ACADEMIC PRESS

Optimally small sumsets in finite abelian groups

Shalom Eliahou, ${ }^{\text {a,* }}$ Michel Kervaire, ${ }^{\text {b }}$ and Alain Plagne ${ }^{\mathrm{c}}$
a Département de Mathématiques, LMPA Joseph Liouville, Université du Littoral Côte d'Opale, Bâtiment Poincaré, 50, rue Ferdinand Buisson, B.P. 699, FR-62228 Calais, France
${ }^{\mathrm{b}}$ Département de Mathématiques, Université de Genève, 2-4, rue du Lièvre, B. P. 240 , 1211 Genève 24, Switzerland
${ }^{\text {c }}$ LIX, École polytechnique, 91128 Palaiseau Cedex, France

Received 27 July 2002
Communicated by D. Goss

Abstract

Let G be a finite abelian group of order g. We determine, for all $1 \leqslant r, s \leqslant g$, the minimal size $\mu_{G}(r, s)=\min |A+B|$ of sumsets $A+B$, where A and B range over all subsets of G of cardinality r and s, respectively. We do so by explicit construction. Our formula for $\mu_{G}(r, s)$ shows that this function only depends on the cardinality of G, not on its specific group structure. Earlier results on μ_{G} are recalled in the Introduction.

(C) 2003 Elsevier Inc. All rights reserved.

MSC: Primary: 11B75, 20D60; 20K01; Secondary: 05A05, 11P70
Keywords: Additive number theory; Sumset; Cauchy-Davenport theorem; Kneser theorem; Initial segment

1. Introduction

Given a finite abelian group G, we shall denote by $\mu_{G}(r, s)$ the minimal cardinality of the sumset $A+B=\{a+b \mid a \in A, b \in B\}$ of two subsets $A, B \subset G$ of cardinalities $|A|=r \geqslant 1,|B|=s \geqslant 1$, respectively. That is,

$$
\mu_{G}(r, s):=\min \{|A+B||A \subset G,|A|=r, B \subset G,|B|=s\} .
$$

Note that, by convention, $\mu_{G}(r, s)$ is only defined if $1 \leqslant r, s \leqslant|G|$.

[^0]Up to now, the function $\mu_{G}(r, s)$ was only known for a few classes of finite abelian groups G. The result for $G=\mathbf{Z} / p \mathbf{Z}$, with p prime, goes back to Cauchy [C] and Davenport [D]. The well-known Cauchy-Davenport Theorem provides the formula

$$
\mu_{\mathbf{Z} / p \mathbf{Z}}(r, s)=\min \{r+s-1, p\} .
$$

In 1981, Yuzvinsky [Y] made important progress by treating the group $G=$ $(\mathbf{Z} / 2 \mathbf{Z})^{n}$. In that case, he showed that $\mu_{G}(r, s)=r \circ s$, where $r \circ s$ is the famous Hopf-Stiefel-Pfister function occurring in Topology and Quadratic Forms theory.

The more general case of the group $G=(\mathbf{Z} / p \mathbf{Z})^{n}$, with p prime, has been treated by Bollobás and Leader [BL] and Eliahou and Kervaire [EK], independently and using completely different methods. The result in [EK] states that, for such a group G,

$$
\mu_{G}(r, s)=\beta_{p}(r, s)
$$

where $\beta_{p}(r, s)=\min \left\{k \mid(X+Y)^{k} \in\left(X^{r}, Y^{s}\right)\right\}$, and where $\left(X^{r}, Y^{s}\right)$ denotes the ideal generated by X^{r} and Y^{s} in the polynomial ring $\mathbf{F}_{p}[X, Y]$.

Actually, Bollobás and Leader [BL] treated the case of any finite abelian p-group G, by showing that $\mu_{G}(r, s)$ only depends on $|G|$, not on its particular p-group structure.

Finally, very recently, Plagne [P] determined $\mu_{G}(r, s)$ for the cyclic group $G=$ $\mathbf{Z} / g \mathbf{Z}$, where g is an arbitrary positive integer. His formula reads

$$
\mu_{\mathbf{Z} / g \mathbf{Z}}(r, s)=\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

where $\lceil\xi\rceil$, the ceiling of $\xi \in \mathbf{R}$, is the smallest integer x such that $\xi \leqslant x$.
More precisely, he obtained the above result by establishing both a lower bound and an upper bound on $\mu_{G}(r, s)$, where now G is an arbitrary abelian group of order g and exponent e :

$$
\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} \leqslant \mu_{G}(r, s) \leqslant \min _{\frac{g}{e}|d| g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

Our purpose in this paper is to complete the determination of $\mu_{G}(r, s)$ for all finite abelian groups. We shall prove the following.

Theorem. Let G be any finite abelian group of order g. For all r, s satisfying $1 \leqslant r, s \leqslant g$, one has

$$
\mu_{G}(r, s)=\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} .
$$

In particular, this result shows that $\mu_{G}(r, s)$ only depends on the cardinality of G, but not on its particular abelian group structure.

One noteworthy aspect of our proof below is that it provides, for any given r, s such that $1 \leqslant r, s \leqslant|G|$, an explicit construction of pairs of subsets $A, B \subset G$
realizing the lower bound $\mu_{G}(r, s)$, i.e. such that $|A|=r,|B|=s$ and $|A+B|=$ $\mu_{G}(r, s)$.

The proof of the Theorem is given in Sections 2 and 3. In Section 4, we recall the proof of the inequality in $[\mathrm{P}]$

$$
\mu_{G}(r, s) \geqslant \min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

which is used in Section 3.
Finally, in Section 5 we mention some open questions. In particular, we discuss briefly the case of a non-commutative group G.
2. The inequality $\boldsymbol{\mu}_{G}(r, s) \leqslant r+s-1$

The bulk of the proof of the above theorem is contained in the following seemingly weaker statement.

Lemma. Let G be a finite abelian group and r, s two integers such that $1 \leqslant r, s \leqslant|G|$. Then

$$
\mu_{G}(r, s) \leqslant r+s-1 .
$$

The proof of the Theorem will then follow as a simple corollary of this lemma in the next section (Section 3).

We prove the lemma by exhibiting subsets $A, B \subset G$ of cardinalities r, s such that $|A+B| \leqslant r+s-1$. For this purpose, we need to introduce a suitable order relation on G.

We choose a decomposition $G=\mathbf{Z} / n_{1} \mathbf{Z} \times \cdots \times \mathbf{Z} / n_{k} \mathbf{Z}$ as a direct product of cyclic groups. (We do not require that n_{i} divides n_{i+1} for any i.) In each factor $\mathbf{Z} / n_{i} \mathbf{Z}$, the residue classes $\bmod n_{i}$ will be represented by the integers $0,1, \ldots, n_{i}-1$ and then ordered by their natural order as integers. We then endow G with the lexicographic order corresponding to the direct product decomposition. That is, $\left(x_{1}, x_{2}, \ldots, x_{k}\right)<\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ if and only if for some i in the interval $1 \leqslant i \leqslant k$, we have $x_{j}=y_{j}$ for $j<i$ and $x_{i}<y_{i}$.

By definition, an initial segment of the ordered set G is then an ordered subset $A=\left\{a_{1}<a_{2}<\cdots<a_{r}\right\} \subset G$ with minimum $a_{1}=(0,0, \ldots, 0) \in G$, the neutral element of G, and with no element of G strictly between a_{i} and a_{i+1}. For instance, the initial segment of length $n_{k}+1$ is

$$
\left\{(0, \ldots, 0,0),(0, \ldots, 0,1), \ldots,\left(0, \ldots, 0, n_{k}-1\right),(0, \ldots, 1,0)\right\}
$$

We state our strengthened form of the above lemma as the following proposition:
Proposition. Let G be a finite abelian group and $G=\mathbf{Z} / n_{1} \mathbf{Z} \times \cdots \times \mathbf{Z} / n_{k} \mathbf{Z}$ a decomposition of G as a direct product of cyclic groups. We view G as an ordered set as
explained above. Let $A, B \subset G$ be two non-empty initial segments in G. Then, $|A+B| \leqslant|A|+|B|-1$.
In particular, $\mu_{G}(r, s) \leqslant r+s-1$ for all $1 \leqslant r, s \leqslant|G|$.
Proof. We proceed by induction on k, the number of cyclic factors in the given product decomposition of G.

For $k=1, G=\mathbf{Z} / n \mathbf{Z}$, let $A=\{0,1, \ldots, r-1\}$ and $B=\{0,1, \ldots, s-1\}$ be the initial segments of respective lengths $|A|=r \geqslant 1,|B|=s \geqslant 1$. Then, A and B are nonempty and thus

$$
A+B= \begin{cases}\{0,1, \ldots, r+s-2\} & \text { if }(r-1)+(s-1)=r+s-2<n \\ \{0,1, \ldots, n-1\} & \text { if } n \leqslant r+s-2\end{cases}
$$

Hence, $|A+B| \leqslant r+s-1$ in both cases.
Therefore the Proposition is satisfied whenever G is a cyclic group (with the ordering specified above). In addition, we see from the proof that the sumset of any two non-empty initial segments in a cyclic group is again an initial segment, a fact we shall use later on.

Assuming now $k \geqslant 2$, let us write $G=H_{1} \times H_{2}$, where $H_{1}=\mathbf{Z} / n_{1} \mathbf{Z}$ and H_{2} is the product $\mathbf{Z} / n_{2} \mathbf{Z} \times \cdots \times \mathbf{Z} / n_{k} \mathbf{Z}$ of the $(k-1)$ remaining factors. By the induction hypothesis, we may assume that H_{2} satisfies the assertion of the Proposition.

Suppose that $1 \leqslant r, s \leqslant|G|$ and let $A, B \subset G$ be the initial segments of G with cardinalities r, s, respectively.

We want to prove that $|A+B| \leqslant r+s-1$.
Let $r=r_{1}\left|H_{2}\right|+r_{2}$ and $s=s_{1}\left|H_{2}\right|+s_{2}$ be the Euclidean divisions of r, s by $\left|H_{2}\right|$ with $0 \leqslant r_{2}<\left|H_{2}\right|, 0 \leqslant s_{2}<\left|H_{2}\right|$.

From the above description of initial segments, we see that

$$
A=\left(A_{1} \times H_{2}\right) \cup\left(\{a\} \times A_{2}\right), \quad B=\left(B_{1} \times H_{2}\right) \cup\left(\{b\} \times B_{2}\right),
$$

where A_{2}, B_{2} are the initial segments of lengths r_{2}, s_{2} in H_{2}, respectively, $A_{1} \subset A_{1} \cup\{a\}$ are the initial segments in H_{1} of lengths $\left|A_{1}\right|=r_{1}$ and $\left|A_{1}\right|+1=$ $r_{1}+1$, respectively, and $B_{1} \subset B_{1} \cup\{b\}$ are the initial segments in H_{1} of lengths $\left|B_{1}\right|=$ s_{1} and $\left|B_{1}\right|+1=s_{1}+1$, respectively.

It may of course very well happen that some of the cardinalities $r_{1}, r_{2}, s_{1}, s_{2}$ vanish, but not r_{1} and r_{2} simultaneously, nor s_{1} and s_{2} simultaneously though.

The various possible cases will be treated separately.
If $r_{1}=s_{1}=0$, that is $A_{1}=B_{1}=\emptyset$, then

$$
|A+B|=\left|A_{2}+B_{2}\right| \leqslant\left|A_{2}\right|+\left|B_{2}\right|-1=|A|+|B|-1,
$$

by induction hypothesis on H_{2}, because A_{2}, B_{2} of lengths $r_{2}=r, s_{2}=s$ are nonempty initial segments of H_{2}.

Similarly, if $r_{2}=s_{2}=0$, then $A_{2}=B_{2}=\emptyset$. We have

$$
\left|A_{1}+B_{1}\right| \leqslant\left|A_{1}\right|+\left|B_{1}\right|-1
$$

because H_{1} is cyclic and again A_{1}, B_{1} are non-empty initial segments of H_{1}. Using $A=A_{1} \times H_{2}, B=B_{1} \times H_{2}$, and thus $A+B=\left(A_{1}+B_{1}\right) \times H_{2}$, because H_{2} is a subgroup, we get

$$
\begin{aligned}
|A+B| & =\left|A_{1}+B_{1}\right| \cdot\left|H_{2}\right| \\
& \leqslant\left(\left|A_{1}\right|+\left|B_{1}\right|-1\right) \cdot\left|H_{2}\right| \\
& =|A|+|B|-\left|H_{2}\right| \leqslant r+s-1
\end{aligned}
$$

as desired.
Suppose now that $B_{2}=\emptyset$ and $A_{2} \neq \emptyset$. Then, $B=B_{1} \times H_{2}$ with $B_{1} \neq \emptyset$. We get

$$
A+B \subset\left(\left(A_{1} \cup\{a\}\right)+B_{1}\right) \times H_{2}
$$

Even if A_{1} is empty, both $A_{1} \cup\{a\}$ and B_{1} are non-empty initial segments of H_{1} and thus

$$
|A+B| \leqslant\left(\left|A_{1}\right|+\left|B_{1}\right|\right) \cdot\left|H_{2}\right|=|A|-\left|A_{2}\right|+|B| \leqslant r+s-1
$$

The case $A_{2}=\emptyset$ with $B_{2} \neq \emptyset$ is symmetrical, interchanging A and B.
We may thus assume that both A_{2} and B_{2} are non-empty.
Finally, let us examine the case where $A_{1} \neq \emptyset$ and $B_{1}=\emptyset$. In this case, b is necessarily the 0 -element in H_{1} and we have

$$
A+B \subset\left(\left(A_{1}+\{b\}\right) \times H_{2}\right) \cup\left(\{a+b\} \times\left(A_{2}+B_{2}\right)\right)
$$

We obtain for the cardinality of $A+B$ the estimate

$$
|A+B| \leqslant\left|A_{1}\right| \cdot\left|H_{2}\right|+\left|A_{2}\right|+\left|B_{2}\right|-1=|A|+|B|-1
$$

The case $A_{1}=\emptyset$ and $B_{1} \neq \emptyset$ is again symmetrical and we have thus completed the examination of the exceptional cases where at least one of the sets $A_{1}, B_{1}, A_{2}, B_{2}$ is empty.

We come now to the main case where we assume that all four initial segments $A_{1}, B_{1}, A_{2}, B_{2}$ are non-empty. To ease notation, we set

$$
X_{a}=\left(A_{1} \cup\{a\}\right)+B_{1} \subset H_{1}
$$

and similarly

$$
X_{b}=A_{1}+\left(B_{1} \cup\{b\}\right) \subset H_{1}
$$

Denote by $X=X_{a} \cup X_{b}$ their union in H_{1}. Using the explicit descriptions $A=\left(A_{1} \times H_{2}\right) \cup\left(\{a\} \times A_{2}\right)$ and $B=\left(B_{1} \times H_{2}\right) \cup\left(\{b\} \times B_{2}\right)$, we have by direct
observation

$$
A+B \subset\left(X \times H_{2}\right) \cup\left(\{a+b\} \times\left(A_{2}+B_{2}\right)\right)
$$

Claim. $|X| \leqslant\left|A_{1}\right|+\left|B_{1}\right|$.
Indeed, as observed earlier, the sumset $U+V$ of two initial segments U and V in a cyclic group is again an initial segment. It follows in particular that X_{a} and X_{b} are initial segments in H_{1}. Thus, one of them is contained in the other, $X_{a} \subset X_{b}$ or $X_{b} \subset X_{a}$ and we may assume without loss of generality that $X_{a} \subset X_{b}$. It follows that $X=X_{b}=A_{1}+\left(B_{1} \cup\{b\}\right)$. Since A_{1} and $B_{1} \cup\{b\}$ are non-empty initial segments in H_{1}, we have $|X| \leqslant\left|A_{1}\right|+\left|B_{1}\right|$ as claimed.

Using this estimate for $|X|$, and the fact that A_{2}, B_{2} are non-empty initial segments in H_{2}, the inclusion $A+B \subset\left(X \times H_{2}\right) \cup\left(\{a+b\} \times\left(A_{2}+B_{2}\right)\right)$ implies

$$
\begin{aligned}
|A+B| & \leqslant|X|\left|H_{2}\right|+\left|A_{2}+B_{2}\right| \\
& \leqslant\left(\left|A_{1}\right|+\left|B_{1}\right|\right)\left|H_{2}\right|+\left|A_{2}\right|+\left|B_{2}\right|-1 \\
& =r+s-1 .
\end{aligned}
$$

This finishes the proof of the Proposition.
The Theorem, which we prove in the next section, is a simple corollary of the above Lemma.

3. Completion of the proof of the Theorem

Let G be a finite abelian group of order g and recall Plagne's inequality

$$
\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} \leqslant \mu_{G}(r, s)
$$

In this section, we prove that the lemma in Section 2 implies

$$
\mu_{G}(r, s) \leqslant \min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

Let h be a positive integer dividing g and such that

$$
\left(\left\lceil\frac{r}{h}\right\rceil+\left\lceil\frac{s}{h}\right\rceil-1\right) h=\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} .
$$

Since G is an abelian group, there exists a subgroup H of G, of order h. Let $G_{0}=G / H$ and $g_{0}=g / h$ the order of G_{0}.

We set $r_{0}=\left\lceil\frac{r}{h}\right\rceil, s_{0}=\left\lceil\frac{s}{h}\right\rceil$. Of course, we have $1 \leqslant r_{0}, s_{0} \leqslant g_{0}$.

Let $A_{0}, B_{0} \subset G_{0}$ be two subsets of G_{0} of respective cardinalities r_{0} and s_{0}, such that

$$
\left|A_{0}+B_{0}\right|=\mu_{G_{0}}\left(r_{0}, s_{0}\right) .
$$

According to the Lemma in Section 2, we have

$$
\left|A_{0}+B_{0}\right| \leqslant r_{0}+s_{0}-1
$$

Let us define

$$
A^{\prime}=\pi^{-1}\left(A_{0}\right) \quad \text { and } \quad B^{\prime}=\pi^{-1}\left(B_{0}\right)
$$

where $\pi: G \rightarrow G_{0}$ denotes the natural projection.
We have

$$
\left|A^{\prime}\right|=r^{\prime}=r_{0} \cdot h, \quad\left|B^{\prime}\right|=s^{\prime}=s_{0} \cdot h
$$

Since $r_{0}=\left\lceil\frac{r}{h}\right\rceil \geqslant \frac{r}{h}$ and $s_{0}=\left\lceil\frac{s}{h}\right\rceil \geqslant \frac{s}{h}$, we have

$$
r^{\prime}=r_{0} \cdot h \geqslant r \quad \text { and } \quad s^{\prime}=s_{0} \cdot h \geqslant s
$$

Now let $A \subset A^{\prime}$ and $B \subset B^{\prime}$ be subsets of cardinalities $|A|=r,|B|=s$. We have $A+B \subset A^{\prime}+B^{\prime}$ and

$$
|A+B| \leqslant\left|A^{\prime}+B^{\prime}\right|=\left|A_{0}+B_{0}\right| h \leqslant\left(r_{0}+s_{0}-1\right) h .
$$

Thus,

$$
\begin{aligned}
|A+B| & \leqslant\left(r_{0}+s_{0}-1\right) h \\
& =\left(\left\lceil\frac{r}{h}\right\rceil+\left\lceil\frac{s}{h}\right\rceil-1\right) h \\
& =\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} \leqslant \mu_{G}(r, s)
\end{aligned}
$$

Since, of course, $\mu_{G}(r, s) \leqslant|A+B|$, equality holds in this string of inequalities, and in particular

$$
\mu_{G}(r, s)=\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\} .
$$

Remark. (1) Observe that in the above proof, we must necessarily have

$$
\mu_{G_{0}}\left(r_{0}, s_{0}\right)=r_{0}+s_{0}-1
$$

Indeed, if $\left|A_{0}+B_{0}\right|$ were strictly smaller than $r_{0}+s_{0}-1$, then the above construction would lead to sets $A \subset \pi^{-1}\left(A_{0}\right), B \subset \pi^{-1}\left(B_{0}\right)$ with $|A|=r,|B|=s$ such that $|A+B|$ would be strictly smaller than $\mu_{G}(r, s)$, which is absurd.
(2) Observe also that once a decomposition of G_{0} as a direct product of cyclic groups has been chosen, then the Proposition in Section 2 yields explicit sets $A_{0}, B_{0} \subset G_{0}$ with $\left|A_{0}+B_{0}\right|=r_{0}+s_{0}-1$, and thus explicit inverse images $A^{\prime}=$ $\pi^{-1}\left(A_{0}\right), B^{\prime}=\pi^{-1}\left(B_{0}\right)$.

Hence, given G of order g and integers r, s such that $1 \leqslant r, s \leqslant g$, the arbitrary choices to be made in order to arrive at a pair A, B with $|A|=r,|B|=s$ and $|A+B|=\mu_{G}(r, s)$ are as follows:

- Choice of h dividing g such that

$$
\left(\left\lceil\frac{r}{h}\right\rceil+\left\lceil\frac{s}{h}\right\rceil-1\right) h=\min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}=\mu_{G}(r, s) .
$$

In general, an integer h with this property is not unique. For instance, for $|G|=$ $4, r=2, s=4$, we have $\mu_{G}(2,4)=4$. The minimum $\mu_{G}(2,4)$ of $\left(\left\lceil\frac{2}{d}\right\rceil+\left\lceil\frac{4}{d}\right\rceil-1\right) d$ for d dividing 4 is attained at both $d=2$ and 4 .

One could of course specify h by the requirement to be the smallest possible choice.

- Choice of a subgroup H of order h in G.
- Choice of a decomposition of $G_{0}=G / H$ as a direct product of cyclic groups.
- Choice of a pair of sets A, B such that $A \subset A^{\prime}, B \subset B^{\prime}$ with the right cardinalities r, s.

The last choice is rather trivial. The two choices dealing with H and the direct product decomposition of G_{0} of course largely depend on the automorphism groups of G and G_{0}.

4. The inequality $\boldsymbol{\mu}_{G}(r, s) \geqslant \boldsymbol{\operatorname { m i n }}_{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}$

Let G be a finite abelian group of order g and let r, s be two positive integers satisfying $1 \leqslant r, s \leqslant g$.

In this section we repeat, for the sake of completeness, the proof from Plagne [P] of the lower bound

$$
\mu_{G}(r, s) \geqslant \min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

which we have used in the proof of the above Theorem.
We choose two subsets $A \subset G$ and $B \subset G$ of cardinalities r, s respectively, such that

$$
|A+B|=\mu_{G}(r, s),
$$

and appeal to the theorem of Kneser (see [K] or [M, Theorem 1.5, p. 6] or [N , Theorem 4.3, p. 116]). Kneser's theorem asserts that there exists a subgroup $H \subset G$
such that

$$
|A+B| \geqslant|A+H|+|B+H|-|H|,
$$

and we obtain

$$
\begin{aligned}
|A+B| & \geqslant\left(\frac{|A+H|}{|H|}+\frac{|B+H|}{|H|}-1\right) \cdot|H| \\
& \geqslant\left(\left\lceil\frac{r}{h}\right\rceil+\left\lceil\frac{s}{h}\right\rceil-1\right) h,
\end{aligned}
$$

where h denotes the cardinality of H.
Indeed, $\frac{|A+H|}{|H|} \geqslant \frac{|A|}{|H|}=\frac{r}{h}$, and as $A+H$ is a disjoint union of H-cosets, $\frac{|A+H|}{|H|}$ is an integer. Thus, $\frac{|A+H|}{|H|} \geqslant\left\lceil\frac{r}{h}\right\rceil$, the ceiling of $\frac{r}{h}$. Similarly, we have $\frac{|B+H|}{|H|} \geqslant\left\lceil\frac{s}{h}\right\rceil$.

Since h is a divisor of g, the order of G, it follows that

$$
\mu_{G}(r, s) \geqslant \min _{d \mid g}\left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

as required.

5. Related open problems

(1) There is of course the Inverse Problem of characterizing the pairs of subsets $A, B \subset G$ with the prescribed cardinalities $|A|=r,|B|=s$ which realize the minimal sumset size $|A+B|=\mu_{G}(r, s)$.
(2) We now briefly discuss the non-commutative case.
(2.1) The formula for $\mu_{G}(r, s)$ given in our theorem definitely cannot hold in general for non-abelian groups.

In fact, we have the following assertion.
Proposition. Let G be a finite group and let r be an integer such that $1 \leqslant r \leqslant|G|$. Then, $\mu_{G}(r, r)=r$ if and only if G contains a subgroup of order r.

We include the proof of this proposition in view of its simplicity.
Proof. Observe first that if $1 \leqslant s, t \leqslant|G|$, then $\mu_{G}(s, t) \geqslant \max \{s, t\}$ because if $A, B \subset G$, then $A \cdot B$ contains at least the left-translate of B by an element of A, and the righttranslate of A by an element of B.

In particular, $\mu_{G}(r, r) \geqslant r$ for any r.
If $H \leqslant G$ is a subgroup of order r, then $H \cdot H=H$, whence $\mu_{G}(r, r)=r$.
Conversely, if $\mu_{G}(r, r)=r$, let $A, B \subset G$ with $|A|=|B|=|A \cdot B|=r$. We may assume $1 \in A \cap B$ by left translating A and/or right translating B if necessary. It
follows that A and B are both contained in $A \cdot B$. Since $|A|=|B|=|A \cdot B|$, we must have $A=B=A \cdot B$ implying that A is a subgroup of G.

If now G is a (necessarily non-abelian) finite group with no subgroup of order d for some divisor d of $|G|$, then $\mu_{G}(d, d)>d$. In contrast, for the same d, and for $g=|G|$, we have $\mu_{\mathbf{Z} / g \mathbf{Z}}(d, d)=d$.

As an example, let G be the alternating group A_{4} of order 12 consisting of the even permutations in S_{4}. It is well known that G contains no subgroup of order 6 . Therefore, $\mu_{G}(6,6)>6$.

We have determined (by machine calculation) the entire set of values of the function μ_{G} for $G=A_{4}$. Interestingly, the behavior of μ_{G} can be summarized by the formula

$$
\mu_{G}(r, s)=\min \left\{\left(\left\lceil\frac{r}{d}\right\rceil+\left\lceil\frac{s}{d}\right\rceil-1\right) d\right\}
$$

where the minimum is taken over all orders $d=1,2,3,4,12$ of subgroups of G.
In particular, for $r=s=6$, we have $\mu_{G}(6,6)=9$, attained at $d=3$ in the formula. An optimal pair $A, B \subset A_{4}$, with $|A|=|B|=6$, realizing the minimal possible value $|A \cdot B|=9$ is for instance $A=\left\{1, a, a c, b c, a c^{2}, a b c^{2}\right\}, \quad B=\left\{1, a, c, a c, b c^{2}, a b c^{2}\right\}$, where $a=(1,2)(3,4), b=(1,3)(2,4)$ and $c=(1,2,3)$ in cycle notation (we use multiplication from left to right, whence $c a=a b c, c b=a c$).

It is not clear whether, in general, μ_{G} can be described by such a simple formula for an arbitrary finite non-abelian group G.
(2.2) As a weaker problem than the one above, is it true that $\mu_{G}(r, s)$ is bounded below by $\mu_{\mathbf{Z} / g \mathbf{Z}}(r, s)$ with $g=|G|$, i.e.

$$
\mu_{\mathbf{Z} / g \mathbf{Z}}(r, s) \leqslant \mu_{G}(r, s)
$$

for any finite (non-abelian) group G of order g ?
(2.3) As yet another weaker problem than in (2.1), can one at least expect the upper bound

$$
\mu_{G}(r, s) \leqslant r+s-1
$$

for any (finite) group G ? We can prove that this upper bound holds true for finite solvable groups.

Acknowledgments

During the preparation of this paper, the first author has partially benefited from a research contract with the Fonds National Suisse pour la Recherche Scientifique.

References

[BL] B. Bollobás, I. Leader, Sums in the grid, Discrete Math. 162 (1996) 31-48.
[C] A.-L. Cauchy, Recherches sur les nombres, J. École Polytechnique 9 (1813) 99-123.
[D] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30-32.
[EK] S. Eliahou, M. Kervaire, Sumsets in vector spaces over finite fields, J. Number Theory 71 (1998) 12-39.
[K] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953) 459-484.
[M] H.B. Mann, Addition Theorems, Interscience Publishers, Wiley, New York, 1965.
[N$] \quad$ M.B. Nathanson, Additive number theory: inverse problems and the geometry of sumsets, in: Graduate Text in Mathematics, Vol. 165, Springer, Berlin, 1996.
[P] A. Plagne, Additive number theory sheds extra light on the Hopf-Stiefel o function, L'Enseignement Mathématique, to appear.
[Y] S. Yuzvinsky, Orthogonal pairings of Euclidean spaces, Michigan Math. J. 28 (1981) 109-119.

[^0]: *Corresponding author. Fax: + 33-3-21-46-36-69.
 E-mail addresses: eliahou@lmpa.univ-littoral.fr (S. Eliahou), michel.kervaire@math.unige.ch (M. Kervaire), plagne@lix.polytechnique.fr (A. Plagne).

