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Abstract

In this paper we obtain second-order optimality conditions of Karush–Kuhn–Tucker type and Fritz John one for a problem
with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary
conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients
are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum x̄ we assume that the objective function
is differentiable at x̄ and second-order pseudoconvex at x̄, a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-
order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in:
Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247–264], the constraints are both differentiable and
quasiconvex at x̄. In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs
to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local
minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1

data to problems with C1 one.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Karush–Kuhn–Tucker optimality conditions are effective tool for solving various nonlinear programming prob-
lems. A lot of papers appeared after the well-known work of Kuhn and Tucker [21]. The first-order necessary
conditions are used for finding the eventual candidates for solution, the so called stationary points. The second-
order necessary conditions are useful for eliminating the non-optimal stationary points. They help us to determine
whether a given point is a minimizer (or maximizer). One finds the optimal points with the help of the sufficient
conditions. Especially important are the second-order conditions due to Levitin, Miljutin, Osmolovskii [22] and the
one due to Ben-Tal [2], obtained for twice continuously differentiable programs where the multipliers could depend
on the direction. Various generalizations of these conditions are obtained in the case of nonsmooth settings. We cite
several works concerning the second-order case where C1 programs are considered: [5–7,15,19,23], and the papers
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[8–11,14,17,27,28] where C1,1 programs are investigated. In the most papers where problems with C1 data are treated
the results are obtained in terms of approximate Hessians and their variants. Different approach to the optimality
conditions is to formulate the nonlinear programming problem as an equivalent unconstrained convex composite min-
imization one of the function g. Here g = h ◦ F is a composition of a lower semicontinuous convex function h and
a function F where F ∈ C2 or F ∈ C1,1 or F ∈ C1. The case F ∈ C2 were investigated by Ioffe [18], and Rock-
efeller [25]. Burke and Poliquain [4] considered convex composite minimization problems such that F possesses a
Hessian matrix, Jeyakumar and Yang [20]—when the function F is from the class C1,1. The necessary conditions
of Yang [29] concern with the case F ∈ C1, and its sufficient conditions for global minimum—with twice strictly
differentiable functions. First-order sufficient optimality conditions for a global minimum for quasiconvex program-
ming problems with smooth data are discussed in the works [1,13,26] and references therein. Nobody has obtained
second-order sufficient optimality conditions. In our opinion Theorem 1 is the first result of this type.

In the present paper we deal with optimality conditions of Karush–Kuhn–Tucker type and Fritz John ones for the
following problem

Minimize f0(x) subject to x ∈ X, fi(x) � 0, i = 1,2, . . . ,m, (P)

where X ⊂ Rn and the functions fi , i = 0,1, . . . ,m, are defined on X. All results given here are obtained for non-
smooth problems in terms of the second-order directional derivative. To obtain more sensitive conditions, we admit
that the Lagrange multipliers depend on the direction. We derive second-order necessary conditions for a local mini-
mum of problems with C1 (i.e. continuously differentiable) data. We show that the same conditions without constraint
qualification are sufficient for a global minimum in some problems of generalized convexity type. The objective func-
tion is second-order pseudoconvex, a notion recently introduced by the authors [12]. We derive second-order sufficient
conditions for an isolated local minimum of order two for problems with C1,1 data. Example 4 shows that the suf-
ficient conditions for an isolated local minimum of order two do not hold if the objective function is continuously
differentiable, but it does not belong to the class C1,1. With the objective function of this example we give a negative
answer to an open question from the paper of Ben-Tal, Zowe [3]. At last, new notions called parabolic local minimum
and isolated parabolic local minimum are defined. Every parabolic local minimum satisfies the necessary conditions
and the sufficient ones for a global minimum. Second-order sufficient conditions for isolated parabolic local minimum
are obtained.

The paper is organized as follows: In Section 2 we derive the sufficient conditions for a global minimum. The
necessary conditions for a local minimum are given in Section 3. In Section 4 we discuss the sufficient conditions for
an isolated minimum of order two. In Section 5 the notion parabolic local minimum is defined and it is compared with
the notion local minimum.

2. Sufficient conditions for a global minimum

We begin this section with some preliminary definitions.
Denote by R the set of reals and R = R∪{−∞}∪{+∞}. Let the function f :X → R with an open domain X ⊂ Rn

be differentiable at the point x ∈ X. Then the second-order directional derivative f ′′(x,u) of f at the point x ∈ X in
direction u ∈ Rn is defined as element of R by

f ′′(x,u) = lim
t→+0

2

t2

(
f (x + tu) − f (x) − t∇f (x)u

)
.

The function f is called second-order directionally differentiable on X if the derivative f ′′(x,u) exists for each x ∈ X

and any direction u ∈ Rn.
Recall that a function f :X → R is said to be quasiconvex at the point x ∈ X (with respect to X) [24] if the

conditions y ∈ X, f (y) � f (x), t ∈ [0,1], (1 − t)x + ty ∈ X imply f ((1 − t)x + ty) � f (x). If the set X is convex,
then the function f is called quasiconvex on X when for all x, y ∈ X and t ∈ [0, 1] it holds f ((1 − t)x + ty) �
max(f (x), f (y)).

The following result is known and it could be found, for instance, in the book [24, Theorem 9.1.4].

Lemma 1. Let X be an open set in Rn, and let f be a real function defined on X which is both differentiable and
quasiconvex at the point x ∈ X. Then the following implication holds:

y ∈ Xf (y) � f (x) �⇒ ∇f (x)(y − x) � 0.
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Let the function f : X → R with an open domain X ⊂ Rn be differentiable at the point x ∈ X. Then f is said to
be pseudoconvex at x ∈ X if y ∈ X and f (y) < f (x) imply ∇f (x)(y − x) < 0. If f is differentiable on X, then it is
called pseudoconvex on X when f is pseudoconvex at each x ∈ X.

The following definition is due to the authors [12].
Consider a function f :X → R with an open domain X, which is differentiable at x ∈ X and second-order direc-

tionally differentiable at x ∈ X in every direction y − x such that y ∈ X, f (y) < f (x), ∇f (x)(y − x) = 0. We call f

second-order pseudoconvex (for short, 2-pseudoconvex) at x ∈ X if for all y ∈ X the following implications hold:

f (y) < f (x) implies ∇f (x)(y − x) � 0;
f (y) < f (x), ∇f (x)(y − x) = 0 imply f ′′(x, y − x) < 0.

Suppose that f is differentiable on X and second-order directionally differentiable at every x ∈ X in each direction
y − x such that y ∈ X, f (y) < f (x), ∇f (x)(y − x) = 0. We call f 2-pseudoconvex on X if it is 2-pseudoconvex at
every x ∈ X. It follows from this definition that every differentiable pseudoconvex function is 2-pseudoconvex. The
converse does not hold.

In this section we suppose that fi , i = 0,1, . . . ,m, are real functions defined on the finite-dimensional Euclidean
space Rn. Consider the problem (P). Denote

S := {
x ∈ X

∣∣ fi(x) � 0, i = 1,2, . . . ,m
}
.

For every feasible point x ∈ S let I (x) be the set of active constraints

I (x) := {
i ∈ {1,2, . . . ,m} ∣∣ fi(x) = 0

}
.

A direction d is called critical at the point x ∈ S if ∇fi(x)d � 0 for all i ∈ {0} ∪ I (x).
The main result of this section is the following theorem establishing Karush–Kuhn–Tucker sufficient optimality

conditions.

Theorem 1. Let the set constraint X be open, and the functions fi , i = 0,1, . . . ,m, defined on X. Suppose that fi

(i ∈ {0} ∪ I (x̄)) are differentiable at the feasible point x̄ and second-order directionally differentiable at x̄ in every
critical direction d ∈ Rn, f0 is 2-pseudoconvex at x̄, fi (i ∈ I (x̄)) are quasiconvex at x̄. If for each critical direction
d ∈ Rn there exist Lagrange nonnegative multipliers λ1, λ2, . . . , λm with

λifi(x̄) = 0, i = 1, . . . ,m, ∇L(x̄) = 0

where L = f0(x) + ∑m
i=1 λifi(x) is the Lagrange function, and L′′(x̄, d) � 0, then x̄ is a global minimizer of (P).

Proof. Assume the contrary that there exists x ∈ S with f0(x) < f0(x̄). We prove that x − x̄ is a critical direction.
By 2-pseudoconvexity ∇f0(x̄)(x − x̄) � 0. Due to quasiconvexity, and fi(x) � f (x̄), i ∈ I (x̄), by Lemma 1, we have
∇fi(x̄)(x − x̄) � 0 for all i ∈ I (x̄) which implies that x − x̄ is critical.

Using the assumptions of the theorem we obtain that there exist nonnegative multipliers λ1, λ2, . . . , λm with
λifi(x̄) = 0, i = 1, . . . ,m, and ∇L(x̄)(x − x̄) = 0 such that L′′(x̄, x − x̄) � 0. Therefore λi = 0 when i /∈ I (x̄).
Using that x − x̄ is critical we obtain

∇L(x̄)(x − x̄) = ∇f0(x̄)(x − x̄) +
∑

i∈I (x̄)

λi ∇fi(x̄)(x − x̄) � 0.

Hence ∇f0(x̄)(x − x̄) = 0 and λi∇fi(x̄)(x − x̄) = 0 for all i ∈ I (x̄). Then ∇fi(x̄)(x − x̄) = 0 when λi > 0. It follows
from 2-pseudoconvexity that f ′′

0 (x̄, x − x̄) < 0. Therefore

L′′(x̄, x − x̄) <
∑

i∈I (x̄)

λif
′′
i (x̄, x − x̄) =

∑
i∈I (x̄), λi>0

λi lim
t→+0

fi(x̄ + t (x − x̄)) − fi(x̄)

t2/2
.

By quasiconvexity fi(x̄ + t (x − x̄)) � fi(x̄) = 0 for all i ∈ I (x̄) and for all sufficiently small t ∈ [0,1]. We conclude
from here that L′′(x̄, x − x̄) < 0 which is a contradiction. �

Theorem 1 is a generalization of the following result due to Mangasarian [24, Theorem 10.1.2] because the class
of 2-pseudoconvex functions contains the class of differentiable pseudoconvex ones.
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Theorem 2. (See [24].) Let the set constraint X be open. The functions fi (i = 0,1, . . . ,m) are defined on X and x̄

is a feasible point. Suppose that fi (i ∈ {0} ∪ I (x̄)) are differentiable at x̄, f0 is pseudoconvex at x̄, and fi (i ∈ I (x̄))

are quasiconvex at x̄. If there exist Lagrange nonnegative multipliers λ1, λ2, . . . , λm with λifi(x̄) = 0, i = 1, . . . ,m,
∇L(x̄) = 0 where L = f0(x) + ∑m

i=1 λifi(x), then x̄ is a global minimizer of (P).

Example 1. Consider the following simple problem:

Minimize f0(x) =
{

x2, x � 0,

−x2, x < 0
subject to f1(x) = −x � 0.

In this problem fi ∈ C1, i = 0,1. The objective function is 2-pseudoconvex at x̄ = 0. The constraint function is
linear, therefore quasiconvex. The Lagrange function is L(x) = f0(x) − λx. The only stationary point is x̄ = 0 with
a Lagrange multiplier λ = 0. The constraint is active at x̄ = 0. The critical directions are all directions d ∈ R such
that d � 0. It is easy to verify that L′′(0, d) = f ′′

0 (0, d) = 2d2 � 0. Then Theorem 1 implies that x̄ = 0 is a global
minimizer. This problem cannot be solved with the sufficient conditions given by Mangasarian [24, Theorem 10.1.2]
because f0 is not pseudoconvex.

Example 2. Consider the problem

Minimize f0(x) = x3 subject to f1(x) = x � 0.

The constraint function f1 = x is quasiconvex. The objective function f0 = x3 is not 2-pseudoconvex at x̄ = 0,
but it is quasiconvex and third-order pseudoconvex (see [12]). The Lagrangian is L(x,λ) = x3 + λx. The set of
critical directions is {d ∈ R | d � 0}. The unique stationary point is x̄ = 0 with a Lagrange multiplier λ = 0. Since
L′′(0,0) = 0, the second-order sufficient conditions of Theorem 1 are satisfied, but x̄ = 0 is not a global minimizer.

Let us introduce the following notion.

Definition 1. Let X ⊂ Rn be an open set and the function f :X → R be differentiable at x ∈ X and second-order
directionally differentiable at x ∈ X in every direction y − x such that y ∈ X, f (y) < f (x), ∇f (x)(y − x) = 0. We
call f strictly 2-pseudoconvex at x ∈ X if for all y ∈ X, y = x, the following implications hold:

f (y) � f (x) implies ∇f (x)(y − x) � 0;
f (y) � f (x), ∇f (x)(y − x) = 0 imply f ′′(x, y − x) < 0.

Each strictly 2-pseudoconvex function is 2-pseudoconvex.

Theorem 3. If additionally in the hypothesis of Theorem 1 we suppose that f0 is strictly 2-pseudoconvex at x̄, then x̄

is a strict global minimizer.

Proof. We can prove this theorem using the arguments of Theorem 1. �
Theorem 4. Let X ⊆ Rn be open, the functions fi (i = 0,1, . . . ,m) be defined on X, and x̄ a feasible point. Suppose
that all functions fi (i ∈ {0} ∪ I (x̄)) are differentiable at x̄, second-order directionally differentiable at x̄ in each
critical direction d ∈ Rn, and strictly 2-pseudoconvex at x̄. If for each critical direction d there exist nonnegative
multipliers λ0, λ1, . . . , λm with λ = (λ0, λ1, . . . , λm) = 0 and

λifi(x̄) = 0, i = 1, . . . ,m, ∇L(x̄) = 0, L′′(x̄, d) � 0,

where L = ∑m
i=0 λifi(x), then x̄ is a strict global minimizer of (P).

Proof. Assume the contrary that there exists x ∈ S, x = x̄ with f0(x) � f0(x̄). We prove this theorem following the
arguments of Theorem 1. By strict 2-pseudoconvexity we obtain

0 = ∇L(x̄)(x − x̄) =
∑

λi∇fi(x̄)(x − x̄) � 0.
i∈{0}∪I (x̄)
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Therefore λi∇fi(x̄)(x − x̄) = 0 for all i ∈ {0} ∪ I (x̄). For all i ∈ {0} ∪ I (x̄) with λi > 0 we have ∇fi(x̄)(x − x̄) = 0.
Again by strict 2-pseudoconvexity the following holds: f ′′

i (x̄, x − x̄) < 0. We conclude from λ = 0 that
L′′(x̄, x − x̄) < 0 which is a contradiction. �
3. Necessary conditions

In this section we derive necessary optimality conditions for the problem (P) with continuously differentiable data.
For a fixed vectors x̄ ∈ Rn and d ∈ Rn, let

I0(x̄, d) := {
i ∈ {0} ∪ I (x̄)

∣∣ ∇fi(x̄)d = 0
}
.

Theorem 5 (Second-order primal necessary conditions). Let X be an open set in the space Rn, the functions fi

(i = 0,1, . . . ,m) be defined on X. Suppose that x̄ is a local minimizer of the problem (P), the functions fi (i /∈ I (x̄))

are continuous at x̄, the functions fi (i ∈ {0}∪I (x̄)) are continuously differentiable, and the functions fi (i ∈ I0(x̄, d))

are second-order directionally differentiable at x̄ in any critical direction d ∈ Rn. Then for every critical direction
d ∈ Rn, it follows that there is no z ∈ Rn which solves the system

∇fi(x̄)z + f ′′
i (x̄, d) < 0, i ∈ I0(x̄, d). (1)

Proof. Let d be an arbitrary fixed critical direction. Obviously the case I0(x̄, d) = ∅ is impossible since x̄ is a mini-
mum. Suppose the contrary that there exists a critical direction d such that the system (1) has a solution z ∈ Rn. Let
i ∈ {0} ∪ I (x̄) be arbitrary fixed. Consider the function of one variable ϕi(t) = fi(x̄ + td + 0.5t2z). Since X is open
and x̄ is feasible, there exists δ > 0 such that ϕi is defined for 0 � t < δ. We have

ϕ′
i (t) = ∇fi

(
x̄ + td + 0.5t2z

)
(d + tz).

Therefore ϕ′
i (0) = ∇fi(x̄)d . Consider the differential quotient

2t−2(ϕi(t) − ϕi(0) − tϕ′
i (0)

) = 2t−2(fi

(
x̄ + td + 0.5t2z

) − fi(x̄) − t∇fi(x̄)d
)
.

According to the mean-value theorem there exists θi ∈ (0,1) such that

fi

(
x̄ + td + 0.5t2z

) = fi(x̄ + td) + ∇fi

(
x̄ + td + 0.5t2θiz

)(
0.5t2z

)
.

By fi ∈ C1, we obtain that there exists the second-order directional derivative ϕ′′
i (0,1) and

∇fi(x̄)z + f ′′
i (x̄, d) = lim

t→+0
∇fi

(
x̄ + td + 0.5t2θiz

)
z + lim

t→+0
2t−2(fi(x̄ + td) − fi(x̄) − t∇fi(x̄)d

)
= ϕ′′

i (0,1).

Since z is a solution of the system (1) with a direction d we conclude that for every i ∈ I0(x̄, d) there exists εi > 0
such that ϕi(t) − ϕi(0) − tϕ′

i (0) < 0 for all t ∈ (0, εi) that is

fi

(
x̄ + td + 0.5t2z

) − fi(x̄) < 0 for all t ∈ (0, εi). (2)

Consider the following cases:

(1) For every i ∈ {1,2, . . . ,m} \ I (x̄) we have fi(x̄) < 0. Hence, by continuity, there exists εi > 0 such that
fi(x̄ + td + 0.5t2z) < 0 for all t ∈ [0, εi).

(2) For every i ∈ I (x̄) \ I0(x̄, d) we have ∇fi(x̄)d = ϕ′
i (0) < 0. Therefore there exists εi > 0 such that ϕi(t) < ϕi(0)

for all t ∈ (0, εi). Hence we have fi(x̄ + td + 0.5t2z) < fi(x̄) = 0 for all t ∈ (0, εi).
(3) For all i ∈ I0(x̄, d)\{0}, by ∇fi(x̄)d = 0, it follows from (2) that there exist εi > 0 such that fi(x̄+ td +0.5t2z) <

fi(x̄) = 0 for all t ∈ (0, εi).
(4) If 0 /∈ I0(x̄, d), then ∇f0(x̄)d < 0 that is ϕ′

0(0) < 0 and therefore for some ε0 > 0 it holds f0(x̄ + td + 0.5t2z) <

f0(x̄) for all t ∈ (0, ε0).
(5) If 0 ∈ I0(x̄, d), then ∇f0(x̄)d = 0 and according to (2) there exists ε0 > 0 such that f0(x̄ + td + 0.5t2z) < f0(x̄)

for all t ∈ (0, ε0).

It is seen that x̄ is not a local minimizer contradicting our hypothesis. �
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Consider the problem (P). Let x̄ ∈ S. Recall that the Bouligand tangent cone of S at x̄ is defined as follows:

T (S, x̄) :=
{
d ∈ Rn

∣∣∣ ∃{
xk

} ⊂ S, lim
k→+∞xk = x̄, ∃{

tk
} ⊂ (0,+∞): d = lim

k→+∞ tk
(
xk − x̄

)}
.

The closed convex hull of T (S, x̄) denoted by P(S, x̄) := cl(conv(T (S, x̄))) is called the pseudotangent cone of S

at x̄ [16]. Consider the cone

L(x̄) = {
d ∈ Rn

∣∣ ∇fi(x̄)d � 0, i ∈ I (x̄)
}
.

Theorem 6 (Second-order dual necessary conditions). Suppose that all hypotheses of Theorem 5 hold. Then corre-
sponding to any critical direction d there exist nonnegative multipliers λ0, λ1, . . . , λm, with

λifi(x̄) = 0, i = 1,2, . . . ,m, ∇L(x̄) = 0,

λi∇fi(x̄)d = 0, i ∈ {0} ∪ I (x̄),

L′′(x̄, d) =
∑

i∈{0}∪I (x̄)

λif
′′
i (x̄, d) � 0. (3)

Assume further that the Guinard constraint qualification L(x̄) ⊆ P(S, x̄) holds [16]. Then we could suppose that
λ0 = 1.

Proof. Consider the matrix A whose rows are {∇fi(x̄) | i ∈ I0(x̄, d)} and the vector b whose components are
{−f ′′

i (x̄, d) | i ∈ I0(x̄, d)}.
With these notations Theorem 5 claims that the linear system Az < b has no solution. This is equivalent to say that

the linear program max{y | Az + �y � b} has optimal value ȳ � 0. Here �y is the vector with all components equal to y.
Thus, the dual program

min

{
bT λ

∣∣∣ AT λ = 0,
∑

i∈I0(x̄,d)

λi = 1, λi � 0

}
,

where λ is a vector with components λi such that i ∈ I0(x̄, d), has a nonpositive optimal value. Therefore the system

AT λ = 0, bT λ � 0, λ � 0, λ = 0 (4)

has a solution λ. If we define λi = 0 for i ∈ ({0} ∪ I (x̄)) \ I0(x̄, d) or i /∈ {0} ∪ I (x̄), then we see from (4) that
λ0, λ1, . . . , λm satisfy the claim of the theorem. �

We see that the Lagrange multipliers in the second-order necessary conditions depend on the direction. In the
following example we compare our result with Theorem 3.1 due to Jeyakumar, Wang [19] where C1 functions are
used and the multipliers do not depend on the direction.

The following definition is introduced in [19]. Consider the space M(Rn,Rn) of all square matrices n × n. Let
f : Rn → Rn be continuously differentiable function and v ∈ Rn. Consider the upper Dini-directional derivative of
the function v∇f

(v∇f )
(1)
+ (x,u) := lim sup

t→0

(v∇f )(x + tu) − (v∇f )(x)

t
.

It is said that the function f admits approximate Hessian ∂2∗f (x) at x ∈ Rn if there exists a closed and bounded set
∂2∗f (x) ⊆ M(Rn,Rn) and for each v ∈ Rn it holds

(v∇f )
(1)
+ (x,u) � max

M∈∂2∗f (x)
〈Mv,u〉 ∀u ∈ Rn.

The following problem with inequality and equality constraints is considered in [19]:

Minimize f0(x) subject to fi(x) � 0, i = 1,2, . . . ,m, hj (x) = 0, j = 1,2, . . . , q, (P1)
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where fi , i = 0,1, . . . ,m, and hj , j = 1,2, . . . , q are C1-functions on Rn. The Lagrangian function is given by

L = f0(x) +
m∑

i=1

λifi(x) +
q∑

j=1

μjhj (x).

Let C := {x ∈ Rn | fi(x) � 0, i = 1,2, . . . ,m, hj (x) = 0, j = 1,2, . . . , q} be the feasible set and let

C(λ) :=
{

x ∈ C

∣∣∣ m∑
i=1

λifi(x) = 0

}
. (5)

The cone of feasible directions to the set C at x ∈ C is defined as follows

F(C,x) := {
u ∈ Rn

∣∣ ∃δ > 0, ∀α, 0 � α � δ: x + αu ∈ C
}
.

Denote, as usually, by Rm+ the positive orthant in the space Rm.
Then the following theorem holds:

Theorem 7. (See [19].) Assume that the problem (P1) attains a local minimum at x̄. Suppose that for each λ ∈ Rm+ and
μ ∈ Rq , L(·, λ,μ) admits an approximate Hessian ∂2∗L(x̄, λ,μ) at x̄. If a first-order constraint qualification holds
at x̄, then there exist λ∗

i � 0, λ∗
i fi(x̄) = 0, for i = 1,2, . . . ,m, μ∗ ∈ Rq , ∇L(x̄, λ∗,μ∗) = 0 and(∀u ∈ F

(
C

(
λ∗), x̄)) (∃M ∈ ∂2∗L

(
x̄, λ∗,μ∗)) 〈Mu,u〉 � 0.

Example 3. Consider the problem

Minimize f0 = −x2
1 − x2

2 + x1 − x2 subject to f1 = √
1 + 2x2 − x1 − 1 � 0, f2 = x2

1 − x2 � 0.

Here f0, f1, f2 are C1 functions around x̄ = (0,0). The point x̄ = (0,0) is not optimal. If ε > 0 is arbitrary sufficiently
small positive number, then x(ε) = (ε, ε) is feasible and f0(ε, ε) < f0(0,0). x̄ is a stationary point with λ = (λ1, λ2) =
(1,0). The critical directions have the type d = (u,u) where u � 0. Since dT (∇2f0 + λ1∇2f1 + λ2∇2f2)d =
−5u2 < 0 when u = 0, then by Theorem 6 x̄ is not optimal.

On the other hand F(C(1,0), x̄) = (0,0). Therefore Theorem 7 cannot reject x̄ as non-optimal because
∂2∗L(x̄, λ) = {∇2L(x̄, λ)} and (0,0)T ∇2L(x̄, λ)(0,0) = 0.

In the next remark we compare Theorem 6 with Theorem 3.2 given by Hiriart-Urruty, Strodiot, Nguyen [17] where
C1,1 functions are used and the multipliers do not depend on the direction. The following definition is introduced in
this paper. Let f ∈ C1,1(Rn). The generalized Hessian matrix of f at x̄, denoted by ∂2f (x̄), is the set of matrices
defined as the convex hull of the set{

M
∣∣ ∃xi → x̄ with f twice differentiable at xi and ∇2f (xi) → M

}
.

The set ∂2f (x̄) reduces to {∇2f (x̄)} whenever ∇f is strictly differentiable at x̄.
Consider the set C(λ) defined by Eq. (5) and the Bouligand tangent cone T (C(λ), x̄) to C(λ). Then the following

theorem holds.

Theorem 8. (See [17].) Assume that the problem (P1) with C1,1 data attains a local minimum at x̄. If a first-order
constraint qualification holds at x̄, then for each multiplier (λ,μ) ∈ Rm+ × Rq and for each d ∈ T (C(λ), x̄), there
exists a matrix M ∈ ∂2

xxL(x̄, λ,μ) such that 〈Md,d〉 � 0.

Remark 1. The difference between Theorems 6 and 8 is not only in the used generalized derivatives. In Theorem 8
is used the set C(λ), whereas in Theorem 6 a critical direction d . It is seen from the comments after Remark 3.3 in
Ref. [17] that the use of the critical directions is more tractable than the set C(λ). Moreover in Ref. [2] is given an
example of a twice-continuously differentiable problem where there are no fixed multipliers satisfying the first-order
conditions and the second-order ones.
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4. Sufficient conditions for an isolated local minimum of order two

In this section we derive sufficient conditions for an isolated local minimum using the following lemmas.

Lemma 2 (Second-order Taylor expansion). Let f : X → R be a function with an open convex domain X which is
differentiable on X. Suppose that f is second-order directionally differentiable on X. Then, for every x, y ∈ X there
exists ξ ∈ [x, y) with

1

2
f ′′(ξ, y − x) � f (y) − f (x) − ∇f (x)(y − x). (6)

Proof. For every fixed x, y ∈ X consider the function of one variable

ϕ(t) = f
(
x + t (y − x)

) − f (x) − t∇f (x)(y − x) + 1

2
αt2

where α is a constant. By convexity of X it is defined on [0,1] and ϕ(0) = 0. We choose α such that ϕ(1) = 0.
Therefore α = 2(−f (y) + f (x) + ∇f (x)(y − x)). By the Weierstrass theorem ϕ attains its global maximal value
on [0,1] at some point θ . If max{ϕ(t) | t ∈ [0,1]} > 0, then 0 < θ < 1 and therefore ϕ′(θ) = 0, ϕ′′(θ,1) � 0. If
max{ϕ(t) | t ∈ [0,1]} = 0, then without loss of generality we assume that θ = 0. We calculate from the definition of ϕ

that ϕ′(0) = 0. By maximality we obtain that ϕ′′(θ,1) � 0. In both cases ϕ′′(θ,1) � 0 which implies that f ′′(ξ, y −
x) + α � 0 where ξ = x + θ(y − x). Hence inequality (6) holds. �
Lemma 3. (See Ginchev, Guerraggio, Rocca [10, Lemma 1].) Let ϕ : Rn → R be a C1,1 function which is second-
order directionally differentiable. Assume that ∇ϕ is Lipschitz with a constant L on x̄ + r clB where x̄ ∈ Rn, r > 0
and B := {x ∈ Rn | ‖x‖ < 1} is the unit open ball. Then for u,v ∈ Rn and 0 < t < r it holds∣∣∣∣ 2

t2

(
ϕ(x̄ + tv) − ϕ(x̄) − t∇ϕ(x̄)v

) − 2

t2

(
ϕ(x̄ + tu) − ϕ(x̄) − t∇ϕ(x̄)u

)∣∣∣∣ � L
(‖u‖ + ‖v‖)‖v − u‖

and |ϕ′′(x̄, u)| � 2L‖u‖2.

The feasible point x̄ is called an isolated local minimizer of second-order of the problem (P) if there exist a neigh-
bourhood N of x̄ and a constant C > 0 with f0(x) � f0(x̄) + C‖x − x̄‖2 for all x ∈ N ∩ S where

S := {
x ∈ X

∣∣ fi(x) � 0, i = 1,2, . . . ,m
}
.

Theorem 9 (Second-order dual sufficient conditions). Suppose that X is an open convex set, and x̄ is a feasible point.
Let fi (i ∈ {0} ∪ I (x̄)) belong to the class C1,1(X), and they are second-order directionally differentiable. If for every
nonzero critical direction d there exist Lagrange multipliers λi � 0, i = 0,1,2, . . . ,m, with λ = (λ0, λ1, . . . , λm) = 0
such that

m∑
i=0

λi∇fi(x̄) = 0, (7)

λifi(x̄) = 0, i = 1,2, . . . ,m, (8)

L′′(x̄, d) > 0, (9)

where L is the Lagrange function, then x̄ is an isolated local minimizer of second-order.

Proof. Assume that x̄ is not an isolated minimizer of second-order. Therefore, for every sequence {εk}∞k=1 of positive
numbers converging to zero, there exists a sequence {xk} with

‖xk − x̄‖ � εk, f0(xk) < f0(x̄) + εk‖xk − x̄‖2,

fi(xk) � fi(x̄), i ∈ I (x̄).

Without loss of generality xk = x̄ + tkdk where ‖dk‖ = 1. Passing to a subsequence, we may suppose that dk → d̄

where ‖d̄‖ = 1.
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We prove that d̄ is critical. Due to Lemma 2 there exists θ0,k ∈ [0,1) such that

f0(xk) − f0(x̄) � ∇f0(x̄)(xk − x̄) + 1

2
f ′′

0 (ξ0,k, xk − x̄)

where ξ0,k = x̄ + θ0,ktkdk . Hence

εkt
2
k � tk∇f0(x̄)dk + 1

2
t2
k f ′′

0 (ξ0,k, dk). (10)

Since f0 ∈ C1,1 there exist a Lipschitz constant L and r > 0 such that ∇f0 satisfies the Lipschitz condition on
x̄ + r clB . Let k be a sufficiently large integer such that ξ0,k belongs to x̄ + rB . There exists rk > 0 with ξ0,k + rkB ⊂
x̄ + rB . Therefore, by Lemma 3, |f ′′

0 (ξ0,k, dk)| � 2L. By canceling tk in (10) and taking the limits when k → ∞ we
obtain ∇f0(x̄)d̄ � 0.

In a similar way we prove that ∇fi(x̄)d̄ � 0 for i ∈ I (x̄). Thus d̄ is critical.
For i ∈ {0} ∪ I (x̄) consider the differential quotients:

yi
k := 2

t2
k

(
fi(x̄ + tkdk) − fi(x̄) − tk∇fi(x̄)dk

)
,

ȳi
k := 2

t2
k

(
fi(x̄ + tkd̄) − fi(x̄) − tk∇fi(x̄)d̄

)
.

Due to Lemma 3 the sequence {ȳi
k} is bounded and passing to a subsequence without loss of generality we may assume

that it is convergent, in other words ȳi
k → ȳi . On the other hand we have∥∥yi

k − ȳi
∥∥ �

∥∥yi
k − ȳi

k

∥∥ + ∥∥ȳi
k − ȳi

∥∥.

It follows from Lemma 3 that ‖yi
k − ȳi

k‖ � 2L‖dk − d̄‖. Therefore yi
k → ȳi , since dk → d̄ .

By inequalities (9), (7) and the choice of the sequence {xk} we get

0 < L′′(x̄, d̄) = lim
k→∞

∑
i∈{0}∪I (x̄)

λi ȳ
i
k =

∑
i∈{0}∪I (x̄)

λi ȳ
i = lim

k→∞
∑

i∈{0}∪I (x̄)

λiy
i
k

= lim
k→∞

( ∑
i∈{0}∪I (x̄)

λi

2

t2
k

(
fi(x̄ + tkdk) − fi(x̄)

) −
∑

i∈{0}∪I (x̄)

λi

2

tk
∇fi(x̄)dk

)
� λ0 lim

k→∞
2

t2
k

εkt
2
k = 0

which is a contradiction. �
Theorem 10 (Second-order primal sufficient conditions). Let X ⊆ Rn be an open convex set, and x̄ be a feasible point.
Suppose that fi (i ∈ {0} ∪ I (x̄)) belong to the class C1,1(X), and they are second-order directionally differentiable. If
for every critical direction d ∈ Rn \ {0} there is no z ∈ Rn with

∇fi(x̄)z + f ′′
i (x̄, d) � 0 for all i ∈ I0(x̄, d), (11)

then x̄ is an isolated local minimizer of order two.

Proof. The proof follows the arguments of Theorem 6. Let d = 0 be arbitrary critical direction. I0(x̄, d) = ∅, because
by definition every z ∈ Rn is a solution of a system with unknown z which does not contain any inequality. Using the
same notation we obtain from the inconsistency of the system (11) that the linear system Az � b has no solutions.
Therefore the dual of the program max{y | Az + �y � b} has a negative optimal value. We choose λi = 0 for i ∈
({0}∪ I (x̄))\ I0(x̄, d) or i /∈ I (x̄). Therefore relations (7)–(9) hold, and the claim is a consequence of Theorem 9. �

The following example shows that Theorem 9 is not true for functions being continuously differentiable only, but
not C1,1.

Example 4. Consider the problem

Minimize f0 = (
max

(
0, x2 − 2 3

√
x4

))3/2 + (
max

(
0,

3
√

x4 − x2
))3/2 subject to f1 = −x1 � 0.
1 1
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Of course, the point x̄ = (0,0) is not an isolated minimizer of order two because f0(x) = 0 for all x = (x1, x2) between
the curves x2 = x

4/3
1 and x2 = 2x

4/3
1 . Even it is not a strict local minimizer. The objective function f0 belongs to the

class C1(R2), but f0 /∈ C1,1(R2). For example, ∇f0 do not satisfy the Lipschitz condition in a neighbourhood of
x̄ = (0,0). If we take x′

k = (0, k−1) and x′′
k = (k−3/4, k−1), then

lim
k→+∞

∥∥∇f0
(
x′′
k

) − ∇f0
(
x′
k

)∥∥/
∥∥x′′

k − x′
k

∥∥ = +∞
f0 is second-order directionally differentiable. Simple calculations show that ∇f0(x̄) = (0,0), f ′′

0 (x̄, (d1, d2)) = +∞
if d2 = 0, and f ′′

0 (x̄, (d1, d2)) = 2d2
1 if d2 = 0. On the other hand x̄ is stationary point with a Lagrange multiplier

λ1 = 0 where L = f0 − λ1x1. The set of critical directions is {(d1, d2) | d1 � 0}. L′′(x̄, d) > 0 for each d = (d1, d2) =
(0,0) and so the sufficient conditions of Theorem 9 are satisfied.

The following claim is due to Ben-Tal and Zowe [3, Theorem 3.2].

Proposition 1. Suppose that f ∈ C1,1(Rn), ∇f (x̄) = 0, and f ′′(x̄, d) > 0 for all d ∈ Rn \ {0}. Then x̄ is a strict local
minimizer of the function f .

The following open question remained from [3]. Can we replace the condition f ∈ C1,1(Rn) by f ∈ C1(Rn)? The
objective function of Example 4 gives a negative answer, because the point x̄ = (0,0) is not a strict local minimizer,
but it satisfies all conditions of Proposition 1.

5. Optimality conditions for parabolic local minimum

We received the necessary conditions taking account the variations of the values of the objective function and the
constraints over parabolas only. In relevance to this fact we introduce the following definition.

Definition 2. We call a feasible point x̄ parabolic local minimum (for short, pl-min) of the problem (P) if for every d ,
z ∈ Rn there exists ε = ε(d, z) > 0 such that

f0
(
x̄ + td + 0.5t2z

)
� f0(x̄) for all t ∈ [0, ε)

provided that x̄ + td + 0.5t2z is a feasible point.

Obviously, each local minimum is a pl-min. Simple examples show that the converse is not true.

Example 5. Consider the function

f0(x) =
{

x2
1 + x2

2 , x2 = x3
1 ,

−(x2
1 + x2

2), x2 = x3
1 .

The point x̄ = (0,0) is a pl-minimizer, but it is not a local one.

The introduction of the notion pl-min enlarges the class of functions which have minimizers.
Obviously the necessary conditions of Theorems 5, 6 are necessary for pl-min. Since each global minimizer is a

local one, then the sufficient conditions of Theorem 1 are sufficient for pl-min.

Definition 3. We call a feasible point x̄ isolated parabolic local minimizer of second-order of the problem (P) if for
every d, z ∈ Rn there exist positive reals A = A(d, z) and ε = ε(d, z) such that

f0
(
x̄ + td + 0.5t2z

)
� f0(x̄) + A

∥∥td + 0.5t2z
∥∥2 for all t ∈ [0, ε)

provided that x̄ + td + 0.5t2z is a feasible point.

In the following sufficient condition we suppose that the constraints are continuously differentiable, but with not
necessarily locally Lipschitz gradients.
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Theorem 11. Let X be an open set, and x̄ be a feasible point. Suppose that fi (i ∈ {0} ∪ I (x̄)) belong to the class
C1(X), and they are second-order directionally differentiable at x̄ in every direction d . If for every critical direction
d ∈ Rn there is no z ∈ Rn such that (d, z) = (0,0) and

∇fi(x̄)z + f ′′
i (x̄, d) � 0 for all i ∈ I0(x̄, d), (12)

then x̄ is an isolated parabolic local minimizer of second-order.

Proof. Assume the contrary that there exist directions d and z such that for every sequence of positive numbers
{εk}∞k=1, converging to 0, there is a sequence of positive numbers {tk}∞k=1, also converging to 0, with

f0
(
x̄ + tkd + 0.5t2

k z
)
< f0(x̄) + εkt

2
k ‖d + 0.5tkz‖2, (13)

fi

(
x̄ + tkd + 0.5t2

k z
)
� 0 for all i = 0,1,2, . . . ,m. (14)

It is clear that (d, z) = (0,0). We prove that d is a critical direction. According to the mean-value theorem there exists
τk ∈ (0,1) such that

f0
(
x̄ + tkd + 0.5t2

k z
) = f0(x̄) + ∇f0

(
x̄ + tkτkd + 0.5t2

k τkz
)(

tkd + 0.5t2
k z

)
.

It follows from (13) by canceling tk and taking the limits when k → +∞ that ∇f0(x̄)d � 0. We conclude from (14)
using similar arguments that ∇fi(x̄)d � 0 for all i ∈ I (x̄).

I0(x̄, d) = ∅ according to the arguments of Theorem 10. Let i ∈ I0(x̄, d) be arbitrary fixed. Applying the mean-
value theorem we obtain that there exists θk

i ∈ (0,1) with

fi

(
x̄ + tkd + 0.5t2

k z
) = fi(x̄ + tkd) + ∇fi

(
x̄ + tkd + 0.5t2

k θk
i z

)(
0.5t2

k z
)
.

Then it follows from (13), (14) that ∇fi(x̄)z + f ′′
i (x̄, d) � 0 which contradicts the assumption that the system (12)

has no solutions. �
Theorem 12. Let X be an open set, and x̄ be a feasible point. Suppose that fi (i ∈ {0} ∪ I (x̄)) belong to the class
C1(X), and they are second-order directionally differentiable at x̄ in every direction d . If for every critical direction
d ∈ Rn \ {0} there exists λ = (λ0, λ1, . . . , λm), λi � 0, i = 0,1, . . . ,m, λ = 0 such that conditions (7)–(9) and the
following one hold

λi∇fi(x̄)d = 0, i ∈ {0} ∪ I (x̄), (15)

then x̄ is an isolated pl-minimizer of second-order.

Proof. Using the notations from the proof of Theorem 6, we conclude from the assumptions of the theorem that the
system

AT λ = 0, bT λ < 0, λ � 0, λ = 0,

where λ has components λi , i ∈ I0(x̄, d), has a solution. It follows from the duality arguments of Theorem 6 that the
system Az � b has no solutions. Thus the claim is a consequence of Theorem 11. �
Remark 2. Condition (15) is not among the hypotheses of Theorem 9, but it appears in Theorem 6. Really, it takes
implicit part in Theorem 10.

6. Comparison remarks

There is no second-order sufficient conditions for a global minimum of Karush–Kuhn–Tucker type in the literature
without gap between the necessary conditions and the sufficient ones. Theorem 1 is the first result of this type. The
notion second-order strictly pseudoconvex function is introduced and it is applied in the optimality conditions. In our
opinion nobody has obtained necessary and sufficient optimality conditions of the considered type in terms of the
second-order directional derivative which is used in this paper. In our opinion the second-order Taylor expansion is
new. Nobody has shown that the sufficient conditions for an isolated minimum of order two do not hold when the
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problem contains C1 data. Example 4 is the first such result and it gives a negative answer to an open question from
[3, Theorem 3.2]. The notion parabolic local minimum is new. This notion helps us to extend the sufficient conditions
for an isolated local minimum from problems with C1,1 data to C1 problems.

The nonlinear programming problem could be reformulated as a convex composite minimization problem. We
compare our article with the ones concerning this approach [4,18,20,25,29]. Primal conditions are not obtained in
these papers. The results there are applicable for problems with C2 or C1,1 data, or second-order differentiable ones.
Only Yang consider in his necessary conditions the C1 case, but sufficient conditions for a local minima are not
established in this work. All our results are based on too different approach.
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