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Let F
2ν+δ+l
q be one of the (2ν +δ+ l)-dimensional singular classical

spaces and let G2ν+δ+l,2ν+δ be the corresponding singular classical
group of degree 2ν + δ + l. All the (m,k)-isotropic subspaces form
an orbit under G2ν+δ+l,2ν+δ , denoted by M(m,k;2ν+δ+ l,2ν+δ).
Let Λ be the set of all the orbitals of (G2ν+δ+l,2ν+δ , M(m,k;
2ν + δ + l,2ν + δ)). Then (M(m,k;2ν + δ + l,2ν + δ),Λ) is
a symmetric association scheme. First, we determine all the
orbitals and the rank of (G2ν+δ+l,2ν+δ , M(m,k;2ν + δ + l,2ν + δ)),
calculate the length of each suborbit. Next, we compute all
the intersection numbers of the symmetric association scheme
(M(ν +k,k;2ν +δ+ l,2ν +δ),Λ), where k = 1 or k = l −1. Finally,
we construct a family of symmetric graphs with diameter 2 based
on M(2,0;4 + δ + l,4 + δ).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a transitive permutation group on a finite set Ω . Then G acts on the set Ω × Ω in
a natural way as

(a,b)σ = (
aσ ,bσ

)
, ∀a,b ∈ Ω, ∀σ ∈ G.

The orbits Λ0,Λ1, . . . ,Λt of (G,Ω × Ω) are said to be orbitals of (G,Ω), where Λ0 = {(a,a) | a ∈ Ω}.
The number of orbitals is called the rank of (G,Ω). For a ∈ Ω , let

Λi(a) = {
b ∈ Ω

∣∣ (a,b) ∈ Λi
}
.
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Then Λ0(a),Λ1(a), . . . ,Λt(a) are just the orbits of (Ga,Ω), where Ga is the stabilizer of a. The orbit
Λi(a) is called a suborbit of (G,Ω). The length of Λi(a) is independent of the choice of a. Let Λ =
{Λ0,Λ1, . . . ,Λt}. Then the configuration (Ω,Λ) forms an association scheme (see [1]). The theory of
association schemes may be found in [1,2].

The results on suborbits may be found in Wang and Wei [11], Wei and Wang [12,13]. Applying
the matrix method, Wan, Dai, Feng and Yang [8] computed all the intersection numbers of dual polar
schemes and Grassmann schemes. As a generalization of dual polar schemes, Rieck [6] constructed
association schemes by the subspaces of a given dimension in finite classical polar spaces. As general-
izations of bilinear forms schemes and dual polar schemes, Guo, Wang and Li constructed association
schemes from singular linear space and singular classical spaces, respectively (see [4,5,9]). As gener-
alizations of above researches, Guo and Wang [3] studied suborbits of all (m,0)-isotropic subspaces
under singular classical groups, Wang, Guo and Li [10] studied suborbits of all subspaces of type
(m,k) under singular general linear groups. This paper is a generalization of [3].

The rest of this article is organized as follows. In Section 2, we introduce the singular classical
spaces. In Section 3, we determine all the orbitals and the rank of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,
2ν + δ)), calculate the length of each suborbit. In Section 4, we compute all the intersection numbers
of the scheme (M(ν +k,k;2ν + δ + l,2ν + δ),Λ), where k = 1 or k = l − 1. In Section 5, we construct
a family of symmetric graphs with diameter 2 based on M(2,0;4 + δ + l,4 + δ).

2. The singular classical spaces

We always assume that

Kl =
( 0 I(ν)

−I(ν) 0
0(l)

)
, H0;l =

( 0 I(ν)

I(ν) 0
0(l)

)
, H1;l =

⎛⎜⎝
0 I(ν)

I(ν) 0
1

0(l)

⎞⎟⎠ .

Let Fq be a finite field with q elements, and let E denote the subspace of F
2ν+δ+l
q generated by

e2ν+δ+1, e2ν+δ+2, . . . , e2ν+δ+l, where ei is the row vector in F
2ν+δ+l
q whose ith coordinate is 1 and all

other coordinates are 0s.
The singular symplectic group of degree 2ν + l over Fq, denoted by Sp2ν+l,2ν(Fq), consists of all

(2ν + l) × (2ν + l) nonsingular matrices T over Fq satisfying T Kl T t = Kl. The row vector space F
2ν+l
q

together with the right multiplication action of Sp2ν+l,2ν(Fq) is called the (2ν + l)-dimensional singu-
lar symplectic space over Fq or SSy for short. An m-dimensional subspace P in the (2ν + l)-dimensional
singular symplectic space is said to be of type (m, s,k), if P Kl P t is of rank 2s and dim(P ∩ E) = k. In
particular, subspaces of type (m,0,k) are called (m,k)-isotropic subspaces.

Let q = q2
0, where q0 is a prime power. Then Fq has an involutive automorphism a �→ ā = aq0 .

The singular unitary group of degree 2ν + δ + l over Fq, denoted by U2ν+δ+l,2ν+δ(Fq), consists of all
(2ν + δ + l) × (2ν + δ + l) nonsingular matrices T over Fq satisfying T Hδ;l T̄ t = Hδ;l, where δ = 0 or 1.
The row vector space F

2ν+δ+l
q together with the right multiplication action of U2ν+δ+l,2ν+δ(Fq) is

called the (2ν + δ + l)-dimensional singular unitary space over Fq or SUn for short. An m-dimensional
subspace P in the (2ν + δ + l)-dimensional singular unitary space is said to be of type (m, r,k), if
P Hδ;l P̄ t is of rank r and dim(P ∩ E) = k. In particular, subspaces of type (m,0,k) are called (m,k)-
isotropic subspaces.

Denote by K2ν+δ+l the set of all (2ν+δ+ l)×(2ν+δ+ l) alternate matrices over Fq , where δ = 0,1
or 2. Two (2ν + δ + l) × (2ν + δ + l) matrices A and B over Fq are said to be congruent mod K2ν+δ+l ,
denoted by A ≡ B (mod K2ν+δ+l), if A − B ∈ K2ν+δ+l . Clearly, ≡ is an equivalence relation on the
set of all (2ν + δ + l) × (2ν + δ + l) matrices. Let [A] denote the equivalence class containing A. Two
matrix classes [A] and [B] are said to be cogredient if there is a nonsingular (2ν + δ + l)× (2ν + δ + l)
matrix Q over Fq such that [Q A Q t] ≡ [B]. For q being odd, let
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S2s+δ,�;l =
⎛⎜⎝

0 I(s)

I(s) 0
�

0(l)

⎞⎟⎠ , where � =
⎧⎨⎩

∅, if δ = 0,

(1) or (z), if δ = 1,

diag(1,−z), if δ = 2,

where z is a fixed non-square element of Fq . For q being even, let

S2s+δ,�;l =
⎛⎜⎝

0 I(s)

0
�

0(l)

⎞⎟⎠ , where � =

⎧⎪⎨⎪⎩
∅, if δ = 0,

(1), if δ = 1,(α 1
α

)
, if δ = 2,

where α is a fixed element of Fq such that α /∈ {x2 + x | x ∈ Fq}. The singular orthogonal group of
degree 2ν + δ + l over Fq with respect to S2ν+δ,�;l , denoted by O 2ν+δ+l,2ν+δ(Fq), consists of all
(2ν + δ + l) × (2ν + δ + l) nonsingular matrices T over Fq satisfying [T S2ν+δ,�;l T t ] ≡ [S2ν+δ,�;l].
The row vector space F

2ν+δ+l
q together with the right multiplication action of O 2ν+δ+l,2ν+δ(Fq)

is called the (2ν + δ + l)-dimensional singular orthogonal space over Fq or SOr for short. An m-
dimensional subspace P in the (2ν+δ+l)-dimensional singular orthogonal space is a subspace of type
(m,2s + γ , s,Γ,k) if P S2ν+δ,�;l P t is cogredient to S2s+γ ,Γ ;m−2s−γ and dim(P ∩ E) = k. In particular,
subspaces of type (m,0,0,0,k) are called (m,k)-isotropic subspaces.

Let F
2ν+δ+l
q be one of the (2ν + δ + l)-dimensional singular classical spaces and let G2ν+δ+l,2ν+δ

be the corresponding singular classical group of degree 2ν + δ + l. If l = 0,F
2ν+δ+l
q is the (2ν + δ)-

dimensional classical space and G2ν+δ+l,2ν+δ is the corresponding classical group of degree 2ν + δ.
Clearly, each singular classical group G2ν+δ+l,2ν+δ is transitive on the set of all subspaces of the same
type in F

2ν+δ+l
q , see [7, Theorems 3.22, 5.23, 6.28, 7.30]. Denote by M(m,k;2ν + δ + l,2ν + δ) the

set of all the (m,k)-isotropic subspaces of F
2ν+δ+l
q . Denote by N(m,0;2ν), N(m,0;2ν + δ), N(m,0,0;

2ν+δ,�) and N(m,0,0;2ν+δ) the number of subspaces of type (m,0), (m,0), (m,0,0) and (m,0,0)

in (2ν + δ)-dimensional symplectic space, unitary space, orthogonal space with ch Fq 	= 2 and with
ch Fq = 2, respectively. These numbers are given in [7, Corollaries 3.19, 5.20, 6.23 and 7.25].

3. Orbitals and suborbits

In this section, we determine all the orbitals and the rank of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,
2ν + δ)), and calculate the length of each suborbit.

Theorem 3.1. Let 0 � k � l. For any four elements of M(m,k;2ν + δ + l,2ν + δ)

U =
( 2ν+δ l

U11 U12

0 U22

)
m−k

k
, V =

( 2ν+δ l

V 11 V 12

0 V 22

)
m−k

k
,

P =
( 2ν+δ l

P11 P12

0 P22

)
m−k

k
, Q =

( 2ν+δ l

Q 11 Q 12

0 Q 22

)
m−k

k
,

the two pairs (U , V ) and (P , Q ) are in the same orbital of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,2ν + δ)) if and
only if

dim(U11 ∩ V 11) = dim(P11 ∩ Q 11), dim(U22 ∩ V 22) = dim(P22 ∩ Q 22),

dim(U ∩ V ) = dim(P ∩ Q )



J. Guo / Finite Fields and Their Applications 16 (2010) 126–136 129
and

rank U Kl V t = rank P Kl Q t, SSy;
rank U Hδ;l V̄ t = rank P Hδ;l Q̄ t, SUn;
rank U S2ν+δ,�;l V t = rank P S2ν+δ,�;l Q t, SOr, ch Fq 	= 2;
rank U

(
S2ν+δ,�;l + St

2ν+δ,�;l
)

V t = rank P
(

S2ν+δ,�;l + St
2ν+δ,�;l

)
Q t, SOr, ch Fq = 2.

Proof. If (U , V ) and (P , Q ) are in the same orbital of (Sp2ν+l,2ν(Fq), M(m,k;2ν+ l,2ν)), there exists

T =
(

T11 T12
0 T22

)
∈ Sp2ν+l,2ν(Fq)

such that

U T =
(

U11T11 U11T12 + U12T22
0 U22T22

)
=

(
P11 P12
0 P22

)
= P ,

V T =
(

V 11T11 V 11T12 + V 12T22
0 V 22T22

)
=

(
Q 11 Q 12

0 Q 22

)
= Q .

Then

(U ∩ V )T = P ∩ Q , U11T11 = P11, U22T22 = P22, V 11T11 = Q 11

and

V 22T22 = Q 22.

By [12, Theorem 2.1],

dim(U11 ∩ V 11) = dim(P11 ∩ Q 11) and rank
(
U11 K0 V t

11

) = rank
(

P11 K0 Q t
11

)
.

It follows that

dim(U11 ∩ V 11) = dim(P11 ∩ Q 11), dim(U22 ∩ V 22) = dim(P22 ∩ Q 22),

dim(U ∩ V ) = dim(P ∩ Q ), rank U Kl V
t = rank P Kl Q t .

Conversely, let

dim(U11 ∩ V 11) = m − k − i, dim(U22 ∩ V 22) = k − a,

dim(U ∩ V ) = m − j, rank U Kl V
t = r. (1)

Then U and V have the matrix representations of the forms
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U =

⎛⎜⎜⎜⎜⎜⎜⎝

2ν l

U111 U121

U112 U122

U113 U123

0 U221

0 U222

⎞⎟⎟⎟⎟⎟⎟⎠
i

m−k− j+a

j−i−a

a

k−a

and V =

⎛⎜⎜⎜⎜⎜⎜⎝

2ν l

V 111 V 121

U112 U122

U113 V 123

0 V 221

0 U222

⎞⎟⎟⎟⎟⎟⎟⎠
i

m−k− j+a

j−i−a

a

k−a

, (2)

where rank(U123 − V 123) = j − i − a. Then U + V is a subspace of type (m + j, r, j − i + k) with a
matrix representation of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U111 U121
U112 U122
U113 U123
V 111 V 121

0 U221
0 U222
0 V 221
0 U123 − V 123

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, P + Q is also a subspace of type (m + j, r, j − i + k) with a matrix representation just like
that of U + V . Since Sp2ν+l,2ν(Fq) is transitive on the set of all subspaces of the same type in F

2ν+l
q ,

there exists a T ∈ Sp2ν+l,2ν(Fq) such that (P + Q )T = U + V . It follows that P T = U and Q T = V .
Hence both (U , V ) and (P , Q ) are in the same orbital of (Sp2ν+l,2ν(Fq), M(m,k;2ν + l,2ν)). �

For any U and V of the form (2), let Λ(i,a, j−i−a,r) denote the orbital of (Sp2ν+l,2ν(Fq),

M(m,k;2ν + l,2ν)) containing (U , V ) satisfying (1). Note that rank(U Kl V t) = r if and only if
rank(U11 K0 V t

11) = r. By [7, Theorem 3.22] and the proof of Theorem 3.1 we have

0 � r � i, 0 � i � m − k, 0 � a � min{k, l − k}, 2r � m − k + i � ν + r

and

k − a � m − j � (m − k − i) + (k − a), (k + a) + ( j − i − a) � l,

we obtain

max{k − a,m + k − i − l} � m − j � m − i − a, max{0,m − k + i − ν} � r � i.

Hence

0 � i � m − k, 0 � a � min{k, l − k},
0 � j − i − a � min{m − k − i, l − k − a}, max{0,m − k + i − ν} � r � i. (3)

Conversely, for any given integers i,a, j and r satisfying (3), by [7] there exists a subspace Ũ of
type (m − k + i, r) in the symplectic space F

2ν
q such that
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Ũ K0Ũ t =

⎛⎜⎜⎜⎝
0 I(r)

−I(r) 0
0(m−k−i)

0(i−r)

0(i−r)

⎞⎟⎟⎟⎠ .

Write

Ũ =

⎛⎜⎜⎜⎜⎜⎝
U ′

11

U ′
21

U ′
31

U ′
41

U ′
51

⎞⎟⎟⎟⎟⎟⎠
r

r

m−k−i

i−r

i−r

, U11 =
⎛⎝ U ′

11

U ′
31

U ′
41

⎞⎠ and V 11 =
⎛⎝ U ′

21

U ′
31

U ′
51

⎞⎠ .

Let

U12 =
( 0 0(r, j−i−a)

0 I( j−i−a)

0 0

)
, U22 = (

I(k)0(k,l−k)
)
, V 22 = (

0(k,a) I(k)0(k,l−k−a)
)
.

Take

U =
(

U11 U12
0 U22

)
, V =

(
V 11 0

0 V 22

)
.

Then (U , V ) ∈ Λ(i,a, j−i−a,r); and so the orbital Λ(i,a, j−i−a,r) exists. It follows that the orbitals of
(Sp2ν+l,2ν(Fq), M(m,k;2ν + l,2ν)) are completely determined by (i,a, j − i − a, r) satisfying (3).

Theorem 3.2. Let 0 � k � l. Then the number of orbitals of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,2ν + δ)) is

m−k∑
i=0

min{k,l−k}∑
a=0

min{m − k − i + 1, l − k − a + 1} · min{i + 1, ν + k − m + 1}.

Proof. By above discussion, the number of orbitals is equal to the number of (i,a, j − i − a, r) satis-
fying (3). For a fixed pair (i,a) satisfying

0 � i � m − k and 0 � a � min{k, l − k},

j − i − a may take min{m − k − i + 1, l − k − a + 1} values 0, . . . ,min{m − k − i, l − k − a} and r may
take min{i + 1, ν +k −m + 1} values max{0,m −k + i −ν}, . . . , i. Hence, the desired result follows. �

In order to compute the length of suborbits of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,2ν + δ)), we need
the following results.

Proposition 3.3. (See [8, Chapter 1, Theorem 5].) The number of m × n matrices with rank i over Fq is

N(i;m × n) = qi(i−1)/2
[m

i

]
q

n∏
t=n−i+1

(
qt − 1

)
.
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Proposition 3.4. (See [9, Proposition 2.3].) Let 1 � k � l. For a given k-dimensional subspace P of F
l
q , the

number of k-dimensional subspaces intersecting P at (k − a)-dimensional subspaces of F
l
q is

qa2
[

l − k

a

]
q

[
k

a

]
q
.

Theorem 3.5. Suppose (3) holds. For each P ∈ M(m,k;2ν + δ + l,2ν + δ), the length n(i,a, j−i−a,r) of the
suborbit Λ(i,a, j−i−a,r)(P ) of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,2ν + δ)) is

qa2+r(2(ν−m+k)+δ)+(i−r)2+a(m−k−i)+i(l−k)

[
m − k

i

]
q

[
i

r

]
q

×
[

l − k

a

]
q

[
k

a

]
q

N
(

j − i − a; (m − k − i) × (l − k − a)
)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qr(r+1)/2N(i − r,0;2(ν − m + k)), SSy;
qr2/2N(i − r,0;2(ν − m + k) + δ), SUn;
qr(r−1)/2N(i − r,0,0;2(ν − m + k) + δ,�), SOr, ch Fq 	= 2;
qr(r−1)/2N(i − r,0,0;2(ν − m + k) + δ), SOr, ch Fq = 2.

Proof. Let

P11 = (
I(m−k)0(m−k,2ν−m+k)

)
, P22 = (

I(k)0(k,l−k)
)
, P =

(
P11 0
0 P22

)
.

Then n(i,a, j−i−a,r) is the number of subspaces U satisfying (P , U ) ∈ Λ(i,a, j−i−a,r) . Write

U =
(

U11 U12
0 U22

)
,

where U11 is an (m − k) × 2ν matrix of rank m − k, U12 is an (m − k) × l matrix and U22 is a k × l
matrix of rank k. Then U11 is an m-dimensional totally isotropic subspace of the symplectic space F

2ν
q

such that dim(P11 ∩ U11) = m − k − i and rank(P11 K0U t
11) = r, and U22 is a k-dimensional subspace

of F
l
q such that dim(P22 ∩ U22) = k − a. By [12, Theorem 2.7] and Proposition 3.4, there are

Ω = qa2+2r(ν−m+k)+(i−r)2+r(r+1)/2
[

m − k

i

]
q

[
i

r

]
q

×
[

l − k

a

]
q

[
k

a

]
q

N
(
i − r,0;2(ν − m + k)

)
choices for (U11, U22). By the transitivity of Sp2ν+l,2ν(Fq), we may take

U11 =
⎛⎜⎝

i m−k−i i−r ν+k+r−m−i r ν−r

0 I 0 0 0 0

0 0 0 0 I 0

0 0 I 0 0 0

⎞⎟⎠ m−k−i

r

i−r

, U22 = (
0(k,a) I(k)0(k,l−k−a)

)
.

Then U12 has the matrix representation of the form
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( a k l−k−a

A11 0 A12

A21 0 A22

)
m−k−i

i
,

where rank A12 = j − i − a. By Proposition 3.3, there are N( j − i − a; (m − k − i) × (l − k − a)) choices
for A12; and so

n(i,a, j−i−a,r) = Ωqa(m−k−i)+i(l−k)N
(

j − i − a; (m − k − i) × (l − k − a)
)
.

Hence the desired result follows. �
4. Association schemes

Let Λ be the set of orbitals of (G2ν+δ+l,2ν+δ, M(m,k;2ν + δ + l,2ν + δ)). Then (M(m,k;
2ν + δ + l,2ν + δ),Λ) is a symmetric association scheme. If k = 0, all the intersection numbers
of (M(ν,0;2ν + δ + l,2ν + δ),Λ) were given by Guo, Wang and Li [4]. In this section, we com-
pute all the intersection numbers of (M(ν + 1,1;2ν + δ + l,2ν + δ),Λ) and (M(ν + l − 1, l − 1;
2ν + δ + l,2ν + δ),Λ). We begin with two useful propositions.

Proposition 4.1. (See [8].) For 1 � ν , let P11 and Q 11 be two fixed maximal totally isotropic subspaces of
F

2ν+δ
q with dim(P11 ∩ Q 11) = ν − i. Then the number of maximal totally isotropic subspaces S11 of F

2ν+δ
q

satisfying dim(P11 ∩ S11) = ν − s and dim(S11 ∩ Q 11) = ν − u, denoted by pi
s,u(ν;2ν + δ), is given by

[4, Proposition 2.2].

Proposition 4.2. (See [4, Theorem 1.1].) The intersection numbers of the scheme (M(ν,0;2ν + δ + l,
2ν + δ),Λ), denoted by p(i, j−i)

(s,t−s)(u,v−u)
(ν;2ν + δ + l,2ν + δ), are given by [4, Theorem 1.1].

Suppose k = 1 or k = l − 1, and (3) holds. Since m = ν + k, r = i. Now we compute the intersection
numbers of (M(ν + k,k;2ν + δ + l,2ν + δ),Λ). By the transitivity of G2ν+δ+l,2ν+δ on Λ(i,a, j−i−a,i) ,
we may choose two fixed (ν + k,k)-isotropic subspaces

P =
( ν ν+δ k l−k

I 0 0 0

0 0 I 0

)
ν

k

and

Q =

⎛⎜⎜⎜⎜⎝
i ν−i i ν+δ−i a k−a a l−k−a

0 I 0 0 0 0 0 A

0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

⎞⎟⎟⎟⎟⎠
ν−i

i

k−a

a

,

where

A =
(

I( j−i−a) 0( j−i−a,i+l− j−k)

0 0

)
.
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Then (P , Q ) ∈ Λ(i,a, j−i−a,i) , and p(i,a, j−i−a,i)
(s,b,t−s−b,s)(u,c,v−u−c,u)

is the number of subspaces S satisfying
(P , S) ∈ Λ(s,b,t−s−b,s) and (S, Q ) ∈ Λ(u,c,v−u−c,u) . Write

S =
( 2ν+δ l

S11 S12

0 S22

)
ν

k
,

where rank S11 = ν and rank S22 = k. Since 0 � a,b, c � 1, we first discuss the following four cases:

Case 1: a = b = c = 0. Then

S =
( 2ν+δ k l−k

S11 0 S122

0 I 0

)
ν

k
,

where rank S11 = ν . Proposition 4.2 implies that

p(i,0, j−i,i)
(s,0,t−s,s)(u,0,v−u,u)

= p(i, j−i)
(s,t−s)(u,v−u)

(ν;2ν + δ + l − k,2ν + δ). (4)

Case 2: a = b = 0, c = 1. Then

p(i,0, j−i,i)
(s,0,t−s,s)(u,1,v−u−1,u) = 0. (5)

Case 3: a = 0,b = c = 1. Proposition 4.1 implies that

p(i,0, j−i,i)
(s,1,t−s−1,s)(u,1,v−u−1,u)

+ p(i,0, j−i,i)
(s,0,t−s,s)(u,0,v−u,u)

= qν(l−k)

[
l

1

]
q

pi
s,u(ν;2ν + δ). (6)

Case 4: a = b = c = 1. Proposition 4.1 implies that

p(i,1, j−i−1,i)
(s,1,t−s−1,s)(u,1,v−u−1,u) + p(i,1, j−i−1,i)

(s,1,t−s−1,s)(u,0,v−u,u) + p(i,1, j−i−1,i)
(s,0,t−s,s)(u,1,v−u−1,u)

= qν(l−k)

[
l

1

]
q

pi
s,u(ν;2ν + δ). (7)

By [1, Proposition 2.2] and (4)–(7), all the intersection numbers of (M(ν + k,k;2ν + δ + l,
2ν + δ),Λ) can be given.

5. Symmetric graphs

In this section we construct a family of symmetric graphs with diameter 2.
Let ν = 2, l � 1 and let F

4+δ+l
q be one of the (4+δ+ l)-dimensional singular classical spaces except

SOr with δ = 0. Define a graph Γ δ with the vertex set M(2,0;4 + δ + l,4 + δ), and two vertices
P and Q are adjacent if and only if P + Q is a subspace of type ϑ , where ϑ = (4,1,1), (4,2,1)

or (4,2,1,0,1) according to SSy, SUn or SOr, respectively. For any P , Q ∈ Γ δ, ∂(P , Q ) means the
distance between vertices P and Q .

Theorem 5.1. Γ δ is a symmetric graph with diameter 2.
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Proof. By [7, Theorems 3.22, 5.23, 6.28, 7.30] and [4, Lemma 2.1], Γ δ is symmetric. To prove the
theorem it suffices to show ∂(P , Q ) = 2 for any two non-adjacent vertices P and Q of Γ δ . We
distinguish the following two cases:

Case 1: l = 1. Then P + Q is of type Θ,� or Λ, where

Θ =
⎧⎨⎩

(3,1,0), SSy,

(3,2,0), SUn,

(3,2,1,0,0), SOr,

� =
⎧⎨⎩

(3,0,1), SSy,

(3,0,1), SUn,

(3,0,0,0,1), SOr,

Λ =
⎧⎨⎩

(4,2,0), SSy,

(4,4,0), SUn,

(4,4,2,0,0), SOr.

If P + Q is of type Θ , by [4, Lemma 2.1] we may assume that

P = (
I(2)0(2,3+δ)

)
, Q = (

0(2,1) I(2)0(2,2+δ)
)
. (8)

Take

U =
( 1 1 1 1 1

0 1 0 0 1

1 0 1 0 0

)
,

( 1 1 1 1 δ 1

0 1 0 0 0 1

a 0 1 0 0 0

)
,

( 1 1 1 1 1 δ−1 1

0 1 0 0 0 0 1

1/2 0 1 0 1 0 0

)

or

( 1 1 1 1 1 δ−1 1

0 1 0 0 0 0 1

1 0 1 0 1 0 0

)

according to SSy, SUn, SOr with ch Fq 	= 2 or with ch Fq = 2, respectively, where a + ā = 0 and a 	= 0.
Then ∂(P , U ) = ∂(Q , U ) = 1, which implies ∂(P , Q ) = 2. If P + Q is of type �, by [4, Lemma 2.1] we
may assume that P as in (8), and

Q =
( 1 1 2+δ 1

1 0 0 0

0 1 0 1

)
.

Take

U =
( 1 1 1 1 δ 1

1 0 0 0 0 1

0 0 0 1 0 0

)
,

then ∂(P , U ) = ∂(Q , U ) = 1, which implies ∂(P , Q ) = 2. If P + Q is of type Λ, by [4, Lemma 2.1] we
may assume that P as in (8), and

Q =
( 2 2 δ 1

0 I 0 0
)
.

Take

U =
( 1 1 1 1+δ 1

0 1 0 0 1

0 0 1 0 1

)
,

then ∂(P , U ) = ∂(Q , U ) = 1, which implies ∂(P , Q ) = 2.
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Case 2: l > 1. Then P + Q is of type Θ,�,Λ or Σ , where Σ = (4,0,2), (4,0,2) or (4,0,0,0,2)

according to SSy, SUn or SOr, respectively. If P + Q is of type Θ,� or Λ, similar to the proof of
Case 1, we have ∂(P , Q ) = 2. If P + Q is of type Σ , by [4, Lemma 2.1] we may assume that P as
in (8), and

Q =
( 2 2 δ 2 l−2

I 0 0 I 0
)
.

Take

U =
( 1 1 1 1+δ 1 l−1

0 1 0 0 1 0

0 0 1 0 0 0

)
,

then ∂(P , U ) = ∂(Q , U ) = 1, which implies ∂(P , Q ) = 2.
Hence the desired result follows. �

Remarks. Let Λ = {Λ(i, j−i) | 0 � i � 2, 0 � j − i � min{2 − i, l}} be the set of all the orbitals of
(G4+δ+l,4+δ, M(2,0;4 + δ + l,4 + δ)). Then the relation graph (M(2,0;4 + δ + l,4 + δ),Λ(1,1)) is the
graph Γ δ (see [1,4]).
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