
An International Journal 

computers & 
mathematics 

P E R G A M O N  Computers and Mathematics with Applications 44 (20(}2) 1289-1296 
www.elsevier.com/locate/eamwa 

Null  Controllabil ity of the Heat  Equat ion 
as Singular Limit of the  Exact  Control labil i ty 

of Diss ipat ive  Wave Equation Under  the  
Bardos-Lebeau-Rauch Geometr ic  

Control Condit ion 

K . - D .  PHUNG 
17 rue L~onard Mafrand, 92320 Chatillon, France 

phung@cmla, ens-cachan, fr 

(Received November 2001; accepted January 2002) 

A b s t r a c t - - W e  extend the result of the null controllability property of the heat equation, obtained 
as limit, when e tends to zero, of the exact controllability of a singularly perturbed damped wave 
equation depending on a parameter e > 0, described in [1], to bounded domains which satisfy the 
Bardos-Lebeau-Rauch geometric control condition [2]. We add to the method of Lopez, Zhang and 
Zuazua in [1] an explicit in e > 0 observability estimate for the singularly perturbed damped wave 
equation under the Bardos-Lebeau-Rauch geometric control condition. Here the geometric conditions 
axe more optimal than in [1] and the proof is simpler than in [1]. Instead of using global Carleman 
inequalities as in [1], we apply an integral representation formula. (~) 2002 Elsevier Science Ltd. All 
rights reserved. 

K eywords----Observability, Controllability. 

1. I N T R O D U C T I O N  A N D  R E S U L T S  

This paper is devoted to complete the results in [1] on the controllability of the following damped, 
singularly perturbed wave equation depending on a parameter ~ > 0: 

e 0 2 u  - A u  + Otu = f s l i c ,  in ~ x ] 0, T [ ,  

u -- 0, on  OQ x ] 0 , T [ ,  (1.1) 

U (', 0) ---- U0, 0tU (', 0) ~-- Ul, in 12. 

In  (1.1), ~ is a bounded  d o m a i n  of  R n, n _> 1, wi th  a s m o o t h  b o u n d a r y  a ~ ,  u = u(x , t )  is t h e  

s t a t e  to  be  control led ,  f~ --- f6(x,  t) is t he  control ,  and 11~ denotes  t he  charac te r i s t i c  func t ion  of  

t h e  o p e n  subse t  w of  ~ ,  where  t h e  control  is suppor ted .  T h e  measure  of  t he  cost  of  con t ro l l ab i l i ty  

is g iven  by t h e  fol lowing asser t ion:  g iven  any T > 0, the re  exist  two pos i t ive  cons t an t s  e ( T )  > 0 
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and C(e, T) > O, such that  

HfeI[L2(~xIO,TD <_ C(e,T)Iluo,  v~ullIH~(a)xL2(f~), V (Uo, Ul) e H~ (fl) x L 2 (f/) ,  (1.2) 

for all 0 < e < e(T), where the control f~ E L2(wx]O,T[) is constructed such that  the solution 
of (1.1) satisfies u(x ,T)  -= Otu(x,T) = 0 in f~. The formal limit, as e tends to zero, of (1.1) is the 
controlled heat equation with initial datum u0 E H~(fl). 

The method described in [1] allows us to prove that, given any T > 0, system (1.1) is exactly 
controllable for ¢ > 0 sufficiently small with a uniform bound of the cost of controllability if 
there exists To -- To(fl, w) > 0 such that  for all T > To, there exist positive constants C1,C2 > 0 
such that  for any L2-solution of the following damped wave equation depending of the parameter 
k E R :  

we have 

02t¢ - A~) 4- kOt~b = O, in fl x ]0, T[,  

¢ = 0, on 0f l  x ]0, T[ ,  

¢ (', 0) ~--- •0, Ore (', 0) ~- ¢1, in f~, 

(1.3) 

[l~b0[[L2(n) + I[¢llIH-l(a) -< C(k)  I¢ (x,t)[ 2 dxdt, Vk 6 N, (1.4) 

with C(k) = Cle c2fkl where the two positive constants C1, C2 do not depend on k. 
Under the following geometric control hypothesis of the work of Bardos, Lebeau and Rauch 

in [2], 

(i) there is no infinite order of contact between the boundary 0fl and the bi- 
characteristic of 02 - A; (1.5) 

(ii) any generalized bicharacterisic of 0t 2 - A parametrized by t 6 ]0, Tel meets w. 

It  is well known that  (1.4) holds true, but with a nonexplicit, in k 6 R, constant C(k) and 
with T = Tc. Besides, it has been proved in [1] that C(k) = Cle c21kl by using global Carleman 
inequalities with the hypothesis given by the multiplier techniques and with To > To. Our goal 
is to prove the results in [1] under the geometric control hypothesis (1.5) without using global 
Carleman inequalities. 

The main result of this paper is the following theorem which asserts that  under the geomet- 
ric control hypothesis of the work of Bardos, Lebeau and Rauch, there exists a control, for 
system (1.1), which has a uniformly bounded cost. 

THEOREM 1. Let hypothesis (1.5) be satisfied. Let T > 0. Then there exists e(T) > 0 such that 
for any 0 < e < ~(T), system (1.1) is exactly controllable in time T and the constant C(e ,T)  
in (1.2) remains bounded as E tends to zero. Furthermore, for any (u0,ul) c H01(g/) x L2(f~) 
fixed, the controls fe of (1.1) may be chosen such that fe tends to f in L2(wx]0,TD as ~ tends 
to zero, f being a null control for the limit heat equation with initial datum uo. 

In this way, we answer an open question in [1]. To prove Theorem 1, we propose the following 
observability estimate for any L2-solution of the damped wave equation (1.3) depending of the 
parameter k E R. 

THEOREM 2. Let hypothesis (1.5) be satisfied. Then for all T > 4To, there exists a positive 
constant C > 0 such that 

T 
]]~0]lL2(fl) "Jr ]]¢ll)H-l(f}) <~ Ce Clkl ]~) (x, t ) l  2 dxdt ,  (1.6) 

for every solution of (1.3) and all k E N. 
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The paper is organized as follows. In Section 2, we establish two lemmas on observability 
estimates which are easily obtained from the work of Zuazua in [3] for the one-dimensional case 
and from the work of Bardos, Lebeau and Rauch in [2] for the multidimensional case. In Section 3, 
we prove Theorem 2. The key point to prove (1.6) is an integral representation formula which 
was already exploited in [4] for the Schr6dinger control problems. Such analogous formulas are 
also used in [5] to study inverse problems for equations of parabolic or elliptical types. The 
proof of Theorem 1, which is omitted here, is then deduced from the work of Lopez, Zhang 
and Zuazua in [1] by using the three-step controllability method: let the time interval [0, T] be 
divided into three subintervals [0, T/3], [T/3, 2T/3], and [2T/3, T]. In the first step, the parabolic 
projection of the solution of (1.1) is controlled uniformly in ~ to zero on [0, T/3]. In the second 
interval, IT~3, 2T/3], system (1.1) evolves freely without control, so that the size of the solution 
at time t = 2T/3  becomes exponentially small with the dissipation. In the final step, a control 
is constructed by the HUM method of Lions [6] and from Theorem 2 to steer to zero the whole 
solution. 

2. P R E L I M I N A R Y  L E M M A S  

In this section, we describe two lemmas which can be easily obtained by well-known results. The 
first one concerns an explicit in k observability estimate for system (1.3) in one space dimension 
and is deduced from [3, Theorem 4]. The second one is an application of the observability estimate 
in [2] for the wave equation when the geometrical control condition (1.5) is assumed. 

LEMMA 1. Let  5 > O. Let  us consider an interval D C R given by D =] - L; 3L[, where 
L > 0 . Then for all T > 4(L + 5), there exist a constant C > 0 and a function X defined by 

X = X(g) E C~(]L; 3LD, X(g) --- 1 for t ElL + 6; 2L[, such that 

2 2 [[z0ll~zo~(D) + IIZl[IL~(D) <-- Ce clkl Ilxz dr, (., t)IIHI(D ) (2.1) 

respectively, 

2 2 IIzoIIH~(D)~H~(D) + IlZlIIH~(D) 
for every z = z( ~, t) HI-solution,  (respectively, 

O~z - o~z + kO~z 

z (~ = - L ,  t) = z (g = 3L, t) 

z ( . , t  = o) = zo, O~z(.,t = o) 

where (zo, Zl) E H~(D)  x L2(D) (respectively, 

k E R .  

LEMMA 2. 

T 
<_ Ce clkl [[xz (., t) ]IHg(D) dr, (2.2) 

H2-solution) of  

= O, in  (g,t) e D x ]0, T[,  

= O, for t E 10, T[, (2.3) 

= Zl, in D, 

(Z0, ZX) E H2(D) A H~(D)  x H~(D) )  and for all 

Let  hypothesis  (1.5) be satisfied. Then there exists a constant C > 0 such that 

2 II'¢'OllL~(a) + II'g'~ll~--~(a) -< Ce clkl ]~(x,t)l 2 dxdt  

+cee lk ' ( l l¢o l l~_ , (~ )+  ( -A) - l (¢ l÷k¢0)2L2(12)  ) , 
(2.4) 

for every solution of  (1.3) and all k E •. 

PROOF OF LEMMA 1. Let ~(£, t) = e(1/2)ktz(£, t), then the solution ~, with initial data (~(-, 0), 
ate(., 0)) = (~o, ~1), solves 

O ~  - O ~  - 41-k2~ -= 0, in (e, t) E D × ]0, T[, 

(e = - L ,  t) = ~o (g = 3L, t) = 0, for t e ]0, T[, (2.5) 
1 

~ o = z 0 ,  ~1 = ~ k z 0 + z l ,  i nD.  
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By applying the results of Zuazua in [3, Theorem 4 and Lemma 2, p. 121], we deduce that there 
exists C > 0 such that 

2 2 f T - t i f 2 L  
II~OIIL2(D) q-]IqO1]]H-,(D) --< CeC[kl IV (g,t)] 2 d~dt, (2.6) 

J~ JLh-5 

for every k E R. 
Consequently, we have 

2 2 fo T fL 3L II~olIL~(D) + II~IlIH-,(~) < Ce etkl I~(t)~(e)  ~(t , t ) l  z dedt, (2.7) 

where a = a(~) E C~(]L + (5/2);25 + 5[), ~ _> 0, c~(t?) = 1 for ~ ElL + 5;2L[, and 13 = ~(t) 
C~( ]0 ;T [ ) ,  fl >_ 0, fl(t) = 1 for t e ]~ ;T  - ~[. 

By applying the operator Ot on the equations of system (2.5), we deduce from (2.7) that 

2 2 
ll~ollHo~(D) + II~I[IL2(D) 

_ [ ~ [ 3 L  (2.s) 
< Ce clkl Ofl(t)a(g)Ot~v(e,t)[ 2 + J/3 ( t ) a  (e) ~(e,t) l  2) dedt. 

Jo JL  

Now, from (2.5) and by using integrations by parts, we easily obtain the following estimate: 

T 3L f0 T f f I /3 ( t )a (e )Ot~(e , t )12ded t<Cl l+k2 l  II~(', 2 t)I]Hl(]LT(5/2);2L+5 D dr. (2.9) 
• Io JL 

Finally, 
¢,T 2 2 ]~ 2 II~OIIH~(D) + I[qVlllLZ(D) < CeCikl (2.10) ]lX¢p (.,t)I[H~(D) tit, 

for all k E R, where the constant C > 0 does not depend on k and where the function X is defined 
b y x  = X(g) E C~(]L;3LD,  X >- O, X(g) = 1 forg E ] L + ~ / 2 ; 2 L + ~ [ .  Then, from (2.10),we 
prove (2.1). Also, (2.2) easily follows by applying the operator 02 on system (2.5) and from (2.6). 

PROOF OF LEMMA 2. We will begin to prove Lemma 2 with more regular initial data. More 
precisely, we have the following result. 

LEMMA 3. Let hypothesis (1.5) be satisfied. Then there exists a constant C > 0 such that for 
all k E R, for all initial data (wo,wx) E H0X(f~) x L2(f~), the solution of the problem 

O2t w - Aw + kOtw = 0, in f l x  ]0, T[, 

w = 0, on 0f~ × ]0,T[, (2.11) 

W (', O) = WO, OtW (', O) w. Wl ,  in ~-~, 

satisfies 

Ilwo[IHa(a) + IlwlllL,(f~) < Ce C l k l  IOtw(x,t)l 2 dxdt  
(2.12) 

The proof of Lemma 2 follows from Lemma 3 with 

// w (x, t) = ~b (x, s) ds - ( - A )  -1 (¢1 (x) + k¢o (x)).  (2.13) 
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First, we observe that it is sufficient to prove (2.12) for all k > 0, because 
Let v(x,t) = 

PROOF OF LEMMA 3. 
the case k < 0 is easily deduced by a symmetry argument on the variable t. 
e(1/2)ktw(x, t), then the solution v = v(x, t) solves 

1 2 02t v - Av = -~k v, in [2 x ]0, T[, 

v = 0, on 0 a  x ]0, T[, (2.14) 
1 

v (., O) -= wo, Otv (., O) --~ Wl + ~kwo, in [2. 

By applying the observability estimate from the work of Bardos, Lebeau and Ranch [2], to the 
solution v(x, t) of the wave equation with a second member given by (1/4)k2v(x, t), we have 
3c(Tc) > O, 

Wl 1 2 

z L2(a) (2.15) 

<c(Tc) fo T° ~ IOtv(x,t,I 2 dxdt +c,Tc) fo T° fa  Ik2v(x't'12 dxdt. 

Coming back to the solution w(x, t) and using the relation 

2 1 (llo, llwH. o)) =-kla ll .-l o  <o, (2.16) 
2 dt 

we finally deduce that 

]IL,(n) CeClkl IOtw (x, t)] 2 dx dt Ilw011m(n) + Ilwl _< 
(2.17) 

+CeClkl ( \Jlw01[/2(n) + 

where the constant C > 0 does not depend on k. This concludes the proof of Lemma 3. 

3. P R O O F  O F  T H E O R E M  2 

From Lemma 2, we deduce that in order to prove Theorem 2, it is sufficient to demonstrate 
that if hypothesis (1.5) is satisfied, then for all 5 > 0, for all T > 4(Tc +5), there exists a constant 
C > 0 such that 

2 ( - i )  -1 k¢0) 2L2 (i2) f0Tfw ]l¢0]lH-~(n) + (¢1 + _< Ce clkl ]¢ (x,t)] 2 dxdt, (3.1) 

for every solution of (1.3) and all k 6 R .  
By a duality argument, we observe that, in order to prove the observability estimate (3.1), it 

is sufficient to solve an exact controllability problem. Indeed, if for all initial data (W0, W1) 6 
H2A H I ( ~ ) x  H01 (~), there exists a control g 6 L2(wx]0, T D such that the solution W = W(x, t) 
of the following system: 

0 2 t W - A W - k O t W = g l l ~ o ,  in f~ x ]0, T[, 

W = 0, on 0[2 x 10, T[,  (3.2) 

W(.,O) = Wo, OtW(.,O) = W1, in [2, 

satisfies W(., T) = OtW(., Tg) = 0, and 

2 , -(llAW°llff~(n)+ 2 , IIOIJL=(,,,×]0,TD < CeClkl IIW, llHo~(a)) (3.3) 
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W0 = ( - A )  -1 (--A) -1 (~1 + k¢0), 

W1 = ( - A )  -1 ¢0, 

in the following duality relation: 

(3.4) 

02¢ - A ~ - kOt¢ = gl l l~ ,  in f t x  ]0,T[, 

(I) = 0, on 0fl x 10, T[, (3.6) 

• ( . , 0 )  = 0, o,~(.,o)=w,, in~, 

satisfies a)(., T)  = Otq}(., T)  = 0 and the est imate 

2 
IImIIL~(~×]O,MD < CeClkl IlWxll~(~) (3.7) 

holds for all k E R where the constant C > 0 does not depend on k. 

LEMMA 5. Let  hypothesis (1.5) be satisfied. Let 5 > O. Then, for all T > 4(Tc + 5), /'or 311 
initial data W0 E H 2 fq H~(f~), there exists a control g2 E L2(w×]0,T[) such that  the solution 
fly = fly(x, t) of the problem 

0 2 f l y  - A f l y  - k O t f l y  = g211~, in ~ × ] 0 , T [ ,  

fly = o, on  o ~  × ]0, T [ ,  (3.8)  

fly(.,o)=Wo, 0tfly ( . ,0 )  = o, in~, 

satisfies fly(., T)  = Ot fly(., T)  = 0 and the estimate 

2 
]Ig2{IL2(~×IO,MD <_ Ce cbkl ]IA WoI{2L2(~) (3.9) 

holds for ali k E R where the constant C > 0 does not depend on k. 

PROOF OF LEMMA 4. We construct (I? = (I)(x, t) the state to be controlled, solution of (3.6), with 
the following integral representation formula: 

¢ (x, t) = [ F (e, t) y (x, ~) de, (3.10) 
JR 

{-W1 (x) ~bo (x) + Wo (x) [~bl (x) + k~b0 (x)] } dx = g (x, t) ¢ (x, t) dx dt, (3.5) 

to conclude the proof of the observability estimate (3.1). 
Our goal is now to prove the following exact controllability property. 

PROPOSITION 1. Let hypothesis (1.5) be satisfied. Let 5 > 0. Then, for 311T > 4(To +5) ,  for ali 
initial data (W0, W1) E H 2 N HoI(12) x Hol(f~), there exists a control g E LU(wx]0, T D such that  
the solution W = W ( x ,  t) of  problem (3.2) satisfies W( . ,  T)  = OtW(.,  T)  = 0 and estimate (3.3) 
holds for all k E R, where the constant C > 0 does not depend on k. 

PROOF Of PROPOSITION 1. We decompose the solution W = W ( x ,  t) of (3.2) as W = (I) + fly, 
where the solutions (I) = (I)(x,t) and fly = fly(x,t) satisfy the two following lemmas. 

LEMMA 4. Let hypothesis (1.5) be satisfied. Let  5 > 0 .  Then, for edl T > 4(To +5),  t'or all initial 
data W1 E H~(f~), there exists a control gl E L2(wx]0,T[) such that  the solution fly = ~?(x,t) of  
the problem 
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where the solutions y : (x,g) E f t  x Re ~-~ y(x,g) and F : (g,t) E R e x ] 0 , T [ H  F(t ,g)  satisfy the 
two following control problems: 

O ~ y -  Ay = hll~ , in ft x { - L  < g < L} ,  

y = 0, on Oft x I - L , L [ ,  (3.11) 

y ( . , g = O ) = W x E H ~ ( f t ) ,  Oey( . ,g=O)=O,  i n f t ,  

y (x, g) = c3ey (x, g) =-- O, for (x, g) • ft x ( ] - c ¢ , - L ]  U [L,+coD, 

02F - O~F - kOtF = XQlll L,3L[, 

F ( e , t  = o) = o, 

OtF( . , t  = 0),  = 5 ( 0 ,  

F ( g , t  = T)  = OtF(g, t  = T) = O, 

with the following estimates: 

in (g, t) • l - L ,  3L[ x 10, T[ ,  

for g •1 - L, 3L[, 

in Re, 

for g • I - L ,  3L[, 

(3.12) 

02t F - 02F - kc3tF = XQII]L,3L[, 

F ( . , t  = 0) = ~ ( . ) ,  

O,F (e, t = o) = o, 

F ( g , t  = T)  = OtF(g , t  = T)  = O, 

with the following estimates: 

in (g,t) • ] - L ,  3L[ x ]0,T[ ,  

in Re, 

for g • ] - L ,  3L[, 

for  g • ] - L ,  3L[, 

h 2 

2 
IIFIIc(IO,TI;H-X(Re)) <- C e  clkl, 

for all k • R where the  constant  C > 0 does not depend on k. 

(3.17) 

(3.18) 

(3.19) 

2 2 
IIhIIL2(~×]_L,L[) < C IIWIIIH](a) , (3.13) 
2 ][FIIL2(]_L,L[×]O,T[) < Ce clkl, (3.14) 

for all k E R where the constant C > 0 does not depend on k. 
The  existence of the solution y = y(x,  g) is obtained by a simple reflection argument  as a conse- 

quence of the  theorem of Bardos, Lebeau and Rauch [2] on the exact controllability for hyperbolic 
equations with the geometrical control condition (1.5) and with L = To. Es t imate  (3.13) is a 
direct consequence of the HUM method of Lions [6]. The  existence of the solution F -- F(g, t) 
and es t imate  (3.14) comes from Lemma 1 with est imate (2.1) and from the HUM method.  F is 
solution of the damped  wave controlled equation with a second member  which is the localized 
control function XQ- In the integrations by parts,  the t e rm X~ disappears because y is null on 
the suppor t  of the control function X~- 

PROOF OF LEMMA 5. We construct  @ = 62(x,t) the state to be controlled, solution of (3.8), 
with the following integral representation formula: 

62 (x, t) = j / F  (g, t) y (x, g) dg, (3.15) 

where the solutions y :  (x,g) e f t  x Re ~ y(x,g) and F :  (g,t) • R e x ] 0 , T [ ~  F(t ,g)  satisfy the 
two following control problems: 

0 2 y -  A y  = hll~ , in ft x { - L  < g < L},  

y = 0, on Oft × ] - L ,  L[,  (3.16) 

y ( . , g = O ) = W o • H  2(Ft) M H  l ( f t ) ,  Oey( . ,g=O)=O,  i n ' t ,  

y ( x , g ) = O e y ( x , g ) - O ,  for (x,g) e f t x ( ] - o o , - L ] U [ L , + o o [ ) ,  
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The  existence of the  solution y = y (x ,  g) is obta ined by a simple reflection argument  as a conse- 
quence of the  theorem of Bardos,  Lebeau and Rauch [2] on the exact  control labi l i ty  for hyperbol ic  

equat ions with the  geometrical  control condit ion (1.5) and with L = To. Es t imate  (3.18) is a 

direct  consequence of the  HUM method  of Lions [6] with a weaker norm. The  existence of the  

solution F = F(g,  t) and es t imate  (3.17) comes from Lemma 1 with es t imate  (2.2) and from the  
HUM method.  F is the  solution of the  damped  wave controlled equat ion with a second member  

which is the  localized control function. We observe tha t  y is null on the  suppor t  of the  control  

function X•. 
This  concludes the  proof  of Proposi t ion 1. 

Finally,  we have proved tha t  under the  geometric control condit ion (1.5), let (f > 0, then for 

all T > 4Tc + 5, there  exists a positive constant  C > 0 such tha t  

H~0JJL2(a) Q-J[~)I[IH_I(f~ ) <~_ Ce Cjkj [~) (x, t )[  2 d x d t ,  (3.20) 

for every solution of (1.3) and all k E R. 
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