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Proteasome inhibition may cause endoplasmic reticulum (ER) stress, which has been reported to be implicated in
the antitumoral effects of proteasome inhibitors. CCAAT/enhancer‐binding protein homologous protein (CHOP) is
induced by a variety of adverse physiological conditions including ER stress and is involved in apoptosis. We have
reported that distinct induction of CHOP contributes to the responsiveness of thyroid cancer cells to proteasome
inhibitors. However, themechanismunderlying differential induction of CHOP by proteasome inhibitors in thyroid
cancer cells has not beenwell characterized. In the current study, we characterized that proteasome inhibition pri-
marily activated the amino acid response element 1 (AARE1) on the CHOP promoter. We also demonstrated that
although proteasome inhibition caused similar accumulation of activating transcription factor 4 (ATF4) in a panel
of thyroid cancer cells, distinct amounts of ATF4 were recruited to the AARE1 element of CHOP promoter. In addi-
tion, we demonstrated that NF‐E2‐related factor 2 (Nrf2)was also implicated in the induction of CHOP by preclud-
ing the binding of ATF4 to the CHOPpromoter. This studyhighlights themolecularmechanisms bywhichATF4 and
Nrf2 can control CHOP induction in thyroid cancer cells by proteasome inhibition.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Proteasome inhibitors possess the pre-clinical and clinical activities
against hematologic malignancies and solid tumors [1]. The inhibition
of the 26S proteasome may lead to the accumulation and aggregation
of misfolded proteins in the endoplasmic reticulum (ER) lumen, subse-
quently cause ER stress. In response to ER stress, activating transcription
factor 6 (ATF6), inositol requiring 1 (Ire1) and PKR-like endoplasmic re-
ticulum kinase (PERK), along with other proximal signaling molecules,
initiate a programof transcriptional and translational regulation termed
the unfolded protein response (UPR). Accumulating evidence now sup-
ports that, in addition tomitochondria, the ER also serves as an important
intracellular apoptotic control point. The ER-mediated apoptotic pathway
is triggered by ER stress, which leads to proapoptotic UPR including
induction of CHOP, activation of the apoptosis signal-regulating ki-
nase 1 (ASK1)-c-Jun-N-terminal kinase (JNK) pathway and cleavage
of ER resident caspases including caspase 12 (in rodent) and caspase 4
(in human) [2]. It has been widely reported that ER stress is implicated
in antitumoral effects of proteasome inhibitors [3–7].
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CHOP, also known as GADD153, is a member of the C/EBP family
transcription factor family that heterodimerizes with other C/EBPs [8].
Its basal expression is very low under nonstressed conditions, but it is
induced by a variety of adverse physiological conditions [9,10]. Several
studies point to a proapoptotic effect of CHOP downstream of irremedi-
able ER stress [11–14]. Regulation of CHOP expression is cell and stimu-
lus dependent, which consequently affects the outcome of ER stress
[15–18]. We have previously shown that CHOP-mediated apoptosis is
involved in the cytotoxicity induced byproteasome inhibitors in thyroid
cancer cells [7]. In a panel of thyroid cancer cells, proteasome inhibitors
increase the expression of GRP78/Bip with similar extents, but CHOP is
differently induced and the differential induction of CHOP appears to be
implicated in the responsiveness [7]. However, the mechanism(s) un-
derlying preferential induction of CHOP in sensitive thyroid cancer
cells compared with those insensitive cells remains unclear. The CHOP
gene can be activated through the ER stress response elements (ERSE,
bases −103 to −76) in response to cellular stress [19], amino acid re-
sponse elements (AARE, bases −310 to 302 and base −778 to −770)
in response to amino acid starvation [15,20,21], and C/EBP-ATF composite
site, a part of AARE1, in response to ER stress [18]. In addition, it can also
be activated through activator protein 1 (AP-1, bases−244 to−238) el-
ement in response to oxidative stress and inmitochondrial unfolded pro-
tein response [15,21]. Since ERSEs are also present in the promoters of
other unfolded protein response target genes, including GRP78/BiP [22],
coupled with the fact that it has similar extent of upregulation of GRP78
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in the panel of thyroid cancer cells treatedwith proteasome inhibitors [7],
proteasome inhibitors might induce CHOP expression via AARE and/or
AP-1, but not via ERSE.

It is now established that a multiprotein complex is bound to the
AARE of CHOP promoter including a number of regulatory proteins
such as activating transcription factor 4 (ATF4), C/EBPβ, TRB3, PCAF
and ATF2 [17]. ATF4 is a member of the cyclic adenosine monop-
hosphate responsive element-binding (CREB) protein family, which
is activated by PERK during UPR and involved in multiple intracellular
stress pathways [23]. PERK coordinates the convergence of ER stress
with oxidative stress signaling via activation of ATF4 and Nrf2 tran-
scription factors [24]. ATF4 signaling promotes two divergent tran-
scriptional programs: increased transcription of both pro-survival
and pro-apoptotic genes [24]. On the other hand, Nrf2 signaling in re-
sponse to ER stress is cytoprotective [25,26]. The target genes for Nrf2
and ATF4 are somewhat overlapping [27–29], for example, both Nrf2
and ATF4 are implicated in the regulation of CHOP, Nrf2 inhibits, while
ATF4 promotes CHOP expression [18,25,30]. In the current study, we
find that proteasome inhibition primarily activates CHOP expression
via ATF4 binding to the AARE1 element of CHOP promoter, while Nrf2
is implicated in differential induction of CHOP in the panel of thyroid
cancer cells by precluding the recruitment of ATF4 to theAARE1 element
of CHOP promoter.
2. Materials and methods

2.1. Culture of multiple cancer cell lines

FRO82-1 (simply FRO) cell lines were initially obtained from
Dr. James A. Fagin (University of Cincinnati College of Medicine,
Cincinnati, OH) and provided to us by Dr. Shunichi Yamashita (Nagasaki
University Graduate School of Biomedical Sciences, Japan). KTC1 and
KTC3 cell lines were generously provided by Dr. Junichi Kurebayashi
(KawasakiMedical School, Japan). 8305C and 8505C cells were obtained
from the European Collection of Animal Cell Cultures. The earliest
passage of each cell line received in our laboratories was DNA profiled
using the Applied Biosystems Profiler Plus kit (ABI, Foster, CA). Consistent
with the previous report [31], the STR profiles of all these cell lines were
consistent with their respective profiles in the DSMZ database (http://
www.dsmz.de/). All cell linesweremaintained in DMEM(Sigma-Aldrich,
Saint Louis, MO) supplemented with 10% fetal bovine serum (FBS, ExCell
Biology Inc., Shanghai, China).
2.2. Chemicals

MG132, SB203580 and SP600125 were purchased from Calbiochem
(La Jolla, CA). Bortezomib was obtained from Millennium Pharmaceuti-
cals Inc. (Cambridge, MA). Specific GSH synthesis inhibitor (BSO) and
N-acetyl-L-cysteine (NAC) were from Sigma-Aldrich and Calbiochem
(San Diego, CA), respectively. 0.02% DMSO was used as vehicle control.
2.3. RNA isolation and real-time reverse transcription-polymerase chain
reaction (RT-PCR)

RNA isolation and real-time RT-PCR were performed as previously
reported [7]. For ATF4, the forward primer was 5′-TGACCTGGAAA-
CCATGCCAG-3′ and 5′-AATGATCTGGAGTGGAGGAC-3′, the amplicon
size was 221 bp. For CHOP, the forward primer was 5′-ATGAGGACC-
TGCAAGAGGTCC‐3′ and the reverse was 5′-TCCTCCTCAGTCAGCCAA-
GC-3′, the amplicon size was 136 bp. For β-actin, the forward primer
was 5′-GAGACCTTCAACACCCCAGCC-3′ and the reverse was 5′-GGAT-
CTTCATGAGGTAGTCAG-3′, the amplicon size was 205 bp. Results were
normalized against those of β-actin and presented as arbitrary unit.
2.4. Measurement of intracellular ROS levels

The average level of intracellular ROS was evaluated in cells load-
ed with the redox-sensitive dye DCFH-DA (Molecular Probes, OR).
Cells were washed twice in a phosphate-buffered saline (PBS) and
stained in the dark for 30 min with 20 μM DCFH-DA and harvested.
Cells were dissolved with 1% Triton X-100, and fluorescence was mea-
sured at an excitation wavelength of 485 nm and an emission wave-
length using a fluorescence spectrometer (HTS 7000, Perkin Elmer,
Boston, MA). A duplicate culture with the same treatments was used to
determine the total protein levels. The ROS levels were expressed as ar-
bitrary unit/mg protein, then as the percentage of control.

2.5. Western blot analysis and immunoprecipitation

Cells were lysed in lysis buffer (20 mM Tris–HCl, 150 mM NaCl,
2 mM EDTA, 1% Triton-X 100) and protease inhibitor cocktail (Sigma-
Aldrich, Saint Louis, MO). Cell extract protein amounts were quantified
using the BCA protein assay kit. Equivalent amounts of protein (25 μg)
were separated using 12% SDS-PAGE and transferred to PVDF mem-
brane (Millipore Corporation, Billerica, MA). For immunoprecipitation,
lysates of cultured cells were pre-cleared with protein A‐Sepharose
CL-4B (Amersham Biosciences, Uppsala, Sweden) and were then incu-
bated overnight at 4 °C with Flag antibody and protein A‐Sepharose.
The immunoprecipitates were washed three times with lysis buffer
and analyzed by Western blot analysis.

2.6. Chromosomal immunoprecipitation (ChIP) assay

ChIP analysis was performed as described previously [32]. Real-time
quantitative PCR was performed using primers specific for human
CHOP sequence between −472 and −301 (forward: 5′-AAGAGGC-
TCACGACCGACTA-3′ and reverse: 5′-ATGATGCAATGTTTGGCAAC-3′)
to generate a 172 bp amplification product containing AARE1. The im-
munoprecipitation/input ratio of the untreated sample was considered
as 100% and the immunoprecipitation/input ratio of the MG132 treated
sample was expressed as a percentage of the untreated.

2.7. Construction of plasmids and luciferase assay

The enhancer-luciferase reporter plasmids were constructed by
inserting sequences of various response elements into the filled-in
NheI/BglII sites of pGL3-Promoter Vector (Promega, Madison, WI)
via blunt-end ligation. These enhancer sequences were synthesized
chemically as double-stranded oligomers: AARE1 (5′-CCAACATT-
GCATCATCCCCG-3′ and 5′-CGGGGATGATGCAATGTTTGG-3′), AARE2
(5′-AGTAGAGACGGGGTTTCACCAT-3′ and 5′-ATGGTGAAACCCCGTCT-
CTACT-3′), ERSE (5′-CCAATGCCGGCGTGCCACTTTCTGATTGG-3′ and
5′-CCAATCAGAAAGTGGCACGCCGGCATTGG-3′), and AP-1 consensus
(5′-GGCTTGATGAGTCAGCCGGAA-3′ and 5′-TTCCGGCTGACTCATCAA-
GCG-3′). Cells were transfected with one of the enhancer-luciferase
reporter constructs (AARE1, AARE2, AP-1 and ERSE) and pGL4.74
[hRluc/TK] (Renilla luciferase internal control) plasmid (Promega,
Madison, WI). The firefly and renilla luciferase activities were deter-
mined using the Dual-Luciferase® Reporter Assay System (Promega,
Madison, WI), according to the manufacturer's instructions. All trans-
fection experimentswere repeated for three times in triplicate. The re-
sult was expressed as relative luciferase activity.

2.8. Generation of CHOP promoter luciferase constructs

The 5′-flanking region of human CHOP genomic DNA between
−1031 and +13 (+1 represents the transcription start site) was am-
plified by PCR from FRO genomic DNA and subcloned into the reporter
plasmid pGL4 (Promega,Madison,WI). Four plasmids pΔERSE, pΔAP-1,

http://www.dsmz.de/
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pΔAARE1 and pΔAARE2 lacking respective enhancer sequence were
generated from pCHOP by a polymerase chain reaction-based method.

2.9. Construction of EGFP-Nrf2 plasmids

WT-Nrf2, Nrf2-ΔNLS, Nrf2-ΔNES, and Nrf2-ΔNES/ΔTAD mutants
were subcloned into pcDNA3-Flag as previously reported [33,34].
Nrf2 and its mutant fragments were cut from pcDNA3-Flag plasmid
A

B

-0.3-0.4-0.5-0.6-0.7-0.8
5’CHOP

AARE2 AARE1 A

AARE1 AARE2 ERSE AP-1

R
el

at
iv

e 
L

uc
if

er
as

e 
A

ct
iv

it
y

0

20

40

60

80
vehicle

MG132

D

R
el

at
iv

e 
L

uc
if

er
as

e 
A

ct
iv

it
y

0

20

40

60

80

100

C

vehicle MG132

R
O

S 
pr

od
uc

ti
on

 (
%

 o
f 

co
nt

ro
l)

0

vehicle
BSO
NAC

200

400

600

800

1000

*

* *

N.S.

N.S.

*
*

E

vehicle

MG132

 L
uc

if
er

as
e 

A
ct

iv
it

y

(r
at

io
 v

s 
pG

L
4.

0 
ba

si
c)

0

20

40

60

80

100

120

pGL4.0 basic
SV40

AARE1
pCHOP

AARE2

*

N.S

Fig. 1. Effect of MG132 on the promoter activities of CHOP in FRO cells. A, Scheme of the hum
for inducible CHOP expression. B, Cells were transfected with one of the enhancer-luciferase
control plasmid. 24 h after transfection, the cells were treated with vehicle or 2 μM MG132
results were expressed as relative luciferase activity. C, Cells were transfected with one of th
after transfection, the cells were treated with vehicle or 2 μMMG132 for another 8 h, and the
ratio vs pGL4.0 basic. D, Cells were pretreated with vehicle, BSO or NAC, sequentially treated
transfected with one of enhancer-luciferase reporter constructs (AARE1, AARE2, ERSE, and
tivities were measured. *, Pb0.01; N.S., not significant.
and subcloned into the XbaI/XhoI sites of the eukaryotic expression
plasmid pcDNA3-EGFP.

2.10. Fluorescent microscopy

For analysis distribution of EGFP-tagged Nrf2 mutants, images of
live cells were taken using the Olympus inverted microscope capable
of digital epifluorescence imaging.
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2.11. Small interfering RNA (siRNA)

The siRNA sequences used here were as follows: siRNA against Nrf2
(siNrf2), AAGAGUAUGAGCUGGAAAAAC; siRNA against ATF4 (siATF4),
CCAGAUCAUUCCUUUAGUUUA; and siRNA against PERK (siPERK),
GCAUGCAGUCUCAGACCCATT. The scramble nonsense siRNA (scramble;
CCGUAUCGUAAGCAGUACU) that has no homology to any known genes
was used as control. Transfection of siRNA oligonucleotide was per-
formed with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according
to the manufacturer's recommendations.

2.12. Statistics

The statistical significance of the difference was analyzed by ANOVA
and post hoc Dunnett's test. Statistical significance was defined as
pb0.05. All experiments were repeated three times, and data were
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3. Results

3.1. Activation of AARE1, ERSE and AP-1 element on the CHOP promoter
by MG132

The CHOP promoter contains several well-characterized response
elements: AARE2 (base −778 to −770), AARE1 (bases −310 to 302),
AP-1 element (bases −244 to −238), and two ERSE (bases −103 to
−76) in reversed orientations (Fig. 1A) [15,20,21]. Using the
enhancer-luciferase reporter constructs, activation of the response ele-
ments on the CHOP promoter by MG132 in FRO cells was investigated.
MG132 activated AARE1, ERSE, and AP-1 elements by 8.3-, 2.7-, and
3.4-fold, respectively, but had no obvious effect on the AARE2 element
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(Fig. 1B). To test the role of these enhancers in CHOP induction by
MG132, reporter plasmids containing CHOP promoter with deletion of
these enhancer sequences were tested (Fig. 1C). Deletion of AARE1,
AP-1 or ERSE partly suppressed MG132-mediated transcriptional in-
duction of CHOP, while deletion of AARE2 demonstrated no obvious ef-
fects on transcriptional induction of CHOP by MG132 (Fig. 1C).

To investigate the involvement of oxidative stress in the induction
of CHOP by MG132, the effects of BSO (a specific glutathione synthe-
sis inhibitor) and NAC (antioxidant and precursor of glutathione) on
the activation of CHOP promoter by MG132 were investigated. Consis-
tentwith our previous report [35], pretreatmentwith 10 mMNAC signif-
icantly suppressed MG132-induced reactive oxygen species (ROS)
generation, while 0.2 mM BSO pretreatment increased ROS production
mediated by MG132 in FRO cells (Fig. 1D). BSO increased and NAC de-
creased the AARE1 activity, respectively (Fig. 1E). Both BSO and NAC
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Fig. 5. Regulation of CHOP induction byNrf2 viamodulation of ATF4 recruitment to theCHOPpromoter. A, Cellswere transfectedwith scramble or specific siRNA against Nrf2 (siNrf2), then
treatedwith 2 μMMG132 for the indicated time, ChIP analysis was performed using a specific anti-ATF4 antibody and immunoprecipitated DNAwas amplified by real-time PCR. B, FRO or
KTC2 cells were transfected with mock or Nrf2 eukaryotic expression vector, then treated with 2 μMMG132 for 8 h, ChIP analysis was performed using a specific anti-ATF4 antibody and
immunoprecipitated DNA was amplified by real-time PCR. C, FRO cells were transiently transfected with Flag-tagged Nrf2 eukaryotic expression vector, then treated with vehicle or 2 μM
MG132 for 8 h, cell lysates (Input) and immunoprecipitates obtained with an anti-Flag antibody (IP) were analyzed by immunoblotting. D, Flag-tagged Nrf2 transfected FRO cells were
treated with MG132 for 8 h and re-ChIP assay was performed to assess in vivo colocalization of Nrf2 and ATF4 to the CHOP promoter. First ChIP and second ChIP antibodies were anti-
ATF4 and anti-Flag, respectively. Quantification of binding was represented as fold change to control IgG second ChIP. E, FRO cells were transfected with EGFP-tagged indicated Nrf2 con-
structs, and intracellular localization was observed under fluorescent microscopy. F, FRO cells were transfected with the indicated constructs for 24 h and treated with 2 μM MG132 for
additional 8 h. ChIPusing anti-ATF4 antibody and subsequent real-time PCRwere performed tomeasure enrichment of ATF4 to theCHOP promoter byMG132. G, FRO cellswere transfected
with the indicated constructs for 24 h and treated with 50 nM bortezomib for additional 8 h. ChIP using anti-ATF4 antibody and subsequent real-time PCRwere performed to measure en-
richment of ATF4 to the CHOP promoter by bortezomib. H, FRO cells were transfectedwith Nrf2 expressing plasmid and siRNA against PERK (siPERK) alone or in combination for 24 h, then
treatedwith vehicle orMG132 for additional 24 h, andWestern blotwas performed. I, FRO cellswere transfectedwith Nrf2 expressing plasmid and siRNA against PERK (siPERK) alone or in
combination for 24 h, then treatedwith vehicle orMG132 for additional 8 h, and real timePCRwas performed. J, FRO cellswere cotransfectedwith EGFP-taggedNrf2 and scramble or siPERK
for 24 h, then treated with vehicle or MG132 for additional 8 h, and localization of EGFP-Nrf2 was observed under a fluorescence microscopy. *, Pb0.01; N.S., not significant.
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3.2. ATF4 binding to the AARE1 element of the CHOP promoter in re-
sponse to MG132

Since the AARE1 element of the CHOP promoter was the main
cis-acting element involved in the activation of CHOP by MG132
(Fig. 1B), in addition, proteasome inhibitors induced ER stress
[3–7,36] and ATF4 was recruited to the AARE1 element to activate
CHOP transcription during ER stress [17], we investigated whether
ATF4 could be involved in MG132-induced transcription of CHOP.
ChIP assays showed that MG132 increased the binding of ATF4 to
the AARE1 element of the CHOP promoter in FRO cells (Fig. 2A). Kinetic
analysis of ATF4 recruitment to the AARE1 element in response to
MG132 showed that ATF4 recruitment increased rapidly within 2 h of
MG132 exposure, reached a maximal level of binding within 8–12 h
and decreased slightly after 16 h (Fig. 2B). Similar to the recruitment of
ATF4 to CHOP promoter, Western blot confirmed that MG132 caused ob-
vious accumulation of ATF4 protein at 2 h, and reachedmaximal increase
at 8–12 h (Fig. 2B). The CHOP mRNA was clearly increased after 4 h and
peaked after 8–12 h (Fig. 2C). The slight delay in CHOP induction
indicated that ATF4might be involved in the induction of CHOP transcrip-
tion in response to MG132 in FRO cells.

To confirm the implication of ATF4 in proteasome inhibition-
mediated CHOP induction, specific siRNA against ATF4 (siATF4) was
used to knockdown the expression of ATF4. siATF4 successfully reduced
basal as well as MG132-induced ATF4 expression, while scramble siRNA
hadno effects onATF4 expression (Fig. 2D). Importantly, siATF4markedly
decreased the induction of CHOPmRNA and protein expressionmediated
by MG132, while scramble siRNA had no obvious actions (Fig. 2E).

3.3. Different recruitment of ATF4 to the AARE1 element of the CHOP
promoter upon proteasome inhibition in a panel of thyroid cancer cells

To investigate the implication of ATF4 in the differential induction
of CHOP by proteasome inhibitors in a panel of thyroid cancer cells [7],
we firstly studied the expression levels of ATF4 usingWestern blot and
found an accumulation of ATF4 protein byMG132with similar extents in
the panel of thyroid cancer cells (Fig. 3A). Another proteasome inhibitor
bortezomib also caused ATF4 accumulation with similar extents in these



1402 Z.-H. Zong et al. / Biochimica et Biophysica Acta 1823 (2012) 1395–1404
cells (Fig. 3B). Consistent with our previous report [7], real-time RT-PCR
confirmed that the levels of CHOP mRNA were significantly induced in
FRO, KTC1, KTC2 and KTC3, only a slight increase was detected in 8505C
cells, whereas no induction of CHOP mRNA was observed in 8305C cells
after treatment with MG132 for 8 h (Fig. 3C). Bortezomib demonstrated
similar pattern of CHOP induction (Fig. 3C). We further investigated the
binding of ATF4 to the AARE1 element of the CHOP promoter in the
panel of thyroid cancer cells using ChIP assays. MG132 and bortezomib
caused obvious recruitment of ATF4 to the AARE1 element of the CHOP
promoter in FRO, KTC1, KTC2 and KTC3 cells, while binding of ATF4 was
not significantly increased in 8305C and 8505C cells (Fig. 3D). It should
be noted that the degree of ATF4 recruitment to the CHOP promoter
(Fig. 3D) closely correlatedwith induction of CHOP in the panel of thyroid
cancer cells (Fig. 3C), indicating that although ATF4 levels per se might
not contribute to the differential induction of CHOP by proteasome inhib-
itors, the capability of ATF4 recruitment to the AARE1 element ascribes to
the different induction of CHOP by proteasome inhibitors in the panel of
thyroid cancer cells.

3.4. Implication of Nrf2 in the differential induction of CHOP by MG132 in
the thyroid cancer cells

Itwas reported that Nrf2 and ATF4were implicated in the regulation
of CHOP on the contrary effects, ATF4 enhanced, while Nrf2 inhibited
the expression of CHOP [18,25,30]. We then investigated the potential
involvement of Nrf2 in the induction of CHOP byMG132 in thyroid can-
cer cells. Consistentwith our previous report [34],Western blot analysis
revealed various levels of Nrf2 expression in the panel of thyroid cancer
cells, 8305C had the strongest expression, while FRO and KTC2 cells had
the weakest expression under normal condition (Fig. 4A). Although
MG132 caused an accumulation of Nrf2 in all the thyroid cancer cells,
Nrf2 levels in MG132-treated FRO or KTC2 cells were much lower than
those in vehicle-treated 8305C or 8505C cells (Fig. 4A). To confirm the
contribution of Nrf2 to the induction of CHOP mediated by MG132, we
used specific siRNA against Nrf2 (siNrf2) to suppress the accumulation
of Nrf2 (Fig. 4B). siNrf2 significantly augmented CHOP induction medi-
ated by MG132 in KTC1, KTC3, 8305C and 8505C cells, while it had no
significant actions in FRO and KTC2 cells (Fig. 4C). To further confirm
the implication of Nrf2 in MG132-mediated induction of CHOP, FRO
and KTC2 cells, which demonstrated very low endogenous expression
of Nrf2, were transfected with Nrf2 eukaryotic expression vector
(Fig. 4D). Overexpression of Nrf2 significantly reduced CHOP induction
mediated by MG132 (Fig. 4E).

3.5. Regulation of CHOP induction by Nrf2 via ATF4 recruitment to the
CHOP promoter in the thyroid cancer cells

To clarify the possible mechanism(s) by which Nrf2 suppressed
the induction of CHOP, we investigated the effects of Nrf2 on the re-
cruitment of ATF4 to the AARE1 element on the CHOP promoter. Consis-
tent with increased induction of CHOP (Fig. 4C), knockdown of Nrf2 by
siNrf2 significantly increased the binding of ATF4 to the AARE1 element
on the CHOP promoter in KTC1, KTC3, 8305C and 8505C cells, while had
no obvious actions in FRO and KTC2 cells (Fig. 5A). In contrast, forced
expression of Nrf2 reduced the recruitment of ATF4 to the AARE1 ele-
ment on the CHOP promoter in FRO and KTC2 cells (Fig. 5B). Since it
has been reported that Nrf2 interacts with ATF4 [37], binding between
Nrf2 and ATF4 in Nrf2-transfected FRO cells was then examined. We
found that ATF4 coimmunoprecipitated with Nrf2, and MG132 signifi-
cantly increased their interaction (Fig. 5C). To demonstrate whether
the interaction of Nrf2 and ATF4 affects recruitment of ATF4 to the
CHOP promoter, re-ChIP was carried out. After the ATF4 first ChIP, no en-
richment of Nrf2 binding was observed in the CHOP promoter (Fig. 5D),
indicating that Nrf2 and ATF4 were not concurrently bound to the CHOP
promoter. To test whether DNA binding is required for regulation of re-
cruitment of ATF4 to the CHOP promoter by Nrf2, we used EGFP-tagged
Nrf2-ΔNLS, Nrf2-ΔNES, andNrf2-ΔNES/ΔTADmutantswhich lack nuclear
localization signal (NLS), nuclear export signal (NES) and nuclear export
signal (NES)/transactivation domain (TAD), respectively [34]. FRO cells
were transfected with these constructs and their expression were ana-
lyzed using fluorescent microscope (Fig. 5E). Consistent with a previous
report [33], nuclear localization of Nrf2-ΔNLS was absent, while Nrf2-
ΔNES and Nrf2-ΔNES/ΔTAD were predominantly localized in the nuclear
(Fig. 5E). ChIP analysis demonstrated that Nrf2-ΔNLS had no effect on
MG132-induced recruitment of ATF4 to the CHOP promoter, while
wild-type (WT)-Nrf2, Nrf2-ΔNES and Nrf2-ΔNES/ΔTAD suppressed the
enrichment of ATF4 to the CHOP promoter by MG132 with similar ex-
tent, indicating that nuclear translocation was sufficient, while DNA
binding capacity of Nrf2 was not required for precluding recruitment of
ATF4 to the CHOP promoter (Fig. 5F). In addition, another clinically
used proteasome inhibitor bortezomib also caused recruitment of
ATF4 to the CHOP promoter (Fig. 5G). The ATF4 recruitment induced
by bortezomib was suppressed by wild-type (WT)-Nrf2, Nrf2-ΔNES
and Nrf2-ΔNES/ΔTAD, while Nrf2-ΔNLS demonstrated no obvious effect
on ATF4 recruitment (Fig. 5G). As PERK coordinates the convergence of
ER stress with oxidative stress signaling via increasing ATF4 translation
and promoting Nrf2 nuclear translocation [24], we used specific siRNA
against PERK (siPERK) to investigate the potential involvement of
PERK in CHOP induction mediated by proteasome inhibition. siPERK
significantly decreased ATF4 accumulation (Fig. 5H) and CHOP induc-
tion (Fig. 5H and I) mediated by MG132 in FRO cells. However, siPERK
demonstrated no obvious effects on EGFP-tagged Nrf2 nuclear translo-
cation induced by MG132 in FRO cells (Fig. 5J).

3.6. Suppression of proteasome inhibition-mediated cytotoxicity of FRO
cells by Nrf2, at least in part, via precluding CHOP induction

To study the function of precluding CHOP induction by Nrf2, we
transfected FRO cells with Nrf2 and its mutants. Real-time RT-PCR
demonstrated that WT-Nrf2, Nrf2-ΔNES and Nrf2-ΔNES/ΔTAD con-
structs significantly suppressed CHOP induction mediated by MG132
or bortezomib (Fig. 6A). In addition, these constructs demonstrated
similar extent of suppressing effects on CHOP induction (Fig. 6A). How-
ever, Nrf2-ΔNLS mutant demonstrated no obvious effects on MG132 or
bortezomib mediated induction of CHOP (Fig. 6A). MTT analyses dem-
onstrated that WT-Nrf2, Nrf2-ΔNES and Nrf2-ΔNES/ΔTAD significantly
suppressed MG132- or bortezomib-mediated cytotoxicity of FRO cells,
while Nrf2-ΔNLSmutant demonstrated no obvious effects on cytotoxic-
ity mediated by MG132 or bortezomib (Fig. 6B). Although these con-
structs suppressed CHOP induction with similar extents (Fig. 6A),
compared withWT-Nrf2 and Nrf2-ΔNES, Nrf2-ΔNES/ΔTAD demonstrated
lower suppressing effects onMG132- or bortezomib-mediated cytotoxic-
ity of FRO cells (Fig. 6B). To further confirm the effects of CHOP on the
suppressing effects of Nrf2, we cotransfected CHOP construct with Nrf2
and its mutants. CHOP overexpression almost completely blocked the
suppressing effects of Nrf2-ΔNES/ΔTAD on cytotoxicity of FRO cells medi-
ated by MG132 (Fig. 6C). The suppressing effects of WT-Nrf2 and Nrf2-
ΔNES were also significantly blocked by CHOP overexpression (Fig. 6C).

4. Discussion

Proteasome inhibition affects different aspects of cell metabolism,
blocks the clearance of damaged or misfolded proteins and the turnover
of many key short-lived regulatory proteins, which is bound to expose
cells to proteotoxicity. Recently, the apoptotic effects of proteasome in-
hibitors have been shown to be regulated at least in part by their ability
to activate ER stress [3–7,36]. CHOP, also known as GADD153, a member
of the bZIP family of transcription factors, has been shown to play an es-
sential role in the response to a wide variety of cell stresses and induce
cell cycle arrest and apoptosis in response to ER stress [38]. The basal ex-
pression level of CHOP is almost undetectable in most cell types, but its
expression is rapidly induced by various stimuli at the transcriptional



Fig. 6. Involvement of CHOP downregulation in the suppressing effects of Nrf2 on
proteasome inhibition-mediated cytotoxicity of FRO cells. A, FRO cells were transfected
with the indicated constructs for 24 h, then treated with 2 μM MG132 or 50 nM
bortezomib for additional 8 h, and CHOP mRNA was analyzed using real-time RT-
PCR. B, FRO cells were transfected with the indicated constructs for 24 h, then treated
with 2 μM MG132 or 50 nM bortezomib for additional 24 h, and cell viability was mea-
sured using MTT assay. C, FRO cells were transfected with the indicated constructs for
24 h, then treated with 2 μMMG132 for additional 24 h, and cell viability was analyzed
using MTT assay. *, Pb0.01 vs control; #, Pb0.01 vs the indicated.
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and/or posttranscriptional level by a variety of agents that cause cellular
stress [20]. We have previously shown that proteasome inhibitors
increase CHOP expression at the transcriptional level and CHOP induc-
tion may contribute to the responsiveness of thyroid cancer cells to
proteasome inhibition, with higher induction of CHOP in sensitive cell
lines compared with less sensitive ones [7]. However, the mechanism
by which proteasome inhibitors induced CHOP with different extents
in thyroid cancer cells has not been well characterized.

CHOP have been reported to be induced through the activation of
AARE, ERSE, and AP-1 elements of its promoter [15,19,39]. The elements
controlling CHOP transcription vary depending on the cell type and the
kind of stress induced [15–18,40]. In this study, we demonstrated that
MG132 increased CHOP via activation of all these three elements of its
promoter, but primarily by activation of the AARE1 element. We also
found that the recruitment of ATF4 to AARE1 element of the CHOP pro-
moter contributed to the differential induction of CHOP in a panel of
thyroid cancer cells. In addition, we found that Nrf2 was also responsi-
ble for the differential CHOP induction by modulating the binding of
ATF4 to the CHOP promoter. It is interesting to note that ATF4 and
Nrf2 are strongly interconnected, as phosphorylation of Nrf2, which is
necessary for its activation, can be carried out by PERK [26], which
also contributes to the activation of the ATF4-CHOP pathway mediated
by ER stress. While the role of ATF4 in the control of CHOP expression
has been well established, little is known about the precise functions
of Nrf2. In the current study, we observed accumulation of Nrf2 in thy-
roid cancer cells upon proteasome inhibition, which negatively regulat-
ed CHOP induction. Consistent with our data, it has been reported that
CHOP expression correlates negatively with the presence of Nrf2; in-
creased kinetics of CHOP mRNA accumulation in Nrf2-deficient fibro-
blasts following ER stress relative to that in wild-type fibroblasts, while
Nrf2 overexpression attenuates CHOP accumulation during ER stress
[26]. Possiblemechanisms bywhich Nrf2 affects CHOP induction include
the following: 1) Nrf2 acts as a direct transcriptional repressor at the
CHOPpromoter, 2)Nrf2 target genes directly or indirectly affect CHOP ex-
pression, 3) and Nrf2 precludes the binding of other transcription factors
to the CHOP promoter. In the current study, we found that Nrf2 prohibi-
ted the recruitment of ATF4 to the CHOP promoter. Nrf2 binds DNA as a
heterodimer, and ATF4 is one of its partners [37]. Coimmunoprecipitation
confirmed that Nrf2 interacted with ATF4, and MG132 augmented their
interaction. In addition, re-ChIP assay demonstrated that ATF4 and Nrf2
were not concurrently recruited to the CHOP promoter. Therefore, Nrf2
might preclude the binding of ATF4 to the CHOP promoter via their inter-
action. PERK is responsible for both ATF4 and Nrf2 activation, by which it
coordinates the convergence of ER stress with oxidative stress signaling
[24]. In the current study, we found that PERK was implicated in the
ATF4 accumulation and CHOP induction mediated by MG132, while it
had no obvious effects on nuclear translocation of Nrf2 in thyroid cancer
cells. In addition to PERK, Nrf2 is reported to be phosphorylated by PKC,
PI3K and MAPK, and phosphorylated modification by these kinases also
promotes its nuclear translocation [24]. As a fact, we have previously
reported that p38MAPK is implicated in nuclear translocation and activa-
tion of Nrf2 upon proteasome inhibition [34].

Under normal physiological conditions, Nrf2 exists in its inactive
form because of sequestration by the cytoplasmic nuclear translocation-
inhibitor KEAP1, which delivers it to degradation by proteasome inhibi-
tion [41]. Release from KEAP1 and translocation to nucleus activates
Nrf2 to initiate transcription of genes with antioxidant response element
(ARE), most of which have roles in protecting the cell against oxidative
and electrophilic stressors [27]. In the current study, we found that ROS
generationwas also implicated in the CHOP induction, as augmentation
of ROS production by BSO and depletion of ROS generation by NAC
increased and decreased the activation of the AARE1 element on the
CHOP promoter, respectively. Considering the role of Nrf2 in the regula-
tion of cellular defenses against ROS, modulation of ROS generation by
Nrf2 target genes might be an alternative mechanism underlying the
regulation of CHOP by Nrf2.

Collectively, this report provides a comprehensive analysis of the
regulation of CHOP mRNA expression in a panel of thyroid cancer cells
which have different responsiveness to proteasome inhibitors.
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