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Abstract

Let G be a finite abelian group of order g: We determine, for all 1pr; spg; the minimal size
mGðr; sÞ ¼ minjA þ Bj of sumsets A þ B; where A and B range over all subsets of G of

cardinality r and s; respectively. We do so by explicit construction. Our formula for mGðr; sÞ
shows that this function only depends on the cardinality of G; not on its specific group

structure. Earlier results on mG are recalled in the Introduction.
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1. Introduction

Given a finite abelian group G; we shall denote by mGðr; sÞ the minimal cardinality
of the sumset A þ B ¼ fa þ b j aAA; bABg of two subsets A;BCG of cardinalities
jAj ¼ rX1; jBj ¼ sX1; respectively. That is,

mGðr; sÞ :¼ minfjA þ Bj jACG; jAj ¼ r;BCG; jBj ¼ sg:

Note that, by convention, mGðr; sÞ is only defined if 1pr; spjGj:
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Up to now, the function mGðr; sÞ was only known for a few classes of finite abelian
groups G: The result for G ¼ Z=pZ; with p prime, goes back to Cauchy [C] and
Davenport [D]. The well-known Cauchy–Davenport Theorem provides the formula

mZ=pZðr; sÞ ¼ minfr þ s 	 1; pg:

In 1981, Yuzvinsky [Y] made important progress by treating the group G ¼
ðZ=2ZÞn: In that case, he showed that mGðr; sÞ ¼ r3s; where r3s is the famous Hopf–
Stiefel–Pfister function occurring in Topology and Quadratic Forms theory.

The more general case of the group G ¼ ðZ=pZÞn; with p prime, has been treated
by Bollobás and Leader [BL] and Eliahou and Kervaire [EK], independently and
using completely different methods. The result in [EK] states that, for such a group G;

mGðr; sÞ ¼ bpðr; sÞ;

where bpðr; sÞ ¼ minfk j ðX þ Y ÞkAðX r;Y sÞg; and where ðX r;Y sÞ denotes the ideal
generated by X r and Y s in the polynomial ring Fp½X ;Y �:
Actually, Bollobás and Leader [BL] treated the case of any finite abelian p-group

G; by showing that mGðr; sÞ only depends on jGj; not on its particular p-group
structure.
Finally, very recently, Plagne [P] determined mGðr; sÞ for the cyclic group G ¼

Z=gZ; where g is an arbitrary positive integer. His formula reads

mZ=gZðr; sÞ ¼ min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
;

where Jxn; the ceiling of xAR; is the smallest integer x such that xpx:
More precisely, he obtained the above result by establishing both a lower bound

and an upper bound on mGðr; sÞ; where now G is an arbitrary abelian group of order
g and exponent e:

min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
pmGðr; sÞpmin

g
e
jdjg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
:

Our purpose in this paper is to complete the determination of mGðr; sÞ for all finite
abelian groups. We shall prove the following.

Theorem. Let G be any finite abelian group of order g. For all r; s satisfying 1pr; spg;
one has

mGðr; sÞ ¼ min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
:

In particular, this result shows that mGðr; sÞ only depends on the cardinality of G;
but not on its particular abelian group structure.
One noteworthy aspect of our proof below is that it provides, for any given r; s

such that 1pr; spjGj; an explicit construction of pairs of subsets A;BCG
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realizing the lower bound mGðr; sÞ; i.e. such that jAj ¼ r; jBj ¼ s and jA þ Bj ¼
mGðr; sÞ:
The proof of the Theorem is given in Sections 2 and 3. In Section 4, we recall the

proof of the inequality in [P]

mGðr; sÞXmin
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o

which is used in Section 3.
Finally, in Section 5 we mention some open questions. In particular, we discuss

briefly the case of a non-commutative group G:

2. The inequality lGðr; sÞpr þ s 	 1

The bulk of the proof of the above theorem is contained in the following seemingly
weaker statement.

Lemma. Let G be a finite abelian group and r; s two integers such that 1pr; spjGj:
Then

mGðr; sÞpr þ s 	 1:

The proof of the Theorem will then follow as a simple corollary of this lemma in
the next section (Section 3).
We prove the lemma by exhibiting subsets A;BCG of cardinalities r; s such that

jA þ Bjpr þ s 	 1: For this purpose, we need to introduce a suitable order relation
on G:
We choose a decomposition G ¼ Z=n1Z�?� Z=nkZ as a direct product of

cyclic groups. (We do not require that ni divides niþ1 for any i:) In each factor Z=niZ;
the residue classes mod ni will be represented by the integers 0; 1;y; ni 	 1 and then
ordered by their natural order as integers. We then endow G with the lexicographic
order corresponding to the direct product decomposition. That is,
ðx1; x2;y; xkÞoðy1; y2;y; ykÞ if and only if for some i in the interval 1pipk; we
have xj ¼ yj for joi and xioyi:

By definition, an initial segment of the ordered set G is then an ordered subset
A ¼ fa1oa2o?oargCG with minimum a1 ¼ ð0; 0;y; 0ÞAG; the neutral element
of G; and with no element of G strictly between ai and aiþ1: For instance, the initial
segment of length nk þ 1 is

fð0;y; 0; 0Þ; ð0;y; 0; 1Þ;y; ð0;y; 0; nk 	 1Þ; ð0;y; 1; 0Þg:

We state our strengthened form of the above lemma as the following proposition:

Proposition. Let G be a finite abelian group and G ¼ Z=n1Z�?� Z=nkZ a

decomposition of G as a direct product of cyclic groups. We view G as an ordered set as
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explained above. Let A;BCG be two non-empty initial segments in G. Then,
jA þ BjpjAj þ jBj 	 1:

In particular, mGðr; sÞpr þ s 	 1 for all 1pr; spjGj:

Proof. We proceed by induction on k; the number of cyclic factors in the given
product decomposition of G:
For k ¼ 1; G ¼ Z=nZ; let A ¼ f0; 1;y; r 	 1g and B ¼ f0; 1;y; s 	 1g be the

initial segments of respective lengths jAj ¼ rX1; jBj ¼ sX1: Then, A and B are non-
empty and thus

A þ B ¼
f0; 1;y; r þ s 	 2g if ðr 	 1Þ þ ðs 	 1Þ ¼ r þ s 	 2on;

f0; 1;y; n 	 1g if npr þ s 	 2:

(

Hence, jA þ Bjpr þ s 	 1 in both cases.
Therefore the Proposition is satisfied whenever G is a cyclic group (with the

ordering specified above). In addition, we see from the proof that the sumset of any

two non-empty initial segments in a cyclic group is again an initial segment, a fact we
shall use later on.
Assuming now kX2; let us write G ¼ H1 � H2; where H1 ¼ Z=n1Z and H2 is the

product Z=n2Z�?� Z=nkZ of the ðk 	 1Þ remaining factors. By the induction
hypothesis, we may assume that H2 satisfies the assertion of the Proposition.
Suppose that 1pr; spjGj and let A;BCG be the initial segments of G with

cardinalities r; s; respectively.
We want to prove that jA þ Bjpr þ s 	 1:
Let r ¼ r1jH2j þ r2 and s ¼ s1jH2j þ s2 be the Euclidean divisions of r; s by jH2j

with 0pr2ojH2j; 0ps2ojH2j:
From the above description of initial segments, we see that

A ¼ ðA1 � H2Þ,ðfag � A2Þ; B ¼ ðB1 � H2Þ,ðfbg � B2Þ;

where A2;B2 are the initial segments of lengths r2; s2 in H2; respectively,
A1CA1,fag are the initial segments in H1 of lengths jA1j ¼ r1 and jA1j þ 1 ¼
r1 þ 1; respectively, and B1CB1,fbg are the initial segments in H1 of lengths jB1j ¼
s1 and jB1j þ 1 ¼ s1 þ 1; respectively.
It may of course very well happen that some of the cardinalities r1; r2; s1; s2

vanish, but not r1 and r2 simultaneously, nor s1 and s2 simultaneously though.
The various possible cases will be treated separately.

If r1 ¼ s1 ¼ 0; that is A1 ¼ B1 ¼ |; then

jA þ Bj ¼ jA2 þ B2jpjA2j þ jB2j 	 1 ¼ jAj þ jBj 	 1;

by induction hypothesis on H2; because A2; B2 of lengths r2 ¼ r; s2 ¼ s are non-
empty initial segments of H2:
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Similarly, if r2 ¼ s2 ¼ 0; then A2 ¼ B2 ¼ |: We have

jA1 þ B1jpjA1j þ jB1j 	 1;

because H1 is cyclic and again A1; B1 are non-empty initial segments of H1: Using
A ¼ A1 � H2;B ¼ B1 � H2; and thus A þ B ¼ ðA1 þ B1Þ � H2; because H2 is a
subgroup, we get

jA þ Bj ¼ jA1 þ B1j  jH2j

p ðjA1j þ jB1j 	 1Þ  jH2j

¼ jAj þ jBj 	 jH2jpr þ s 	 1;

as desired.

Suppose now that B2 ¼ | and A2a|: Then, B ¼ B1 � H2 with B1a|: We get

A þ BCððA1,fagÞ þ B1Þ � H2:

Even if A1 is empty, both A1,fag and B1 are non-empty initial segments of H1 and
thus

jA þ BjpðjA1j þ jB1jÞ  jH2j ¼ jAj 	 jA2j þ jBjpr þ s 	 1:

The case A2 ¼ | with B2a| is symmetrical, interchanging A and B:
We may thus assume that both A2 and B2 are non-empty.

Finally, let us examine the case where A1a| and B1 ¼ |: In this case, b is
necessarily the 0-element in H1 and we have

A þ BCððA1 þ fbgÞ � H2Þ,ðfa þ bg � ðA2 þ B2ÞÞ:

We obtain for the cardinality of A þ B the estimate

jA þ BjpjA1j  jH2j þ jA2j þ jB2j 	 1 ¼ jAj þ jBj 	 1:

The case A1 ¼ | and B1a| is again symmetrical and we have thus completed the
examination of the exceptional cases where at least one of the sets A1;B1;A2;B2 is
empty.
We come now to the main case where we assume that all four initial segments

A1;B1;A2;B2 are non-empty. To ease notation, we set

Xa ¼ ðA1,fagÞ þ B1CH1;

and similarly

Xb ¼ A1 þ ðB1,fbgÞCH1:

Denote by X ¼ Xa,Xb their union in H1: Using the explicit descriptions
A ¼ ðA1 � H2Þ,ðfag � A2Þ and B ¼ ðB1 � H2Þ,ðfbg � B2Þ; we have by direct
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observation

A þ BCðX � H2Þ,ðfa þ bg � ðA2 þ B2ÞÞ:

Claim. jX jpjA1j þ jB1j:

Indeed, as observed earlier, the sumset U þ V of two initial segments U and V in a
cyclic group is again an initial segment. It follows in particular that Xa and Xb are
initial segments in H1: Thus, one of them is contained in the other, XaCXb or
XbCXa and we may assume without loss of generality that XaCXb: It follows that
X ¼ Xb ¼ A1 þ ðB1,fbgÞ: Since A1 and B1,fbg are non-empty initial segments in
H1; we have jX jpjA1j þ jB1j as claimed. &

Using this estimate for jX j; and the fact that A2; B2 are non-empty initial segments
in H2; the inclusion A þ BCðX � H2Þ,ðfa þ bg � ðA2 þ B2ÞÞ implies

jA þ Bjp jX j jH2j þ jA2 þ B2j

p ðjA1j þ jB1jÞjH2j þ jA2j þ jB2j 	 1

¼ r þ s 	 1:

This finishes the proof of the Proposition. &

The Theorem, which we prove in the next section, is a simple corollary of the
above Lemma.

3. Completion of the proof of the Theorem

Let G be a finite abelian group of order g and recall Plagne’s inequality

min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
pmGðr; sÞ:

In this section, we prove that the lemma in Section 2 implies

mGðr; sÞpmin
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
:

Let h be a positive integer dividing g and such that

r

h

l m
þ s

h

l m
	 1

� �
h ¼ min

djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
:

Since G is an abelian group, there exists a subgroup H of G; of order h: Let
G0 ¼ G=H and g0 ¼ g=h the order of G0:
We set r0 ¼ Jr

h
n; s0 ¼ Js

h
n: Of course, we have 1pr0; s0pg0:

ARTICLE IN PRESS
S. Eliahou et al. / Journal of Number Theory 101 (2003) 338–348 343



Let A0;B0CG0 be two subsets of G0 of respective cardinalities r0 and s0; such that

jA0 þ B0j ¼ mG0
ðr0; s0Þ:

According to the Lemma in Section 2, we have

jA0 þ B0jpr0 þ s0 	 1:

Let us define

A0 ¼ p	1ðA0Þ and B0 ¼ p	1ðB0Þ;

where p :G-G0 denotes the natural projection.
We have

jA0j ¼ r0 ¼ r0  h; jB0j ¼ s0 ¼ s0  h:

Since r0 ¼ Jr
h
nXr

h
and s0 ¼ Js

h
nXs

h
; we have

r0 ¼ r0  hXr and s0 ¼ s0  hXs:

Now let ACA0 and BCB0 be subsets of cardinalities jAj ¼ r; jBj ¼ s: We have
A þ BCA0 þ B0 and

jA þ BjpjA0 þ B0j ¼ jA0 þ B0jhpðr0 þ s0 	 1Þh:

Thus,

jA þ Bjp ðr0 þ s0 	 1Þh

¼ r

h

l m
þ s

h

l m
	 1

� �
h

¼ min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
pmGðr; sÞ:

Since, of course, mGðr; sÞpjA þ Bj; equality holds in this string of inequalities, and
in particular

mGðr; sÞ ¼ min
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
: &

Remark. (1) Observe that in the above proof, we must necessarily have

mG0
ðr0; s0Þ ¼ r0 þ s0 	 1:

Indeed, if jA0 þ B0j were strictly smaller than r0 þ s0 	 1; then the above

construction would lead to sets ACp	1ðA0Þ; BCp	1ðB0Þ with jAj ¼ r; jBj ¼ s such
that jA þ Bj would be strictly smaller than mGðr; sÞ; which is absurd.
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(2) Observe also that once a decomposition of G0 as a direct product of cyclic
groups has been chosen, then the Proposition in Section 2 yields explicit sets

A0;B0CG0 with jA0 þ B0j ¼ r0 þ s0 	 1; and thus explicit inverse images A0 ¼
p	1ðA0Þ;B0 ¼ p	1ðB0Þ:
Hence, given G of order g and integers r; s such that 1pr; spg; the arbitrary

choices to be made in order to arrive at a pair A;B with jAj ¼ r; jBj ¼ s and
jA þ Bj ¼ mGðr; sÞ are as follows:

* Choice of h dividing g such that

r

h

l m
þ s

h

l m
	 1

� �
h ¼ min

djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
¼ mGðr; sÞ:

In general, an integer h with this property is not unique. For instance, for jGj ¼
4; r ¼ 2; s ¼ 4; we have mGð2; 4Þ ¼ 4: The minimum mGð2; 4Þ of ðJ2

d
nþ J4

d
n	 1Þd for

d dividing 4 is attained at both d ¼ 2 and 4.
One could of course specify h by the requirement to be the smallest possible

choice.

* Choice of a subgroup H of order h in G:
* Choice of a decomposition of G0 ¼ G=H as a direct product of cyclic groups.
* Choice of a pair of sets A;B such that ACA0;BCB0 with the right cardinalities

r; s:

The last choice is rather trivial. The two choices dealing with H and the direct
product decomposition of G0 of course largely depend on the automorphism groups
of G and G0:

4. The inequality lGðr; sÞXmindjgfðJr
d
nþ Js

d
n	 1Þdg

Let G be a finite abelian group of order g and let r; s be two positive integers
satisfying 1pr; spg:
In this section we repeat, for the sake of completeness, the proof from Plagne [P] of

the lower bound

mGðr; sÞXmin
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
;

which we have used in the proof of the above Theorem.
We choose two subsets ACG and BCG of cardinalities r; s respectively, such that

jA þ Bj ¼ mGðr; sÞ;

and appeal to the theorem of Kneser (see [K] or [M, Theorem 1.5, p. 6] or [N,
Theorem 4.3, p. 116]). Kneser’s theorem asserts that there exists a subgroup HCG
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such that

jA þ BjXjA þ Hj þ jB þ Hj 	 jHj;

and we obtain

jA þ BjX jA þ Hj
jHj þ jB þ Hj

jHj 	 1

� 	
 jHj

X
r

h

l m
þ s

h

l m
	 1

� �
h;

where h denotes the cardinality of H:

Indeed, jAþHj
jHj X

jAj
jHj ¼ r

h
; and as A þ H is a disjoint union of H-cosets, jAþHj

jHj is an

integer. Thus, jAþHj
jHj XJr

h
n; the ceiling of r

h
: Similarly, we have jBþHj

jHj XJs
h
n:

Since h is a divisor of g; the order of G; it follows that

mGðr; sÞXmin
djg

r

d

l m
þ s

d

l m
	 1

� �
d

n o
;

as required. &

5. Related open problems

(1) There is of course the Inverse Problem of characterizing the pairs of subsets
A;BCG with the prescribed cardinalities jAj ¼ r; jBj ¼ s which realize the minimal
sumset size jA þ Bj ¼ mGðr; sÞ:
(2) We now briefly discuss the non-commutative case.
(2.1) The formula for mGðr; sÞ given in our theorem definitely cannot hold in

general for non-abelian groups.
In fact, we have the following assertion.

Proposition. Let G be a finite group and let r be an integer such that 1prpjGj: Then,
mGðr; rÞ ¼ r if and only if G contains a subgroup of order r.

We include the proof of this proposition in view of its simplicity.

Proof. Observe first that if 1ps; tpjGj; then mGðs; tÞXmaxfs; tg because if A;BCG;
then A  B contains at least the left-translate of B by an element of A; and the right-
translate of A by an element of B:
In particular, mGðr; rÞXr for any r:
If HpG is a subgroup of order r; then H  H ¼ H; whence mGðr; rÞ ¼ r:
Conversely, if mGðr; rÞ ¼ r; let A;BCG with jAj ¼ jBj ¼ jA  Bj ¼ r: We may

assume 1AA-B by left translating A and/or right translating B if necessary. It
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follows that A and B are both contained in A  B: Since jAj ¼ jBj ¼ jA  Bj; we must
have A ¼ B ¼ A  B implying that A is a subgroup of G: &

If now G is a (necessarily non-abelian) finite group with no subgroup of order d

for some divisor d of jGj; then mGðd; dÞ4d: In contrast, for the same d; and for
g ¼ jGj; we have mZ=gZðd; dÞ ¼ d:

As an example, let G be the alternating group A4 of order 12 consisting of the even
permutations in S4: It is well known that G contains no subgroup of order 6.
Therefore, mGð6; 6Þ46:
We have determined (by machine calculation) the entire set of values of the

function mG for G ¼ A4: Interestingly, the behavior of mG can be summarized by the
formula

mGðr; sÞ ¼ min
r

d

l m
þ s

d

l m
	 1

� �
d

n o
;

where the minimum is taken over all orders d ¼ 1; 2; 3; 4; 12 of subgroups of G:
In particular, for r ¼ s ¼ 6; we have mGð6; 6Þ ¼ 9; attained at d ¼ 3 in the formula.

An optimal pair A;BCA4; with jAj ¼ jBj ¼ 6; realizing the minimal possible value

jA  Bj ¼ 9 is for instance A ¼ f1; a; ac; bc; ac2; abc2g; B ¼ f1; a; c; ac; bc2; abc2g;
where a ¼ ð1; 2Þð3; 4Þ; b ¼ ð1; 3Þð2; 4Þ and c ¼ ð1; 2; 3Þ in cycle notation (we use
multiplication from left to right, whence ca ¼ abc; cb ¼ ac).
It is not clear whether, in general, mG can be described by such a simple formula

for an arbitrary finite non-abelian group G:
(2.2) As a weaker problem than the one above, is it true that mGðr; sÞ is bounded

below by mZ=gZðr; sÞ with g ¼ jGj; i.e.

mZ=gZðr; sÞpmGðr; sÞ

for any finite (non-abelian) group G of order g?
(2.3) As yet another weaker problem than in (2.1), can one at least expect the

upper bound

mGðr; sÞpr þ s 	 1

for any (finite) group G? We can prove that this upper bound holds true for finite
solvable groups.
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