
Computers Math. Applic. Vol. 34, No. 12, pp. 89-104, 1997 
P e r g a m o n  Copyright(~)1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0898-1221/97 $17.00 + 0.00 

PII: S0898-1221(97)00237-X 

Dependent-Chance Programming: 
A Class of Stochastic Optimization 

BAODING LIU 
Department of Applied Mathematics, Tsinghua University 

Beijing 100084, P.R. China 

(Received February 1997; accepted April 1997) 

A b s t r a c t - - T h i s  paper provides a theoretical framework of dependent-chance programming, as 
well as dependent-chance multiobjective programming and dependent-chance goal programming 
which are new types of stochastic optimization. A stochastic simulation based genetic algorithm 
is also designed for solving dependent-chance programming models. 

Keywords--Stochast ic  programming, Genetic algorithm, Dependent-chance programming. 

1. I N T R O D U C T I O N  

Management decisions are usually made in uncertain environments. Stochastic programming 
offers a means of considering the objectives and constraints with stochastic parameters. The 
theory of stochastic programming has been summarized by several books such as [1-7]. 

Complex decision systems are usually multidimensional, multifaceted, multifunctional, and 
multicriteria. With the requirement of considering randomness, appropriate techniques of sto- 
chastic programming have been developed to suit the different purposes of management. The first 
method dealing with stochastic parameters in stochastic programming is the so-called expected 
value models which optimize the expected objective functions subject to some expected con- 
straints. The  second, chance constrained programming, was pioneered by Charnes and Cooper [8] 
as a means of handling uncertainty by specifying a confidence level at which it is desired that  the 
stochastic constraint holds. However, sometimes a decision system undertakes multiple certain 
tasks called events, and the decision maker wishes to maximize the probabilities of satisfying 
these events. In order to solve this problem, this paper provides a theoretical framework of the 
third type of stochastic programming named dependent-chance programming and extends it to 
dependent-chance multiobjective programming and dependent-chance goal programming. 

Roughly speaking, the dependent-chance programming is related to maximizing some chance 
functions of events defined on stochastic sets in a complex uncertain decision system. In de- 
terministic models as well as expected value models and chance constrained programming, the 
feasible set is essentially assumed to be deterministic after the real problem is modelled, i.e., an 
optimal solution is always given regardless of whether or not it can be performed in practice. 
However, the given solution may not be performed if the realization of uncertain parameter goes 
to bad cases. So the dependent-chance programming model never assumes that  the feasible set is 
deterministic. Although a deterministic solution is given by the dependent-chance programming 
model, this solution is only requested to be performed as much as possible. This special feature of 
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dependent-chance programming is very different from the existing stochastic programming tech- 
niques. However, such problems do exist in the real world some real and potential applications 
of dependent-chance programming have been presented by Liu and Ku [9], Liu [10], and Liu and 
Iwamura [11]. 

In this paper, we present a concept of stochastic sets for describing the stochastic constraints in 
an uncertain environment as the basis of dependent-chance programming, as well as dependent- 
chance multi-objective programming and dependent-chance goal programming, and design a sto- 
chastic simulation based genetic algorithm for solving dependent-chance programming models. 

2. A B A C K G R O U N D :  S U P P L Y - A L L O C A T I O N  S Y S T E M  

A lot of decision systems, including a supply-allocation system, can be represented by Figure 1. 

inputx ~ > output1 

i 
output2 

inputs. 

> output3 

input3 rk_ 2 ~ output4 

Figure 1. A supply-allocation system. 

As an illustrative example, in Figure 1, there are three inputs representing three locations of 
resources and four outputs representing the demands of four users. We must answer the following 
two types of questions. 

(a) Supply problems. In order to achieve certain goals in the future, a decision must be made 
concerning the present and future situation. That is, we must determine the optimal 
combination of inputs in certain time, for example, to determine the quantities ordered 
from the three inputs. 

(b) Allocation problems. One of the basic allocation problems is the optimal allocation of 
the resources. The task of this part is to determine the outputs that result from various 
combinations of resources such that the certain goals are achieved. Certainly, in this 
system, supply and allocation problems should not be separate. 

In order to answer the above two types of problems, we use 12 decision variables xl, x2 , . . . ,  x12 
to represent an action, where xl, x2, x3, x4 are quantities ordered from input1 to outputs 1,2,3,4, 
respectively; x5, x6, x7, x8 from input2; x9, xlo, x n ,  x12 from input3. In practice, some variables 
may vanish because of some physical constraints. 

We mention that the inputs are available outside resources; they have their own properties. For 
example, the maximum quantities supplied by the three resources are marked by ~1, ~2, ~3 which 
may be stochastic variables characterized by density functions ¢1, ¢2, ¢3, respectively. Thus at 
first, we have the following constraint, 

Xl "~- 372 q- X3 q- X4 <: ~1, 

x5 q- x6 + x7 + x8 < ~2, (1) 

x9 + Xl0 + Xll + xx2 _< ~3. 

If at least one of ~1, ~2, and ~z is really stochastic, then this constraint is not clear at all because 
we cannot make a decision before knowing the realization of ~1, ~2, and ~3. In order to make it 
meaningful, we will employ a so-called stochastic set to describe it. The other clear constraint is 

xi >_ 0, i = 1, 2 . . . .  ,12, (2) 

which represents that the quantities ordered from the resources are not negative. 
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Since our object of s tudy is a decision system, some decision criteria to such a system unques- 

t ionably exist. We will regard each criterion as an evaluation on a certain event in this system. 

For example, the four outputs  have their own demands marked by Cl, c2, c3, and c4, respectively. 
Then,  we have the following four events: 

Xl ~ 2:5 2t- x9 ~ el, 

x2 "~ X6 + Xl0 = C2, 

x3 + z r  + x l l  = c3, (3) 

X 4 q-X 8-~-x12 ~ C 4. 

These equalities imply tha t  the decisions should satisfy the demands. In view of the uncertainty 

of this system, we are not sure whether a decision can be performed before knowing the realization 
of stochastic variables, so we have to employ so-called chance functions to evaluate these four 

events. Let 
f l ( x )  = Pr{xl  + x5 + x9 = C1}, 

f2(X) = Pr{x2 + x0 + Xl0 = c2}, 

f3(X) = Pr{x3 + x7 + Xl l  = C3}, (4) 

f4(x) = Pr{x4 + xs + x12 = C4}, 

where Pr  denotes the probabili ty of the event in {.}. Although all xi and c~ themselves are 
not stochastic variables, the events in the brackets indeed possess randomness because xi ' s  are 
constrained by stochastic parameters.  Usually, we hope to maximize the four chance functions, 
i.e., increase the reliability levels of the four events as high as possible. In addition, we may  wish 

to use input3 as little as possible because of some economic or political reasons. Thus, the fifth 
event is the quanti ty ordered from input3. The respective criterion is described by 

min f s (x)  = x9 + xlo + X l l  "~- X12, (5) 

which is a deterministic objective. 
Until now we have formed our stochastic programming to the supply-allocation problem in an 

uncertain environment, i.e., 

max f l ( x )  = Pr{Xl + x5 + X9 = e l } ,  

maxf2 (x )  = Pr{x2 + x6 + XlO = c2}, 

max f3(x) = Pr{x3 + z7 + x n  = c3}, 

max f4(x) = Pr{x4 + Xs + x12 = c4}, 

min f s (x)  = z9 -1-XlO -4-Xll --I-x12, (6) 

subject to: Xl + x2 + x3 + x4 _< ~1, 

x5 + x8 + x7 + xs _< ~2, 

X9"4-X10 q- Xl l  -~'X12 ~<: ~3, 

x i > 0 ,  i = 1 , 2 , . . . , 1 2 ,  

where ~l, ~2, and ~3 are stochastic variables characterized by density functions ¢1, ¢2, and ¢3, 
respectively. In this stochastic programming, we cannot discuss the realization of each decision 

variable in isolation. For example, we have to consider all of xl ,  x2, xs, and x4 simultane- 
ously, but  separately. This means that  some variables, as well as the chance functions, are 
stochastically dependent. We will call the stochastic programming like (6) as dependent.chance 
programming (DCP).  

We use the te rm dependent-chance programming for the following reasons: 

(i) some constraints are stochastic; 
(ii) some objectives are chances of certain events; 
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(iii) some decision variables are stochastically dependent; and 

(iv) the chances of some events are dependent on each other. Chance dependence means that  
we cannot consider the reliability levels of each individual event in isolation; this usually 
implies that  the objectives and constraints cannot be converted to their deterministic 
equivalents. 

3 .  S T O C H A S T I C  S E T S  

In classical mathematical programming, the feasible set is usually represented by a crisp set 
which is normally defined as a collection of elements x E X. Each single element can either 
belong to or not belong to a set A, A C X.  Such a crisp set can be described in different 
ways: one can either list the elements that  belong to the set; describe the set analytically by a 
sequence of equalities and inequalities (constraints); or define the member elements by using the 
characteristic function, in which 1 indicates membership and 0 nonmembership. Recall tha t  a 
fuzzy set is described by a membership function. Analogously, as an extension of deterministic 
set, we use a probability function to describe a feasible set. Probability is 1 means the statement x 
belongs to A is true, 0 the statement is false. When the boundaries of a feasible set are defined 
by some stochastic factors, the probability function does allow various values between 0 and 1. 
This case arises in stochastic constraints of stochastic mathematical programming. In order to 
describe such a kind of set, we employ a term stochastic set. Following the definition of fuzzy 
set, we define the stochastic set in the way that  follows. 

DEFINITION 1. g fl is a collection of objects denoted generally by x, then the stochastic set A 
in f~ is defined as a set of ordered pairs: 

A = {(X,#A(X))[x  E a } ,  (7) 

where #A(X) is called the probability function of x in A. 

In the above definition, the statement that  #A(X) is the probability function of x in A means 
that  the probability of realization of x in A is #A(X) in some given stochastic environment. 

For example, we suppose that  the water marks ~1 and ~2 of a reservoir and a river have den- 
sities ¢1 and ¢2, respectively. How much water can we draw from the reservoir and river? We 
cannot answer it deterministically. Assume x = (xl,  x2) denotes a vector whose first element xl  
is the water quantity drawn from the reservoir, second element x2 drawn from the river. The- 
oretically, all possible realizing vectors x form the first quadrant of the Euclidean plane. Let 

= R + and A be the set of all possible realizing vectors satisfying 1 < Xl + x2 _< 5. Recall that  
the stochastic constraints xl _< ~1, x2 _< ~2, i.e., we cannot draw water more than the existing 
volumes in storage. Thus, A is a stochastic set whose probability function can be written as 
follows: 

~A(X) -~- Pr {(xl ,x2) [ 0 <_ Xl ~ ~1; 0 _< x2 _< ~2; 1 < Xl + x2 ~ 5}, 

which is equivalent to 

{ f:+°°¢~(~)d¢.f;+°°¢2(¢)d¢, xx>_O, x2>_O, l <_x~+x2<_5, 
#A(X) ---- 0, otherwise. 

We mention that  the probability function #A(X) is determined by two factors, one is from the 
realizations of stochastic variables, for example, Xl _< ~1 and x2 <_ ~2, the other is from the real 
constraints given by the decision maker or physical system, for example, Xl _> 0, x2 _> 0 and 
1 _< xl ÷ x2 _< 5. 

From the definition of stochastic set, we know that  #A(X) = 0 means that  x is impossible to 
be realized; #A(X) ---- 1 implies that  we can reach x for any realizations of stochastic variables; 
#A(X) = a(0 < a < 1) represents that  the probability that  x can be performed is a.  
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If #A (X) only maps fl to the two points 0 and 1, A is deterministic and #A (x) is identical to 
the characteristic function. 

Similar to the concept of a-level set in fuzzy set theory, we define the a-level set of stochastic 
set as follows. 

DEFINITION 2. The set of elements that belong to the stochastic set A at least to the probability a 
is called the a-level set: 

As = {x e fl ] /ZA(Z) ~_ a}.  (8) 

4 .  S T O C H A S T I C  C O N S T R A I N T S  

We mention that  a stochastic programming like 

max f (x ,~) ,  (9) 

subject to: gi(x, ~) <<_ O, i = 1, 2 , . . .  ,p 

is not well defined since the meanings of max as well as of the constraints are not clear at all if 
is a stochastic vector. Therefore, some techniques at tempt  to present some meaningful forms of 
stochastic programming. As a successful technique, a typical formulation of chance constrained 
programming (CCP) may be written as follows: 

max E J ( x ,  ~), (10) 
subject to: P r{~ lg i (x ,~ )  <_ 0, i -- 1 , 2 , . . . , p }  >_ a,  

where x is a decision vector, ~ is a stochastic vector, f ( x ,  ~) is the return function, E~ denotes the 
expected value operator on ~, gi(x,~) are stochastic constraint functions, i = 1, 2 , . . .  ,p, Pr{.}, 
denotes the probability of the event in {.}, and a is a predetermined confidence level. So a point x 
is feasible if and only if the probability measure of the set {~ [ gi(x,~) <_ 0, i  = 1 ,2 , . . .  ,p} is 
at least a.  In other words, the constraints will be violated at most (1 - a)  of time. Thus, the 
stochastic programming is converted to its deterministic equivalent via CCP (10). Recall the 
concept of stochastic sets proposed in Section 3; we can represent the stochastic constraint in (9) 
by a stochastic set S as 

S - -  { (x ,#s (x ) )  I x  e Rn} ,  (11) 

where the probability function #s (x)  is defined by 

#s (x)  -- P r { ~ l g i ( x , ~ )  _< 0, i = 1 , 2 , . . . , p } ,  (12) 

then the probabilistic constraint set in (10) is just the a-level set Sa of stochastic set S defined 
by equation (11). So CCP (10) reads as 

max E J ( x ,  ~). (13) 
xE s ~  

We also mention that  when a -- 1, the optimal solution is just a fat solution since x E $1 is 
always feasible for any realization of stochastic vector ~. Certainly, this form of CCP does not 
do anything rather than (10). 

Different from the deterministic case, as well as expected value model and chance constrained 
programming, we cannot say a point is feasible or not when our problem is defined on a stochastic 
set. We have to say a point x* is feasible with a probability a,  where a is the value of probability 
function #s(x*) .  

Perhaps the first problem of application of stochastic set is how to get the probability function 
of a stochastic set for a given sequence of stochastic constraints. Fortunately, it is not difficult to 



94 B. LIu 

calculate the probability functions #s(x)  by equation (12) for real management problems. As a 
useful example, we consider the following set of stochastic constraints: 

r j(x)  _< ~j, j -- 1 ,2 , . . .  ,p, (14) 

where the stochastic variables ~j have density functions Cj (-), j = 1 , 2 , . . . ,  p, respectively. Then 
the set of all x satisfying (14) is a stochastic set labeled by S with probability function #s(x)  
which is able to be determined by 

-- ¢1(~)d~... Cp(~) d~. ~s(x) l(x) ,(x) 

When the constraints (12) fail to be regular or hard to be calculated, it is more convenient to 
calculate it by the stochastic simulation (also called Monte Carlo simulation). Suppose that  

= (~i,~2,. . .  ,~t) is a t-dimensional stochastic vector, and each ~, has a given distribution. 
For any given x, we use the following stochastic simulation technique to compute #s(x).  We 

generate N independent random vectors ~(0 = ( ~ 0 , ~ 0 , . . . , ~ i ) ) ,  i = 1 , 2 , . . . ,  N, from their 
probability distributions, where the generating methods have been well discussed by numerous 
literature and summarized by Rubinstein [12]. Let N '  be the number of occasions on which 

(x,~ (')) < 0, j = 1,2, . .  gj ° ~ P ~  

i.e., the number of random vectors satisfying the constraints. Then, by the basic definition of 
probability, #s(x)  can be estimated by 

N t 
#s(x)  = ~ - .  (15) 

Certainly, this estimation is approximate and may change from a simulation to another. But it 
is available to real practice problems since the determination of the confidence level a itself is 
not precise. At least, this estimation is satisfactory in practice. 

Let x = (Xl, x2 , . . . ,  x,~). For the sake of clear statements, we call x the decision vector and xi, 
i = 1, 2 , . . . ,  n the decision components throughout this paper. Sometimes the term decision is 
omitted for brevity. 

We have mentioned in Section 2 that  some decision components are stochastically dependent. 
We say two components x' and x" are stochastically dependent if the realization of x' is dependent 
on x", and vice versa, where dependence means that  the chance of each of x' and x" is a function 
of at least x ~ and x". However, unfortunately, the probability function itself does not provide the 
detailed information as to whether components are stochastically dependent or not. So we have 
to analyze them from the original material. 

Let us consider the stochastic constraints (1), we find that  {Xl, x2, x3, x4} is a stochastically 
dependent group because the realization of any one of them is dependent on each other. Moreover, 
the chance of any one when realizing Xl, x2, x3, and x4 is a function of all of them. In fact, 

f (xi )  = fz~:2+xs+x,  ¢1(~) d~, i = 1,2,3,4, 

where f(xi) is the chance of realization of xi. Similar reason shows that  {xs, x6, x~, x8} and 
{xg, xm, Xll, x12} are the other two groups. On the other hand, there is no stochastic relationship 
among the above three groups. Please mention that  we do not regard a deterministic relationship 
as a special stochastic relationship. This property is very important in discussion of the multiple 
objective case. 

In this paper, we suppose that  we know the following stochastic relationship among the decision 
components. 
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STOCHASTIC RELATIONSHIP. There is a known partition of n components of a decision vector 
into k groups such that these k groups are mutually stochastically independent and in each group 
any elements are stochastically dependent and have the same chance to appear if they require to 
be realized simaltaneously. 

For our supply-allocation system, if we only want to satisfy outputl and outputs, then the 
components Xl, x2, xs, x6, Xg, xlo require to be realized simultaneously. Thus, by the partit ion 

{Xl, x2, x3, x4}, {xs, x6, xr,  Xs}, and {xg, Xlo, x11, x12}, we know that  Xl and x2 are dependent 
and their chance of occurrence is 

f(x~) = ¢1(~) d~, i = 1,2, 
1"4-X2 

because x3 and x4 do not require to be realized. The same case also occurs in the groups {xs, x~} 

and {xg, Xl0}.  

In practice, this stochastic relationship is always clear and can be obtained easily. Theoretically, 
we will find that  the algorithm for dependent-chance multi-objective programming, as well as 
dependent-chance goal programming cannot work if we do not input such a kind of stochastic 
relationship on a stochastic set in the computer program. 

5.  C H A N C E  O B J E C T I V E  F U N C T I O N S  

In stochastic programming, we have three types of objective functions for different evaluation 
criteria. 

(i) Expected target, for example, expected cost minimization, expected profit maximization, 
etc. This is also available to the deterministic case if we regard the probability of the 
event as 1. 

(ii) Target with a limit on chance, i.e., given a chance which is usually represented by a 
confidence level, the target with a lower/upper limit on chance is to be optimized. 

(iii) Chance of a certain event, i.e., given an event, the chance of this event is to be optimized. 

Types (i) and (ii) are well discussed by expected value models and chance constrained program- 
ming, respectively. Here we consider type (iii). We suppose that  the chance of each certain event 
will be maximized, otherwise, we can define the chance as the probability of its complement. We 
have announced that  the chance function is a probability of a certain event. For example, the 
following equality 

X 1 "4-X 5"~-x  9 ~ C 1 

means satisfying the demand of outputl in the supply-allocation system. In fact, the decision 
vectors x -- (Xl, x 2 , . . . ,  x12) meeting the event also form a stochastic set. (Deterministic set is 
a special stochastic set!) We denote this stochastic set by E with probability function #E(X). 
Here, # s ( x )  is identical to the characteristic function of E since it is deterministic. Thus, 

1, Xl -4- x5 A- x9 = Cl, 

#E(X) = 0, otherwise. 

We are now concerned with the following questions. What  is the probability of this event on 
a stochastic set S? How do we represent the chance function? 

It is clear tha t  this event is met only on the stochastic set E N S which is an intersection of 
event E and stochastic constraint S, and 

#EnS(x) = #E(X)" #s(X) = { #s(X), X E E,  (16) 
0, x C E .  

Recall the example, the set E is composed of all possible decisions x = (xl,  x2 , . .  •, x12) meeting 
the event xl  +x5 +x9  = cl. However, we are only interested in three components of them, xl ,  xs, 
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and x9, but  not the others. That  is, we are only concerned with the realizations of xl ,  xs, and x9 
which meet the given event Xl + x5 + x9 = cl. The realizations of other components will be 
ignored. Let V(E) denote the set of all components of x in which we are interested. We mention 
that  only xl,  xs, and x9 are necessary components for meeting the event xl  + x5 + x9 = Cl, thus 

V(E) = {Xl, x5, x 9 } .  

Generally, let the single chance function be f (x )  which is a probability of given event named E. 
The event E is usually represented by all possible decisions meeting the demand of E.  We use 
V(E) to denote the set of all components of x which are necessary to this event. Since we are 
only interested in one event, this event will claim precedence over all other potential events, thus 
the chance objective function will be the maximum probability of realizations of components in 
V(E), i.e., 

m a x # s ( y ) ,  x E E,  
f ( x )  = yeE* (17) 

0, x ~ E ,  

where 

E * = { y = ( y l , Y 2 , . . . , y n )  e E [ y j = x j  if xjeV(E) ,  j = l , 2 , . . . , n } .  (18) 

Suppose that  the original stochastic constraints of our problem are 

gj(x,~) < 0, j = 1 ,2 , . . .  ,p, (19) 

where ~ is a stochastic vector. Then the probability function of stochastic set is 

#s (x )  = P r ( ~ l g j ( x , ~ )  _< 0, j = 1 , 2 , . . . , p } .  (20) 

In practice, for each x E E,  it is not difficult to determine the values x~ of decision components 
out of V(E) for the decision vector x*, 

xj, zj • V(E), 
x* = ( x t , x 2 , . . . , x n )  : xj = • 1 < j < n (21) 

x~, x~ ¢ V ( E ) ,  - - 

such that  
max #s (y )  = P r (~  [ gj (x*,~) < 0, j = 1,2 . . . .  ,p}.  (22) 
yEE* 

Therefore, the chance function of the event E is 

(Pr{~  I g~ (x*,~) < 0, j = 1 , 2 , . . . , p } ,  x • E,  
f ( x ) =  0, x • E .  (23) 

Usually, the point x* associated with x occurs at some extreme place. For example, in the 
supply-allocation system, the values x~ of decision components out of V(E) should be zero. We 
will call the constraints 

gj (x*,~) < 0, j = 1 , 2 , . . . , p  (24) 

as the induced constraints on the event E. The induced constraints will play an important  role 
in calculating the chance functions by using stochastic simulation technique. 

6. D E P E N D E N T - C H A N C E  P R O G R A M M I N G  

In this section, we consider the simplest dependent-chance programming, i.e., the single objec- 
tive case. A typical formulation of dependent-chance programming (DCP) is given as follows: 

m ~ / ( x ) ,  (2~) 
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or represented as 
max f (x) ,  

(26) 
subject to: gy(x,~) _ 0, j = 1 ,2 , . . .  ,p, 

where x is an n-dimensional decision vector, S is a stochastic set on R n with probability function 

#s (x)  = Pr{~ ]gj (x,~) <_ 0, j = 1 ,2 , . . . , p}  

without known stochastic relationship assumed at Section 4, f (x )  is a chance function of certain 
event, borrowing the symbol E from classical set theory, x E S means that  x is feasible with 
probability #s(x) .  Please mention that the set S is stochastic but deterministic. A point x* E S 
is called an optimal solution of (25) if f (x*)  > f (x )  for any x E S. Let E denote the set of all x 
meeting the event, then the chance objective function is determined by (17) and (18) or (23). 
Thus, dependent-chance programming (DCP) (25) is equivalent to 

maXxes f (x )  = maXx¢E ~ "  #S(Y) = m ~ # s ( x ) .  (27) 

In this equation, the DCP (25) is proved to be equivalent to maXxeE #s(x) .  But  we should not 
think that  we can generally represent DCP by the mathematical programming maXxeE #s(x) ,  
because it is only a special case for single objective DCP. 

We now go back to our supply-allocation system. Suppose that  the stochastic constraint is (3) 
together with xi >_ 0, i = 1, 2 , . . . ,  12. Then this constraint can be represented by a stochastic 
set S with probability function 

+co +co 
{ fx+co¢l(~)d~'fx, ,  ¢2(~)d~'fx,,, ¢3(~)d~, x, >_ 0,Vi, 

# s (x )  = 0, otherwise, 

where x' = X l + X 2 + X 3 + x 4 ,  x tt : x 5 + x 6 + x 7 + x 8 ,  and x'" = x 9 + x l O + X l l + X l 2 .  Here we suppose 
that  ¢1, ¢2, and ¢3 are two-parameter lognormal densities with parameters u -- 1.56, 1.36, 0.95, 
and a - 0.56, 0.45, 0.38, respectively. Our single interesting event is to satisfy the demand cl = 6 
of output1, i.e., Xl + xs + x9 = Cl. Thus the set E associated with this event is 

E = { x  = ( z l ,  z 2 , . . . ,  z l ~ )  { z l  + z5 + z9 = cl  = 6 } ,  

whose probability function is 

1, X l + X 5 + X 9 = 6 ,  

#E(X) = 0, otherwise. 

By equation (27), our problem is written as 

max#s (x ) ,  (28) 
xEE 

which is equivalent to 

m a x / + c o  f + c o  fx +co 
xeE'Jx'  ¢l(~)d~" ,, ¢2(~)d~. ,,, ¢3(~)d~, (29) 

where E '  = {y E E { y i  >_ O, i = 1 ,2 , . . . ,  12}. Equation (29) is common mathematical program- 
ming. By the property of integral, (29) is equivalent to 

maX ¢1(~) d~. ¢2(~) d~. ¢3(~) d~, (30) 
xEE" 

1 5 9 

where  E" = { y  ~ E [ W -> 0, i = I, 5, 9; V~ = 0, i # I,  5, 9 } .  A run o~ the  computer  p r o ~ a m  for 
this problem shows that  the optimal solution is x* = (x~', z~ , . . . ,  x~2 ) in which all x* are zero 
except for that  

x~ = 2.6,  x~ = 2.1, x~ -- 1.3, 

with f (x*)  = 0.71, i.e., the reliability level of this event is 71% if we give priority to the perfor- 
mance of x*.  

34:12-0 
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7. D E P E N D E N T - C H A N C E  MULTI-OBJECTIVE P R O G R A M M I N G  

Since a complex decision system undertakes multiple tasks, there undoubtedly exist multiple 
potential objectives (some of them may not be chance functions) in the decision process. A typical 
formulation of dependent-chance multi-objective programming (DCMOP) is given as follows: 

max f ( x )  ----- [fl(x),  f 2 ix ) , - . ,  fro(x)] i31) 
x6S ~ ' 

or represented as 

max Ill ix), f e i x ) , . . . ,  fm (X)] , 
(32) 

subject to: gj(x,~) < 0, j = 1 , 2 , . . . , p ,  

where x is an n-dimensional decision vector, S is a stochastic set with probability function #s (x )  
with known stochastic relationship assumed at Section 4, f ( x )  is a vector of m real-valued 
functions fi  which are chance functions or not, the symbol x 6 S means that  x is feasible 

with probability #s  (x). 
We have given an algorithm for computing a single chance function on a stochastic set. Next, we 

consider the multiple objective case. If some of f l (x ) ,  f 2 ( x ) , . . . ,  fro(x) are not chance functions, 
then we can obtain the values of nonchance functions immediately. Without loss of generality, 
suppose that  all of f l ( x ) , f 2 ( x ) , . . .  ,fro(x) are chance functions. Each chance function f i (x)  
represents a probability of a certain event which is represented by 

E~ = {x = (xl,  z 2 , . . . ,  z•) I x  satisfies the event i},  

for each i with 1 < i < m. We write 

E = E 1 N E 2  N . . .  NEro 

and 
V(E)  = V(E1) tJ V(E2) U . . . U Y(E,n), 

where ViEi  ) are the sets of all necessary components to the events i, i = 1, 2 , . . . ,  m, respectively. 
Thus, V i E  ) is the set of all necessary components to the m events. We also define E*, E~.,i = 
1, 2 , . . . ,  m in the same way as equation (18). Based on the stochastic relationship, let Di E  ) 
denote the set of all components which are stochastically dependent of any elements in V(E) .  
Thus, we have V(E)  C D(E) and Y(Ei)  C D(Ei), i = 1, 2 , . . . ,  m. 

Generally speaking, we have 

y ~  #slY) >- f i (x)  -> y¢E'max #S(Y), i = 1, 2 , . . . ,  m, 

in which the first inequality means that  the probability of realization of Ei in multi-event case is 
usually less than that  in the single-event case because we cannot perform the event at the expense 
of others, the second means that  the probability of realization of Ei in multi-event case is usually 
greater than the probability of realization of all events because some events axe stochastically 
independent, i.e., the realization of one event does not need the realization of all others. 

Now we discuss the relationship between a decision vector and its respective chance objective 
functions. In fact, our way is to realize each event, say Ei, as much as possible but not sacrifice 
the chances of other events. So we have to treat  all elements in the stochastically dependent 
set D(Ei) of V(EI) at an equitable level, i.e., these elements would have the same chance to be 
realized. On the other hand, we are not concerned with the elements out of V(E)  because they 
do not make any contribution to the events we are going to realize. Thus, we must consider all 
the elements in and only in D(Ei) N V(E)  simultaneously for the event Ei. By the stochastic 
relationship, we know that  all of the elements in D(Ei) N V(E)  are independent of any other 
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elements in V(E). Hence, we can perform the elements in D(Ei) N V(E) as much as possible. 
Therefore, we have 

y ~  #s(Y), x E E i ,  
£(x) ---- i ---- 1 , 2 , . . . , m ,  

t 0, x ~ Ei, 

where 

E* = {y = ( y i , . . . , y n )  6 Ei]  yj = xj if xj 6 D(E~) N V(E), j = 1 , . . . ,n} ,  

for i = 1, 2 , . . . ,  m. After constructing a relationship between decision vectors and chance objec- 
tive functions, we can calculate the chance functions directly or by the technique of stochastic 
simulation for complex stochastic constraints. Then we can solve DCMOP by utility theory if 
complete information of the preference function is given by the decision maker or finding all of 
the efficient solutions if no information is available. In practice, the decision maker can only 
provide partial information. In this case, we have to employ the so-called interactive methods 
such as feasible region reduction, weighting vector space reduction, criterion cone contraction, or 
line search [13]. 

8. D E P E N D E N T - C H A N C E  GOAL P R O G R A M M I N G  

Dependent-chance goal programming (DCGP) may be considered as an extension of goal pro- 
gramming in a complex stochastic decision system. When some management targets are given, 
the objective function may minimize the deviations, positive, negative or both, with a certain 
priority structure set by the decision maker. Then we may formulate the stochastic decision 
system as the following dependent-chance goal programming (DCGP): 

l m 

min E PJ E (uijd+~ + vijd~. ) 
j r 1  i=1 

subject to: f i(x) + d~- - d i  + = bi, i = 1, 2 . . . .  , m, (33) 

d:~,d + _> 0, i = 1,2 . . . .  ,m,  

x E  S, 

or represented as 

l m 

min E Pj E(u i jd+  + v,jd.'() 
j = l  i=1 

subject to: f i(x) + d~- - d + = b~, i = 1, 2 , . . . ,  m, (34) 

gj(x,~) < 0, j = 1 ,2 , . . . , p ,  

d~,d + > 0, i = 1 , 2 , . . . , m ,  

where 

Pj = the preemptive priority factor which expresses the relative importance of various goals, 
Pj >> Pj+I, for all j ,  

uij = weighting factor corresponding to positive deviation for goal i with priority j assigned, 
vii = weighting factor corresponding to negative deviation for goal i with priority j assigned, 
d + = positive deviation from the target of goal i, 
d~- = negative deviation from the target of goal i, 

x = n-dimensional decision vector, 
fi = a function (chance or not): ~n ~ ~1, in goal constraints, 
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b~ -- the target value according to goal i, 
l = number of priorities, 

m = number of goal constraints, 
S = a stochastic set with probability function #s (x)  with known stochastic relationship as- 

sumed at Section 4, defined on ~n. 

The key problem of solving DCGP is to calculate the value of f i (x)  for any given solution x. 
In the first priority level, we suppose that  there are t goals which are listed as 

f i(x)+d.-[-d+=b~, i = 1 , 2 , . . . , t .  

If some of f l  (x), f 2 ( x ) , . . . ,  ft (x) are not chance functions, then we can obtain the respective devi- 
ations immediately. Without loss of generality, we assume that  all of them are chance functions. 
Similar to the case of DCMOP, each chance function f i (x)  represents a probability of a certain 
event which is represented by Ei. We write 

E = E1ME2M.. .MEt 

and 
V(E) = V(EI) U V(E2) U . . . U V(Et). 

Then, mentioning that the goals in a higher-priority level will be satisfied as much as possible 

regardless of the lower-priority goals, by a similar discussion of multi-objective case, we have 

{ ma~. #s(Y), x 6 Ei, 
f i (x)  = yeE, i = 1 ,2 , . . .  ,t, 

O, x ~ E ~ ,  

where 

E~ = {y = (Yl, . . . ,Yn) 6 E i ]  yj = xj if xj 6 D(Ei) MY(E), j = 1 , . . . ,n} ,  

for i = 1 , 2 , . . . , t .  
In the second priority level, a similar process will yield the respective deviations except for the 

fact that  E is replaced by 

E = EI M... MEt MEt+, M... MEt, 

and 
V(E) = V(EI)  U . . .  U V(E,) U V(Et+l)  U- . -  U V(Et,), 

where Et+l,Et+2,... ,Et, are the sets of all x meeting the events associated with the chance 
functions ft+l(X),ft+2(x),... , / r ( x )  which are assumed to be the goals in this priority level 
because the decisions about events El ,  E 2 , . . . ,  Et have been made in a higher-priority level and 
the remaining decisions for lower-priority goals must follow the state resulting from the higher- 
priority decisions. 

Certainly, the successive levels will be similarly discussed until all chance functions are solved. 
We can solve dependent-chance goal programming by combining the above process and the 

techniques of nonlinear goal programming. 

9 .  S T O C H A S T I C  S I M U L A T I O N  

B A S E D  G E N E T I C  A L G O R I T H M  

Genetic algorithms are a stochastic search method for optimization problems based on the 
mechanics of natural selection and natural genetics.Genetic algorithms have demonstrated con- 
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siderable success in providing good solutions to many complex optimization problems and received 
more and more attention during the past three decades. When the objective functions to be opti- 
mized in the optimization problems are multimodal or the search spaces are particularly irregular, 
algorithms need to be highly robust in order to avoid getting stuck at local optimal solution. The 
advantage of genetic algorithms is just to obtain the global optimal solution fairly. Genetic al- 
gorithms (including evolution programs and evolution strategies) have been well discussed and 
summarized by much literature, such as [14-16], and applied to a wide variety of problems. 

In view of the complexity of stochastic programming models, we need to design a stochastic 
simulation based genetic algorithm for solving them. Iwamura and Liu [17] proposed a stochastic 
simulation based genetic algorithm for solving chance constrained programming models in which 
stochastic simulation is employed to check the chance constraints. Liu [10] designed a genetic 
algorithm for dependent-chance goal programming models. In this section, we only present a 
detailed algorithm for not only dependent-chance goal programming, but also dependent-chance 
programming and dependent-chance multi-objective programming. The effectiveness has been 
shown by numerous examples, and the readers may consult Liu [10]. 

9.1. Represen ta t ion  S t ruc tu re  

We can use a binary vector as a chromosome to represent real value of a decision variable, where 
the length of the vector depends on the required precision. The necessity for binary codings has 
received considerable criticism. An alternative approach to represent a solution is the floating 
point implementation in which each chromosome vector is coded as a vector of floating numbers, 
of the same length as the solution vector. Here, we use a vector V = ( x l , x 2 , . . . , x n )  as  a 

chromosome to represent a solution to the optimization problem, where n is the dimension. 

9.2. Initialization Process  

At first, we should eliminate all equality constraints by replacing some variables by the rep- 
resentation of the remaining variables. Then we define an integer pop_size as the number of 
chromosomes and initialize pop_size chromosomes randomly. Usually, it is difficult for complex 
optimization problems to produce feasible chromosome explicitly. So we employ one of the fol- 
lowing two ways as the initialization process, depending on what kind of information the decision 
maker can give. 

First case is that the decision maker can determine an interior point, denoted by V0, in the 
constraint set. This is very possible for a real decision problem. We also need to define a large 
positive number M which ensures that all the genetic operators are probabilistically complete 
for the feasible solutions. This number M is used for not only initialization process, but also 
mutation operation. The pop_size chromosomes will be produced as follows. We randomly select 
a direction d in ~n and define a chromosome V as V0 + M • d if it is feasible for the inequality 
constraints, otherwise, we set M by a random number between 0 and M until V0 + M • d is 
feasible. We mention that a feasible solution for the inequality constraints can be found in finite 
times by taking random number since V0 is an interior point. Repeat this process pop.size times 
and produce pop_size initial feasible solutions V1, V2,..., Vpop_size. 

If the decision maker fails to give such an interior point, but can predetermine a region which 
contains the feasible set. Usually, this region will be designed to have nice sharp, for example, 
an n-dimensional hypercube, because the computer can easily sample points from a hypercube. 
We generate a random point from the hypercube and check the the feasibility of this point. If 
it is feasible, then it will be accepted as a chromosome. If not, then regenerate a point from the 
hypercube randomly until a feasible one is obtained. Repeat the above process pop_size times, 
we can make pop_size initial feasible chromosomes V1,1/2,..., Vpop_size. 
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9.3. Evaluation Function 

Evaluation function, denoted by eval(V), is to assign a probability of reproduction to each 
chromosome V so that  its likelihood of being selected is proportional to its fitness relative to 
the other chromosomes in the population, that  is, the chromosomes with higher fitness will have 
more chance to produce offspring by using roulette wheel selection. 

Let V1, V2,.. .  ,Ypop_size be the pop_size chromosomes at the current generation. One well- 
known method is based on allocation of reproductive trials according to rank rather than actual 
objective values. No matter  what kind of mathematical programming (single-objective or multi- 
objective), it is reasonable to assume that  the user can give an order relationship among the 
pop_size chromosomes V1, V2,. • •, Vpop_size such that  the pop_size chromosomes can be rearranged 
from good to bad, i.e., the better the chromosome is, the smaller ordinal number it has. This 
arrangement is usually based on the values of objective functions. For the chance objective 
functions, as we discussed before, we can employ the stochastic simulation to calculate them in 
general. Now let a parameter a E (0, 1) in the genetic system be given, then we can define the 
so-called rank-based evaluation function as follows: 

eval(Vi) = a(1 - a) i-1, i = 1, 2 , . . . ,  pop_size. (35) 

We mention that  i = 1 means the best individual, i = pop_size the worst individual. 

9.4. S e l e c t i on  P r o c e s s  

The selection process is based on spinning the roulette wheel pop_size times, each time we 
select a single chromosome for a new population in the following way. 

STEP 1. Calculate the cumulative probability qi for each chromosome Vi, 

q0 = 0, 

i (36) 
qi ---- Z eval(Vj), i = 1 , 2 , . . . ,  pop_size. 

j= l  
STEP 2. Generate a random real number r in [0, qpop_size]. 
STEP 3. Select the ith chromosome Vi (1 _< i _< pop_size) such that  qi-1 < r < qi. 

STEP 4. Repeat steps 2 and 3 pop_size times and obtain pop_size copies of chromosomes. 

9.5. C r o s s o v e r  Operation 

We define a parameter Pc of a genetic system as the probability of crossover. This probability 
gives us the expected number Pc" pop_size of chromosomes which undergo the crossover operation. 

In order to determine the parents for crossover operation, let us do the following process 
repeatedly from i = 1 to pop_size: generating a random real number r from the interval [0, 1], 
the chromosome Vi is selected as a parent if r < Pc. 

We denote the selected parents as Vl', V~, V~,...  and divide them into the following pairs: 

(VL ( %  . . . .  

Let us illustrate the crossover operator on each pair by (Vx', V~). At first, generate a random 
number c from the open interval (0, 1), then the crossover operator on V~ and V~ will produce 
two children X and Y as follows: 

Z = c . V ~  +(1-c ) .V~  and Y = ( 1 - c ) . V ~  +c.V~. (37) 

If the feasible set is convex, this arithmetical crossover operation ensures that  both children are 
feasible if both parents are. However, in many cases, the feasible set is not necessarily convex or 
hard to verify the convexity. So we must check the feasibility of each child. If both children are 
feasible, then we replace the parents by them. If not, we keep the feasible one if it exists, and 
then redo the crossover operator by regenerating the random number c until two feasible children 
are obtained or a given number of cycles is finished. In this case, we only replace the parents by 
the feasible children. 
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9.6. Mutation Operation 

We define a parameter Pm of a genetic system as the probability of mutation. This probability 

gives us the expected number of Pm• pop_size of chromosomes which undergo the mutation 

operations. 

Similar to the process of selecting parents for crossover operation, we repeat the following 

steps from i -- 1 to pop_size: generating a random real number r from the interval [0, 1], the 

chromosome V~ is selected as a parent for mutation if r < pro. 

For each selected parent, denoted by V = (Xl, x2,..., x,~), we mutate it in the following way. 

We choose a mutation direction d in ~'~ randomly, if V + M. d is not feasible for the constraints, 

then we set M as a random number between 0 and M until it is feasible, where M is a large 

positive number defined in Section 9.2. If the above process cannot find a feasible solution in 

a predetermined number of iterations, then sets M -- 0. We replace the parent V by its child 

X = V + M . d .  
Following selection, crossover, and mutation, the new population is ready for its next eval- 

uation. The genetic algorithm will terminate after a given number of cyclic repetitions of the 
above steps. Following selection, crossover, and mutation, the new population is ready for its 
next evaluation. The genetic algorithm will terminate after a given number of cyclic repetitions 
of the above steps. 

10.  C O N C L U S I O N  

Following expected value model and chance-constrained programming, this paper developed 
the third kind of technique of stochastic programming, i.e., dependent-chance programming, 
dependent-chance multiobjective programming and dependent-chance goal programming. These 
techniques are available to the systems in which there are multiple stochastic inputs and mul- 
tiple tasks whose reliability levels are required to be optimized. We also presented a stochastic 
simulation based genetic algorithm for solving dependent-chance programming models. 

In order to understand the general concepts of dependent-chance programming correctly, we 
strongly remind the potential readers that the feasible set of dependent-chance programming is 
stochastic. However, if the stochastic feasible set reduced to be deterministic, dependent-chance 
programming usually reduced to chance constrained programming. This fact leads to that there 
is a common part between chance constrained programming and dependent-chance programming. 
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