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1. INTRODUCTION 

Suppose the linear equation y’ = A(t) y has an exponential dichotomy 
and suppose the functions f(t, X, y) and g(t, X, y) are continuous and small 
Lipschitzian in x and y. Then the system of differential equations, 

x’ =f(t, x, Y), 

y’ = A(t) y + g(L .2’, y), 

has an integral manifold given by y = a(t, x). In this paper, which continues 
the work in [l], we show that there is a continuous function of (t, X, y) that is 
a homeomorphism of the (x, y) space for each fixed t, sending the solutions of 
this system onto the solutions of the linearized system 

s = f(t, s, a(t, s)), 

y’ = J(t))‘. 

The stationary point and periodic orbit are included as special cases, and thus 
the linearization theorems of Harttrran and of Irwin [2] are generalized. Our 
treatment is also more general in that the vector fields we consider are just 
Lipschitzian and our equations are nonautonomous. This work also overlaps 
the work of Pugh and Shub [3] and, although more general in the above- 
mentioned aspects, it is less general in that the integral manifolds considered 
are not as general as theirs. 

2. STATEMENT OF THE THEOREM 

If x is in Rm and y is in Rn, then we denote their norms by / x 1 and j y 1 
and, if A is an n x n matrix, we denote its operator norm by 1 A 1 . If h(t) 
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is a continuous vector function oft in R, we make extensive use of the norms 

iI I2 (I+ =- sup{J h(f)/ e’f), 
t y, 

where a! > 0. 
Suppose that -4(t) is a matrix function defined and continuous for all t 

on the real line R. Then we say that the linear differential equation 

” = A(f)J (1) 

has an exponential dichotomy if it has a fundamental matris Y(t) such that 

/ Y(t) PY-l(s)/ ,< K exp(--2Jr(t - s)) for s < t, 

1 Y(t) (I - P) Y-‘(s)1 < K exp(--2a(s - t)) for s 3 t, 
(2) 

where P is a projection (P” = P) and K, 01 are positive constants, 
Now we state our theorem. 

THEOREM. Suppose A(t) is a continuous matrls function such that the linear 
equation (1) has a fundamental matrix Y(t) satisfying (2). Suppose f (t, x, y) 
is a continuous function of R x R” x Rn into RI” such that 

If(t9 Xl jr'1 ) - f(t, .x, , yg)l < 41 I .q - .Q I + iv 1 y1 - ?'2 ; (3) 

for all t, x1 , x2 , y1 , yr , and suppose g(t, x, y) is a continuous function of 
R x R” x Rn into R” such that 

I g@, x, Y)l G CL> 

I & Xl ,Yl) - id4 x2 t YJI G %[I 51 - x2 I + I Yl - Yn II 
(4) 

for all t, x, y, xl , x2 , y1 , ~1~ . Then, if 

41 G a/4, ~a < min{m2/32NK, or/UC}, 

(i) there exists a continuous function o(t, x) of R x Rm into Rn satisjjing 

I v(t, .v>I G &a-l, I v(t, xl) - $6 x&l ,( 8Kdqp I xl - xp I 

for all t, x, xl , x2 such that y = v(t, x) determines an integral manifold for the 
system, 

x’ = f (t, s, y), 

3" = A(t) y + g(t, x, y); 
(5) 
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i.e., if x(t) is a solution of the equation 

x’ = f (t, x, v(t, x)), 

then x(t), a(t, x(t)) is a solution of (5). Moreover, if x(t), y(t) is a solution of (5) 
such that sup- m<t<m I y(t)\ < co, then y(t) = v(t, x(t)) for all t. 

(ii) There es&s a continuous function 

H(t, x, y) = (fqt, “T, y), H*(t, s, y)) 

of R x R”” x R” onto RiR1 x Rn such that, ;fx(t), y(t) is a solution of (5), then 
H,(t, x(t), y(t)), !Y2(t, x(t), y(t)) is a solution of the system 

x’ = f (t, s, v(t, x)), 

y’ = 24(t) y. 
(6) 

For each fixed t, H,(x, y) = H(t, x, y) is a homeomorphism of Rnl x Rn. 

L(t, x, Y) = (-W, ~3 Y>, L& x, Y)> = H,‘(.T y) 

is continuous in R x Rm x R” and, zy z(t), w(t) is any solution of (6), then 
L,(t, x(t), m(t)), L2(t, z(t), w(t)) is a solution of (5). 

We omit the proof of the first part of the theorem since it is a well-known 
result (see, for example, [4, 51). 

The: basic idea of the proof of the second part of the theorem is as follows. 
Given a solution x(t), y(t) of (5) we find another solution i(t), j(t) of (5) on 
the “stable manifold” of (5) i.e., j(t) is bounded as t + fco, such that 
x(t), y(t) approach i(t), j(t) exponentially as t + -co. Then we find a solu- 
tion z(t) on the integral manifold of (5) such that i(t) approaches z(t) expo- 
nentially as t ---f fco, and we take zu(t) to be the unique solution of (1) such 
that w(t) - y(t) is bounded on the real line. Then 

Wt, x(t), r(t)) = z(t) and H2(t, x(t), y(t)) = w(t). 

Our basic tool in the proof is Lemma 2, which is proved in the next section. 

3. LEMMAS 

To prove Lemma 2, we need the following. 

LEMMA 1. Let f(t, x), k(t, x) be continuous functions of R x R” into Rm 
such that 

I k(t, 4 - k(t, q)l < v I xl - xp I (7) 



for all t, x1 , s, . Suppose the equation s’ = f( , .) I I t 1 ra5 a solution s(t) such that 

sup{1 f(t. x(t)) - k(t, .y(tjj; 4; -:. K. 
I --o 

Then,ifv<a, there exists a unique solution z(t) of 

s’ = k(t, x) (8) 
such that 

sup{/ z(t) - s(t)/ ,It> < E’. 
t>o 

Moreover, if k(t, x) = k(t, x, 0, x(t) = s(t, 0, .f(t, x) = f(t, x, 5) depend 
continuously on a parameter 5 in a subset of some Euclidean space such that v 

in (7) is independent of 5 and 

supll f (4 .v(t, 0, 5) - k(t, x(t, i), 01 @I- < 03 
t>o 

uniform& with respect to 5, then the solution z(t) = z(t, 5) found above is 
continuous in (t, 5). 

PYOOf. Put 

M = sup{/ f (t, x(t)) - k(t, x(t))1 eat}. 
t;:o 

Let 9’ be the set of continuous functions z(t), defined on t > 0, such that 
11 z - s II+ < 03. If z is in Y, we put 

Z(t) = s(t) - j;x’ [k(s, x(s)) - f(s, x(s))] ds, 

so that 
Z’(t) = k(t, x(t)). 

Then 

1 Z(t) - x(t)l < j;= 1’ 1 z(s) - s(s)1 + / k(s, s(s)) - f(s, x(s))1 ds 

< (va-l 1; a - .t /I+ + aelM) ebt 

so that j/Z - x II+ < co. Hence Z is in Y. Also, if q , .z2 , are in Y with Z, , 
Z, corresponding to them as above, then 

Zl(t) - 5(t) = - It= [k(s, z&j) - k(s, q(s))] ds, 

so that 
)I z, - z, IIf < a-lv I! z1 - 2, IIf. 
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Hence, the mapping z -+ 2 is a contraction on Y, made into a complete 
metric space by d(z, , .~a) = 11 x1 - za \I+, and so it has a unique fixed point 
z(t) which is clearly a solution of (8) and satisfies [j x - x \I+ < co. 

Now let zr(t) be another solution of (8) such that 11 z1 - N II+ < co. Then, 
if n is ;a positive integer, 

z,(t) = z(t) + 44 - z(n) - I,” MS, z&)) - 4,441 ds. 

11 z1 - z II+ < ‘CD so that 1 al(n) - z(n)\ < 11 zr - a I;+ e-“” + 0 as n - ‘XI. 
Hence, letting n -+ CO, we obtain 

(The infinite integral exists since I/ zr - z Il~t < co.) Then 

II 21 - x j/+ < (Y-G 11 z1 - z IIf, 

which implies II z1 - z II+ = 0 and so al(t) = z(t) for all t. 
Suppose now k(t, x, LJ, f(t , X, <), x(t, 5) depend continuously on {. We 

replace Y by the set of continuous functions .z(t, 5) defined for all 5 and 
t > 0 such that 

sup{1 z(t, 5) - s(t, 5)l efit> < co. 
E.QO 

Then we prove, almost exactly as before, that the integral equation 

+, 5) = x(t, 5) - fm [k(s, z(s, 0, 5) -f(s, x(s, 0, 01 ds 
‘t 

has a unique solution z(t, 5) in 9. Then, for each 5, z(t) = z(t, t;) is the 
unique solution of X’ = K(t, X, 5) such that ~up~~~{l x(t) - x(t, [)I eat} < cry 
and, moreover, z(t, <) is continuous in (t, 5) for all 5 and t > 0. From standard 
theorems on continuous dependence on a parameter and initial values, it 
then follows that z(t, 5) is continuous for all 5 and all t. 

LEMMA 2. Suppose A(t) is a continuous matrix function such that the linear 
equation (1) has a fundamental matrix Y(t) satisfying (2) and suppose f and g 
are continuous functions satisbing (3) and (4). 

Let x(t) = x(t, [,q, -r), y(t) = y(t, e,~, T) be the sohtion of (5) such that 
X(T) == 5, y(7) = 7, and let q(t) = q(t, 5) be, for each 5 in some Euclidean 
space, a solution of the linear equation (1) such that q(t, 5) is continuous in (t, 1). 
Then, ;f 

41 < 42, q2 < min{ol/8K, 2/16NK), (9 
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there exists, for each jxed (5, 1 7, T, <) such tkaf y(t, E, 7, T) - q(t, j) is bounded 
in t 20, a unique solution .2(t) = G(t, 6, 7, 7, j), f(t) =j(t, 5, 7], T, 6) of (5) 
such that 

sup{/ i(t) - s(t)/ e,lt:- -: ~5, sup 1 j.(t) - q(t)/ < ,m. 
t>o --I-t. I 

Moreover, i(t, t, 7, 7, 5), j,(t, 5, 7, T, 0, are continuous in (t, f9 17, 7, 51, and 
the inequalities 

1 G(t) - s(t)/ < 81VKc1 1 j(s) - y(s)1 exp(--a(t -- s)) if s < t, 

1 j(t) - y(t)1 < 4K (3;(s) - y(s)/ exp(--iu(t - s)) if 
(10) s<t 

are satisfied. 

Proof. We first of all suppose that f, 7, 7, 5 are fixed. Then let 9 be the 
set of all continuous vector functions w(t) such that 

sup I w(t) - q(t)\ < Kp-1 and 11 w - y Ijf < co. 
-m<t<sr 

If zu is in Y, then according to Lemma 1, since 

I f (f, x(t), J!(t)) - f(f, x(t), w(t))1 < fV /I w - my I/+ e@ for t > 0, 

there exists a unique solution z(t) of x’ = f(t, X, w(t)) such that 
11 x - x )I+ < CC. z(t) satisfies the integral equation 

z(t) = x(t) - 
I 
tx [f(s, z(s), w(s)) - f (s, x(s), y(s))] ds. (11) 

Now let v(t) be the unique bounded solution of 

i.e., 
v’ = J(t) v + g(t, z(t), w(t)), 

v(t) = J t Y-(t) PY-l(s) g(s, x(s), w(s)) ds 
-32 

r m - E’(t) (I - P) F(s) g(s, z(s), zu(s)) ds, 
-t 

SO that / v(t)/ < 3+-l. Finally, put 

W(t) = q(t) + v(t). 
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Then 

and 

is bounded in t 3 0 and is a solution of 

where 
u’ == A(t) 24. + h(t), 

so that 
44 = g(t, 4th w(t)) - g(4 4% u(t)) 

Then 
II h /I+ < Pd 2 - .-x IIf + II w -Y 11’1. 

(12) 

u(t) = Y(t) PY-l(O) u(O) + j. t Y(t) PY-l(s) k(s) ds 
0 

- 
J 
-Oj Y(t) (I - P) Y-‘(s) h(s) ds, 
t 

so that 

II f.4 II+ < k’ I @)I + 2KK1 II h II+; (13) 

i.e., 11 A’- y II+ < co. Hence, IV is in 9. 
We make Y into a complete metric space by giving it the metric 

d&l 3 w2) = II Wl - % II, well defined since II w1 - w2 IIf < co and 
1 WI(t) - wz(t)l < 2Kpo~-~ if t < 0. In the above, let z1 , z, , WI , W, cor- 
respond to w1 , wz . Then, from (1 l), 

40 - 4t) = - jtm MS, 44 w&N - fh ds), w&)1 ds 

for all t. So 

I z,(t) - z,(t)1 < q1 Jtm I zl(s) - z,(s)l ds + hkl II w1 - w2 II cat. 

By an elementary Gronwall lemma-type argument, this implies 

I 40 - 4t)l d N(a - c7d-’ II w1 - we II e-nt for all t. 

Thus 

II z1 - z2 II < 2Nd II WI - w2 II . 

Now u(t) = WI(t) - Wz(t) is the unique solution of (12) such that 11 u II < CO, 
where 

h(t) = id4 m, w&N - g(t, 3(t), w&N 
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so that 

+) = jt 
-% 

l’(f) PY-+) hcs) ds - J’ I-(~) (I - P) Y-+) hcs) ds 
f 

and, hence, 

Thus, 

That is, the mapping w ---t W of Y into itself is a contraction and so has a 
unique fixed point j(t). Then 

and 

where i(t) is the unique solution of 

S(t) =f(t, i+(t), j(t)) 

such that j( P - x (I+ < ~3. So i(t), j(t) is the required solution of (5). 
Now we prove uniqueness. Let x1(t), yr(t) be another solution of (5) such 

that I/ .x1 - x I/+ < CC and SUP-~<~<~ I y,(t) - dt)l < a. Then xl(t), rd4 
and .G(t), j(t) are two solutions of (5) such that 

j/ x1 - 2 I/+ < cc and 

Now u(t) = yl(t) - P(t) is a bounded solution of 

where 

u’ = A(t) u + h(t) + F(t, u), 

so that 
w = g(f, %(a Yl(9) - At, w Yl(4) 

and 

so that 

FCC u> = g(t, 40,9(t) + u) - g(t, .w>, B(t)) 



LINEARIZATION NEAR A MANIFOLD 251 

Hence, by a slight generalization of Theorem 13 in [6, p. SO], 

I yl(t) - P(t)1 = j u(t)1 d 2K{I u(O)1 + 2a-11j h II+} e-at if t > 0. 

Then, as in the uniqueness in Lemma 1, we can show that 

.Q) - i(t) = - jf” [f@, Lvl(s), 3)&N - fcS, W, $Wl ds. 

Also, u(t) = yr(t) - $(t) is the unique bounded solution of 

u’ = -A(t) u + g(t, -q(t), y&)) - g(t, .qt), 9(t)). 

Thus, almost exactly as in our proof that the mapping was a contraction, it 
follows that Ij x1 - f I/ < co, II u [] < co and II .1cr - P II < 2Nol-l ]I u II , 
jl u II < 2Kas&[ll x1 - S /I + jl u Ii]. These imply /I x1 - L Ij = II u 11 = 0 and 
hence the uniqueness. 

We now prove the inequalities (10). Writing 

II h IIs = sup0 WI exp(4 - s))I 
t>s 

for fixed s, it follows again from the slight generalization of Theorem 13 in 
[6, p. 801 that, if s < t, 

I j(t) - y(t)1 < X[I j(s) - y(s)/ + 2q& II 2 - x II,] exp(--ol(t - s)). 

so 
II 9 - ?’ /Is < 2K I EC4 - Y(S)1 + 4&7K1 II f - x IIS * (14) 

Now 

i(t) = x(t) - fm [f(u, i(u), j(u)) - f(u, x(u), y(u))] du. 
-t 

Thus, 
11 4 - s IIs < a-lql /I 4 - x IIs + Na-1 113 - y IIs . (15) 

Combining (14) and (15), we obtain 

11 i -- x 1Is < 8iVKc1 j j(s) - y(s)1 , II 9 - ?’ IIS < 4K I 5%) - u(s)l > 

and hence the inequalities. 
Finally, we prove the continuity of .G(t, [,T, 7, <), j(t, [, T,v-, 5). We choose 

any bounded subset g in the ([,T, 7, 5) space. Then do, 5) - ~(0, 5, rl, 7) is 
bounded in .B. We let Y be the set of vector functions w(t, I, 77, r, [), con- 
tinuous in R x a, such that 

and 
sup sup{1 w(t, f, 7, 7, i) - Y(& E, 7, de? < 00. 
9 t>o 
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If ~1 is in Y, we define c(t) := u”(t, f, q, 7. <)? fbr each fised (5, 71, T, <), as the 
unique solution of 

x’ =- f(f, .\‘. w(f, t’. F-f, T, i)) 

such that 

where z(t, t,q, 7, 5) is continuous by Lemma 1, and then we put 

w-(4 E, 77, 7, 5) = 4(4 5) + v(t, 5, 7, 77 0, 

where v(t) = v(t, 5, T, 7, 5) is, for each firred (t, T, T, 0, the unique bounded 
solution of 

z” = r2p) ZJ + ‘q(f, z(t, E, ‘I? 7, 09 w(t, 8, 7, 7, t-)), 

where v(t, [, 7, 7, 5) is continuous by Lemma 1 in [l]. Then we can prove I,fi 
is in Y in the same way as before, where we make essential use of 
the boundedness of q(O, 5) - ~(0, 5, 7, T) in (13). Finally, we prove that the 
mapping w - 117 is a contraction on Y with the metric 

The fixed point of u’ + TV is, by the uniqueness in the first part, $(t, [,T, T, [) 
which is therefore continuous in R ~2, and it also follows that ;C(t, [,v, 7, 5) 
is continuous in R :< g. But this holds for any bounded set A? in the (E, T,T, 5) 
space. So 2, 9 are continuous everywhere. Thus the proof of Lemma is 
complete. 

Remark. Let x(t) = x(f, [, 7, Q-), y(t) =-y(t, 6, 7, 7) be the solution of (5) 
such that X(T) = f, Y(T) == 7. Then 

q(t) = Y(t) IT-l(t) [y(t) - i_l, Y(t) W-‘(s) g(s, .44, Y(S)) ds! 

is a solution of (l), q(t) = q(t, 6, 7, ) 7 is a continuous function of (& [, 7), 7), 
and 

y(t) - q(t) = Y(t) (I - P) Y-‘(t) y(t) + /” Y(t) PI’-*(s) g(s, x(s)&)) ds 
=-02 

is bounded in t < 0. So, if the conditions (9) hold, it follows from the obvious 
version of Lemma 2 corresponding to t ---f - co that there exists a unique solu- 
tion Z(t) = .C(t, 6, v, T), j(t) = j(t, t,~, 7) of (5) such that 11 2 - x Jj- < 03, 
SUP-~<~<~ 1 g(t) - q(t)/ < CD, and .?, 5 are both continuous in (t, E, 7, 7). 
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Now I PM < I At) - n(t)l + I dt)l ’ b IS ounded in t > 0 so that a(t), j(t) 
is on the “stable manifold” of (5). Furthermore, from (lo), if s > t, 

j i(t) - x(t)/ < 8N&r1 / g(s) - y(s)1 exp(--(S - t)), 

1 j(t) - y(t)/ :< 4K I j(s) - y(s)] exp(--or(s - t)). 
W-5) 

Conversely, let xl(t), yl(t) be any other solution on the “stable manifold” 
of (5), i.e., yI(t) is bounded in t 3 0, such that 

II? - x jl- < 00, sup I y$) -y(t)/ < co. 
t<0 

Then, if t > 0, 1 yl(t) - q(t)] < I y,(t)1 + I q(t)1 , which is bounded, and, if 
t < 0, I n(t) - q(t)1 < I yl(t) - y(t)/ + I y(t) - q(t)/ , which is also bounded, 
so that sup- m<t<ao ) yI(t) - q(t)] < co. Thus it follows from the uniqueness 
in Lemma 2 that x,(t) = a(t), yl(t) =3(t). 

Summing up, we have proved that ;f x(t) = x(t, (,‘I, T), y(t) = y(t, E, 7, T) 
is the solution of (5) such that .X(T) = 5, Y(T) = q, then under the conditions (9) 
on q1 , qz there is a unique soZution i(t) = .?(t, f,~, T), j(t) = +(t, t,~, T) of (5) 
for which sup,>, I B(t)1 < 00 such that 

sup {I a(t) - X(t)/ ePatj, < cc), sup I j(t) -y(t)] < co. 
w t<0 

iMoreover, the inequalities (16) are satisjed and 2, 9 are continuous functions 

of (4 f, 714. 

4. PROOF OF THE THEOREM 

Let x(t), y(t) be the solution of (5) such that X(T) = 5, y(~) = T. Then 
there exists a unique solution i(t), j(t) on the “stable manifold” of (5) such 
that /I .i - x II- < co, sup,<, [j(t) - y(t)] < CO. Now, using Lemma 2 with 
q(t) = 0, let z(t), wl(t) be the unique solution of (5) such that 11 z - 4 IIf < 00, 
SUP-~<-~<~ / wl(t)l < co. Finally, take w(t) as the unique solution of the 
linear equation (1) such that SUP-~<~<~ I w(t) - y(t)1 < 00. Then 

w =r(t> - [J-;m Y(t) PY-+) g(s, x(s), Y(S)) ds 

- jta E'(t) (I - P) Y-l(s) g(s, x(s), Y(S)) ds] , 

so that 

1 w(t) - y(t)1 < K/m-l. (17) 
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We put HI(7, 6, r]) = z(7), H&-, [, 7) =- 2(.(r). From Lemma 2, z(7) is a 
continuous function of (7, G(T), f(7)) and .C(T), J(T) are, in turn, continuous 
functions of (7, [, 7). Also, W(T) is a continuous function of (T, 6, 1,). Thus 
HI , Hz are both continuous, and from (17) WC have 

Furthermore, it is clear from our definitions of HI , H, that 

H&, x(t), y(t)) = a(t), Hz(f, x(t), y(t)) = w(t) for all t. 

Conversely, let x(t), w(t) be the solution of (6) such that ~(7) = [, U,(T) = 7. 
Then, applying Lemma 2 to z(t), a(f, z(t)) as the solution of (5) and to 
Y(t) E’Y-l(t) w(t) as the solution of (l), there exists a unique solution Z(t), 
G(t) of (5) such that 

11 f - z II+ < 03, sup 1 zZ(t) - Y(t) PI’-l(t) w(t)/ < CO. 
-CC<t<ir 

Finally, applying the version of Lemma 2 corresponding to t + -‘x, to 
s(t), G(t) as the solution of (5) and w(f) as the solution of (l), there exists a 
unique solution x(t), y(t) of (5) such that 

/I s - 1 I;- < co, sup /4’(t) - 20(t)/ <: CO. 
-x<tiu. 

Now we put L,(T, 5,~) = N(T), &(7, E, 7) = J(T). L, , L, are continuous as 
HI , Hz are and, moreover, 

L,(t, z(t), w(t)) = s(t), &(t, z(t), w(t)) = I for all f. 

All that remains to prove is that H = (HI , Hz) and L = (L, , L.J are 
inverses of each other for fixed t; i.e., L, o Ht = H, o L, = the identity, 
where 

and 

H,(x, y) = (H,(L x, Y), H,(t, 3~9 Y)) 

L,@, y) = (W, x9 Y), L*(t, *TV y)). 

So let x(t), r(t) be a solution of (5) with 

z(t) = H,(t, .x(t), y(t)), w(t) = &(t, x(t), y(t)) 

the corresponding solution of (6). We show, first, that G(t) = Z(t), j(t) = z?)(t), 
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where i(t), j(t) comes from s(t), JJ(~) and Z(t), z?(t) comes from x(t), w(t) as in 
the above. Since 

and 

1 zqt) -j(f)] < 1 z?(t) - Y(t) PI--l(t) zo(l(t)l + 1 Y(t) PF(t) (w(t) - y(t))1 

+ ) I’ t 
-m 

l’(t) f’E’-‘6) g(s, W, y(s)) ds / 

+ 1 j(t) - Y(t) PI-='(t) 

x ;Y(t) - j;, y(t) PE”‘(s) g(s, s(s), y(s)) ds[ 1 

so that II 5 - PI/+ < a and supPaCtCs 1 z;(t) -g(t)\ < 53, it follows as in 
the proof of the uniqueness in Lemma 2 that i(t) = Z(t), j(t) = C(t). Now, 
denoting the solution of (5) corresponding to the solution z(t), w(t) of (6) by 

we have 

and 

sup I r(t) - y(t)1 < -E:;<, I r(t) - W)I + sup I 4) - YWI < KJ 
--m<t<m -m<t<m 

so that it follows again that f(t) = r(t), y(t) = y(t). This implies that L, 0 Ht 
in the identity for all t. Similarly, we can prove that Ht 0 L, is the identity 
for all f. Thus the proof of the theorem is complete. 
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