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Abstract—We extend the result of the null controllability property of the heat equation, obtained
as limit, when e tends to zero, of the exact controllability of a singularly perturbed damped wave
equation depending on a parameter € > 0, described in [1], to bounded domains which satisfy the
Bardos-Lebeau-Rauch geometric control condition [2]. We add to the method of Lopez, Zhang and
Zuazua in (1] an explicit in € > 0 observability estimate for the singularly perturbed damped wave
equation under the Bardos-Lebeau-Rauch geometric control condition. Here the geometric conditions
are more optimal than in [1] and the proof is simpler than in [1]. Instead of using global Carleman
inequalities as in {1}, we apply an integral representation formula. (©) 2002 Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION AND RESULTS

This paper is devoted to complete the results in {1] on the controllability of the following damped,
singularly perturbed wave equation depending on a parameter € > 0:

s@fu—Au+8tu=f51|w, inQx]0,T[,
u=0, on 99 x |0, T, (1.1)

u(:,0) =up, Gu(.,0) =1, in Q.

In (1.1), © is a bounded domain of R®, n > 1, with a smooth boundary 0Q, u = u(z,t) is the
state to be controlled, f. = f.(z,t) is the control, and 1}, denotes the characteristic function of
the open subset w of 2, where the control is supported. The measure of the cost of controllability
is given by the following assertion: given any T > 0, there exist two positive constants (T) > 0
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and C(e,T) > 0, such that
”.fe”LZ(wx]O,T[) < C(eT) HUOa \/EuluHé(Q)xLZ(Q) ’ V (ug,u1) € H(% () x L2 ), (1.2)

for all 0 < e < g(T'), where the control f. € L%(wx]0,T) is constructed such that the solution
of (1.1) satisfies u(z, T') = d;u(z, T) = 0 in . The formal limit, as € tends to zero, of (1.1) is the
controlled heat equation with initial datum uo € H}(R).

The method described in [1] allows us to prove that, given any T > 0, system (1.1) is exactly
controllable for € > 0 sufficiently small with a uniform bound of the cost of controllability if
there exists T, = T,(2,w) > 0 such that for all T > T}, there exist positive constants C;,Cs > 0
such that for any L2-solution of the following damped wave equation depending of the parameter
keR:

02— Ap+ kB =0, inQx]0,TY,
P =0, on 89 x 10,77, (1.3)

¢ (70) = wﬂa at’l/} (10) = wla in Qa
we have

' T
Wolfs + il <O [ [w@orae,  veer a4

with C(k) = C1e“'*! where the two positive constants C;, Cy do not depend on k.
Under the following geometric control hypothesis of the work of Bardos, Lebeau and Rauch
in (2],
(i) there is no infinite order of contact between the boundary 0 and the bi-
characteristic of 82 — A;
(ii) any generalized bicharacterisic of 62 — A parametrized by t € |0, T.[ meets w.

(1.5)

It is well known that (1.4) holds true, but with a nonexplicit, in & € R, constant C(k) and
with 7' = T.. Besides, it has been proved in (1] that C(k) = C1e“?!¥ by using global Carleman
inequalities with the hypothesis given by the multiplier techniques and with T, > T.. Our goal
is to prove the results in [1] under the geometric control hypothesis (1.5) without using global
Carleman inequalities.

The main result of this paper is the following theorem which asserts that under the geomet-
ric control hypothesis of the work of Bardos, Lebeau and Rauch, there exists a control, for
system (1.1), which has a uniformly bounded cost.

THEOREM 1. Let hypothesis (1.5) be satisfied. Let T > 0. Then there exists é(T) > 0 such that
for any 0 < & < &(T), system (1.1) is exactly controllable in time T and the constant C(e,T)
in (1.2) remains bounded as € tends to zero. Furthermore, for any (uo,u;) € H(Q) x L%(Q)
fixed, the controls f. of (1.1) may be chosen such that f. tends to f in L?(wx]0,T|) as ¢ tends
to zero, f being a null control for the limit heat equation with initial datum uyg.

In this way, we answer an open question in [1]. To prove Theorem 1, we propose the following
observability estimate for any L2-solution of the damped wave equation (1.3) depending of the
parameter k € R.

THEOREM 2. Let hypothesis (1.5) be satisfied. Then for all T > 47T, there exists a positive
constant C > 0 such that

- v
ol Z2¢a) + ”ﬂ’l”?{-l(n) < ceC|kl/O /‘UW (a,t)]* dedt, (1.6)

for every solution of (1.3) and all k € R.
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The paper is organized as follows. In Section 2, we establish two lemmas on observability
estimates which are easily obtained from the work of Zuazua in [3] for the one-dimensional case
and from the work of Bardos, Lebeau and Rauch in [2] for the multidimensional case. In Section 3,
we prove Theorem 2. The key point to prove (1.6) is an integral representation formula which
was already exploited in [4] for the Schrodinger control problems. Such analogous formulas are
also used in [5] to study inverse problems for equations of parabolic or elliptical types. The
proof of Theorem 1, which is omitted here, is then deduced from the work of Lopez, Zhang
and Zuazua in [1] by using the three-step controllability method: let the time interval [0,77] be
divided into three subintervals [0,T/3], [T/3,2T/3], and [2T/3,T]. In the first step, the parabolic
projection of the solution of (1.1) is controlled uniformly in € to zero on [0,7/3]. In the second
interval, [T'/3,2T/3], system (1.1) evolves freely without control, so that the size of the solution
at time t = 27/3 becomes exponentially small with the dissipation. In the final step, a control
is constructed by the HUM method of Lions [6] and from Theorem 2 to steer to zero the whole
solution.

2. PRELIMINARY LEMMAS

In this section, we describe two lemmas which can be easily obtained by well-known results. The
first one concerns an explicit in k observability estimate for system (1.3) in one space dimension
and is deduced from [3, Theorem 4]. The second one is an application of the observability estimate
in [2] for the wave equation when the geometrical control condition (1.5) is assumed.

LEMMA 1. Let § > 0. Let us consider an interval D C R given by D =] — L;3L[, where
L > 0. Then for all T > 4(L + §), there exist a constant C > 0 and a function x defined by
x = x(£) € C(IL; 3L[), x(€) = 1 for £ €]L + &; 2L|, such that

T
2001372 oy + 21122y < Ce™ /D lIxz ()l g3y @t (2.1)
respectively, T
120 2 oynrz oy + 121 3 0y < CeH /0 lIxz () g2y s (2.2)
for every z = z(€,t) H'-solution, (respectively, H?-solution) of
8%z — 022+ kdyz =0, in (¢,t) € D x]0,T7,
z({=~L,t)=2({=3L,t)=0, fort €10,TY, (2.3)
z(t=0)= 29,02 (,t =0) = 2, in D,

where (20,21) € H}(D) x L*(D) (respectively, (z0,21) € H*(D) N H}(D) x H}(D)) and for all
k eR.

LEMMA 2. Let hypothesis (1.5) be satisfied. Then there exists a constant C > 0 such that
TC
n%ﬁmﬁwwﬂqﬂscfwA meﬁfmm
_ 2
+0EM (oolfyscoy + -7 o+ k), ).
for every solution of (1.3) and all k € R.

PROOF OF LEMMA 1. Let (¢, t) = e{}/2¥t2(¢,1), then the solution y, with initial data (¢(-,0),
Bep(+, 0)) = (o, 1), solves

(2.4)

ﬁw—&¢—iﬁ¢=m in (6,¢) € D x10,T],
p(l=-L,t)=¢(£=3L¢t) =0, fort €]0,77, (2.5)
1
wo =20, ¢1= 5’%0 + 21, in D.
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By applying the results of Zuazua in [3, Theorem 4 and Lemma 2, p. 121], we deduce that there
exists C > 0 such that

T-8 p2L
llpollZa(py + lorllEr-1(py < Ce /5 /L el dedt, (26)
-+

for every k € R.
Consequently, we have

leoliZa(py + Nlorlf-r (py < CeC¥ l/ / Bt)a(€)p(L,t))? dedt, (2.7)

where a = a(f) € C(|L + (6/2);2L +4]), @ > 0, a(¢) = 1 for £ €]L + §;2L{, and 3 = B(t) €
C§e(10;TD), B >0, B(t) =1 for t €]6;T — 4.
By applying the operator J; on the equations of system (2.5), we deduce from (2.7) that

2 2
llvollzz(py + l@1llz2(p)

T 3L 2.8
< CeCM /0 /L (!ﬁ(t)a(f)atcp(f,t)l2+|ﬁ(t)a(f)¢(€,t)|2) deadt. 28

Now, from (2.5) and by using integrations by parts, we easily obtain the following estimate:

T 3L 2 T 2
/0 /L 18.(t) (6) Bup (6, 1) dedt < C |1+ K| /0 e O gy smanssy & (29)

Finally,
T
2
lepoll 3 by + el Zagpy < CeOW /0 lIx C ) gs oy dts (2.10)

for all £ € R, where the constant C' > 0 does not depend on k and where the function yx is defined
by x = x(£) € C§&(IL; 3L]), x = 0, x(¢) = 1 for £ €L + §/2; 2L + §[. Then, from (2.10), we
prove (2.1). Also, (2.2) easily follows by applying the operator 62 on system (2.5) and from (2.6).

ProoOF OF LEMMA 2. We will begin to prove Lemma 2 with more regular initial data. More
precisely, we have the following result.

LEMMA 3. Let hypothesis (1.5) be satisfied. Then there exists a constant C' > 0 such that for
all k € R, for all initial data (wo,w;) € H3(Q) x L?(Q), the solution of the problem

32w — Aw + k8w = 0, in £ x 0,77,
w =0, on 6Q x 10,77, (2.11)

’LU(,O) = Wy, atw (,0) = wy, in Qy
satisfies

T,
ool gy + 01 ]2a(qy < CeOH /0 / \Oyw (=, £)|? dz dt

(2.12)

The proof of Lemma 2 follows from Lemma 3 with

w(z,t) = /0 ¥ (x,8)ds — (=A) " (W1 (z) + ko (2)) - (2.13)
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ProOF oF LEMMA 3. First, we observe that it is sufficient to prove (2.12) for all ¥ > 0, because
the case k < 0 is easily deduced by a symmetry argument on the variable t. Let v(x,t) =
e(1/2ktyy(x, t), then the solution v = v(z,t) solves

v — Av = %kzv, in @ x]0,TY,
v =0, on 69 x 10, T, (2.14)
v(,0)=w, Bw(,0)=wi+zhuo, in®
By applying the observability estimate from the work of Bardos, Lebeau and Rauch [2], to the

solution v(z,t) of the wave equation with a second member given by (1/4)k%v(z,t), we have
Fe(Te) > 0, :

2

1
w1 + §(€’U)0

llwol 371 0y + ‘ \
L2 (2.15)

Sc(Tc)/OTC/ 18w (z, ) dz:dt-&—c(Tc)/oTc/Q|k2v($,t),2 dz dt.

Coming back to the solution w(z,t) and using the relation

1d
2dt
we finally deduce that

(w2 oy + Nl 2y ) =~k 1Bswlly-sy < O, (2.16)

Te
”'UJO”?JI(Q) + ”Uﬂ”%?(g) < Ceclk|A / |6tw (1‘, t)|2 dr dt
w

2
+CeM (JwollFaay + ot l-y)

(2.17)

where the constant C > 0 does not depend on k. This concludes the proof of Lemma. 3.

3. PROOF OF THEOREM 2

From Lemma 2, we deduce that in order to prove Theorem 2, it is sufficient to demonstrate
that if hypothesis (1.5) is satisfied, then for all § > 0, for all T' > 4(T +§), there exists a constant
C > 0 such that

ol sy + -2 i+ k], <00 [ [ ol dwar, @)

L n)

for every solution of (1.3) and allk e R .

By a duality argument, we observe that, in order to prove the observability estimate (3.1), it
is sufficient to solve an exact controllability problem. Indeed, if for all initial data (Wo, W;) €
H2n HL(Q) x HF(KY), there exists a control g € L?(wx]0, T[) such that the solution W = W (z,t)
of the following system:

BW — AW —k&,W =gl,,, inQx]0,T],
W =0, on 60 x 10,77, (3.2)
W(,0)=W,, oW(,0) =W, in Q,
satisfies W(.,T) = 8;W(-,Tg) = 0, and

llgliizwlo,ﬂ) < CeClkl (”AWO“iz(n) + IIW1II§13(Q)) ) (3.3)
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then it is sufficient to choose

Wo = (—A)"1 (=A) " (1 + ko),

Wi=(-8)" 4, .

in the following duality relation:

T
/ {=W1 (2) o (z) + Wo (z) [t (2) + ktbo ()]} dax = / / 0@ 0 (@,t) dodt,  (3.5)
Q 0 w

to conclude the proof of the observability estimate (3.1).
Our goal is now to prove the following exact controllability property.

PROPOSITION 1. Let hypothesis (1.5) be satisfied. Let & > 0. Then, for all T > 4(T, +6), for all
initial data (Wo, W) € H? 0 H}(Q) x H}(Q), there exists a control g € L*(wx]0,T|) such that
the solution W = W(x,t) of problem (3.2) satisfies W(-,T) = 8,W(-,T) = 0 and estimate (3.3)
holds for all k € R, where the constant C > 0 does not depend on k.

PrROOF OF PROPOSITION 1. We decompose the solution W = W(z,t) of (3.2) as W = & + ¥,
where the solutions ® = ®(z,t) and ¥ = ¥(z, ) satisfy the two following lemmas.

LeMMA 4. Let hypothesis (1.5) be satisfied. Let § > 0 . Then, for all T > 4(T. +4), for all initial
data Wy € H}(Q), there exists a control g; € L?(wx]0,T) such that the solution ® = ®(z,t) of
the problem

3t2<I>—A<I>—k6t<I>=gll|w, in @ x10,T[,
® =0, on 09 x 10,77, (3.6)
®(,0)=0, 8,9(,0)=W, in Q,

satisfies ®(-,T) = 8,®(-,T) = 0 and the estimate
1911 Z2(uxjo,aep < Ce™ IWll33 3.7)

holds for all k € R where the constant C > 0 does not depend on k.

LeMMA 5. Let hypothesis (1.5) be satisfied. Let § > 0. Then, for all T > 4(T, + §), for all
initial data Wy € H2 N H}(Q), there exists a control gy € L*(wx)0,T|) such that the solution
¥ = U(x,t) of the problem

B2 — AV — kd,¥ = go1y,,  inQx10,TY,
T =0, on 8Q x |0, T, (3.8)
U(,0)=W,, 8¥(,00=0 inQ,

satisfies ¥(-,T) = 8;¥(-,T) = 0 and the estimate
921173 wxjomp < Ce“™ 1AW 72y (3.9)

holds for all k € R where the constant C > 0 does not depend on k.

Proor oF LEMMA 4. We construct ® = ®(z,t) the state to be controlled, solution of (3.6), with
the following integral representation formula:

®(z,t) = /R F(6,4)y(z,0) de, (3.10)



Null Controllability 1295

where the solutions y : (z,4) € Q@ x Ry — y(z,£) and F : ({,t) € R;x]0,T[— F(¢,¢) satisfy the
two following control problems:

B3y — Ay = hly,, inQx{-L<f<L},
y=0, ondQx|-L, L[, (3.11)
y(,£=0)=W; € H (Q), 8w(,£=0)=0, inQ,
y(z,0) = Opy (z,£) =0, for (z,£) €Qx (]~00,—L] U[L,+0o0]),
O2F — 0jF — kO, F = xolar,  in (€,t) € ]-L,3L{x]0, T,

F{,t=0)=0, for £ €] — L,3L|,
(3.12)
OF(,t=0),=46(), in Ry,
Ft=T)=0F({,t=T)=0, for € ]-L,3L[,
with the following estimates:
Al 2 wxi-z.2p < CIWilEaay s (3.13)
”F“iz(]—-L,L[x]O,T[) < Cel¥, (3.14)

for all k € R where the constant C > 0 does not depend on k.

The existence of the solution y = y(z, ) is obtained by a simple reflection argument as a conse-
quence of the theorem of Bardos, Lebeau and Rauch [2] on the exact controllability for hyperbolic
equations with the geometrical control condition (1.5) and with L = 7,. Estimate (3.13) is a
direct consequence of the HUM method of Lions [6]. The existence of the solution F = F(#,t)
and estimate (3.14) comes from Lemma 1 with estimate (2.1) and from the HUM method. F is
solution of the damped wave controlled equation with a second member which is the localized
control function xp. In the integrations by parts, the term xg¢ disappears because y is null on
the support of the control function xg.

PRrROOF OF LEMMA 5. We construct ¥ = W¥(z,t) the state to be controlled, solution of (3.8),
with the following integral representation formula:

¥ (z,t) = /RF(Z, tyy(z,f) de, (3.15)

where the solutions y : (z,£) € @ x Ry — y(z,£) and F : (4,t) € Rex]0, T~ F(t,£) satisfy the
two following control problems:

&y — Ay = hly,, inQx{-L<t<L},
y =0, on 90 x |-L, L], (3.16)
y(,£=0)=Wo € H*(QNH} (), By(,£=0)=0, inQ,
y(z,€) = Opy(z,€) =0, for (x,£) € Q x (J—oo,—~L] U [L, +00[),

O2F — O3F — k&, F = xoljpar(, in (4,t) €]-L,3L[ x]0,T],

F(,t=0)=4(), in Ry,

(3.17)

O F (4,t =0) =0, for € ]-L,3L],

Fét=T)=8,F({,t=T)=0, for £ € |-L,3L],

with the following estimates:
2

12lEr3 - pz2wy S C 1AWl Z2(qy (3.18)
IF NG o - meyy < Ce¥, (3.19)

for all k € R where the constant C > 0 does not depend on k.
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The existence of the solution y = y(z, £) is obtained by a simple reflection argument as a conse-
quence of the theorem of Bardos, Lebeau and Rauch (2] on the exact controllability for hyperbolic
equations with the geometrical control condition (1.5) and with L = T.. Estimate (3.18) is a
direct consequence of the HUM method of Lions [6] with a weaker norm. The existence of the
solution F' = F(£,t) and estimate (3.17) comes from Lemma 1 with estimate (2.2) and from the
HUM method. F is the solution of the damped wave controlled equation with a second member
which is the localized control function. We observe that y is null on the support of the control
function xp.

This concludes the proof of Proposition 1.

Finally, we have proved that under the geometric control condition (1.5), let § > 0, then for
all T > 47T, + 4, there exists a positive constant C > 0 such that

T
10lZ2(q) + 111 gy < CeCMl /0 / ¥ (z,8)|* dz dt, (3.20)
w
for every solution of (1.3) and all k € R.
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