
JOURNAL OF APPROXIMATION THEORY 5, 41-65 (lg;?) 

YUDELL L. EUKE 

It is shown that some well-known Padi: approximations for a parficuiar form 
of the Gaussian hypergeometric function and two of its confluent forms give 
upper and lower bounds for these f~mctions under suitable restrictions on rhe 
parameters and variabIe. With the aid of the beta and Laplace transforms, 
two-sided inequalities are derived for the generalized hypergeometrjc function 
nf,9 p = (I or p = q + 1, and for a particular form of Meijer’s 6-function, 
Several examples are developed. These include upper and lower bounds for 
certain e~~rnenta~ functions, complete elliptic integrals, the incomplete gamma 
function, modified Bessel functions, and parabolic cylinder functions. 

1. BASK EQUALiTXES 

In this section, we give certain definitions and formulas needed to derive 
our main results. The notation used in [I] is followed throughout. We also 
make rather free use of results given in these volumes. 

The generalized hypergeometric series is formally defined as 

where 

It is convenient to employ a shorthand notation and write (1.1) in the km 
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In general, I’(ol, + k) is interpreted as 

fi qaj + w; 
j=l 

(a, + A) as 5 (af + h); etc. 
j=l 

An empty term is treated as unity. The cyts and pj’s are called numerator 
and denominator parameters, respectively, and z is called the variable. 
Where no confusion can ensue, we simply refer to (1.3) as a =Fp . 

We suppose throughout the entire paper that no denominator parameter 
is a negative integer or zero. The series (1.1) converges for all z if p < q. 
It diverges for all z, z $: 0, if p > q + 1 unless one of the numerator param- 
eters is a negative integer in which event (1 .l) is a polynomial. If p = q + 1, 
(1.1) is absolutely convergent for 1 z I < 1. Let 

PI-1 

7) = 2 OIj - i fJj. 
j=l j=l 

(1.4) 

Then the series (1.1) with p = q + 1 is 

absolutely convergent for 1 z I = 1 if Re(q) < 0, 

conditionally convergent for 1 z / = 1, z f 1, if 0 < Re(v) < 1, (1.5) 

divergent for 1 z 1 = 1 if Re($ >, 1. 

If p = q + 1, the series (1.1) can be analytically continued into the cut 
plane 1 arg(1 - z)\ < rr, and in this case we use the same notation for the 
analytically continued function as for the series. 

We shall need the following integral representations [2]: 

ZFl(% Pi 2-G -2) = W s 1 p-1(1 -t)r--a-l 

F(Y - 4 r(a) (1 + Zf)B dtP 0 

Re(y) > Re(ol) > 0, I art&l + z)i -=c 3 
(1.6) 

Re(E) > Re(6) > 0, p < q; or p=q+l and 1 arg(1 + z)] < rr. 

(1.7) 
Equality (1.6) is a special case of (1.7) since 

lFo(o; -z) = (1 + z)-“, I ardl + @I -c 7~. (l-8) 
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Also (1.7) gives a well-known integral representation for & sinre 
OFO(--z) = e-Z. Formulas like (1.6) and (1.7) are known as beta transforms. 
We also need the Laplace transforms 

where G::,“(z), a generalization of DFq(z), is Meijer’s G-function; see [3]. 
E.quations (1.9) and (1 .lO) hold also under some other conditions. A com- 
plete description of conditions is given in the reference cited. 

For the present study, we record the expansion formula 

where the asterisk (*) sign means that the terms involving & - bh are to 
be omitted when h = j. We also have the asymptotic expansion 

- r(l + b,,, - a,) zal-lD+lFp-l (‘I+ bp’l - a1 1 -l,/z‘j, 
-I- a, - aI* 

the asterisk (“) sign means that the term involving E + ak - a, is to be 
omitted when 12 = 1. A useful result for the G-function is 

(I.13) 

The special case p = 1 of (1.11) gives the confluent hypergeomecric 
function 

$(a; c; z) = [zT(a) T(a + 1 - c)]-’ Gill, iz / a, 1 + a _ ,) (1.14) 

r(1 - c) ,t, + 23-3 M;, 
=r(l+a--C) ’ T(a) ” 

w1 = ,F,(a; c; z), iv2 = z~-~,F,(~ + a - c, 2 - co z 3 1~ (1.15) 
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For zFl and 1F1, the following Kummer’s transformation formulas are 
useful for analytic continuation and extension of inequalities for these 
functions. 

aF1(% p; y; 2) = (1 - z>y--fl,F,(y - a, y - p; y; z), (1.16) 

ZFl(% P; 7; 4 = (1 - WZFl (a, y - p; y; - &), (1.17) 

,I;;(a; c; z) = ezlFl(c - a; c; -z). (1.18) 

Also 

$Qz; c; 2) = zl-c #<l + a - c; 2 - c; z), (1.19) 

which follows from (1.13). 
The building blocks for inequalities for the *F4 and related functions are 

certain PadC approximations and inequalities for the Gaussian hyper- 
geometric function $, , one of whose numerator parameters is unity, and 
certain Padt approximations and inequalities for two forms of the incomplete 
gamma function. 

We conclude this section with the definition of the PadC matrix table, 
and then, in the next section, we present the approximations and inequalities 
noted above. 

Let 

E(z) = f a#, IZI (f-3 
k=O 

(1.20) 

be approximated by 

where A.(z) and B,(z) are polynomials in z of degree p and q, respectively. 
If 

Mz) E(z) - A,(z) = ZP+a+lHD,a(z), ffmz@) # 0, (1.22) 

then E,,,(z) is that Pade approximation of E(z) which occupies the position 
(p, q) of the PadC matrix table. If p = q, we have a main diagonal Pad& 
approximation. The definition carries through in a formal sense if the series 
in (1.20) is divergent, but asymptotic to E(z) in some sector of the complex 
plane. 
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II. PADS APPROXIMATIONS AND ~EQUALITIES FOR 
x PARTICULAR GAUSSIAN HYPERGECPMETRIC FUNCTION 

THEOREM 1, Let 

For proof and many other details concerning (2.1j42.5) including effective 
asymptotic estimates of R,(z), see [4]. On p. f 70 of this reference, the function 
treated is the above E(z) with z replaced by l/z. 

We now establish the folIowing 

z > 0, o+1--a>& n-t-p+I---a>o. 

T-ken 

sgn R,(z) = sgn I 
(--OPylP f 1 - oh i 

Cp -I- 1 - 4, I 
(2.6) 
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Proof. Under the stated hypotheses, f,(z) is a series of positive terms 
and so is positive. The integral portion of F,(z) is also positive and (2.6) 
follows at once. 

The following result is an immediate consequence of the lemma and is 
of prime importance to our studies. 

THEOREMZ. ~fZ>O,p~O,o>O,p+1-->00,then 

-w, 1) < -w < &7z(z, (0, rn, n > 0. (2.7) 

Further, if z > 0, p >, 0, cr > 0, p + 1 - (5 < 0, and p + 1 - u is not a 
negative integer or zero, then (2.7) holds provided (p + 1 - CT)~ is positive, 
r = n or r = m; but if (p + 1 - o)? is negative, then (2.7) holds with reversed 
inequality signs. 

If z = 0 or if cr = 0, the inequalities become equalities. In general, 
throughout our work, inequalities for .F,(a,; pa; z) become equalities if 
z = 0 or if any numerator parameter is zero. In the sequel, we usually omit 
such statements. 

Further inequalities for other choices of the parameters p, cr, and a can 
be readily deduced from (2.4) and (2.6). We omit details. Additional 
inequalities can be obtained, when either (5 or p or both are less than -1 
but neither is a negative integer, from the general result that, if r is a positive 
integer or zero, 

J, (;; 1 z) = z; & + $j$ .+A+, (;: 1,” f + 1 j z). (2.8) f . , 
For if any numerator parameter in DFQ on the left is one, the .+,F,+, on the 
right becomes a .FQ and also has a numerator parameter which is one. Thus, 
in the case that p = 2, q = 1, and Q’~ = 1, we can employ inequalities for 
the %Fl on the right of (2.8) to get inequalities for the ZFl on the left of (2.8). 
As will be seen, (2.8) is useful in extending the domain of validity of general 
inequalities for the ,F, . 

As previously remarked, (1.16) and (1.17) are useful in extending inequali- 
ties for the $I . The z-range of validity of inequalities for general 2FI’s can 
always be extended by use of other well-known formulas for analytic continu- 
ation, and the range on the parameters can be extended by use of contiguous 
relations. For a complete discussion of analytic continuation and contiguous 
relations for 1Fl’s, aFl’s, and DFQ’s, see [5]. 



The special case p = 0 of (2.1)-(2.4) is important for applications, 10 this 
i~~~a~ce, 

E(z) = (1 + z)-” = E&J, a> -1 X,(z): I2.9) 

where E&, a) and R,(z) have the same moaning as before, and 

Thus from the first statement of (2.7), we can deduce 

Another inequality for D > 1 follows from the second statement of 
Theorem 2. Further inequalities follow from (2.6) and (2.9), and from the 
discussion surrounding (2.X). If f~ = f/2, the ~o~yno~nial~ f&z) and y&j 
are related to Chebyshev polynomials of the first and second kinds, sespcc- 
tively. For details, see [O]. 

III. PADS APPROXIMATIONS AND INEQUAUTIES FOR 
I~cok4mm GAWVIA FLJIKTIONS 

There are two forms of the incomplete gamma function. First, we have 
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THEOREM 4. Let 

B,(v, z) = 

= 

kdv, .4 = 

f&h z, 4 = &h z)l&dv, 4, 
,F,(-n; -2n + a - V; z) 

Z” 

(n + v + 1 - a), ,F,(--n,rz+v+1-~a;-l/z), a=Ooul, . 

[ 
n(n + v) 

Z 1 a ‘E-a (a - n)&z + v + l)T, 
(n+vfl -a), & (v + l>dl + a)?4 

x 31 ( 
-n+a+lt,n+v+ 1 fk,l 

1+a+F; I ) --l/z 9 (3.3) 

vn’n(v, 4 = p&J, zY&(v, 4, 

pn(v 
, 

z) = (- l)r,+l-~~~v + 1) z-“e-2 
r(2n + v + 1 - a) s 

a (z _ t)nevtn+v-a dt 
5 0 

Then 
Re(v) > a - 1 - IZ. (3.4) 

WV, 4 = KG, z, 4 + Jfn(v, 4, (3.5) 

the approxinzations HJv, z, a) occupy the positions (n - a, n) of the Padk 
matrix table, and, tf z and v arefixed, 

i,$ V&, 2) = 0. (3.6) 

For the proof and other developments concerning (3.2)-(3.6) including 
an efficient asymptotic estimate for V,Jv’, z), see [7]. Except for certain 
normalization factors introduced in A,(v, z) and B,(v, z), (3.2)-(3.5) follow 
from (2.1)-(2.4) by confluence. That is, in the latter equalities, put p = v, 
replace z by z/cr and let (T -+ co. The analog of (2.7) is 

THEOREM 5. If z > 0 and v > -1, then 

ffn(v, z, 1) >(=4 WV, 2) NO Kdv, z, o>, n2 > n > 0 (3.7) 

where the >(<) sign pertains if both m and n are odd (even). Further, lf z > 0, 
v < 0, but v is not a negative integer, m + v f 1 - a > 0, n + v + 1 - a > 0, 
atzd I’ < -v < r + 1, where r is a positive integer or zero, then (3.7) holds 
where the >(<) sign pertairw if both r + II and r + II? are odd (even). 

The proof is much akin to that of Theorem 2 and is omitted. 
If v > 0 and z = -x, x > 0, then from (3.4), P&v, -x) is positive 

(negative) if II is even (odd). Thus additional inequalities can be written 



once the sign of B,(v, -x) is determined. It is known (see 181) that if v and x 
are fixed and restricted as above, Bn(Y, -x) is positive provided B is SUE- 
ciendy Large. 

If v is negative but not an integer, further ~~e~~a~i~~es ~~~~0~ from jJ.?,l 
and the relation 

Next we consider the complementary incomplete gamma function 

.qv, z) = ,p tv-kt dt = I’(v) - yfv, z), We@> > 0. 

We have the further integral representations 

THEOREM 6. Let 

T,(v, z) = SJV, z),LF,(v, z), 

Se(v, z) 5 (v - l)l-a,yl-vez Jr (f _ z)“rY+U-Z-xe-t dr, 
a 

z+ 0, 1 arg z 1 < z-. 

zl-WF(u, z) = P,(v, z, a) + T,(v, z), 

- 
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the apprux~n~ations P,(v, z, a) occupy the po~itjon~ (n - a, n) of the Pad& 
matrix table, and if Y is fixed, z bounded and bounded away from the origin 
and j arg z 1 < rr, then 

tz T&f, 2) = 0 (3.16) 

except possibly in the neighborhood of zeros of’F.Jv, z). 

For proof and other properties associated with (3.9)-(3.16), see f9]. 
There we develop for v fixed an asymptotic estimate of the error Tn(v, z) 
valid, for yz large, uniformly in z, z bounded away from the origin. Formally 
(3.12)-(3.15) follow (by confluence) from (2.1)-(2.4) if in the latter we set 
a = 1 - Y, replace z by z(p + l), let p -+ co and then replace z by l/z. 

THEOREM 7. If z > 0 then 

PJV, z, 1) < zl-“ezr(Y, 2) < P&, z, O), m, n > 0, ifv < I, 
(3.17) 

Pla(v, 2, 0) < zl-veZr(q 2) if l<v<2, 

The proof is similar to that of Theorem 2, and we omit details. We can 
obtain further inequalities for v > 1 by use of the relation 

r-1 I-yv, z) = z”-%-0 z. (--Y(l - hJ-k + (1 - v)r F(v - Y, 2). (3.18) 

The incompIete gamma function is a special case of the confluent hyper- 
geometric function which in turn can be viewed as a special case of the 
Gaussian hypergeometric function. As in the case of 2FI’s, the range of 
validity of inequalities for the general 1Fl and $(a; c; z) functions can be 
extended by use of Kummer’s formulas, analytic continuation formulas 
(see for instance (1.15), (1.18) and (1.19)), and contiguous relations. See [lo] 
for further details and numerous other properties of confiuent hypergeo- 
metric functions. 

IV. INEQUALITIES FOR TWE GAUSSIAN HYPERGEOMXRIC 
FUNCTION AND THE tilB’D 

To get inequalities for a general & under suitable restrictions, we propose 
to combine (1.6) with (2.12) or (2.13), as appropriate, and (2.7). Then by 
repeated use of (1.7) and (2.7) we can get inequalities for a D+lFD . We shall 
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not carry this process through in all generality as it becomes quite compli- 
cated. Later we introduce some simplifications, but first some general useful 
remarks. 

It is clear from the above comments that we need to express &(z, Q) as 
given by (2.2) as a sum of partial fractions. In certain appiications, we shall 
also want [E&Z, a)]-’ as given by (2.13) in such a form. Now except for a. 
multiplicative factor independent of z, f&Ii/z) is the shifted Jacobi poly- 
nomial R:;-“‘(z) with 01 = p - 0 and ,8 = CJ -- a. Ef 01 > - 1, ,E > -I, this 
latter polynomial has simple zeros only and they lie in 0 < -7 < 1, see [I I]. 
Thus if 0 < (T < p + 1, the zeros of&(z) are simple and lie in - CC < z < -- I. 
We can write 

Now combine (1.6) and (2.12) with Y = 0, 0 = fl, 0 < /3 < I, and use 
(4.1) with the understanding that p = 0 and c = ,8= Then 

G&, 1) -=c &(=L, P; y; -4 -=c Gnk 01, 
z > 0, O<P<L 0, 

(4.2) 
y>cx>o, m, 12 > 

where 

Gdz, 4 = VT2 + c V%k aF,(L a; y; -q-kk), 
k=l 

(4-3) 

with equality if z = 0 or if /3 = 0 or p = 1. Next apply (2.7) to (4.2) to gee 
inequalities for &(cx, p; y; -z) expressed as a sum of partial fractions. 
(Notice that the values of 171 and IZ in (2.7), and m and n in (4.2) are not 
necessarily related.) In the expressions so obtained, replace z by zt, multiply 
by P1(l - t)+-l dt, integrate with respect to t from 0 to I. and use (1.6). 
We then get an inequality of the form (4.2) with &(a, ,& y; -z) replaced 
by ,F,(~, /A& Y, E; -z). Iteration of this process leads to inequalities for 
.+,FP. Indeed in this manner we can get excellent approximations for 
D+lFD by taking 172 and II sufficiently large without restricting the parameters 
and variable to be real. Obviously such a scheme is quite complicated. Pf 
approximations for =Fy are of main interest, then the simple developments 
in [la] are very effective. To achieve rather sharp inequaiities, it is sufficient 
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to consider the case rn = 72 = 1 only. We now turn our attention to this 
case. 

From (2.12) with Y = 0 and nz = IZ = 1, followed by use of (1.6), we get 

a3 [l + Pz]-’ < (1 + z)-” < -&j + - 
ll 
1 + (1 + p>z -l 

l+P 1 2 y 

o<p<1; (4.41 

25, (“;’ j -pz) < & (“:t / -z) 

1-P 2P 
<1+p+ 

01, 1 
( I 

(1 + B)z - ___ 
1+p2F’y- 2 ) ’ (4.5) 

z > 0, 0</3<1, y>ol>o. 

Here we have equalities when /3 = 0 and when p = 1. y = 01 is permitted 
as in this event (4.5) becomes (4.4). Now from the first statement of Theo- 
rem 2, ifnz = 71 = 1, 

[1 + :I-’ < $1 (Sl / -z) < ,T&“l, + Fya; ;‘, [l + ‘“,=ll)‘]-l, 

z > 0, y>a>o. (4.6) 

Combining (4.5) and (4.6), we find 

I 
apz -1 

If- 
Y I < BFl (“;” j -z) < 1 - y(a’z);:) 1) 

+ 
2&Y + 1) 

1 
1 + (a + l)(P + l)z -l 

Y(E + *I@ + 1) 2Y + 1) I ’ 
(4.7) 

z > 0, O<P<l, y>ol>o. 

In (4.7), replace z by zt, multiply throughout by P1(l - t)E-S-l dt, 
integrate and use (1.7). Then 

+ 
w3cy + 1) 8, 1 

y(a + l>@ + 1) sF1 E ( I 
(a + I)@ + lb 

- ay + 1) 1 ’ 
(4.8) 

z > 0, O<P<L y>aao, E>S>O. 
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Next apply (4.6) to each ,F, in (4.8) and so obtain 

By induction we can establish 

THEOREM 8. 

[I + dz]-” < .+Z’, (“i”” i -zj )I ’ 

z > 0, O<a<l, pi 3 $ > 0, j = 1, 2,...,p; 

here and throughout this paper we use the shorthand notation 

Another general result can be found in a Iike manner by starting with an 
inequality for ,F,(I, a; c; -z) valid for z > 0 and 0 < c < a which follows 
from the second statement of Theorem 2; see (2.7). We have 

THEOREM 9. 

(432) 

z > 0, O<c<a, pj 3 olj > 0, ,j= 1,2 )..., y. 

Next we consider inequalities for sFl(cy, ,L?; y; -z) and its natural general- 
ization P+lF,, when 1 </?<2. Use (2.12) with r= --I and B=D+ 1. 
Then 

w3 - 1) 
(2 - P)Cl + pia) ’ 

z > 0, 1<p<2. 
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Employ the beta transform technique to obtain 

The latter can be coupled with (4.6) and the entire process can be iterated 
to derive 

THEOREM 10. 

(2 - 4-1 [l + Bzl-1 - $-g + :;” 1;;; [I - (1 + (u - l)IJIz)-1-J 

z > 0, l<a<2, pj b q > 0, j = 1, 2,...,p (4.15) 

In a similar fashion, starting with 

(4.16) 

we can derive 

z > 0, -1 <u<o, 

THEOREM 11. 

l- ue (0 + 1>97 [l - 11 + (u + l)&-ll < .+,F, (y” / -z) 

uez 
<l--- 240 + 1) 

0+2 (a + a2 [ I 1 - 1 + c” +;)O= \-I], (4.17) 

z > 0, -1 <u<o, pj a q > 0, j= 1,2 ,..., p. 
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Ulzder the hypotheses of (4.17), we can get an alternative ineq.ualirJr by 
combining (2.8) with P = 1 and (4.10). Thus we have 

?hEOREM 12. 

z > 0, -1 <o<o, pj > "j > 0, j = 1, 2,..., p. 

It is of interest to compare (4.17) with (4.18). The left-hand side of (4.~ i7) 
is less than the left-hand side of (4.18). The right-hand side of (4.18) is less 
than the right-hand side of (4.17) provided 

% + (0 + P?%-’ (* f 2)&Jz 
3 CT-!- 2 . (4.19) 

Additional inequalities follow upon application of the Eaplace transform 
(1.9) 10 (5.5)-(5.8) We have 

THEOREM 13. 

(1 + %z)-m < n+lF, (“;r’ j -z) < 1 - 8 t %(I + z)-“$ 

z > 0, fJ > 0, pj 3 a,; > 0, .j = 1, 2,-p; 

(1 - %z)-~ < .+,F, (“;I’ / z) < 1 - % + %il - z)+? 

O<z<l, u > 0, pj >, Ej > 09 .j = 1, 2 :.<e9 p; 

l - IT0 (1 - -g z - 2(l~~)c7+l 

O%Z 

< .+lF~ (“,9” 1 -zj < 1 - (I- + (91z/:/2)jo+l y 

z > 0: (T > 0, pj 3 Ej > 0, j = 1, 2,..., p; 

OOZ 

l + (1 - (l?Iz/2)y+1 < .+,F, (“;I’ i zj 

(4.20) 

(421j 

(422) 

j423t 
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Numerous other inequalities for .+,F, can be found by enlarging upon 
the techniques and ideas enunciated. The theorems developed herein seem 
sufficient to indicate the general nature of expected results and we do not 
further pursue the subject. Similar type inequalities can be found hor hyper- 
geometric functions of two or more variables, but we defer discussion on 
this point to a future paper. 

V. INEQUALITIES FOR CONFLUENT HYPERGEOMETRIC FUNCTIONS, 
.F, AND A PARTIC~JLAR G-FUNCTION 

In Theorem 9, (4.12), replace z by z/a and let a -+ co. Then bv the con- 
fluence principle (see [ 131, or otherwise), we have 

THEOREM 14. 

- + + 9 [l + -&] 
-1 

< D+lFD+,(f: ;l/ -z) 
, 

< 1 - $ + $11 + +I-‘, 

z > 0, u > 0, j = 1, 2 ,..., p. 

For IFl , we have the following inequalities: 

THEOREM 15. 

-1 + 2 *Fl (;'" 1 - ;) < ,r;; (; / -z) < BE; (;' a j -2)) 

- 1 + 2 [ 1 + 21-l < $1 c j -z) 

( 1 _ 4c + 1) + a(c + 1) 
c(a + 1) c(a + 1) [ 

1 + (a + 1)z 
I 
-l 

c+l ’ 

z > 0, c>a>O; 

-; + 9 [l + -$I-' < 1Fl (; i -z) 

l-u+ 2a 
I 
l + (a + lb -l 

< 1+a -q-i- 1 2c ' 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

z > 0, a < 1, c > 0. 
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ProoJ (5.2) follows from (3.7) with 12 = I and Y = 0: using the beta 
transforms (1.6) and (1.7). (5.3) results from the coupling of (5.2) and (4.6). 
It is also a special case of (5.1) as is (5.4) 

All .F, inequalities become equalities if z = 0 or if any nnmerator param- 
eter is zero. 

Improved but very complicated approximations for J, can be obtained 
by using (3.7) and the beta transforms after the manner of the discussion 
surrounding (4.1)-(4.3). An attempt to get improved inequalities in this 
fashion leads to serious complications since B,(v, z) (see (3.3)) has non real 
zeros when iz > 1. For simple and efficient approximations for ,FP , see [42j. 

Some further easily proved inequalities for .FD are given by 

< 1 - 0 f Be-“, 

1 - tiz (I - T + $ e-z) < liFD (;; ( -2) < 1 - &P+, :‘5.7) 

II + %zeQz12 < sF, 

z > 0, 
(5.8) 

pj t s!j > O, j = 1, 2,...,8. 

We now consider inequalities for a G-function of the form given bq’ (1.10). 
See also (l.ll)-(1.15) and (3.12). To this end, replace z by I in (4.10is multiply 
throughout by tr-le-zt dt, integrate with respect to t from 0 to co and apply 
(1.10) and (3.11). Then 

z > 0, O<o<l, E >o, pj 3 “j > 0, j = 1: 2,..., p 

i5.9) 
If 171 = n = 1, we have from (3.17): 

l- l-v < zl-“ezr(v, z) < 1 - 1 - v z+l-v Z-+2---v ’ z>o, v<I. 

(5.10) 
Now combine the last two inequalities to get 
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THEOREM 17. 

z >o, O<a<l, E >o, pj 2 q > 0, j = 1,2 )..., p. 

(5.11) 

Inequalities for the G-function become equalities if z -+ co, and likewise 
fos certain values of the parameters as, for example, when Y = 1 in (5.10). 

Improved inequalities and approximations for the G-functions in (5.1.1)- 
(5.17) can be obtained by using the discussion surrounding (4.1)-(4.3), and 
by using (3.17) for arbitrary m and fz with Pn(v, z) decomposed into a sum 
of partial fractions. Except for a multiplicative factor, Fn(v, z), see (3.13), 
is the generalized Laguerre polynomial Lg’(--z), a! = 1 - a - Y; and if 
B > - 1, the zeros of Fn(v, z) are simple and lie in the interval - co < z < 0, 
see [ll]. 

In a similar fashion, starting with (4.12), (4.15), (4.17) and (4.18), we get 

THEOREM 18. 

d/c m) nP,) 
1 - z + [e(u + 1)6/(c + 1)] < T(E) S(a) T(CX,) GZ23:~+3 z ( I 

1, c, pa, 

6, 1, a, %i 1 

<l- 
d/c 

z + Kc + lbdcl 
2 > 0, O<c<u, E > 0, Pj >, “S > O, j = 1, 2,..., p; 

(5.12) 

* - (2 - u) 
--z!f.- [z + &q-l + E(;2y;6 rz + (c + l)(o - l)rpl-1 

fYP?J) 
< T(6) T(o) r(a,) Gp+1JJ+2 p+2s (2 I .,l;::,) 

< 1 + 4-- w -1 Eo+ 

(2 - 4 I “I 
Z+F - _____ rz + (c + *Ikw, 

(2 - 4 

z > 0, 1<0<2, E >o, pj > a$ > 0, j = 1, 2,...,g; 

(5.13) 
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2 >o, -1 <a<o, E > 0, pj 2 Qlj > 0: j = I, 2,..., p; 
(5.14) 

z > 0, -1 <o<o, E > 0, pj 2 LYj > 0, j = 1, 2,,,., p. 
(5.15) 

It is readily shown that the left-hand side of (5.14) is less than the Left-hand 
side of (5.15), and that the right-hand side of (5.15) is less than the rigilt- 
hand side of (5.14) provided 

e2 + + + 2) eq/3 < p72 + Ecu + 2) e,j2. (5.16) 

Using (4.20) and (4,22), each with (1.10), we get 

THEOREM 19. 

z > 0, CT > 0, E > 0, pj 3 aj > 0, jzl3 , I)..., p. 
(5.18) 
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VI. EXAMPLES 

1. Consider 

x-l arc tan x = $I (‘$ j -x2). (6.1) 

Apply (4.6). Then 

(1 +fj’ <x-larctanx<9+9 4 5 [ 1 +--5- 3x” I -1 , x > 0, (6.2) 

whence with x = 1, 3 < z= < 19/6. Integrate (6.2) from 0 to x and make use 
of (6.2). Then 

L = (1 + -$)” < x-l ,r t-l arc tan t dt < R 

= g + E [l + S]“, x > 0. (6.3) 

In particular if x = 1, the integral is Catalan’s constant which to five 
decimal places equals 0.91597. For x = 1, L = 0.9, and R = 252912754 = 
0.91830. 

2. Similarly, for 

we have 

x-lln(l + x) = & (‘;’ 1 -x), (6.4) 

[l + +I-’ < x-l ln(l + x) < i + i [l + %I-‘, x > o, (6.5) 

and so 213 < In 2 < 0.7. Also 

L = [ 1 + $I-’ < x-l 1,” t-1 In(1 + t) dt < R 

= ; +; (1 + $)[l + q-j-: x > 0. 
(6.6) 

If x = 1, the integral is rr2/12 = 0.82247, L = 0.8, and R = 43152 = 0.82692. 

3. Let 

= (1 + ~)l1‘2~F~ (6.7) 



INEQUALITIES FOR GENERALIZED HYPERGEOMETRIC FUNCTlONS 61 

Appropriate use of (4.7), (4.12) and (4.15) for the fkst form of .F{z) yields 
the respective i~eq~li~es, all for z > 0: 

If z = 3, we have F = F(g) = 0.88055 and from (6.8) we obtain, respec- 
tiveiy, 

0.86957 < P < 0.88169, 
0.86667 < F < 0.88649, (6~9; 
0.86334 < F < 0.89248. 

Now apply (4.6) to the second form of F(z). Then 

and, for z = 4, 

4. Let 

0.87482 < F(z) < ~.88~8~~ (6Af) 

G(z) = ,F, (-; ’ 1 --I). (6.12) 

If z = 3, G = G(g) = 1.07799 and from (4.117) and (4.18>, respectivefy, 
we have 

1.07246 < G < I B8025, 

1.07752 < G < 1.07803. 
(6. I3.j 

5. Consider the complete elliptic integral of the first kind 

From (4.7) we have 

416 - llk"j(i - /@)--i/7 
2(16 - 7k2) ’ 0 < ic < 1. (6.15) 
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The complete elliptic integral of the second kind is 

E(k) = T & (-t + 1 p) xz.r 5 (1 - p)l/z & (-f h 1 - A), (6.16) 

and 

-$ (1 - k”Y [l + 16. yk;3k3] < E(k) 

< 5 (1 - w2 [l + 16,1”‘“&l;~)7k3 1, 0 <k < 1. (6.17) 

From (4.21) we have 

< K(k) < + [l + (1 - k2)-1/9], O<k<l, (6.18) 

and from (4.21) and (2.8) with r = 1, we get 

5 [ 1 - $ (7 + (1 - kz)-3/2}] < E(k) < -$ [l - !$ (1 - +)-312], 

0 < k < 1. (6.19) 

Improved inequalities for the above complete elliptic integrals can be 
obtained by first applying a Landen type transformation. Extensive approxi- 
mations for the three kinds of complete and incomplete elliptic integrals 
based on the PadC approximations for the square root have been given in my 
recent paper [14]. 

6. If we apply the Kummer formulas (1.17) and (1.18) to (5.2), then 
with an appropriate change of notation we get 

-1 +4(~+2)-‘&(~;~/&) -l$Iz) 

< (1 + z)-’ 2Fl (‘La j -&), z > 0, c > a > 0. (6.20) 

Under the latter hypotheses, the 2Fl on the right of (6.20) is less than the 
same 2Fl with argument unity which can be summed provided c > a + 1, 

see [15]. Thus 

(l+z)e-EIF1(;I~)< CF;“a, z>O, c-l>a>O. (6.21) 
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7. The modified Bessel function of the first kind can be defined by 

(6.22) 

Application of (5.3) gives 

2 > 0, V>,-4. (6.23 

The left-hand inequality is very weak unless z is quite small. From (5.4), 
we have 

C l - 2(1;; 1j l + I[ (2~ + 1 jz -l 
2(v + 1) I 

< IYv i 1)(2/z)” e-ZIv(zj 

1 - 2v 
‘2lJ+3 

+ 2(2v + 1) I + (2V + 3)z 
2v + 3 L z > 0, -4. & v < 4” 

:J.- ,F ‘6 34’ 

If v = 0, (6.23), and (6.24) coincide. Finally, from (5.5) we get 

e-z < rev f 1)(2/z)” flail < $(I + e-22), z > 0: v > -3. (6.25j 

8. The modified Bessel function of the second kind can be expressed in 
either of the forms 

K,(z) = di2e-z(2z)Y tJ($ -L V: 1 + 2~; 2~)~ (6.26: 

From (5.1 X) and (5.15), we get the respective inequalities 

l- 
+(a - $j 

< (2&j112 eZKv(z) < I - 
+($ - v”) 

z f +(a - v”) z + $(9/4 - 9) ? 

z > 0, o<v<+; 
(6.28) 

3(v’ - $)(3/2 - v) 
+ 4(5/2 - v)[z + ((Q + v)(5/2 - tij/6)J ’ 

z > 0, ,$ < Y < 3/2. 

(6.29j 
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Notice that (6.28) and (6.29) become equalities as z -+ co or if v = 4. 
Also (6.29) becomes an equality if v = 312. 

Taking v = 0, we have 

< qz) = 2 lie 
( ) 

16z + 7 
z- e”&(z) < R(z) = 162 , z > 0. 

(6.30) 

The utility of these inequalities is made manifest by the following table: 

Z L(z) F(i) R(z) 

0.01 0.07407 0.38049 0.78166 
0.10 0.44444 0.67679 0.81132 
0.50 0.80000 9.85989 0.88235 
1.0 0.88889 0.91315 0.92000 (6.31) 
2.0 0.94118 0.94961 0.95122 
4.0 0.96970 0.97230 0.97260 

10.0 0.98765 0.988 14 0.98817 

Notice that for z 3 4, the arithmetic mean of L(z) and R(z) approximates 
F(z) to within about 2.2 %. This is quite remarkable as K,(z) has a logarithmic 
singularity at z = 0. 

9. The parabolic cylinder function is given by 

D,(z) = p-1pe-(z2/43z$ 

or 

2zve-(ze/4) G2,1 Z2 
Qiz) = &2~(-v/2) I*?, 2 

t- 

From (5.11) and (5.15) we have the respective inequalities 

If 
+(I - v) 

z2 _ lv(l _ v) -c z-@/4W> < 1 + 
&(I - v) 

2 22 + $(3 - v)(2 - v) ’ 

z > 0, -2<v<o; 

1+ 

3v(l - v)(2 - v) 
+ 4(4 - v)[z” + ((1 - v)(4 - v)/6)] ’ z > 0, O<v<l. 

(6.32) 

(6.33) 

(6.34) 

(6.35) 
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Both (6.34) and (6.35) become equalities as z + CC or as Y + 0. Also (6.35) 
becomes an equality if Y = 1. 

Inequalities for the special functions appear infrequently in the literature. 
Gautschi [16] (see also the references given there) has developed a two-sided 
inequality for the incomplete gamma function F(vI z). More recently, 
Carlson [IT] has developed two-sided inequalities for a hypergeometric 
function of rz-variables which includes .+J,, as 2 special case. Some of 
these inequalities are closely related to those presented here. Application 
of the confluence principle to one of his inequalities for &I leads to {S.S) 
and (5.6) with p = 1. Neither of the above authors makes use of transforms 
to develop inequalities for other special functions. In a future paper, we 
intend to investigate this aspect of the subject, and to appiy our techniques 
to develop inequalities for hypergeometric functions of several variables. 
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