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1. INTRODUCTION 

The characteristic frequencies of a vibrating string with fixed ends, of 
length I, and with nonnegative integrable density p(x), x E [0, Z], are 
determined by the ordered eigenvalues 

0 < X&l] < A,[,] < .*. < A&] < .** 

of the differential system 

un + hp(x)u = 0, x E [O, 11, 
u(0) = u(Z) = 0. (1) 

We consider these eigenvalues as functionals of the density p. In previous 
work, the extreme values of &&I] were investigated under the condition that 
the density function p be restricted to lie in a given class of functions. For 
example, the class might be all the bounded, concave, or convex functions 
with the condition that $,p(x) dx = M, a constant. It has been shown that 
there exists functions pn+ and pn- in certain such classes of functions E such 
that h&,-l < h,[p] < h,[p,+] for all p E E. But for many such classes, the 
extremizing functions pn+, pn-, (n > 1) have been completely determined 
only up to a given subclass of functions. (See [l], [2].) From these, the extreme 
values can hopefully be computed for a given n, if IZ is not too large. 

In this paper, a general method is presented for finding the limit of 
convergent subsequences of {pn+} and {pn-} when they exist. In these cases, 
it is then possible to find information concerning the extreme values Xn[pn+] 

and h&,-l and the corresponding functions pn+, pn- for n sufficiently large. 
There is a close connection between bounds for eigenvalues and bounds for 
the number of zeros of solutions of second order equations. Our results give 
information concerning this problem as a by-product. 

In particular, we will consider the following classes of functions: A given 
measurable function p defined on [0, I] is defined to be in the 
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(i) class K if 0 ,< p(x) < H and ji p(x) dx z M, where H and ill are 
constants, 

(ii) monotone class E, if p E K and is monotone increasing 

(iii) convex class E, if p E K and is convex, i.e., 

Pb + (1 - 4 rl G 444 T (1 - 4 P(Y), (0 < tl < I). 

(iv) concave class Et3 if p E K and is concave (a concave function is 
automatically bounded). 

(v) Lipschitz class $ if p E K and satisfies a Lipschitz condition with 
constant L. 

In Section 2, a theorem is proved which relates limits of subsequences of 
the maximizing functions (pn+) to the function p,,+ which minimizes 

over a given subclass of functions in K. A corresponding result is proved for 
pn-. This result is then applied to the classes E, (i = 1,2, 3, 4) to show that 
the minimizing functions pn- have the property that limnio pll-(x) = M/Z 
almost everywhere on [0,1]. Lower bounds for /\,[p] for n sufficiently large 
and p E Ei (i = 1, 2, 3,4) are obtained as a corollary to this result. 

In Section 3, some results are given concerning upper bounds for h,[p], 
(n = 1,2,...) when p is in the Lipschitz class E4 . The main theorem of 
Section 2 is then applied to this case to give information about the maximizing 
functions pn+ for large n. In Section 4, some properties of the maximizing 
functions pn+ for the classes of functions E, (i = 1, 2, 3) are given for n 
sufficiently large, and in Section 5 some applications are discussed. 

2. ASYMPTOTIC BOUNDS 

The main results in this paper are based on the following: 

THEOREM 1. Let C be any subclass of functions from the class 

K = jp : 0 < p < H, J” p(x) dx = M( 
0 

which is sequentially compact in the sense of pointwise convergence almost 
everywhere. Then there exist functions pn-, p,,+ E C such that 

UPn-1 < UP1 < UPnfl 
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for all p E C. Furthermore, z..{pn’,} is a subsequence of {pm+} such that lim p;t, = pO+, 
then p,,+ is a minimixing function for ][p] = sk dp(x) dx for all p E C. The 
corresponding statement holds for the maximum qf J[p] over C and the nzinimizing 
functions (~~-1. 

Proof. The existence of the functions pn4- and pn- is a consequence of the 
sequential compactness of the class C (see [3], p. 166). To show that 
J[p] < j[p,-] for all p E C, let {p,} be a convergent subsequence of (pll-}. Then 
by Egoroff’s theorem, it is known that for any E > 0 there is a set A, C [0, I] 
of measure less than E and an integer N, such that I p,,-(x) - p,,(x)1 < E if 
x 6 A, and k > N, . Defining functions LT< and L, by 

\O 
LE(x’ = (max{O, pod(x) - G) 

XEA,, 
X$4, 

and 

IH 
ukx) = (PO-(x) + E 

XEA,, 
x$4, 

we haveL,(x) d P;Jx) < u,( x 1 f or x E [0, I] and k > N, . By the comparison 
theorem for eigenvalues ([4], p. 41 I), it follows that 

Recalling that 

lim A&]/n” = (-/I: $@ dxj’, (3) 

we see that these inequalities imply that 

i? 
-- 

(Ji d&(x) dx)2 a li?2zp 

By the dominated convergence theorem jh m dx and Sk due(x) dx 
converge to sk 2/po-(x) dx as E --f 0. Inequality (4) then implies 

lim fL!JPn,l __- = 
i J; d$) dx > 2* k-ao nJc2 

(5) 

Now, by (2) we have X&Q < &,[p] for all p E C. Dividing this 
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inequality by nki2 and taking the limit ask + cc, we obtain from (3) and (5) 
the inequality 

Hence, J[p] < J[,J~-] for all p E C. The proof of the remainder of the theorem 
is analogous and will be omitted. 

To apply Theorem 1 to a given class of functions, it must be shown that 
the class is sequentially compact. For the cases to be considered here, this is 
assured by the following 

LEMMA. Let the sequence of functions (pn} defined on [0, E] be unzformt$ 
bounded and of un;foymi$ bounded variation. Then there is a subsequence {pn,> 
and a function p0 of bounded variation on [0, Z] such that p,Jx) -j p,,(x) almost 
everywhere as k --t (;o. 

For a proof, see [5], p. 425. We now show that Theorem 1 and the above 
lemma yield the following 

THEOREM 2. Let C be any one of the classes of functions E, (i = 1, 2, 3, 4). 
Let p,,- denote the minimizing function for A,&] over the class C. Then 

almost everywhere. 

Proof. The lemma yields the fact that each of the Ei and, hence, also C 
are sequentially compact. Suppose then that {p,} is a convergent sub- 
sequence of {pn-} and pO- is the limit of this subsequence. Then by Theorem 1, 
pO- maximizes /[p] over the class C. But Schwarz’ inequality implies 

JYPI = (I ‘+)d.x’ 
0 

j .< f ,o(x) dx . .i” dx = M . I 
0 0 

with equality if, and only if, p = M/E. It follows that po-(x) E M/l and that 
every convergent subsequence of (pn-} converges to this value. Consequently, 
we must have lim,,, P,-(X) I-= M/Z almost everywhere. 

It is not possible, in general, to replace the convergence almost everywhere 
by ordinary convergence. It can be shown that for the class of concave 
functions, for example, p,-(O) :-= p,-(Z) = 0 for all n. 

This theorem has the following immediate 
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COROLLARY. For any E > 0, the inequality 
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holds for n sujiciently large for p E E, (i = 1, 2, 3, 4). 

For by looking at the form of the minimizing pn- for each of the class Ei 
(see [l], [6]) it can be seen that for arbitrary E > 0, pn-(x) < M/Z -+ E for all 
x E [0, Z] when n is sufficiently large. The comparison theorem then yields the 
result. 

3. THE LIPSCHITZ CLASS 

In this section, we consider the problem of finding upper bounds for X,[p] 
when p belongs to the Lipschitz class E, . We first give an upper bound for 
XJp]. As a by-product, we obtain an upper bound for the lowest eigenvalue 
of a string with one end fixed and the other end free. These results will be 
given in terms of the fundamental pair of solutions Vi and U, of Airy’s 
equation u” + xu = 0, where U,(O) = 1, U,‘(O) = 0 and U,(O) = 0, 
U,‘(O) = 1 (see [7]). 

THEOREM 3. Let X,[p] be the lowest eigenvalue of the system (1) where 
p E E, , i.e., / p(x) - p(y)1 <L 1 s - y / and j: p(x) dx = M. Then 

~~IIPI 13L < S,3W2/W, 

where S,(K) is the least positive root of 

u, [s (; + &j] U,’ p (+ - a,] 

- u, [s (+- + $1 U,’ [s (& - 31 = 0 
when L12 < 4M and of 

U,(S/dE) = 0 

when Ll” > 4M. Moreover, equality holds if, and only if, p G pI+ where 

\L(l,i4 - x) + M/l 
p1+w = Ipl+([ - x) 

0 < x < 112, 
112 < x < 1, 

(6) 

(7) 

(8) 

(9) 
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when L12 < 4M and 

Proof. Let p E E4 and consider the function p1 defined by 

P&4 = HP(X) + pv - 41. 

(10) 

Then p1 E E4 and is symmetric about the point x = Z/2. Let A,[pJ be the 
lowest eigenvalue of the system (1) with p replaced by p1 . It is shown in [3], 
p. 174, that AJpJ > A&J. To prove the theorem, we show that h,[p,+] > AJpJ 
where pi+ is defined by (9) or (10) depending on the magnitude of 12L/M. 
Because of the symmetry of p1 , Al[pl] is also the lowest eigenvalue of the 
system 

d + pp(x)u = 0, x E [O, WI, 

u(0) = u’(l/2) = 0, 
(11) 

when p is taken to be equal to pi on the interval [0, Z/2]. A similar statement 
holds for hJp,+]. Hence, we may use the following comparison theorem due 
to Nehari [S]. 

THEOREM. Let p1 and q be nonnegative continuous functions dejined on 
[0, Z/2] such that 

c 

712 

s 

712 

P&J dx 2 q(x) dx. (12) I 2 2 

If pl[pl] and pLl[q] are the lowest eigenvalues of the system (11) with p replaced 
by p1 and q, respectively, then 

dP11 G clw (13) 

To show that (12) holds, we note that j’i’2 pi(x) dx = si’” q(x) dx = M/2. 
Since p1 and q are nonnegative and continuous, they must have at least one 
positive common value for some point x. If a is such a point, the Lipschitz 
condition implies that 

-L(x - a) ,( ~~(4 -pAa) <W - 4 

when x > a. Consequently, q(a) = pi(a) implies 

~~(4 >L(a - 4 + da) = 44 
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for x > a and wherever q(x) > 0. Similarly, for all x < a it follows that 
p(x) < L(x - a) + q(a) = Q(X). Thus, the inequality (12) holds and 
&pr] < &]. Solving the system (I 1) for &Q] in terms of Airy functions, 
we get Eq. (7) or (8), depending on the magnitude of PL/M, for S,(Z2L/M), 
and find that pr[q] = X&jj = S13(Z2L/M)/Z3L. The inequality (6) then follows 
and the theorem is proved. 

It is clear that our proof also yields an upper bound for yr[p] when p is 
restricted to satisfy the Lipschitz condition and si’” p(x) dx = M/2. In [6] 
the problem of finding lower bounds for X,[p] when p E E, was solved 
completely. It was shown that the density pn- which minimizes X&l over the 
class E4 is a regular “saw-tooth” function of n teeth with the point of each 
tooth coinciding with an antinode of the corresponding eigenfunction. One 
might conjecture, in the light of previous results of Krein [3] and Schwarz [9], 
that the density which maximizes X,[,] over the class E, would again be a 
regular saw-tooth function with the point of each tooth coinciding with a 
node of the corresponding eigenfunction. We now show that this is not the 
case. 

We first prove the following 

THEOREM 4. Let h&J be the nth eigemalue of the system (1) where p E E4 , 
the Lipschitz class. Then there is a function pn+ in the Lipschitz class such that 

Lb,+1 3 Ud where pn+ is a nonnegatiue continuous saw-tooth function of the 

f OYVI 

0 < x < p1 ) 
Pl < x < 011, 
% < x < 152, 

. . . 

pn<X<l=aOLn 

It should be noted that 01~ , pi are not necessarily equally spaced and that 
they and the yi are such that pn+(x) is continuous. Also note that some of the 
intervals (CX~ , &), and (,$ , CYJ may be degenerate. 

The existence of Pn+ such that hn[pbn+] = maxE, h,[p] is proved in Theorem 1. 
To show that pn+ has the specified form, we use the first variation Sh,[p] of 
A,[p] within the class of functions E4 . It is shown in [2], p. 1186 that this is 
given by 

%bl = -&JPI I:, @PI un2 dx, 

where u, is the normalized eigenfunction corresponding to X,b] and 
p + Sp E E4, i.e., Sp is such that $ Sp dx = 0 and p + Sp satisfies the 

505/7/3-7 
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Lipschitz condition of E4 . Applying this variational formula to h,[p, ‘1, we 
must have 

SXn[pn+] = -Xn[pn+] 1: (Sp,,-j un2 dx :< 0. 

The theorem will be proved provided we show that if pm’ does not have the 
form specified in the theorem, then there is a Spn+m within E, such that 
sx,bn+] > 0. supp ose there is a nonnegative function Y(X), x E [0, I] of the 
form defined by (14) such that Y E EJ and such that 

J‘ 
I 

I 
1 

YU,,~ dx < p,,fu,z d.v. 
0 0 

Then 6p,+(x) = E[Y(X) - pn+(x)] has the property that 

J 
.I 

Sp,fuW2 d.x < 0, 
0 

where 0 < E < 1. Also, pn+ + 6p,+ satisfies the Lipschitz condition of J!?~ and 
it follows that 6h,[pn+] > 0. 

It remains to show there is such a function Y(X) in E, . Kather than carry 
out the details of construction of such a function, which are more tedious than 
enlightening, we refer the reader to a similar construction for the class of 
convex functions which is described in [2], p. 1193. 

The following theorem yields some information about the nature of the 
maximizing functions pn+ for n sufficiently large. 

THEOREM 5. Let pn+ be the maximizing function of A,[p] over the Lipschitz 
class E4 and let {pik} be a convergent subsequence of the sequence of functions {p$ }. 
Then lim,,, pzk (x) equals r(x) OY ~(1 - x), where Y is defined by 

Y(X) = L(x - l/2) + JZjl 

if L < 2M/12, and by 

Y(X) = 
0 o<x< 1 - 1/2M/L, 

L(x - I) + d2ML 1 - 2/2M:‘L < x ,( 1 

Proof. In view of Theorem 1, we need only show that the minimum of 
J[p] is given by Y(X) and r(1 - x), and only by these two functions. 

Let p be any function in E4 . The rearrangement of p into increasing order 
is defined to be the function p on [0, E] with values given by p(x) = m-l(x), 
where m(r) denotes the measure of the set (X : p(x) > JJ} and m-l is its inverse 
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(see [lo], p. 276). It follows from this definition that Jb] = J/j?] and that 
s; ,c(x) dx = j&x) dx = M. It is also true that jj satisfies the same Lipschitz 
condition as p so that i, E E4 . Hence, to find the minimum of J[p] over the 
class E., , we may assume that p is increasing. Using the same argument 
presented in the proof of Theorem 3, we also have that sz p(t) dt 3: sz r(t) dt 
for all x E [0,1]. 

We now apply the following result due to Hardy, Littlewood, and Polya 
(see [IO], p. 170, [II], p. 152). 

THEOREM (H-L-P). 1ff, g are increasingfunctions and Jzg(t) dt > jzf(t) dt 
for all x E [a, b], then 

1” @[g(x)] dx >, I‘” @[f(x)] dx, 
a <I 

where <p is a strictly concave continuous function. Equulity occurs if, and only if, 
Jzg(t) dt = J;f(t) dt for x E [a, b]. 

Hence, we have 

(‘t’~d.v >, j-l v%dx 
“0 0 

with equality only when sz p(x) dx = sz Y(X) dx, i.e., when p(x) s Y(X) for all 
x E [0, Z] if p is an increasing function. The only other function for which 
equality can occur is r(l - x). For if p. is such that 

-1 

1 
z/po(x)dx = -’ .\/r(X), 

0 1 0 

then the rearrangement of pa(x) into increasing order must be identical with 
Y(X). Hence, mux, pa(x) = max, Y(X). But the Lipschitz condition then implies 
that Jipo(x) dx > $,Y(x) dx, except when pa(x) = ~(1 - x). This is a 
contradiction and the theorem is proved. 

It is an immediate consequence of Theorem 5 that the functions pn+ E E4 
(n = 1,2,...) cannot all be regular saw-tooth functions described in the 
remark prefacing Theorem 4. And, in fact, only a finite number can be of this 
form. For if there were such an infinite subsequence of {p,+>, it is easily seen 
that it would converge to the constant value M/E which contradicts Theorem 5. 

4. ASYMPTOTIC UPPER BOUNDS 

In this section, we apply Theorem 1 to give results on upper bounds of 
X,&l when p belongs to each of the classes El , E, , and E, . We first consider 
the monotone increasing class El . We have 
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THEOREM 6. Let pla+ be the maximizing function of A,&] over the increasing 
class Er . Let {pzk} be a convergent subsequence of {p,+}. Then lim,,, p,Jx) = Y(X) 
where 

0 0 
M 

Y(X) = 
<x<l-g, 

(15) 
H &!!! 

H 
< x 2: 1. 

Proof. By Theorem 1, we need only show that if p(x) E El , then 

API > 01 unless ~69 = ( ) 1 r x a most everywhere. But we have immediately 
that sz p(x) dx 3 jt Y(X) d x so that again by the theorem of H-L-P, we have 
the desired result. 

For the concave case, ES, we have 

THEOREM 7. Let pn+ be the maximizing function of h,[p] over the concave 
class ES . Let {p,‘,} be a convergent subsequence of {p,&+}. Then there is a number t 
in [0, I] such that lim,,, p:,<(x) = Y,(X), where 

2M O<x<t, 
yt(4 = (16) t<x<2. 

Proof. The rearrangement of a concave function into increasing order 
preserves the concavity. As noted in the proof of Theorem 5, to minimize 
J[p] we note that j[p] = J[p*], where p* is the rearrangement of p into 
increasing order. Hence, we may assume that p is increasing. We also note that 
r1 is an increasing function and that ji p(x) dx > JI Ye dx. The theorem of 
H-L-P then yields the inequality J[p] > /[rJ with equality only if p = rl . 
But we also have that J[YJ = J[YJ f or all t E [0, I]. Hence, the minimizing 
function of j[p] for p E E3 is not unique but belongs to the family {yt} since 
the only concave rearrangements of r1 are in {Ye}. 

Finally, we have the theorem for the convex case E, . Since the proof of this 
theorem involves no new ideas, we give no proof. 

THEOREM 8. Let pn+ be the maximizingfunctions of A,&] (n = 1, 2,...) over 
the bounded convex class I?, . Let {pzk} be a convergent subsequence of (p,,+>. Then 
there is a number t in [0, l] such that limp,‘,(x) = Y,(X), where 

H-iF)x o<x<t, 

ytw = (17) 
(x - 0 + H t<x<l, 
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with h = (2M/E) - H when HI < 2M and 

H - Hxjt O<x<t, 
Yt(X) = 0 t<x<s, (18) 

H + H(x - l)/(s - I) s<x< 1, 

with s, t determined by Ht + H(Z - s) = 2M when Hl > 2M. 

5. REMARKS 

We conclude with some remarks based on the theorems of the previous 
section and on the ideas considered there. 

It is shown in Theorem 1 of [2] that maximizing function fn+ of X,[p] over 
the increasing class El is an increasing step function with at least one and at 
most n jumps. Theorem 6 shows that, however many jumps pn+ has, 
as n---f co, these must either tend to reduce to a single jump or there is 
eventually only one jump or possibly both of these events occur for different 
subsequences of {pn*}. 

Corresponding remarks can be made about the maximizing functions p,,+ in 
the convex class E, and the concave class Es , except that in these cases the 
limiting function rt is apparently not unique. By further restricting these 
classes, however, we have the following results. 

(1) Let hnb71+] = max h,[p], where the maximum is taken over those 
functions in the convex class E, which are increasing. The functions pn+ are 
known to be piecewise linear with at most n + 1 pieces (see [2], p. 1193). It 
can be seen from the proof of Theorem 8 that every convergent subsequence 
{p;t,} from {pn+} is such that lim,,, &Qx) = r,(x), where r,, is defined by 
(17) or (18) with t = 0. There is a corresponding result when the functions 
E, are required to be symmetric. In this case, the limit function is given by (17) 
with t = Z/2 or by (18) with (s + t)/2 = Z/2. 

(2) Let X,[p,+] = max X,[p], where the maximum is taken over those 
functions in the concave class E, which are symmetric. The functions P,,+ are 
known to be piecewise linear functions whose graphs are made up of at most 
n linear segments (see [2], p. 1196). It can be seen from the proof of 
Theorem 7, every convergent subsequence {p,‘,) of {p,+> converges to the 
functron rl,s defined (16) in Theorem 7. A corresponding statement holds if 
the functions of E, are increasing or decreasing. 

(3) FinaIly, one may consider the more general self-adjoint eigenvalue 
problem 
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y” $ flP(x) y = 0 

with 

Denoting the n-th eigenvalue of this system by A,(P), it follows ([4], p. 415) 
that 

lim ‘,(‘) I 
--= - 

n-c= ?22 i 
-_= 

J; dP;,) dx 1 ** 

Thus, Theorem 1 holds if we replace h,(P) by A,(P). It is now obvious that 
Theorems 2, 5, 6, 7, and 8 will hold with A,(P) replaced by the more general 
d,(P), and the proofs will be identical to those given for A,(P). 
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