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Abstract

We consider the support problem of Erdös in the context of l-adic representations of the

absolute Galois group of a number field. Main applications of the results of the paper concern

Galois cohomology of the Tate module of abelian varieties with real and complex

multiplications, the algebraic K-theory groups of number fields and the integral homology

of the general linear group of rings of integers. We answer the question of Corrales-

Rodrigáñez and Schoof concerning the support problem for higher dimensional abelian

varieties.
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1. Introduction

The support problem for Gm was first stated by Pál Erdös who in 1988 raised the
following question:
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let SuppðmÞ denote the set of prime divisors of the integer m: Let x and y be two

natural numbers. Are the following two statements equivalent?

(1) Suppðxn � 1Þ ¼ Suppðyn � 1Þ for every nAN;
(2) x ¼ y:

This question, along with its extension to all number fields, and also its analogue
for elliptic curves, were solved by Corrales-Rodrigáñez and Schoof in the
paper [C-RS]. Other related support problems can be found in [Ba,S]. In the
present paper we investigate the support problem in the context of l-adic
representations

rl : GF-GLðTlÞ:

The precise description of the class of representations which are considered is rather
technical. It is given by Assumptions I and II in Sections 2 and 3, respectively. This
class of representations contains powers of the cyclotomic character, Tate modules
of abelian varieties of nondegenarate CM type, and also Tate modules of some
abelian varieties with real multiplications (cf. Examples 3.3–3.7).

Consider the reduction map

rv : H1
f ;Sl

ðGF ;TlÞ-H1ðgv;TlÞ;

for all veSl ; which is defined on the subgroup H1
f ;Sl

ðGF ;TlÞ of the Galois

cohomology group H1ðGF ;TlÞ (see Definition 2.2). Sl denotes here a finite set of
primes which contains primes over l in F : Let BðFÞ be a finitely generated abelian
group such that for every l there is an injective homomorphism

cF ;l : BðFÞ#Zl-H1
f ;Sl

ðGF ;TlÞ:

Let P and Q be two nontorsion elements of BðFÞ: Put P̂ ¼ cF ;lðP#1Þ and Q̂ ¼
cF ;lðQ#1Þ: Our main point of interest is the following support problem.

Support problem. Let Pn be an infinite set of prime numbers. Assume that for every

lAPn the following condition holds in the group H1ðgv;TlÞ:
for every integer m and for almost every veSl

mrvðP̂Þ ¼ 0 implies mrvðQ̂Þ ¼ 0:

How are the elements P and Q related in the group BðFÞ?

Main results. Let Pn be the infinite set of prime numbers which we define precisely in
Section 4 of the paper. We prove the following theorem.
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Theorem A (Theorem 5.1). Assume that for every lAPn; for every integer m and for

almost every veSl ; the following condition holds in the group H1ðgv;TlÞ:

mrvðP̂Þ ¼ 0 implies mrvðQ̂Þ ¼ 0:

Then there exist aAZ� f0g and fAOE � f0g such that aP þ fQ ¼ 0 in BðFÞ: Here OE

denotes the ring of integers of the number field E associated with the representation rl

(see Definition 3.2).

In order to prove Theorem A we investigate representations with special
properties formulated in Assumptions I and II. We introduce the notion of the
Mordell-Weil OE-module for such representations. Proof of Theorem A is based
on a careful study of reduction maps in Galois cohomology associated with the
given l-adic representation satisfying Assumptions I and II. We managed to
extend the method of [C-RS] to the context of such l-adic representations. The
main point in the proof is to control the relation between arithmetical properties
of the images of l-adic representations and reduction maps. Key theorems on
the image of the representations are proved in the separate work, cf. Theorems A
and B of [BGK1]. In Section 6 of the paper we derive the following corollaries of
Theorem A.

Theorem B (Corollary 6.4). Let P;Q be two nontorsion elements of the algebraic K-
theory group K2nþ1ðFÞ; where n is an even, positive integer. Assume that for almost

every prime v of OF and every integer m the following condition holds in the group

K2nþ1ðkvÞ:

mrvðPÞ ¼ 0 implies mrvðQÞ ¼ 0;

where in this case, rv is the map induced on the Quillen K-group by the reduction at v:
Then the elements P and Q of K2nþ1ðFÞ are linearly dependent over Z:

Note that Theorem B has already been proven by a different method in [BGK].
Theorem A has the following corollary concerning the class of abelian varieties

mentioned in the beginning of this Introduction.

Theorem C (Corollary 6.11). Let A be an abelian variety of dimension gX1; defined

over the number field F and such that A satisfies one of the following conditions:

(1) A has the nondegenerate CM type with EndF ðAÞ#Q equal to a CM field E such

that EHCF (cf. example 3.5).
(2) A is simple, principally polarised with real multiplication by a totally real field

E ¼ EndF ðAÞ#Q such that EHCF and the field F is sufficiently large. We also

assume that dim A ¼ he; where e ¼ ½E :Q	 and h is odd (cf. example 3.6) or A is

simple, principally polarised such that EndF ðAÞ ¼ Z and dim A is equal to 2 or 6
(cf. example 3.7 ðbÞ).

G. Banaszak et al. / Journal of Number Theory 100 (2003) 133–168 135



Let P;Q be two nontorsion elements of the group AðFÞ: Assume that for almost every

prime v of OF and for every integer m the following condition holds in AvðkvÞ:

mrvðPÞ ¼ 0 implies mrvðQÞ ¼ 0:

Then there exist aAZ� f0g and fAOE � f0g such that aP þ fQ ¼ 0 in AðFÞ:

There are two important special cases of abelian varieties satisfying conditions of
(2) of Theorem C: abelian varieties A with EndF ðAÞ ¼ Z such that dim A is an
odd integer [Se1] (cf. example 3.7 (b)) and abelian varieties with real
multiplication by a totally real number field E ¼ EndF ðAÞ#Q; such that
e ¼ g [R1] (cf. example 3.7 (a)). Note that for these abelian varieties the
analogues of the open image theorem of Serre have been proven [R1,Se1].
The proof of Theorem C relies on the analysis of the image of the corresponding
Galois representation. The necessary information on the image of Galois
representations on l-torsion points of abelian varieties from (1) and (2) of
Theorem C is provided by Theorems 2.1 and 3.5 of [BGK1]. It is worth mentioning
that Theorem C given above provides an answer to the question of Corrales-
Rodrigáñez and Schoof about the support problem for higher dimensional abelian
varieties [C-RS, p. 277].

Notation

l is an odd prime number
F is a number field, OF its ring of integers
GF ¼ Gð %F=FÞ
v denotes a finite prime of OF

OF ;S is the ring of S-integers in F ; for a finite set S of prime ideals in OF

GF ;S is the Galois group of the maximal extension of F unramified outside S

Fv is the completion of F at v and kv denotes the residue field OF=v

Gv ¼ Gð %Fv=FvÞ
Iv is the inertia subgroup of Gv

gv ¼ Gð %kv=kvÞ
Tl denotes a free Zl-module of finite rank d

Vl ¼ Tl#Zl
Ql

Al ¼ Vl=Tl

rl : GF-GLðTlÞ is a representation unramified outside a fixed finite set Sl of
primes of OF ; containing all primes over l

rl denotes the residual representation GF-GLðTl=lÞ induced by rl

Fl ¼ FðAl ½l	Þ denotes the number field %Fker rl

Gl ¼ GðFl=FÞ; observe that GlDrlðGF Þ is isomorphic to a subgroup of
GLðT=lÞDGLdðZ=lÞ: Let L=F be a finite extension and w a finite prime
in L: To indicate that w is not over any prime in Sl we will write weSl ;
slightly abusing notation
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½H;H	 denotes the commutator subgroup of an abstract group H

HiðG;MÞ denotes Galois cohomology group of the G-module M

2. l-adic intermediate Jacobians

Definition 2.1. Define

H1
f ðGF ;TlÞ; ðresp: H1

f ðGF ;VlÞÞ

to be the kernel of the natural map:

H1ðGF ;TlÞ-
Y

v

H1ðGv;TlÞ=H1
f ðGv;TlÞ

ðresp: H1ðGF ;VlÞ-
Y

v

H1ðGv;VlÞ=H1
f ðGv;VlÞÞ;

where H1
f ðGv;TlÞ ¼ i�1

v H1
f ðGv;VlÞ via the natural map

iv : H1ðGv;TlÞ-H1ðGv;VlÞ:

The group H1
f ðGv;VlÞ is defined in [BK, p. 353] (see also [F, p. 115]) as follows:

H1
f ðGv;VlÞ ¼

KerðH1ðGv;VlÞ-H1ðIv;VlÞÞ if v[l;

KerðH1ðGv;VlÞ-H1ðGv;Vl#Ql
BcrisÞÞ if vjl;

(

where Bcris is the ring defined by Fontaine (cf. [BK, p. 339]).

We have the natural maps

H1
f ðGF ;TlÞ-

Y
v

H1
f ðGv;TlÞ;

H1
f ðGF ;VlÞ-

Y
v

H1
f ðGv;VlÞ:

Definition 2.2. We also define

H1
f ;Sl

ðGF ;TlÞ ðresp: H1
f ;Sl

ðGF ;VlÞÞ

as the kernel of the natural map:

H1ðGF ;TlÞ-
Y
veSl

H1ðGv;TlÞ=H1
f ðGv;TlÞ

ðresp: H1ðGF ;VlÞ-
Y
veSl

H1ðGv;TlÞ=H1
f ðGv;VlÞÞ:
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Here Sl denotes a fixed finite set of primes of OF containing primes over l and such
that the representation rl is unramified outside of Sl :

Obviously,

H1
f ðGF ;TlÞCH1

f ;Sl
ðGF ;TlÞ and H1

f ðGF ;VlÞCH1
f ;Sl

ðGF ;VlÞ:

Below we define various intermediate Jacobians associated with the representation
rl ; (cf. [Sc, Chapter 2]).

Definition 2.3. We put

JðTlÞ ¼ lim
-

L=F

H1ðGL;TlÞ; JðVlÞ ¼ lim
-

L=F

H1ðGL;VlÞ; ð1Þ

Jf ðTlÞ ¼ lim
-

L=F

H1
f ðGL;TlÞ; Jf ðVlÞ ¼ lim

-
L=F

H1
f ðGL;VlÞ; ð2Þ

Jf ;Sl
ðTlÞ ¼ lim

-
L=F

H1
f ;Sl

ðGL;TlÞ; Jf ;Sl
ðVlÞ ¼ lim

-
L=F

H1
f ;Sl

ðGL;VlÞ; ð3Þ

where the direct limits are taken over all finite extensions L=F of the number field F ;

which are contained in some fixed algebraic closure %F:

Remark 2.4. Observe that the groups JðVlÞ; Jf ðVlÞ and Jf ;Sl
ðVlÞ are vector spaces

over Ql :

Remark 2.5. Note that we also could have defined the intermediate Jacobians of the
module Tl for the cohomology groups of GF ;S for any S containing Sl : However, if

H0ðgv;Alð�1ÞÞ is finite for all veSl ; (as it often happens for interesting examples of
Tl), then,

H1ðGF ;S;TlÞ ¼ H1ðGF ;TlÞ:

In the sequel we will only consider l-adic representations which satisfy the
following condition.

Assumption I. Assume that for each l; each finite extension L=F and any prime w of

OL; such that weSl ; we have

TFrw

l ¼ 0;

(or equivalently VFrw

l ¼ 0), where FrwAgw denotes the arithmetic Frobenius at w:
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Example 2.6. Let X be a smooth projective variety defined over a number field F

with good reduction at primes veSl : Let X be the regular, proper model of X over

OF ;Sl
and let Xv be its reduction at the prime v of OF ;Sl

: Put %X ¼ X#F %F and %Xv ¼
Xv#kv

%kv: In the case when Hi
etð %X;Zlð jÞÞ is torsion free for some i; j such that ia2j

we put

Tl ¼ Hi
etð %X;Zlð jÞÞ:

By the theorem of proper and smooth base change (cf. [Mi1, VI, Corollary 4.2]) there
is a natural isomorphism of Gv-modules

Hi
etð %X;Zlð jÞÞDHi

etð %Xv;Zlð jÞÞ ð2:7Þ

(cf. [Ja, p. 322]). Since the inertia subgroup IvCGv acts trivially on Hi
etð %Xv;Zlð jÞÞ; we

observe by (2.7) that the representation rl : GF-GLðTlÞ is unramified outside Sl : It
follows by the theorem of Deligne [D1] (proof of the Weil conjectures, see also [Har,
Appendix C, Theorem 4.5]) that for an ideal w of OL such that weSl ; the eigenvalues
of Frw on the vector space

Vl ¼ Hi
etð %X;Qlð jÞÞ

are algebraic integers of the absolute value NðwÞ�i=2þj; where NðwÞ denotes the

absolute norm of w: It follows that TFrw

l ¼ 0: In the special case when X ¼ A is an

abelian variety defined over F ; we have

Tl ¼ Hi
etð %A;Zlð jÞÞD

î

H1
etð %A;ZlÞð jÞD

î

HomZl
ðTlðAÞ;ZlÞð jÞ;

which is a free Zl module of rank ð2g
i
Þ by [Mi2, Theorem 15.1]. In this paper, most of

the time we will consider the representation

rl : GF-GLðTlðAÞÞ

of the Galois group GF on the Tate module TlðAÞ ¼ H1
etð %A;ZlÞn of the abelian

variety A defined over F ; where for a Zl-module M; we put Mn ¼ HomZl
ðM;ZlÞ: By

the above discussion we see that rl satisfies Assumption I.

Lemma 2.8. For every prime w of OL which is not over primes in Sl ; we have:

(1) the natural map H1ðGw;TlÞ=H1
f :H1ðGw;VlÞ=H1

f is an imbedding,

(2) H1
f ðGw;TlÞtor ¼ H1ðGw;TlÞtor ¼ H0ðGw;AlÞ ¼ H0ðgw;AlÞ

(3) H1
f ðGw;TlÞ ¼ H1ðgw;TlÞ:

Proof. First part of the lemma is obvious from the definition of H1
f ðGw;TlÞ: The

second part follows immediately from the first part and diagram (2.9) below. Note
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that H1ðGw;VlÞ=H1
f ðGw;VlÞ is a Ql-vector space. To prove the third part consider

again diagram (2.9).

ð2:9Þ

The horizontal rows are exact. The middle and the right vertical columns are also
exact. The left bottom horizontal arrow is zero because Iw acts on Tl ; Vl and Al

trivially by assumption. This gives the exactness of the following short exact
sequence.

0-H0ðIw;TlÞ-H0ðIw;VlÞ-H0ðIw;AlÞ-0

In addition because of Assumption I we have

H0ðgw;VlÞ ¼ H0ðGw;VlÞ ¼ 0:

Therefore the left upper and middle horizontal arrows are imbeddings. The right,
upper horizontal arrow is defined because of the commutativity of the lower, right
square in the diagram. The middle vertical column is the inflation–restriction
sequence. It is actually inverse limit on coefficients of the inflation–restriction

sequence but it remains exact with infinite coefficients because we deal with H1: Now
the claim follows by diagram chasing. &

Remark 2.10. Observe that the Assumption I implies, that H0ðgw;AlÞ and H1ðgw;TlÞ
are finite for all weSl :

Lemma 2.11. For any finite extension L=F the following equalities hold:

H1
f ;Sl

ðGL;TlÞtor ¼ H1ðGL;TlÞtor ¼ H0ðGL;AlÞ

Proof. The first equality follows from Lemma 2.8 and the exact sequence.

0-H1
f ;Sl

ðGL;TlÞ-H1ðGL;TlÞ-
Y

weSl

H1ðGw;TlÞ=H1
f ðGw;TlÞ:
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Consider the exact sequence (see [T, p. 261])

H0ðGL;VlÞ-H0ðGL;AlÞ!
@L

H1ðGL;TlÞ:

By Assumption I we get H0ðGL;VlÞ ¼ 0: Hence by [T, Proposition 2.3, p. 261]

H0ðGL;AlÞ ¼ H1ðGL;TlÞtor:

Thus, the second equality in the statement of Lemma 2.11 also holds. &

For weSl consider the following commutative diagram:

ð2:12Þ

The bottom horizontal arrow is obviously an injection. Hence, by Lemmas 2.8 and
2.11, we obtain the following:

Lemma 2.13. For any finite extension L=F and any prime weSl in OL the natural map

rw : H1
f ;Sl

ðGL;TlÞtor-H1ðgw;TlÞ

is an imbedding.

Proposition 2.14. We have the following exact sequences:

0-Al-JðTlÞ-JðVlÞ-0;

0-Al-Jf ;Sl
ðTlÞ-Jf ;Sl

ðVlÞ-0:

In particular

JðTlÞtor ¼ Jf ;Sl
ðTlÞtor ¼ Al

and the groups

JðTlÞ and Jf ;Sl
ðTlÞ

are divisible.

Proof. Consider the following long exact sequence (see [T, p. 261])

H0ðGL;AlÞ-H1ðGL;TlÞ-H1ðGL;VlÞ-H1ðGL;AlÞ:
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Taking direct limits with respect to finite extensions L=F gives the following short
exact sequence:

0-Al-JðTlÞ-JðVlÞ-0

This short exact sequence fits into the following commutative diagram:

ð2:15Þ

The rows and columns of the diagram are exact. The exactness on the right of the
bottom horizontal sequence follows from the injectivity of the top, nontrivial,
horizontal arrow by Lemma 2.8. &

Proposition 2.16. Let L be a finite extension of F : Then we have isomorphisms:

(1) H1ðGL;TlÞDJðTlÞGL ;
(2) H1

f ;Sl
ðGL;TlÞDJf ;Sl

ðTlÞGL :

Proof. Under condition of Assumption I the proof of claim (1) is done in the same
way as the proof of (4.1.1) of [BE]. To prove (2) take an arbitrary finite Galois
extension L0=L and consider the following commutative diagram:

ð2:17Þ

The columns of this diagram are exact. The upper horizontal arrow is trivially an
imbedding. The middle horizontal arrow is an isomorphism. This follows directly
from claim (1). Since the representation rl is unramified outside Sl then using
Theorem 8.1 and Corollary 8.3, Chapter I of [CF] and Kummer pairing we get the
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following commutative diagram:

ð2:18Þ

Since Lw0=Lw is a finite extension, the bottom horizontal arrow is induced by a
nontrivial (hence injective) homomorphism of Zl-modules Zlð1Þ-Zlð1Þ: Because Tl

is a free Zl-module, every nontrivial homomorphism of Zl-modules Zlð1Þ-Tl is
injective. Hence the bottom horizontal arrow in diagram (2.18) is injective. So the
bottom horizontal arrow in diagram (2.17) is also an imbedding. Now claim (2)
follows by taking direct limits over L0 in diagram (2.17) and chasing the resulting
diagram. &

At the end of this section we give some additional information about the reduction
map

rv : H1
f ;Sl

ðGF ;TlÞ-H1ðgv;TlÞ:

Proposition 2.19. Let P̂AH1
f ;Sl

ðGF ;TlÞ be a nontorsion element. Given M1 ¼ lm1 a

fixed power of l; there exist infinitely many primes veSl such that rvðP̂ÞAH1ðgv;TlÞ is

an element of order at least M1:

Proof. Let M be a power of l which we will specify below. Let FM denote the
extension FðAl ½M	Þ: Consider the following commutative diagram:

ð2:20Þ
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The horizontal arrows in diagram (2.20) are induced by the reduction maps. We
describe the vertical map. The map h2 is an injection (cf. Proposition 4.3 (1)). The
map h3 is the injection which comes from the long exact sequence in cohomology
associated to the following exact sequence of GFM

-modules:

0-Al ½M	-Jf ;Sl
ðTlÞ �!M

Jf ;Sl
ðTlÞ-0: ð2:21Þ

The vertical maps on the right-hand side of diagram (2.20) are defined in the similar

way. Consider the nontorsion element P̂AH1
f ;Sl

ðGF ;TlÞ: Let ls be the largest power of

l such that P̂ ¼ lsR̂ for an R̂AH1
f ;Sl

ðGF ;TlÞ: Such an ls exists since H1
f ;Sl

ðGF ;TlÞ is a

finitely generated Zl-module. We put M ¼ M1ls: Let P0 be the image of P̂ in

HomðGab
FM

;Al ½M	Þ under the composition of the maps h1; h2; h3 and h4: Since the

maps h1; h2; h3 and h4 are injective, the element P0 is of order M1: By the Chebotarev
density theorem there exist infinitely many primes weSl such that the map rw

preserves the order of P0: Hence, for those w the element P̂ is mapped by the
composition of left vertical and lower horizontal arrows onto an element whose

order is M1: The commutativity of (2.20) implies that rvðP̂ÞAH1ðgv;TlÞ is of order at
least M1 for the primes v ¼ w-OF ;Sl

: &

Corollary 2.22. Let P̂AH1
f ;Sl

ðGF ;TlÞ be an element which maps onto a generator of the

free Zl-module H1
f ;Sl

ðGF ;TlÞ=tor: There exist infinitely many primes veSl such that

rvðP̂Þ is a generator of a cyclic summand in the l-primary decomposition of the group

H1ðgv;TlÞ:

3. Specification of l-adic representations

In addition to Assumption I the representations which we consider are supposed
to satisfy Assumption II stated below. In order to formulate the assumption we
introduce more notation. We fix a finite extension E=Q of degree e ¼ ½E :Q	 such

that the Hilbert class field EH of E is contained in F : We assume that each prime l we
consider splits completely in F : Let

ðlÞ ¼ l1yle

be the decomposition of the ideal ðlÞ in OE : We also assume that OE acts on Tl in
such a way that Tl is a free OE;l ¼ OE#Zl module of rank h and that the action

of OE;l commutes with the action of GF given by the representation rl : It is clear

that e divides d ¼ dim rl and h ¼ d
e
: Put El ¼ OE;l#Zl

Ql : In addition, we denote

by Eli
the completion of E at li and by Oli

the ring of integers in Eli
: Now,
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it is obvious that

OE;l ¼
Ye

i¼1

Oli
and El ¼

Ye

i¼1

Eli
:

Since Tl has the OE;l-module structure, we can represent Vl and Al as follows:

Vl ¼ Tl#OE;l
El ;

Al ¼ Tl#OE;l
El=OE;l ¼

Me

i¼1
Tl#OE;l

Eli
=Oli

¼
Me

i¼1
Ali

;

where we put Ali
¼ Tl#OE;l

Eli
=Oli

:

Note that every prime ideal li is principal, because by assumption EHCF : Hence,
li ¼ ðpiÞ for some piAOE : In this case Eli

=Oli
DQl=Zl for each i; hence all Ali

are

divisible groups of the same corank h: Observe that Al ½lk
i 	 ¼ Ali

½lk
i 	 and

Al ½l	D
Me

i¼1

Al ½li	; ð3:1Þ

where dimZ=l Al ½li	 ¼ h; for all 1pipe: By assumptions and decomposition (3.1) it is

clear that the image rlðGF Þ of the representation rl is contained in the subgroup of
GLdðZ=lÞ which consists of matrices of the form

C1 0 ? 0

0 C2 ? 0

^ ^ ^ ^

0 0 ? Ce

0
BBB@

1
CCCA;

where CiAGLhðZ=lÞ; for all 1pipe: Hence, we can consider the image of rl as a

subgroup of the product
Qe

i¼1 GLhðZ=lÞ:

Assumption II. Let P ¼ PðrÞ be an infinite set of prime numbers l43; which split

completely in F and such that the l-adic representation rl satisfies the following

conditions.

(1) If h41; then for each 1pipe; there is a subgroup HiIGðFðA½li	Þ=FÞ
CGLhðZ=lÞDGLðAl ½li	Þ such that:

(i) the subgroup H1 ? Hi ? He of the group
Qe

i¼1 GLhðZ=lÞ is

contained in Im rl ¼ Gl and H1 ? Hi ? He has index prime to l

in Gl ;
(ii) Hi acts irreducibly on Al ½li	DðZ=lÞh;
(iii) Hi=½Hi;Hi	 has order prime to l;
(iv) there exist matrices si; biAHi such that 1 is an eigenvalue of si with

eigenspace of dimension 1 and 1 is not an eigenvalue of bi;
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(v) the centraliser of Hi in GLhðZ=lÞ is ðZ=lÞIh; i.e. if sAGLhðZ=lÞ and sg ¼
gs for all gAHi; then s is a scalar matrix,

(vi) for each 1pipe the group Hi contains a nontrivial subgroup D0
i of the group

faIh; aAðZ=lÞgCGLhðZ=lÞ of scalar matrices.
(2) If h ¼ 1; we require that Gl ¼ GðFl=FÞ satisfies two conditions:

(i) for every 1pipd; there is a diagonal matrix si ¼ diagðm1;y; mdÞ in the

group Gl with mi ¼ 1 and mja1; for all jai;

(ii) there is an isomorphism of rings Z=l½Gl 	DOE=l; where Z=l½Gl 	 denotes a

subring of OE=l generated by Z=l and the image of Gl in OE=l via the natural

imbedding Gl-ðOE=lÞ:

Definition 3.2. Let fBðLÞgL be a direct system of OE-modules indexed by all finite

field extensions L=F : The structure maps of the system are induced by inclusions of
fields. We assume that for every embedding of fields L-L0 the structure map

BðLÞ-BðL0Þ is a homomorphism of OE-modules. Let us put Bð %FÞ ¼ lim
-

L=F

BðLÞ: Let r

and P be as in Assumption II. The system fBðLÞgL is called the Mordell-Weil OE-

module of the pair ðr;PÞ if the following conditions are satisfied:

(1) BðLÞ is a finitely generated OE-module for all L:
(2) There are functorial homomorphisms of OE-modules

cL;l : BðLÞ-H1
f ;Sl

ðGL;TlÞ;

where L is as above and lAP; such that:
(i) for every lAP; the induced map

cL;l#Zl : BðLÞ#Zl-H1
f ;Sl

ðGL;TlÞ

is an isomorphism or
(ii) for every lAP; the map cL;l#Zl is an imbedding, the group Bð %FÞ is a

discrete GF -module which is divisible by l; and for every L we have:

Bð %FÞGLDBðLÞ and H0ðGL;AlÞCBðLÞ:

We end this section with the examples of Mordell-Weil OE-modules related to l-
adic representations which satisfy Assumptions I and II.

Example 3.3. Consider the l-adic representation

rl : Gð %F=FÞ-GLðZlð1ÞÞDGL1ðZlÞDZ
l
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given by the cyclotomic character. In this case Tl ¼ Zlð1Þ; Vl ¼ Qlð1Þ and Al ¼
Ql=Zlð1Þ: This representation is given by the action of GF on the Tate module of the
multiplicative group scheme Gm=F : Let S be any finite set of primes in OF : Denote
by Sl the set of primes consisting of primes in S and primes in F over l: Put
BðLÞ ¼ GmðOL;SÞ ¼ O

L;S for any finite extension L=F : The Kummer map (which is

obviously injective)

BðLÞ#Zl-H1ðGL;Sl
;Zlð1ÞÞ-H1ðGL;Zlð1ÞÞ

factors naturally through

cL;l#Zl : BðLÞ#Zl-H1
f ;Sl

ðGF ;Zlð1ÞÞ:

In this case we take E ¼ Q hence OE ¼ Z: We take P to be the set of all prime
numbers l such that GðFðmlÞ=FÞ is nontrivial.

Example 3.4. Let n be a positive integer. Let Tl ¼ Zlðn þ 1Þ; hence Vl ¼ Qlðn þ 1Þ
and Al ¼ Ql=Zlðn þ 1Þ: Consider the one-dimensional representation

rl : GF-GLðTlÞDZ
l

which is given by the ðn þ 1Þth tensor power of the cyclotomic character. For each
odd prime number l and for a finite extension L=F consider the Dwyer–Friedlander
map [DF]

K2nþ1ðLÞ-K2nþ1ðLÞ#Zl-H1ðGL;Zlðn þ 1ÞÞ:

Let CL be the subgroup of K2nþ1ðLÞ which is generated by the l-parts of kernels
of Dwyer–Friedlander maps for all odd primes l: We define the group BðLÞ by
putting

BðLÞ ¼ K2nþ1ðLÞ=CL:

Note that the group CL is finite by [DF] and it should vanish if the Quillen-
Lichtenbaum conjecture holds. Note that in this case

H1ðGL;Zlðn þ 1ÞÞDH1ðGL;Sl
;Zlðn þ 1ÞÞDH1

f ;Sl
ðGL;Zlðn þ 1ÞÞ:

It follows by the definition of BðLÞ and surjectivity of the Dwyer–Friedlander map
that

cL;l#Zl : BðLÞ#ZlDH1ðGL;Zlðn þ 1ÞÞ:

In the following three examples we discuss representations which come from Tate
modules of abelian varieties. Let A=F be a simple abelian variety of dimension d over
a number field F : As usual, we denote by Tl ¼ TlðAÞ the Tate module of A: Consider
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the l-adic representation

rl : GF-GLðTlðAÞÞ:

Assumption I holds due to the Weil conjectures (cf. [Sil, pp. 132-134]). Let S be
the set of prime ideals of F at which A has bad reduction. By the Kummer
pairing and Serre–Tate theorem ([ST, Theorem 1, p. 493] and Corollaries 1
and 2 of Manin’s Appendix II to the book [M]) we have a natural
imbedding

cL;l#Zl : AðLÞ#Zl-H1
f ;Sl

ðGL;TlðAÞÞ:

Put BðLÞ ¼ AðLÞ for any finite extension L=F :

Example 3.5. Let A=F be a simple abelian variety with complex multiplication

by a CM field E (cf. [La]) such that EHCF ; where EH is the Hilbert class
field of E: We assume that CM type of A is nondegenerate (cf. [BGK1, Definition
2.1]) and defined over F : Condition (i) of Assumption II (2) holds by Theorem 2.1
of [BGK1] (for CM elliptic curves it also follows by an alternative argument
cf. [C-RS, Lemma 5.1, p. 286]). Condition (ii) of Assumption II (2) follows by
Proposition, p. 72 of [R2]. We take P to be the set of prime numbers l which split
completely in F and such that A has good reduction at l:

Example 3.6. Consider a simple, principally polarised abelian variety A=F such that
E ¼ EndF ðAÞ#Q ¼ End %FðAÞ#Q (cf. [R1,C]) where e ¼ ½E :Q	 and 2he ¼ 2g with h

and odd integer. In addition, we choose F to be a number field satisfying
conditions indicated in the discussion which follows Theorem 3.1 of [BGK1] and

such that EHCF : We take P to be the set of prime numbers lb0 which split
completely in F ; and such that A has good reduction at l: Hence by Theorem 3.5 of
[BGK1] we get

Ye

i¼1

Sp2hðFlÞ ¼ ½Gl ;Gl 	:

Taking Hi ¼ Sp2hðFlÞ; for all 1pipe; we observe that conditions of Assumption II
(1) are fulfilled since

(i)
Qe

i¼1 Sp2hðFlÞCGl ; and the quotient group GSp2hðFlÞ=Sp2hðFlÞ has order prime

to l;
(ii) Sp2hðFlÞ acts on Al ½li	DðZ=lÞ2h; in an irreducible way.
(iii) Sp2hðFlÞ modulo its centre is a simple group.
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(iv) matrix siASp2hðFlÞ

si ¼
Jhð1Þ Jhð1Þ

O ðJhð1ÞtÞ�1

 !

has eigenvalue 1 with the eigenspace of dimension 1 where Jhð1Þ is the h  h

Jordan block matrix with 1 as the eigenvalue and bi ¼ �I2hASp2hðFlÞ does not
have 1 as an eigenvalue.

(v) The centraliser of Sp2hðFlÞ in GL2hðFlÞ is ðFlÞI2h:

Observe that condition (1) (vi) of Assumption II is satisfied since obviously
�I2hASp2hðFlÞ:

There are two special cases of Example 3.6 that have been considered extensively
in the past.

Example 3.7. (a) Let A=F be a simple, principally polarised abelian variety
with real multiplication by a totally real field E ¼ EndF ðAÞ#Q ¼ End %FðAÞ#Q

such that e ¼ g and h ¼ 1 (cf. [R1]). We choose F to be such a number field

that EHCF : We take P to be the set of prime numbers l which split completely
in F and such that A has a good reduction at l: Theorem 5.5.2, p. 801 of [R1] or
Theorem 3.5 of [BGK1] implies that the image of the representation %rl contains the
subgroup

Yg

i¼1

SL2ðFlÞ ¼
Yg

i¼1

Sp2ðFlÞ;

therefore the representation %rl satisfies Assumption II (1).
(b) Let A=F be a simple, principally polarised abelian variety with the property

that End %FðAÞ ¼ Z and g ¼ dim A is odd or equal to 2 or 6. In this case E ¼ Q hence
e ¼ 1 and h ¼ g: By the theorem of Serre [Se1, Theorem 3] the image of the
representation %rl equals GSp2gðFlÞ (hence contains Sp2gðFlÞ) for almost all l: We take

P to be the set of prime numbers such that the image of %rl equals GSp2gðFlÞ and A

has good reduction at l: Hence the image of the representation %rl satisfies condition
(1) of Assumption II.

It is rather hard to find further examples of Mordell-Weil OE-modules satisfying
condition (2)(i) of Definition 3.2. Indeed, if we concentrate on finding a Mordell-
Weil OE-module associated to Tl coming from étale cohomology of a smooth proper
scheme X over F ; then we should first prove Conjecture 5.3 (ii) p. 370 of [BK], for
such an X :
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4. Key propositions

Definition 4.1. Let

fP : GFl
-Al ½l	

be the map:

fPðsÞ ¼ s
1

l
P̂

� �
� 1

l
P̂;

where PABðFÞ and P̂ is the image of P via the natural map

BðFÞ-BðFÞ#Zl-H1
f ;Sl

ðGF ;TlÞCJf ;Sl
ðTlÞ:

Remark 4.2. Note that 1
l
P̂ makes sense in Jf ;Sl

ðTlÞ since the last group is divisible due

to Proposition 2.14. The element 1
l
P̂ is defined up to an element of the group Al ½l	:

Proposition 4.3. Suppose that the Assumptions I and II are fulfilled. Then the following

properties hold.

(1) HrðGðFl=FÞ;Al ½l	Þ ¼ 0 for rX0 and all lAP; except the case of trivial Gl-module

Al ½l	 when r ¼ 0 and d ¼ 1:
(2) The map H1

f ;Sl
ðGF ;TlÞ=l-H1

f ;Sl
ðGFl

;TlÞ=l is injective for all lAP:

(3) The map BðFÞ=lBðFÞ-BðFlÞ=lBðFlÞ is injective for all lAP:
(4) Let PABðFÞ: If lAP does not divide xBðFÞtor and PeliBðFÞ for all 1pipe; then

the map fP is surjective.

Proof. (1) First let us consider the case h41: The group D0 ¼
Qe

i¼1 D0
i can be

regarded as a subgroup of Gl once we identify Gl with its image via rl : D0 is a normal
subgroup of Gl : Assumption II (1) (vi) allows us to consider the Hochschild–Serre
spectral sequence

E
r;s
2 ¼ HrðGl=D0;HsðD0;Al ½l	ÞÞ ) HrþsðGl ;Al ½l	Þ: ð4:4Þ

Observe that H0ðD0;Al ½l	Þ ¼
Le

i¼1H0ðD0
i ;Al ½li	Þ ¼ 0 because by definition D0

i is

nontrivial and acts by matrix multiplication (actually scalar multiplication) on the

Z=l vector space Al ½li	DðZ=lÞh: The groups HsðD0;Al ½l	Þ vanish for s40; since l is

odd by assumption and the order of D0 is prime to l: Hence the claim (1) follows for
h41: Now let h ¼ 1: Note that Gl is isomorphic to a subgroup of diagonal matrices
in GLðAl ½l	Þ ¼ GLdðZ=lÞ: Since Gl has order relatively prime to l; HsðGl ;Al ½l	Þ ¼ 0

for s40: It follows easily by Assumption II (2) (i) that H0ðGl ;Al ½l	Þ ¼ 0; for all lAP
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and d41: This proves (1) in the case h ¼ 1: If d ¼ 1; then H0ðGl ;Al ½l	Þ ¼ 0 (¼ Al ½l	
resp.) if Al ½l	 is nontrivial (trivial resp.) Gl-module.

(2) By Proposition 2.14, we have the following short exact sequence:

0-Al ½l	-Jf ;Sl
ðTlÞ!

l
Jf ;Sl

ðTlÞ-0:

By the long exact sequence in cohomology associated to this exact sequence and
Proposition 2.16, we obtain the commutative diagram in which the horizontal maps
are injections.

ð4:5Þ

However, ker a ¼ 0; since it injects into the group H1ðGl ;Al ½l	Þ which vanishes by
part (1) of the proposition.

(3) Let us first consider case (2) (i) of Definition 3.2. Because the map

BðLÞ#Zl-H1
f ;Sl

ðGL;TlÞ;

is an isomorphism, the group BðLÞ=l is isomorphic to H1
f ;Sl

ðGL;TlÞ=l: This shows

that the horizontal maps in the commutative diagram

ð4:6Þ

are isomorphisms. Since we have proved in (2) that the map a is an injection,
diagram (4.6) gives claim (3). Now consider case (2) (ii) of Definition 3.2. We get the
exact sequence of GF -modules:

0-Al ½l	-Bð %FÞ!l
Bð %FÞ-0:
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This gives the following commutative diagram with injective horizontal arrows:

ð4:7Þ

Since by (1) the map g is injective for all lAP; the map b is also injective for all
lAP:

(4) We easily check that the image of the map fP is GF -invariant. If fP were
not surjective, then Im fP would be a proper GF submodule of Al ½l	: It is clear
from the decomposition (3.1) of Al ½l	 and Assumption II (1) and (2) (ii) that
every GF submodule of Al ½l	 is of the form Al ½li1 	

L
?
L

Al ½lir 	 for some
i1;y; irAf1;y; eg: Hence if Im fP were a proper GF submodule, we could
assume that

Im fPCAl ½l1	
M

?
M

Al ½li�1	
M

Al ½liþ1	
M

?
M

Al ½le	

for some 1pipe: This implies that

p1ypi�1piþ1ype s
1

l
P̂

� �
� 1

l
P̂

� �
¼ 0 ð4:8Þ

for every sAGð %F=FlÞ: Equality (4.8) takes place in Jf ;Sl
ðTlÞ under the (2) (i)

part of Definition 3.2 (resp. in Bð %FÞ under case (2) (ii) of Definition 3.2) and it
implies that

s p1ypi�1piþ1ype

1

l
P̂

� �
¼ p1ypi�1piþ1ype

1

l
P̂ ð4:9Þ

for every sAGð %F=FlÞ: Hence by Proposition 2.16 (2) (resp. by Definition 3.2, of the
Mordell-Weil OE-module fBðLÞg) we get

p1ypi�1piþ1ype

1

l
P̂AH1

f ;Sl
ðGFl

;TlÞ ðABðFlÞ resp:Þ: ð4:10Þ

So p1ypi�1piþ1ypeP̂ ¼ 0 in the group H1
f ;Sl

ðGFl
;TlÞ=l (in BðFlÞ=lBðFlÞ; resp.). By

parts (2) and (3) of the Proposition (see also diagram (4.6)) this implies
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p1ypi�1piþ1ypeP ¼ 0 in the group BðFÞ=lBðFÞ in both cases. Hence there is
P1ABðFÞ such that p1ypi�1piþ1ypeP ¼ lP1: This gives the equality

p1ypi�1piþ1ypeðP � piP2Þ ¼ 0; ð4:11Þ

where P2 ¼ uP1ABðFÞ for some uAO
E : Multiplying equation (4.11) by pi we obtain

the equality lðP � piP2Þ ¼ 0 in the group BðFÞ: Since, by assumption, xBðFÞl ¼ 0 we

get P ¼ piP2; hence PAliBðFÞ which contradicts the assumptions. &

For a given l let %ri denote the representation:

%ri : GF-GLðAl ½li	Þ:

Similarly to the definition of Fl we put Fi ¼ %Fker %ri : In analogy with the Definition 4.1
we introduce a homomorphism

fi : GFi
-Al ½li	;

fiðsÞ ¼ s
1

pi

P̂

� �
� 1

pi

P̂:

Proposition 4.12. We have the following properties.

(1) HrðGðFi=FÞ;Al ½li	Þ ¼ 0 for rX0; all lAP; and 1pipe except the case of trivial

GðFi=FÞ-module Al ½li	 when r ¼ 0:
(2) The map H1

f ;Sl
ðGF ;TlÞ=li-H1

f ;Sl
ðGFi

;TlÞ=li is injective for all lAP and 1pipe:

(3) The map BðFÞ=liBðFÞ-BðFiÞ=liBðFiÞ is injective for all lAP and 1pipe:
(4) Let PABðFÞ: If lAP does not divide xBðFÞtor and PeliBðFÞ; then the map fi is

surjective.

Proof. Proofs of (1), (2), and (3) are done in the same way as the corresponding
proofs in Proposition 4.3. Statement (4) holds because fi is obviously GF

equivariant, fi is nontrivial since PeliBðFÞ; and Al ½li	 is an irreducible Z=l½GF 	
module due to Assumption II. &

Let P;Q be two nontorsion elements of the group BðFÞ: Let Sl be the finite set of
primes which contains primes for which rl is ramified and primes over l: For veSl let

rv : H1
f ;Sl

ðGF ;TlÞ-H1ðgv;TlÞ

denote the reduction map at a prime ideal v of OF : We will investigate the linear
dependence of P and Q over OE in BðFÞ under some local conditions for the maps rv;
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(see statement of Theorem 5.1 below). We need some additional notation. Let Pn be
the set of rational primes lAP such that PeliBðFÞ and QeliBðFÞ for all 1pipe:

The set P\Pn is finite, since BðFÞ is finitely generated OE-module. Let R̂AJf ;Sl
ðTlÞ be

such that lR̂ ¼ P̂: The element R̂ exists by Proposition 2.14. The Galois group GFl

acts on the set

fR̂ þ t: tAAl ½l	g

which is contained in Jf ;Sl
ðTlÞ: Let NPCGFl

be the kernel of this action. Note that

NP is a normal subgroup of GFl
of finite index. Define the field

Fl

1

l
P̂

� �
¼ %FNP :

Let Flð1l Q̂Þ denote the corresponding field defined for Q: Observe that Flð1l P̂Þ=F and

Flð1l Q̂Þ=F are Galois extensions and we have isomorphisms

Gal Fl

1

l
P̂

�� �
F

� �
DH2sGl ; Gal Fl

1

l
Q̂

� ��
F

� �
DH1sGl ;

where

H1 ¼ Gal Fl

1

l
Q̂

�� �
Fl

� �
; H2 ¼ Gal Fl

1

l
P̂

�� �
Fl

� �
:

By Proposition 4.3 (4) the group H1 (H2; respectively) can be identified with Al ½l	 via

the map fQ (fP; resp.). Put K ¼ Flð1l P̂ÞFlð1l Q̂Þ:
All fields introduced above are displayed in the diagram below.

ð4:13Þ

Similarly, let R̂iAJf ;Sl
ðTlÞ be such that piR̂i ¼ P̂: The element R̂i exists by

Proposition 2.14. The Galois group GFi
acts on the set

fR̂i þ t: tAAl ½li	g
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which is contained in Jf ;Sl
ðTlÞ: Let NiCGFi

be the kernel of this action. Note that Ni

is a normal subgroup of GFi
of finite index. Define the field

Fi

1

pi

P̂

� �
¼ %FNi :

Let Fið 1
pi

Q̂Þ denote the corresponding field defined in the same way for Q: Observe

that Fið 1
pi

P̂Þ=F and Fið 1
pi

Q̂Þ=F are Galois extensions and there are isomorphisms

Gal Fi

1

pi

P̂

�� �
F

� �
DH2;isGðFi=FÞ; Gal Fi

1

pi

Q̂

�� �
F

� �
DH1;isGðFi=FÞ;

where

H1;i ¼ Gal Fi

1

pi

Q̂

�� �
Fi

� �
; H2;i ¼ Gal Fi

1

pi

P̂

�� �
Fi

� �
:

By Proposition 4.12 (4) the group H1;i (H2;i; resp.) can be identified with Al ½li	 via the

map fi for Q (for P resp.) Put Ki ¼ Fið 1
pi

P̂ÞFið 1
pi

Q̂Þ:
Fields introduced above are displayed in the left diagram below. In the right

diagram we depicted the relevant prime ideals that will be used in the proof of
Theorem 5.1 below.

ð4:14Þ

Remark 4.15. Observe that

Fl

1

l
P̂

� �
¼ F1

1

p1
P̂

� �
?Fi

1

pi

P̂

� �
?Fe

1

pe

P̂

� �
;

Fl

1

l
Q̂

� �
¼ F1

1

p1
Q̂

� �
?Fi

1

pi

Q̂

� �
?Fe

1

pe

Q̂

� �
:
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In addition there is an equality

½FðR̂iÞ : F 	 ¼ Fi
1

pi

P̂

� �
: Fi

� �
;

since by Proposition 4.12 (4) there are ½Fið 1
pi

P̂Þ : Fi	 different imbeddings of FðR̂iÞ into

%F that fix F : Hence from diagram (4.14) we find out that FðR̂iÞ-Fi ¼ F :

5. The support problem for l-adic representations

Theorem 5.1. Let Pn be the infinite set of prime numbers introduced after the proof of

Proposition 4.12. Assume that for every lAPn the following condition holds in the

group H1ðgv;TlÞ:
For every integer m and for almost every veSl

mrvðP̂Þ ¼ 0 implies mrvðQ̂Þ ¼ 0:

Then there exist aAZ� f0g and fAOE � f0g such that aP þ fQ ¼ 0 in BðFÞ:

Lemma 5.2. Let H1;i and H2;i be two h-dimensional Fl-vector spaces equipped with the

natural action of the group Gi ¼ Im %riCGLhðFlÞ: Let us denote by Oi the semidirect

product ðH1;i
L

H2;iÞsGi: Assume that we are given siAGi such that for every h1AH1;i

ðh1; 0; siÞAðH1;i
Lf0gÞsGi is conjugate to an element ð0; h2; tiÞAðf0gLH2;iÞsGi:

Then 1 is not an eigenvalue of the matrix si:

Proof. cf. [C-RS, Lemma 4.2]. &

Remark 5.3. Observe, that by Assumption II, for every 1pipe and every lAP there
exists a matrix siAGi; such that 1 is an eigenvalue of si with an eigenspace of
dimension 1.

Proof of Theorem 5.1. We want to prove that

Fl

1

l
P̂

� �
¼ Fl

1

l
Q̂

� �
: ð5:4Þ

Hence it is enough to prove that for each 1pipe we have

Fi

1

pi

P̂

� �
¼ Fi

1

pi

Q̂

� �
: ð5:5Þ
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Suppose this is false for some i: Then we observe that

Fi
1

pi

P̂

� �
-Fi

1

pi

Q̂

� �
¼ Fi;

since both groups H1;i ¼ GðFið 1
pi

Q̂Þ=FiÞ and H2;i ¼ GðFið 1
pi

P̂Þ=FiÞ are irreducible Gi ¼
GðFi=FÞ modules by Assumption II (1) (ii). Hence

GalðKi=FiÞDH1;i

M
H2;iDAl ½li	

M
Al ½li	: ð5:6Þ

We need the following result.

Lemma 5.7. We have the following equality:

Ki-Fl ¼ Fi:

Proof. By (5.6) the group GðKi=FiÞ is abelian of order l2h: If h ¼ 1; then

GðFl=FiÞC
Qd

j¼1;jai GL1ðZ=lÞ has order relatively prime to l and it is clear that

Ki-Fl ¼ Fi:
Now assume that h41: We observe that

Ye

j¼1;jai

½Hj;Hj	C
Ye

j¼1;jai

HjCGðFl=FiÞ

hence by Assumption II (1) (i) and (iii) the subgroup
Qe

j¼1;jai½Hj ;Hj 	 has index prime

to l in GðFl=FiÞ: On the other hand

Ye

j¼1;jai

½Hj;Hj	C½GðFl=FiÞ;GðFl=FiÞ	CGðFl=FiÞ;

hence the group GðFl=FiÞab ¼ GðFl=FiÞ=½GðFl=FiÞ;GðFl=FiÞ	 has order prime to l:
Let K0 ¼ Ki-Fl : Then K0=Fi; as a subextension of Ki=Fi; is abelian with order equal
to some power of l: On the other hand GðK0=FiÞ is a quotient of the abelian group

GðFl=FiÞab; which has order prime to l: This implies that the group GðK0=FiÞ is
trivial. Hence K0 ¼ Fi: &
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Let us now return to the proof of Theorem 5.1. Consider the following tower of
fields.

ð5:8Þ

We can regard Gl ¼ GðFl=FÞ as the subgroup of
Qe

j¼1 GLhðFlÞ: Let us pick slAGl

such that sl jFi ¼ si and sl jFj ¼ bj for all jai: Such a sl exists by Assumption II (1)

(iv). Note that sl considered as a linear operator on the Fl vector space Al ½l	 has an
eigenvalue 1 with the eigenspace of dimension 1. Let h1AH1;i be an arbitrary element.

Let us pick an element of GðKi=FiÞDH1;i
L

H2;i such that its projection onto H1;i is h1

and its projection onto H2;i is a trivial element. We denote this element as ðh1; 0Þ:
Taking into account Lemma 5.7, Remark 4.15 and the isomorphism of Galois
groups GalðKi=FÞDðH1;i

L
H2;iÞsGðFi=FÞ; we can define an element gAGðKiFl=FÞ

such that gjKi ¼ ðh1; 0; siÞ; gjFðR̂iÞ ¼ idFðR̂iÞ and gjFl ¼ sl : By Chebotarev density

theorem there exists a prime w̃ of KiFl such that:

(i) Frw̃ ¼ gAGðKiFl=FÞ;
(ii) the unique prime v in F below w̃ is not in Sl and satisfies the assumptions of

Theorem 5.1.

By the choice of prime v we see that

H0ðgv;AlÞ½l	 ¼
Me

j¼1
H0ðgv;AlÞ½pj	 ¼ H0ðgv;AlÞ½pi	

and also H0ðgv;AlÞ½l	DZ=l: Hence for each kX1 we have

H0ðgv;AlÞ½lk	 ¼ H0ðgv;AlÞ½pk
i 	

which, together with finitness of H0ðgv;AlÞ; shows that there is an m such that

H0ðgv;AlÞ ¼ H0ðgv;AlÞ½lm	 ¼ H0ðgv;AlÞ½pm
i 	 ð5:9Þ

and H1ðgv;TlÞDH0ðgv;AlÞ is a finite, cyclic group.
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Let w (u resp.) be the prime of Ki (FðR̂iÞ resp.) which is over v and below w̃ (cf.
diagram (4.14)). Consider the following commutative diagram.

ð5:10Þ

The lowest right vertical arrow in diagram (5.10) is an isomorphism because, by the

choices we have made the prime v splits in FðR̂iÞ which means that kvDku: Note

that prime ideal v does not need to split completely in FðR̂iÞ=F since this
extension is usually not Galois. The left vertical arrows are embeddings by

Proposition 2.16. Since v splits in FðR̂iÞ; we have the following equality in the group

H1ðgv;TlÞ

rvðP̂Þ ¼ piruðR̂iÞ:

Let tv ¼ lm denote the order of the finite cyclic group H1ðgv;TlÞDH0ðgv;AlÞ: For
some cAO

E we have

tv

l
rvðP̂Þ ¼

tv

l
piruðR̂iÞ ¼ lm�1piruðR̂iÞ ¼ c

Y
jai

pm�1
j ðpm

i ruðR̂iÞÞ ¼ 0 ð5:11Þ

in the group H1ðgv;TlÞ; since ruðR̂iÞAH0ðgv;AlÞ½pm
i 	 by (5.9).

By the assumption of Theorem 5.1, equality (5.11) implies that

tv

l
rvðQ̂Þ ¼ 0: ð5:12Þ

Since H1ðgv;TlÞ is cyclic, equality (5.12) implies that

rvðQ̂ÞAlH1ðgv;TlÞ:

This gives

rvðQ̂Þ ¼ piR̃
00
i ð5:13Þ
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for some R̃00
i AH1ðgv;TlÞ: By Proposition 2.14 we can find an element R̂00

i AJf ;Sl
ðTlÞ

such that

piR̂
00
i ¼ Q̂: ð5:14Þ

Choose a prime u00 in FðR̂00
i Þ over v: Let w0 be a prime over u00 in Ki: Observe that, by

the diagram similar to diagram 5.10 with P̂ and R̂i replaced by Q̂ and R̂00
i we obtain

by (5.14) that

rvðQ̂Þ ¼ piru00 ðR̂00
i Þ ð5:15Þ

in the group H1ðgu00 ;TlÞ; hence also in H1ðgw0 ;TlÞ: By (5.13) and (5.15) we get

ru00 ðR̂00
i Þ � R̃00

i AAl ½pi	-H1ðgu00 ;TlÞ:

Because Al ½pi	CH1
f ;Sl

ðGKi
;TlÞ (cf. proof of Lemma 2.11 and diagram (2.12)), by

Lemma 2.13 there exists P̂0AH1
f ;Sl

ðGKi
;TlÞ such that rw0 ðP̂0Þ ¼ ru00 ðR̂00

i Þ � R̃00
i : We

have the following equality:

rw0 ðR̂00
i � P̂0Þ ¼ R̃00

i

in the group H1ðgw0 ;TlÞ:
Let R̂0

i ¼ R̂00
i � P̂0: Since FðR̂0

iÞCFlð1l Q̂Þ there is a unique prime u0 in FðR̂0
iÞ below

w0 and above v: Of course ru0 ðR̂0
iÞ ¼ R̃00

i : Consider the following commutative

diagram.

ð5:16Þ

Let Frw0AGðKi=FÞ be an element of the conjugacy class of the Frobenius element of
w0 over v: Observe that

Frw0 ðR̂0
iÞ ¼ R̂0

i þ P̂0
0
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for some P̂0
0AAl ½l	: Note that

Frw0 ðrw0 ðR̂0
iÞÞ ¼ rw0 ðR̂0

iÞ ð5:17Þ

because

rw0 ðR̂0
iÞ ¼ ru0 ðR̂0

iÞ ¼ R̃00
i AH1ðgv;TlÞ:

On the other hand

Frw0 ðrw0 ðR̂0
iÞÞ ¼ rw0 ðFrw0 ðR̂0

iÞÞ ¼ rw0 ðR̂0
i þ P̂0

0Þ ¼ rw0 ðR̂0
iÞ þ rw0 ðP̂0

0Þ: ð5:18Þ

Eqs. (5.17) and (5.18) show that rw0 ðP̂0
0Þ ¼ 0: This by Lemma 2.13 implies that P̂0

0 ¼
0: So Frw0AGðKi=FðR̂0

iÞÞDH1;isGi: Hence Frw ¼ ðh1; 0; siÞ is conjugate to Frw0 ¼
ð0; h2; tiÞ for some h2AH2;i and tiAGi: Lemma 5.2 implies that no eigenvalue of si is

equal to 1. This contradicts the properties of si (cf. Assumption II). So we proved
that equality (5.5), and consequently equality (5.4), holds. Equality (5.4) shows that
ker fP ¼ ker fQ; which gives the following commutative diagram

ð5:19Þ

with c a Gl-equivariant map. Hence due to Assumption II (1) (v) and (2) (ii) (observe
that (2) (ii) implies that the centraliser of Gl in the group GLdðFlÞ is contained in the
group of diagonal matrices DdCGLdðFlÞ), it is clear, that c as a linear operator is
represented by a block matrix of the form

b1Ih 0 ? 0

0 b2Ih ? 0

^ ^ ? ^

0 0 ? beIh

0
BBB@

1
CCCA

for some b1; b2;y; beAZ=l: Since OE=ðlÞD
Qe

j¼1 Z=l; there is a bAOE such that b

modulo the ideal ðlOEÞ corresponds to the element ðb1;y; beÞA
Qe

j¼1 Z=l via this

isomorphism. So diagram (5.19) implies that fP ¼ bfQ; hence fP�bQ is a trivial map.

On the other hand the natural map

y : BðFÞ=lBðFÞ-H1ðGFl
;Tl=lÞ ¼ HomðGFl

;Al ½l	Þ;

yðXÞ ¼ fX
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(where fX is the map from Definition 4.1) is an injection since it can be expressed as
a composition of the injective map from Proposition 4.3 (3) and the bottom
horizontal, injective maps from diagrams: (4.5)–(4.7). Hence P ¼ bQ in BðFÞ=lBðFÞ:
So the image of P in

B0 ¼ BðFÞ=fcQ: cAOEg

is contained in the group lB0 for all primes lAPn: Since by our assumption BðFÞ and
therefore B0 are finitely generated, we conclude that

T
lAPn lB0 is finite. Hence aP ¼

bQ for some aAZ� f0g and bAOE : For f ¼ �b we obtain aP þ fQ ¼ 0: &

6. Applications

In this section we give applications of Theorem 5.1 to the l-adic representations
which were already discussed in Examples 3.3–3.7.

6.1. The cyclotomic character

Consider the cyclotomic character

rl : Gð %F=FÞ-GLðZlð1ÞÞDGL1ðZlÞDZ
l

(see Example 3.3). There is a commutative diagram.

ð6:1Þ

where the left vertical arrow factors as

O
F ;S-O

F ;S#ZZl-H1
f ;Sl

ðGF ;Zlð1ÞÞ:

This map has finite kernel with order prime to l: Diagram (6.1) and Theorem 5.1
applied to rl imply the following corollary.

Corollary 6.2. Let P;Q be two nontorsion elements of the group O
F ;S: Assume that for

almost every v and every integer m the following condition holds:

mrvðPÞ ¼ 0 in ðkvÞ implies mrvðQÞ ¼ 0 in ðkvÞ:

Then there exist a; fAZ� f0g such that Pa ¼ Qf in O
F ;S:
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6.2. K-theory of number fields

Let n be a positive integer. Consider the one-dimensional representation

rl : GF-GLðZlðn þ 1ÞÞDZ
l ;

which is given by the ðn þ 1Þth tensor power of the cyclotomic character. We use the
notation of Example 3.4. We have the following commutative diagram:

ð6:3Þ

Note that in this case

H1ðGF ;Zlðn þ 1ÞÞDH1ðGF ;Sl
;Zlðn þ 1ÞÞDH1

f ;Sl
ðGF ;Zlðn þ 1ÞÞ

and

K2nþ1ðkvÞlDH1ðgv;Zlðn þ 1ÞÞDH0ðgv;Ql=Zlðn þ 1ÞÞ:

It follows by the definition of BðLÞ that

cL;l#Zl : BðLÞ#ZlDH1ðGL;Zlðn þ 1ÞÞ:

Hence as a consequence of Theorem 5.1 we get the following corollary (cf. [BGK]).

Corollary 6.4. Let P;Q be two nontorsion elements of the group K2nþ1ðFÞ: Assume

that for almost every v and every integer m the following condition holds:

mrvðPÞ ¼ 0 in K2nþ1ðkvÞ implies mrvðQÞ ¼ 0 in K2nþ1ðkvÞ:

Then the elements P and Q of K2nþ1ðFÞ are linearly dependent over Z:

Theorem 5.1 and Corollary 6.4 have the following consequence for the reduction
maps

r0v : H2nþ1ðKðOF Þ;ZÞ-H2nþ1ðSLðkvÞ;ZÞ

defined on the integral homology of the K-theory spectrum KðOF Þ:

Corollary 6.5. Let P0;Q0 be two nontorsion elements of the group H2nþ1ðKðOF Þ;ZÞ:
Assume that for almost every prime ideal v and for every integer m the following
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condition holds in H2nþ1ðSLðkvÞ;ZÞ:

mr0vðP0Þ ¼ 0 implies mr0vðQ0Þ ¼ 0:

Then the elements P0 and Q0 are linearly dependent in the group H2nþ1ðKðOF Þ;ZÞ:

Proof. Consider the following commutative diagram:

ð6:6Þ

The horizontal maps in diagram (6.6) are induced by the reductions at prime ideals
of OF : The vertical maps are the Hurewicz maps from K-theory to the integral
homology of the special linear group. Since the rational Hurewicz map

hF#Q: K2nþ1ðOF Þ#Q-H2nþ1ðKðOF Þ;QÞ

is an isomorphism cf. [Bo], we can find c; dAZ and nontorsion elements
P;QAK2nþ1ðOF Þ; such that

hF ðPÞ ¼ cP0 and hF ðQÞ ¼ dQ0: ð6:7Þ

Hence we can check that for every prime ideal v the image of the reduction map r0v is

contained in the torsion subgroup of H2nþ1ðSLðkvÞ;ZÞ:
It follows by [A] that kernels of the Hurewicz maps hF and hv; for any v; are

finite groups of exponents which are divisible only by primes smaller than the

number nþ1
2
: Let Pn be the set of all prime numbers l which are bigger than nþ1

2
and

relatively prime to cdxCF : Let lAPn: Consider the following diagram obtained
from (6.6).

ð6:8Þ

To simplify notation we keep denoting the Hurewicz maps and the reduction maps in

(6.8) by the same symbols as in diagram (6.6). Let P̂ (Q̂ resp.) denote as before the
image of P (Q resp.) via the map

K2nþ1ðOF Þ-ðK2nþ1ðOF Þ=CF Þ#ZZlDH1ðGF ;Zlðn þ 1ÞÞ:
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Let Sl denote the finite set of primes of OF which are over l: Let veSl and assume

that mrvðP̂Þ ¼ 0 in the group K2nþ1ðkvÞlDH1ðgv;Zlðn þ 1ÞÞ: Since rvðPÞ ¼ rvðP̂Þ; it

follows by diagram (6.8) that

0 ¼ mhvðrvðPÞÞ ¼ mr0vhF ðPÞÞ ¼ cmr0vðP0Þ

in the group H2nþ1ðSLðkvÞ;ZÞl : Since c is relatively prime to l; the last equality

implies that

mr0vðP0Þ ¼ 0:

Since r0vðP0ÞAH2nþ1ðSLðkvÞ;ZÞtor; there is a natural number m0 which is prime to l

and such that

m0mr0vðP0Þ ¼ 0

in the group H2nþ1ðSLðkvÞ;ZÞ: Hence, by assumption

m0mr0vðQ0Þ ¼ 0

in the group H2nþ1ðSLðkvÞ;ZÞ: Since m0 is prime to l we get

mr0vðQ0Þ ¼ 0

in the group H2nþ1ðSLðkvÞ;ZÞl : We multiply the last equality by d: The

commutativity of diagram (6.8) gives then the following equality in the group
H2nþ1ðSLðkvÞ;ZÞl :

0 ¼ mr0vðdQ0Þ ¼ mr0vðhF ðQÞÞ ¼ hvðmrvðQÞÞ:

Since by the choice of l the map hv in diagram (6.8) is injective, for veSl ; from the
last equality we obtain the following:

mrvðQ̂Þ ¼ mrvðQÞ ¼ 0:

Thus we have checked that the elements P̂ and Q̂ satisfy the assumption of Theorem
5.1. Hence by Theorem 5.1, there are a; bAZ such that

aP ¼ bQ: ð6:9Þ

in the group K2nþ1ðOF Þ:
Applying hF equality (6.9) and using (6.7) we get

acP0 ¼ bdQ0: &
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6.3. Abelian varieties

Let A=F be a simple abelian variety of dimension g defined over the number field
F : As usual Tl ¼ TlðAÞ denotes the Tate module of A: Consider the l-adic
representation

rl : GF-GLðTlðAÞÞ:

We follow the notation introduced in Examples 3.5–3.7. For any abelian variety A=F

there is the following commutative diagram:

ð6:10Þ

Av denotes the reduction of A mod v: Observe that the right vertical arrow is an
injection. Theorem 5.1, Examples 3.5–3.7, and diagram (6.10) imply the following
corollary.

Corollary 6.11. Let A be an abelian variety of dimension gX1; defined over the number

field F and such that A satisfies one of the following conditions:

(1) A has the nondegenerate CM type with EndF ðAÞ#Q equal to a CM field E such

that EHCF (cf. example 3.5).
(2) A is a simple, principally polarized with real multiplication by a totally real field

E ¼ EndF ðAÞ#Q such that EHCF ; and the field F is sufficiently large.2 We also

assume that dim A ¼ he; where e ¼ ½E :Q	 and h is odd (cf. example 3.6) or A is

simple, principally polarised such that EndF ðAÞ ¼ Z and dim A is equal to 2 or 6
(cf. example 3.7 (b)).

Let P;Q be two nontorsion elements of the group AðFÞ: Assume that for almost every

prime v of OF and for every integer m the following condition holds in AvðkvÞ

mrvðPÞ ¼ 0 implies mrvðQÞ ¼ 0:

Then there exist aAZ� f0g and fAOE � f0g such that aP þ fQ ¼ 0 in AðFÞ:

2 It means that G
alg
l is connected and %rlðGF ÞCGðlÞalgðFlÞ for almost all l: For details see the beginning of

Section 3 of [BGK1].
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[C-RS] C. Corralez-Rodrigáñez, R. Schoof, Support problem and its elliptic analogue, J. Number

Theory 64 (1997) 276–290.

[C] W. Chi, l-adic and l-adic representations associated to abelian varieties defined over a number

field, Amer. J. Math. 114 (3) (1992) 315–353.

[D1] P. Deligne, La conjecture de Weil I, Publ. Math. IHES 43 (1974) 273–307.

[DF] W. Dwyer, E. Friedlander, Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292 (1985)

247–280.

[Har] R. Hartshorne, Algebraic Geometry, GTA 52, Springer, Berlin, 1977.

[Ja] U. Janssen, On the l-adic cohomology of varieties over number fields and its Galois

cohomology. Galois groups over Q; in: Mathematical Science Research Institute Publication,

Vol. 16, Springer, New York, Berlin, 1989.

[La] S. Lang, Complex Multiplication, Springer, Berlin, 1983.

[Mi1] J.S. Milne, Étale Cohomology, Princeton University Press, Princeton, NJ, 1980.

[Mi2] J.S. Milne, in: G. Cornell, J.H. Silverman (Eds.), Abelian varieties, Arithmetic Geometry,

Springer, Berlin, 1986, pp. 103–150.

[M] D. Mumford, Abelian Varieties, Oxford University Press, Oxford, 1988.

[R1] K.A. Ribet, Galois action on division points of abelian varieties with real multiplications,

Amer. J. Math. 98 (3) (1976) 751–804.

[R2] K.A. Ribet, Dividing rational points of abelian varieties of CM type, Compositio Math. 33

(1976) 69–74.

[S] A. Schinzel, O pokazatelnych sravneniach, Matematicheskie Zapiski 2 (1996) 121–126.

G. Banaszak et al. / Journal of Number Theory 100 (2003) 133–168 167



[Sc] C. Schoen, Complex varieties for which the Chow group mod n is not finite, preprint,

1997.
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