in 

~Oou~O1u~~Ou~ll. Thus, we realize that {{A,>,~~O,cQPO1,~lO,~~l) is a 
partition of 8. Each set in this partition accounts for a part of the function P. 

Concretely, 

{A 1 > gives dxyst, 

do0 gives ds- ‘(A - SF), do1 gives dxA, 

dlo gives dyA, dll gives dxysd, 

as may be established with the aid of Fig. 9. Putting the five parts of P together, we 
find 

P = ds- ‘(1 + xs)(l + ys)A - d(F - xyst). 

Combining (29) with Lemma 1, the following, theorem is obtained. 

(29) 
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d( 1 4- xs)(l + ys) [F - xystf(1 - xyst)] 

p f [l + xs/(l - xys)][l + ys/(l - xys)] -SC’ 
- d(F - xyst), (30) 

where F is given by (4) and (5). 

6. A proof wbicb rests on Raney’s generalized lemma 

In this,section we will give an easy new proof of Theorem 2 of Section 5.1. The proof 
makes use of a simple, but powerful counting tool, which Graham et al. call Raney’s 
generalized lemma [ll, p. 348; 161. In fact, the first to discover this lemma were 
Dvoretzky and Motzkin in 1947 ([7]; also see [5]). But since we shall carry the 
statement of the lemma over from ‘Concrete Mathematics’, we have chosen to call the 
lemma by the name given to it in that book. For the sake of completeness, we also 
state Raney’s ungenerahzed lemma [l 1, p. 3453. 

Lemma 2 (Raney’s lemma). If&, x2, . . . , x,) is any sequence of integers whose sum is 
+ 1, exactly one of the cyclic shifts 

<xitx2,*..,xJ, <xZ,..*,xn,xI>, ***, <x*,x1,..-,x*-l) 

has all of its partial sums positive. 
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Lemma 3 (Raney’s generalized lemma). If (xi, x2, . . . , x”) is any sequence of integers 

with x, $ 1 for all j, and with x1 + x2 + --s + x, = e > 0, then exactly e of the cyclic 
shifts 

<%,X2,.*.,&I), (X2,...,XEI,Xlh **‘I bin,%,..-,X,-l) 

have all positive partial sums. 

ExampIe 2 Consider the sequence (1, - 1, 1, 1, 0, 1, -2, 1, - 1,l). Its cyclic shifts are 

(1, -1, 1,&O, 1, -271, -1, l>, C-1, l,l,O, 1, -2,l, -61, l>, 

+(1,&O, 1, -2,1, -l,l,l, -l), (1941, -2,l, - 1,&l, -1, l>, 

(41, -231, - 1,&l, - 1, 1, l>, (1, -291, -1,&l, -1,&l, O>, 

<-- 2,1, -1,&l, -1, 1, 190, l>, (1, - 1, 1, 1, - 191, 190, 1, -2), 

(-191, 1, -1, 1, l,O, 1, -2,l>, -+ (1, 1, -1, l,l,O, 1, -2,l, -l), 

and only the two marked -+ have all partial sums positive. 

The reader will note that Lemma 2 holds for arbitrary integers, while in Lemma 3 it 
is assumed that the integers are smaller or equal than 1. So it might seem that the case 
e = 1 of Lemma 3 is not so general as Lemma 2. But in spite of the appearances, these 
two statements are equivalent (why?). 

An application of Lemma 2 to the enumeration of column-convex directed poly 
ominoes was given in [S], Here we could use Lemma 2 to enumerate the family 
B(k, I, m, 1). But we shall rather use Lemma 3, which allows us to enumerate the 
family 4a(k, f, m, e) for arbitrary e E fU 

Let us write 94(. . ) as abbreviation for B(k, I, m, e). 
Now we define a kind of ‘Raney bijection’ between 9(. .) and certain family of 

integer sequences. Afterwards we enumerate this family of sequences with the aid of 
Lemma 3. 

To a dcd-polyomino is E B(. . ), whose sequence of losses is ( pl, . . . , p2&, we 
associate the sequence R(F) defined by 

R(P) = (1, -pl, -p2,4 -p3, -h ..+, 1, -pZk-1, -P2k)* (31) 

Clearly, R is an injection. Next, using Propositions 1 and 2, we can readily 
characterize the image of @(. .) under R. It is the set of integer sequences 

(l,al,a2t l,a3,a49 . . . . f,a2k-19a2k) (32) 

such that 
(i) Ui < 0 (Vi E 2); 

(ii) l(iEk: U2i_1 =O>l = I; (iii) 1 (i E k: azi = O> 1 = m; 
(iv) Ci=r(l +&i-i + &r)>O(VjEk); (V) Cf=, (1 f Q-1 + a2i) = e. 

Observe that (v) can be rewritten as C f1 1 aj = e - k. 
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De&Men 1. Let 5be a sequence of the form (32). A nest of Sis any of the subsequences 
(&,~zh(~Cij,e~, ‘a*, (uzk- 1, u~k). The principal cyclic shifts of I are the cyclic shifts 

<l,&,@, I,%% . . . . 1,%k-l, a2k), (l,a3,%..s, l,u2k-i,u2k,l,al,u2), . . . 

. . . . (1,u 2k-19Q2k7 1 ,@1,@2, ..., 19u2k-3?Q2k-2). 

Let Y( . . ) be the set con~n~g the integer sequences of the form (32), which have 
the properties (i), (ii)> (iii) and (v) (property (iv) is not required). Observe that, for 
SE 9(. . ), the principal cyclic shifts of S also belong to .Y( . . ). The enumeration of the 
set 5@(. . ) is easy. To define an element of yi( . . ) we have to 

(a) decide which I of the nests will have first component zero, 
(b) decide which m of the nests will have second component zero, 
(c) define the 2k - t - m yet undefined terms of the sequence so that they be 

negative integers which add up to -(k - e). 
(a) can be done in (:) ways, (b) in (k) ways, and (c) in ( 2k!<C;!_ r )., ways. Hence, 

(33) 

By Lemma 3, a sequence S E y7(. . ) has exactly e cyclic shifts with all positive partial 
sums. But these e cyclic shifts cannot be but principal, because every nonprincipal cs 
begins with a nonpositive term. Being principal, these e es’s belong to Y(. .). Having 
all positive partial sums, they possess property (iv) as well. So these e principal es’s of 
S belong to R(P(. .)). Also, it is immediate that the remaining k - e principal es’s of 
S do not belong to R(B(. .)). 

Imagine all the elements of 9’(. .) together with all of their principal cyclic shifts 
being listed in an I9’(. .)I by k array. Since the elements of R(9(. . )) occur e times in 
each row, they occur el Y( , .)I times in the whole array. Since the columns of the array 
are permutations of sP(. .) 3 R(B(. .)), the elements of R(48(. .)) occur lR(P(. .))I 

times in each column and k jR(P( . . ))I times in the whole array. Therefore, 
klR(B(. .))I = elY(. .)I and 

This completes the new proof of Theorem 2, 

7. The q-enumeration 

To begin with, we introduce the notation for some sets of dcd-animalinoes and for 
the generating functions of these sets. It is to be understood that these generating 
functions are in the following four variables: d = diagonals, x = l/2 horizontal per- 
imeter, y = l/2 vertical perimeter, 4 = area. Instead of cp(d, x, y, q) we usually write 

v, or CpW. 



164 S. Feretii, D, SvrtanlDiscrete Mathematics 157 (1996) 147-168 

Notation 4. As before, A, denotes the one-cell polyomino. By EB we denote the set of 
one-source dcd-polyominoes with /3 target cells. 2ZaF stands for the subset of 9’@ 
containing those polyominoes which have a cells in the next to last diagonal. 

For the generating functions of the sets 3, and .kY2”, we write fa and &, 
respectively. 

Nota~on 5. The number of diagonals, horizontal perimeter, vertical perimeter and 
area of a given dcd-animalino A will be denoted by D(A), H(A), V(A) and Area(A), 
respectively. 

Let P be an element of ZEe. Put z(0) = 0. For j -E r~, we define z(j) = max(z E D(& 
the zth diagonal of P contains at most j cells). 

. - 

Let i E g be fixed. Let n,(P) be the union of the diagonals z(i - l)‘+ l,i(i - 1) + 
2 ,‘.., z(i) of P. Clearly, JYfi(P) is a dcd-animalino with at least i cells in every diagonal. 
Next, since the diagonals of P grow at most by one, the first’and the last diagonal of 
B,(P) contain exactly i cells each. (Incidentally, the animalino n;(P) in most cases 
happens to be a polyomino. To be specific, LIl(P) is not a polyomino iff i > 1 and 
z(i - 1) + 1 = z(i).) Let zi(P) be that what remains of n,(P) after we cut off the i - 1 
top cells from each of its diagonals. It is easy to see that xi(P) E Zi, 

Thus, we have associated with P E %Be the e-tuple n(P) = (nl (P), . . . , K~(P)) E %“I. 
See Fig. 10. 

Clearly, D(P) = CC 1 D(n#)). The sequence of losses of P can be obtained from 
those of xi(B)% by concatenation. Hence by Proposition l(b), H(P) = CL 1 H(lr,(P)) 

and V(P) = Cf= 1 V(ni(P))e But with the area the things are different: 

Area(B) = i [Area(Q)) + (i - l)D(xi(P))]. 
i=l 

(34) 

The above properties of the decomposition rc : .2iYe --) 22’; lead us to the conclusion 

f,(d) =~(~)~~(~~) .“fi(4”- ‘d) =f:‘V) (Ve o bJ)* (35) 

We see that the function fi is standing out among the fls. So let us take a closer 
look at fi. 

Since the sets (A,} and 9’Z”,i(eo N) form a partition, of $‘i, we have 

fifd) = dqxy + Ceo 1 fel (d). Then, Fig. 11 should suffice to convince the reader that 
fei(d) = dq(x + y + e - l)f&f). These remarks together with (35) imply 

f,(d) = dq 
1 

~yf\~l(d) + C (x + y + e - 1) f:“](d) . 
eai I 

(36) 

At first glance, it seems that we shall have to be very ingenious to solve this 
challenging functional equation. But fortunately we need not bother too much, 
because Gessel’s q-analog of the Lagrange inversion formula applies to our case. 
Indeed, Gessel [lo] has proved the following theorem. 
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/” . . . ‘? :dq . . . . . . *** -2 
/x’ :ds . . ...* 
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Fig. 11. The four types of elements of I 3.1. Their contributions to f3, i are, from left to right, dqxf3, dqf3, 

4.h ad dwh. Thus, A, I = d&x + Y -I- 2)h. 

Theorem 4. (q-analog of the Lagrange inversion formula). Let fi (d) = fi (d, q) satiny 

Sl(d) = 4 c g&W)9 (37) 
elto 

where the g, are indeterminates. Let g(t) = Cea 0 get=. Then for n, e > 0, 

f :elfd) 
@“) 1) = 

q(n+l)n12(t~-e)~r~l(q-lt), 

where 



Remark 1. Let us say a few words about the lattice path inte~retation that the 
function fr is given in the proof of Theorem 4. Let W be the family of all lattice paths 
over the step-set (x,: e o Z, e 2 - 11, where x, stands for (1, e). Let f c W be the 
family of paths which, after having started, stay strictly below the horizontal line 
through the starting point and terminate one unit below that line. It is readily seen 
that every w E .P has a unique factorization 

w = WtW:!“‘W,X,-2, (38) 

whereeof+JoandwI,..., w, E 9. Next, let cpl be the generating function for I in the 
following (commuting) variables: d = number of steps; Q = the number of lattice 
points above a path, and below or on the horizontal line through its starting point; 
ge = the number of steps x,-~ (Ve E RI,). From (38) it follows that 

PI(d) = &I! .F* Q&W. (39) 
. 

Finally, (37) and (39) imply cpl =fr. 

Coroflary 1. Vfi (d) =.!+I@, Q) satisfies (37), then for e g2 0, 

where g(t) is as in Theorem 4. 

Proof. 

f :“l(d)/C1 - WI c. 2 0 d"<d")f :‘lw/c1 - WI 
fyi(d) =f[Pl(d)I[l -S(d)] = CnZO d"(d")f[Pyd)/[l -6(d)]' 

and the assertion follows from applying Theorem 4 to the numerator and denomin- 
ator of the latter fraction. 0 

We see that Eq. (36) is of the type (37), with go = xy and ge = x + y + e - 1 for 
e o N. Thus, we have 

g(t) = xyto + c (x + y + e - l)P 
e;a;l 

= xy c1 + f1 - x)x-‘t] [l + (1 - y)y_“t] 
(1 - t)Z (40) 

Applying two identities for Gaussian polynomials given in ~a~onal~s book [12, 
p. 18, Example 31, we find that (Vm E Z, n E NO) 

(t”)s”[“l(rpt) = i,~o[i:n;l]~[m+n-z-k-l]J-J[~] 
x q[l(l-~)+k(k-l)l/2-~vr(l _ X)A/-l(l - y)ky”-ka (41) 
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Eq. (36), Corollary 1, (41) and the relation &(d) =fy](d) put together give the 
following theorem. 

Theorem 5. We have 

where 
B I (IlifJ-lf+k(k-l)-nC-2@-lflf~an(l _ X)iXa-i(I _ ,,)kf-k, 

and 

If we set x: = y = 1, the formula for f&f) considerably simplifies, because only the 
j = k = 0 terms survive. 

Corollary 2. In the case x = y = 1 we have 

c 1,.,0[i:n=ll][2n~~-~-1]q-n(n-2e-1)/2an 

L(a)= ~i,n~D[i~n_;lJ~[2nnl_i~lJ~q-n(n-l)~2~n * 

Our Theorem 5 and Corollary 2 are an improvement of the related results due to 
Privman and Svrakii: [14] and [15, p. 991. Also note that the above formulas for f=(d) 
are what Bousquet-Melou and Ftdou [l] would call formulas perfectly developed 
in a. 

The extension of the q-enumeration to the case of I > 1 sources presents some 
difhculties, because Theorem 4 can no longer be applied. In fact, these difficulties can 
be overcome by further use of the ideas of Gessel’s proof, but this requires strenuous 
effort. So we shall stop here for the moment, and the case of I > 1 sources will be 
treated in a future paper of ours. 
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