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a b s t r a c t

In this paper, we find conditions on the coefficients {bk}nk=1 such that the corresponding

trigonometric (cosine and sine) sums given respectively by
n∑

k=1
bk sin kθ > 0 and

n∑
k=1

bk cos kθ > 0 for all n ∈ N are positive. Using these results, we find that the functions

f that are in the class of analytic functions A are starlike of certain order in the unit disc
D by means of conditions on the Taylor coefficients of f . As an application, we also find
conditions such that the Cesáro means of order β of f (z) are close-to-convex and starlike
in D.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Trigonometric series have been an important and interesting part of mathematics over the last centuries and have
been used as an important tool in pure mathematics, particularly after Fourier series and harmonic functions. Among the
contributions made by various mathematicians such as Fejér et al., in the aspect of positivity of trigonometric sums, the
most familiar one is the Fejér–Jackson–Gronwall inequality,

n−
k=1

sin kθ
k

> 0, for all n ∈ N and 0 < θ < π, (1.1)

conjectured by Fejér in 1910 and proved independently by Jackson [1] in 1911 and by Gronwall [2] in 1912. Since then,
several other proofs were given and the shortest proof is due to Landau [3]. In 1953, Turán [4] established that if

n−
k=1

ak sin(2k − 1)θ ≥ 0, 0 < θ < π,

for some n, then
n−

k=1

ak
k

sin kθ > 0, 0 < θ < π,

for the same n, unless all ak are zero. This exhibits (1.1), as a consequence of the basic inequality
n−

k=1

sin(2k − 1)θ ≥ 0, 0 < θ < π.
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A short proof of this result is given in [5]. In 1997, Brown and Wang [6] considered the positivity of trigonometric sums of
the form

Tα
n (θ) =

n−
k=1

sin kθ
k + α

, 0 < θ < π (1.2)

and they have shown thatwhen n is odd, Tα
n (θ) are positive throughout the interval 0 < θ < π whenever−1 < α ≤ α0 and

that α0 = 2.1102 . . . is the best possible. In the case of n being even, the positivity of Tα
n (θ) fails to hold for all θ ∈ (0, π).

In 1913, analogous to (1.1), Young [7] established the inequality

1 +

n−
k=1

cos kθ
k

> 0, for all n ∈ N and 0 < θ < π. (1.3)

Rogosinski and Szegö [8] considered inequalities of the form

1
1 + α

+

n−
k=1

cos kθ
k + α

> 0, for all n ∈ N and 0 < θ < π. (1.4)

and observed the existence of a constant A, 1 ≤ A ≤ 2(1 +
√
2), such that (1.4) hold for every α, −1 < α ≤ A. In 1969

Gasper [9] determined the exact value of A as follows:

Lemma 1.1 ([9]). Let A be the positive root of the equation

9x7 + 55x6 − 14x5 − 948x4 − 3247x3 − 5013x2 − 3780x − 1134 = 0.

If −1 < α ≤ A, then the sum

Tα
n (φ) =

1
1 + α

+
cosφ

1 + α
+

cos 2φ
2 + α

+
cos 3φ
3 + α

+ · · · +
cos nφ
n + α

, (1.5)

is non-negative for 0 ≤ φ ≤ 2π and for all n ∈ N. However, if α > A, then Tα
3 < 0 for some φ. The value of A is 4.5678018 . . .

approximately.

In 1958, a surprising and quite deep result about the simultaneous positivity of a general class of cosine and sine sum
was published by Vietoris [10], which can be stated as follows:

Theorem A. Let {ak}∞k=0 be any non-increasing sequence of non-negative real numbers such that a0 > 0 and

2ka2k ≤ (2k − 1)a2k−1, k ≥ 1. (1.6)

Then for all positive integers n, we have

n−
k=0

ak cos kθ > 0, 0 ≤ θ < π, (1.7)

and
n−

k=1

ak sin kθ > 0, 0 < θ < π. (1.8)

Vietoris himself observed that (1.7) and (1.8) satisfy the special case ak = ck, where

c2k = c2k+1 =
(1/2)k

k!
, k = 0, 1, 2, . . . . (1.9)

Here, by (a)k we mean the Pochhammer symbol, defined by

(a)0 = 1, and (a)k = a(a + 1) . . . (a + k − 1) =
Γ (k + a)

Γ (a)
, k = 1, 2, . . . .

Inequalities (1.7) and (1.8) of Vietoris extend both (1.1) and (1.3). The significance of Theorem A was unknown till the
appearance of thework of Askey and Steinig [11], where a simplified proof of TheoremA is given and further shown that this
result has some nice applications in estimating the zeros of certain trigonometric polynomials. They also observed that these
inequalities are better viewed in the context of more general inequalities concerning positive sums of Jacobi polynomials
and they play a role in problems dealing with quadrature methods.
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The cosine inequality (1.7) received considerable improvement in the last few years. Brown and Hewitt [12] have shown
that (1.7) remains true if the condition (1.6) is replaced by (2k + 1)a2k ≤ (2k)a2k−1, k ≥ 1. In [13], Brown and Yin gave a
further generalization of (1.7) by showing that it remains valid under the condition

(2k + β)a2k ≤ (2k + β + 1)a2k−1, k ≥ 1, and β ∈ (−1, 2]. (1.10)

They also suggested two different (unrelated) directions of possibility of additional sharpening of their result, by raising the
following two questions:

(1) Determine the maximum range of β in (1.10), for which (1.7) remains true.
(2) Modify the sequence ck of (1.9), by taking

c2k = c2k+1 =
(1 − α)k

k!
, k = 0, 1, 2, . . . ,

and determine the best possible range of α for which all the cosine sums in (1.7) are positive.

In fact, it is expected in [13] that the upper bound for β in (1.10) will be less than 2.34. The complete answers for the above
two questions were given in [14]. A similar result with an independent proof can also be found in [15]. In [16], a systematic
account of these new results which ensure the positivity and boundedness of partial sums of cosine or sine series were
discussed.

On the other hand, the inequality (1.8) does not have much more improvement. It turns out that inequality (1.8) is the
best possible in the sense that, if the condition (1.6) is weakened then the corresponding sine sums are not everywhere
positive in (0, π). In a remarkable result, Belov [17] obtained a necessary and sufficient condition on the coefficients {ak}
which extend both Vietoris’ and Brown–Hewitt’s [12] results. We state this result as a lemma because of its importance in
the present work.

Lemma 1.2. Let ak, k = 0, 1, 2, . . . be any decreasing sequence of positive real numbers, then the condition

n−
k=1

(−1)k−1kak ≥ 0, ∀n ≥ 2, a1 > 0, (1.11)

is necessary and sufficient for the validity of the inequality
n−

k=1

ak sin kθ > 0, ∀n ∈ N, 0 < θ < π.

Moreover, condition (1.11) implies that
n−

k=1

ak cos kθ > 0, ∀n ∈ N, 0 < θ < π.

Note that the sequence of the coefficients of the sums (1.2) does not satisfy the condition (1.11).
Several applications that have used the generalizations of (1.1) and (1.3) are available in the literature and have led to a

deeper understanding of these results. Similarly, a variety of problems can be reduced to positivity results for trigonometric
or other orthogonal sums of this type. Indeed, these inequalities have remarkable applications in the theory of Fourier series,
summability theory, approximation theory, positive quadraturemethods, the theory of univalent functions andmanyothers.
We refer the reader to the recently published research articles [18,19,14,20–22] and the references therein for some new
results on positive trigonometric sums including refinements and extensions of (1.1) and (1.3) and various applications. We
also note that positivity results for trigonometric sums and geometric function theory have been closely related subjects
over the past century. Both areas have contributed to each other and this paper intends to present few more results of this
interplay.

This paper is organized as follows. In Section 2 key lemmas required for the work given in the paper, main results which
are generalizations of previously obtained results and their deductions are given. In Section 3 applications of our results
to the results in geometric function theory (GFT) are given. In Section 4, using results from earlier sections, we find the
geometric properties of certain type of Cesáro means and compare with earlier known results.

2. Preliminaries and main results

In this section, we deal with the partial sums of two important trigonometric (cosine and sine) series. Among various
results in this section, we generalize the following result given in [23].
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Lemma 2.1 ([23]). Let α ≥ 0, b0 = 2, b1 = 1 and bk =
1

k+α
for k ∈ N, k ≥ 2. Then for all 0 < φ < π and for all n ∈ N, the

following inequalities hold:

b0
2

+

n−
k=1

bk cos kφ > 0 and
n−

k=1

bk sin kφ > 0.

Though an independent proof of Lemma 2.1 is given in [23], one can easily prove that

1 +

n−
k=2

(−1)k−1 k
k + α

> 0, ∀α ≥ 0, n ∈ N

and therefore Lemma 2.1 directly follows from Lemma 1.2.
Abel’s transformation or summation by parts is a standard technique in obtaining positivity results for trigonometric

sums. We state this as a lemma.

Lemma 2.2. Let {bk}∞k=0 and {ck}∞k=0 be two sequences of real numbers, then

n−
k=0

bkck =

n−1−
k=0


1bk

k−
j=0

cj


+ bn

n−
k=0

ck

where 1bk = bk − bk+1.

Now we state a generalization of Lemma 2.1, which can be obtained from a careful manipulation of Lemma 2.1 and the
technique given in Lemma 2.2.

Theorem 2.1. Let α ≥ 0, γ ≥ 1, b0 = 2, b1 = 1 and bk =
1

(k+α)γ
for k ∈ N, k ≥ 2. Then for all 0 < φ < π and for all n ∈ N,

the following inequalities hold:

b0
2

+

n−
k=1

bk cos kφ > 0 and
n−

k=1

bk sin kφ > 0.

Proof. Since

b0
2

+

n−
k=1

bk cos kφ =


1 −

1
(2 + α)γ−1


(1 + cosφ) +

1
(n + α)(γ−1)


1 + cosφ +

n−
k=2

cos kφ
(k + α)



+

n−1−
k=2


1

(k + α)(γ−1)
−

1
(k + 1 + α)(γ−1)


1 + cosφ +

k−
j=2

cos jφ
(j + α)


and

n−
k=1

bk sin kφ =


1 −

1
(2 + α)γ−1


sinφ +

1
(n + α)(γ−1)


sinφ +

n−
k=2

sin kθ
(k + α)



+

n−1−
k=2


1

(k + α)(γ−1)
−

1
(k + 1 + α)(γ−1)


sinφ +

k−
j=2

sin jφ
(j + α)


,

both are positive by the given hypothesis and Lemma 2.1. �

The following result which is a consequence of Theorem 2.1 can be obtained by applying Lemma 2.2. This result hasmany
interesting applications, some of them are given in Sections 3 and 4.

Corollary 2.1. Let α ≥ 0, γ ≥ 1 and a0, a1, . . . be a sequence of positive numbers such that, for all k ≥ 2,

(k + 1 + α)γ ak+1 ≤ (k + α)γ ak ≤ · · · ≤ (2 + α)γ a2 ≤ a1 ≤
a0
2

,

then for all 0 < φ < π and for all n ∈ N, the following inequalities hold:

1. a0
2 +

∑n
k=1 ak cos kφ > 0.

2.
∑n

k=1 ak sin kφ > 0.

Our next result is a generalization of the following Lemma 2.3.
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Lemma 2.3 ([24]). For every positive integer n and for 0 < θ < π , we have

d
dθ


cos

θ

2


1 +

n−
k=1

cos kθ
kγ


< 0, (2.1)

when γ ≥ 1. This inequality fails to hold for appropriate n and θ , when 0 < γ < 1.

Theorem 2.2. Let α ≥ 0, γ ≥ 0. Then, for every positive integer n and for 0 < θ < π , we have

d
dθ


cos

θ

2


1 + cos θ +

n−
k=2

cos kθ
k(k + α)γ


< 0. (2.2)

Proof. Inequality (2.2) is equivalent to

1
2
sin(θ/2)


1 + cos θ +

n−
k=2

cos kθ
k(k + α)γ


+ cos

θ

2


sin θ +

n−
k=2

sin kθ
(k + α)γ


> 0. (2.3)

By Theorem 2.1, sin θ +
∑n

k=2
sin kθ

(k+α)γ
> 0 when α ≥ 0 and γ ≥ 1. Hence the inequality (2.3) will be true if we show that

1 + cos θ +

n−
k=2

cos kθ
k(k + α)γ

> 0.

The left hand side of the above inequality can also be written as

1 + cos θ +

n−
k=2

cos kθ
k(k + α)γ

=


1 −

1
(1 + α)γ


(1 + cos θ) +

1
(n + α)γ


1 +

n−
j=1

cos jθ
j



+

n−1−
k=1


1

(k + α)γ
−

1
(k + 1 + α)γ


1 +

k−
j=1

cos jθ
j


> 0.

Since 1 +
∑n

k=1
cos kθ

k > 0 by Theorem 2.1 and 1
(k+α)γ

> 1
(k+1+α)γ

for α ≥ 0 and γ ≥ 1, we have the positivity of (2.3).
For γ = 0, (2.2) is an immediate consequence of (2.1). Let 0 < γ < 1. Write a0 = a1 = 1 and ak =

1
(k+α)γ

, k ≥ 2. By
Lemma 2.2 we have

σn(θ) := 1 + cos θ +

n−
k=2

ak
cos kθ

k
=

n−1−
k=1

(ak − ak+1)Sk(θ) + anSn(θ),

where S1(θ) = 1 + cos θ , Sk(θ) = 1 +
∑k

j=1
cos jθ

j , k ≥ 2.
Now applying Lemma 2.3 we obtain

d
dθ


σn(θ) cos

θ

2


=

n−1−
k=1

(ak − ak+1)
d
dθ


Sk(θ) cos

θ

2


+ an

d
dθ


Sn(θ) cos

θ

2


< 0,

for 0 < θ < π and the proof is complete. �

3. Application in GFT

As usual, by A we mean the class of analytic functions f in the unit disk D = {z : |z| < 1}, normalized by the condition
f (0) = 0 = f ′(0) − 1 and S = {f ∈ A : f is univalent in D}. A function f ∈ S is said to be starlike and convex of order µ
(0 ≤ µ < 1), respectively, if

Re

zf ′(z)
f (z)


> µ and Re


1 +

zf ′′(z)
f ′(z)


> µ.

These classes are denoted by S∗(µ) and C(µ) respectively. Note that, S∗(0) ≡ S∗ and C(0) ≡ C, respectively, are the well-
known subclasses of S that map D onto domains that are starlike with respect to origin and convex. Let TR be the subclass
of S, consisting of all typically real functions, i.e, all f ∈ S such that Im f (z)Im (z) > 0. Another important class required for
our discussion is the class of close-to-convex functions of order µ with respect to a fixed starlike function g(z) and given by
the analytic condition

Re eiη

zf ′(z)
g(z)

− µ


> 0, g ∈ S∗, z ∈ D, (3.1)
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for some real η ∈ (−π/2, π/2). The family of all close-to-convex functions of order µ, relative to g ∈ S∗ is denoted by
Kg(µ). If there is no specification about the function g is given, then Kg(µ) is denoted as K . Note that for 0 ≤ µ < 1, each
function in Kg(µ) is univalent in D. For a particular choice of g , we get particular classes of Kg(µ). We list here only the
classes that are needed for our results.

(i) g(z) = z H⇒ Kz(µ) =: R(µ) = {f ∈ A : Re f ′(z) > µ}

(ii) g(z) =
z

(1−z) H⇒ K1(µ) := {f ∈ A : Re ((1 − z)f ′(z)) > µ}

(iii) g(z) =
z

(1−z2)
H⇒ K2(µ) := {f ∈ A : Re ((1 − z2)f ′(z)) > µ}

where η given in (3.1) is taken as zero. Further, we have R(0) := R, K1(0) := K1 and K2(0) := K2.
The following are the necessary and sufficient conditions for f to be in K2.

Lemma 3.1. f ∈ A has real coefficients and f (z) ∈ K2 if, and only if, zf ′(z) is typically real.

Proof. A function f ∈ A is said to be convex in the direction of the imaginary axis [25] if every line parallel to the imaginary
axis either intersects f (D) in an interval or does not intersect it at all. From the well-known result given in [26], it is clear
that f ∈ A has real coefficients and is convex in the direction of imaginary axis if, and only if, zf ′(z) is typically real. It is also
known that f ∈ A has real coefficients, then f is convex in the direction of imaginary axis if, and only if,

Re ((1 − z2)f ′(z)) > 0 ∀z ∈ D

which means that f ∈ K2 and the proof is complete. �

Remark 3.1. The functions

z,
z

1 ± z
,

z
1 ± z2

,
z

(1 ± z)2
,

z
1 ± z + z2

(3.2)

are the only nine functions which are starlike univalent and have integer coefficients in D, (see [27] for details). We note
that, it is easy to give sufficient conditions for f to be close-to-convex, in terms of the Taylor coefficients of f , at least when
the corresponding starlike function g(z) takes one of the above forms.

For the interested reader on details regarding these classes and the corresponding results, we refer to [25,28–30].

Theorem 3.1. Let 0 ≤ µ < 1 and f ∈ A be such that f ′(z) and f ′(z) − µ
f (z)
z are typically real in D. Further, if Re f ′(z) > 0

and Re (f ′(z) − µ
f (z)
z ) > 0, then f ∈ S∗(µ).

Proof. The result for µ = 0 is given in [31]. It remains to prove the result for the case 0 < µ < 1. It is enough to prove that
Re zf ′(z)/f (z)−µ

(1−µ)
> 0. Consider

(1 − µ)f (z)
(zf ′(z) − µf (z))

=

∫ 1

0

(1 − µ)f ′(tz)
f ′(z) − µ

f (z)
z

dt =

∫ 1

0

(1 − µ)f ′(tz)
g(z)

dt (3.3)

where,

g(z) = f ′(z) − µ
f (z)
z

.

Note that both f ′(tz) and g(z) are in same half plane. For, if Im z > 0(< 0), then both functions f ′(tz) and g(z) being
typically real, their values will lie in the same plane, viz., upper half (lower half) plane. Further, as Re f ′(z) > 0 and
Re (f ′(z) − µ

f (z)
z ) > 0, both f ′(tz) and g(z) are also in the right half plane. Therefore,

Re
(1 − µ)f (z)

(zf ′(z) − µf (z))
> 0 H⇒ Re

zf ′(z)/f (z) − µ

(1 − µ)
> 0,

and the proof is complete. �

Remark 3.2. Re f ′(z) > 0 is the condition for f (z) ∈ R. Further, by the definition of typically real function we have
Im f (z)Im (z) > 0. Hence, under the hypothesis of Theorem 3.1,

Re (1 − z)f ′(z) = Re (1 − z)Re f ′(z) + Im f (z)Im (z) > 0

which implies f (z) ∈ K1. Therefore, the result of Theorem 3.1 is true for f (z) ∈ S∗(µ) ∩ R ∩ K1. In fact, the same remark
also holds good for the following theorem.
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Theorem 3.2. Let α ≥ 0, γ ≥ 1, a1 = 1 and ak > 0 for k ≥ 2. If

(2 − µ)a2 ≤ (1 − µ)a1, (3 − µ)a3 ≤
1

(2 + α)γ
(2 − µ)a2, and

(k + 1 − µ)ak+1 ≤
(k − 1 + α)γ

(k + α)γ
(k − µ)ak, for k ≥ 3.

Then, for 0 ≤ µ < 1, f (z) = limn→∞ fn(z) = z +
∑

∞

k=2 akz
k is starlike of order µ, where fn(z) is the n-th partial sum of f (z).

Proof. Let

gn(z) = f ′

n(z) − µ
fn(z)
z

= (1 − µ) +

∞−
k=1

(k + 1 − µ)akzk =
b0
2

+

∞−
k=1

bkzk

where, b0 = 2(1−µ) and bk = (k+1−µ)ak, ∀k ≥ 1. Now, bymeans of a simple calculation, we can establish the fact that,
with the given hypothesis, {bk} satisfies the conditions of Theorem 2.1, which implies Re gn(z) > 0 in D and Im gn(z) > 0,
if Im z > 0. Again by reflection principle Im gn(z) < 0, if Im z < 0. Hence gn(z) is typically real function. Using the fact,

1 − µ

2 − µ
≤

1
2
,

k − µ

k + 1 − µ
< 1, ∀k ≥ 2,

and Theorem2.1, one can easily show that, under a given hypothesis, Re f ′
n(z) > 0 and f ′

n(z) is typically real inD.We conclude
the proof by Theorem 3.1 and using the fact that the family of starlike functions is normal. �

Similarly by proving zf ′(z) is typically real (or in other sense f (z) ∈ K2) and using Lemma 3.1, the following result can
be obtained.

Theorem 3.3. Let α ≥ 0, γ ≥ 1, a1 = 1 and ak > 0 for k ≥ 2. If

(k + 1 + α)γ (k + 1)ak+1 ≤ (k + α)γ kak ≤ · · · ≤ (2 + α)γ 2a2 ≤ 1, (3.4)

is true for all k ≥ 2, then fn(z) and f (z) belongs toK2, where fn(z) = z+
∑n

k=2 akz
k and f (z) = limn→∞ fn(z) = z+

∑
∞

k=2 akz
k.

Corollary 3.1. Let α = 0, γ = 1, a1 = 1 and ak > 0 for k ≥ 2. If

(k + 1)2ak+1 ≤ k2ak ≤ · · · ≤ 4a2 ≤ 1,

is true for all k ≥ 2, then fn(z) and f (z) belongs toK2, where fn(z) = z+
∑n

k=2 akz
k and f (z) = limn→∞ fn(z) = z+

∑
∞

k=2 akz
k.

Remark 3.3. Corollary 3.1 is an immediate consequence of Theorem 3.3. But, even by considering (3.4) as a decreasing
sequence, it is not possible to get Theorem 3.3 from Corollary 3.1. We support our claim by the following example.

Example 3.1. let f (z) = z +
∑

∞

k=2 akz
k, with

2(2 + α)γ a2 ≤ 1, ak+1 =
k(k + α)γ

(k + 1)(k + 1 + α)γ
ak, ∀k ≥ 2, α > 0, γ ≥ 1.

Then by Theorem 3.3, f (z) belongs to K2. But for all α > 0, γ ≥ 1, this fact cannot be deduced from Corollary 3.1. Because

1. For α > 0 and γ = 1, and k ≥ 2, we have

(k + 1)2ak+1 − k2ak =
k(k + 1)(k + α)

(k + 1 + α)
ak − k2ak

= [(k + 1)(k + α) − k(k + 1 + α)]
kak

(k + 1 + α)

=
αkak

(k + 1 + α)
> 0.
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2. For α = 2 and γ =
3
2 , and for k ≥ 2, we have

(k + 1)2ak+1 − k2ak =
k(k + 1)(k + 2)

3
2

(k + 3)
3
2

ak − k2ak

= [(k + 1)(k + 2)
3
2 − k(k + 3)

3
2 ]

kak

(k + 3)
3
2

which is positive for at least some k. For example, take k = 2, 3.

4. Application to Cesàro means

The n-th Cesàro means of order β of f (z) ∈ A is given by

σ β
n (z, f ) =

n−
k=1

Aβ

n−k

Aβ
n

akzk (4.1)

for all n ∈ N and β > −1, where

Aβ

0 = 1 and Aβ

k =
(k + β)

k
Aβ

k−1, ∀k ≥ 1.

In particular, we have

σ β
n (z) =

n−
k=1

Aβ

n−k

Aβ
n

zk. (4.2)

Note that σ
β
n (z, f ) = σ

β
n (z) ∗ f (z), where ∗ denotes the Hadamard product or convolution, defined as (f ∗ g)(z) =

z +
∑

∞

k=2 akbkz
k, where f (z) = z +

∑
∞

k=2 akz
k and g(z) = z +

∑
∞

k=2 bkz
k for z ∈ D. For details about these convolution

techniques and the corresponding properties related to the class S, we refer the interested reader to [25,32].
Among the results available in the literature regarding the univalence of σ β

n (z), the following result due to Lewis [33] is
the most general one.

Lemma 4.1 ([33]). For β ≥ 1 and n ∈ N we have σ
β
n (z) ∈ K .

By the convolution property of convex functions and close-to-convex functions [32], we immediately have

Corollary 4.1. For β ≥ 1, n ∈ N and f ∈ C we have σ
β
n (z, f ) ∈ K .

In [34], the following result is established which describes the convexity of Cesàro means.

Lemma 4.2 ([34]). Let β ≥ α > 1, f ∈ C(3−α)/2. Then for all n ∈ N:

n + β

n
σ β
n (z, f ) ∈ C(3−α)/2.

The corresponding result holds if C(3−α)/2 is replaced by S∗

(3−α)/2 or K(3−α)/2.

The following result is immediate.

Corollary 4.2. Let β ≥ 3, f ∈ C/S∗/K . Then for all n ∈ N:

n + β

n
σ β
n (z, f ) ∈ C/S∗/K.

Note that, n+β

n σ
β
n (z, f ) has the representation

n + β

n
σ β
n (z, f ) = zF(1, −n; −n − β; z) ∗ f (z)

where F(a, b; c; z) :=2 F1(a, b; c; z) is the well-known Gaussian hypergeometric function. We refer the interested reader
to [35,36] for background information on hypergeometric functions. The geometric properties such as univalency,
close-to-convexity, starlikeness and convexity of F(a, b; c; z) and zF(a, b; c; z) are interesting questions at present formany
researchers. For example, see [28] and references therein. Hence in this section, we are mainly interested in the following
problems.
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Problem 4.1. Is it possible that f (z) ∉ K (S∗), but n+β

n σ
β
n (z, f ) ∈ K (S∗)?

Problem 4.2. Under what condition (s) Corollary 4.2 is true for some β < 3?

Theorem 4.1. Let {ak}∞k=1 be a sequence of positive real numbers such that a1 = 1 and (n − 1 + β)a1 ≥ 2(n − 1)a2, n ∈ N.
Suppose that, for 1 ≤ γ < 2 and 0 ≤ α ≤

6
γ+4 ,

1. (2 − γα)(n − 2 + β)a2 ≥ 2γ (n − 2)3a3 and
2. k(k − 1 + α − γ )(n − k + β)ak ≥ (k − 1 + α)(k + 1)(n − k)ak+1, ∀k ≥ 3.

Then, n+β

n σ
β
n (z, f ) is close-to-convex with respect to both the starlike functions z and z/(1 − z), where f (z) = z +

∑
∞

k=2 akz
k.

Further that, for the same condition, n+β

n σ
β
n (z, f ) is starlike univalent.

Proof. Let

gn(z) =
n + β

n
σ β
n (z, f ) = z +

n−
k=2

n + β

n
Aβ

n−k

Aβ
n

akzk. (4.3)

Now, for 0 ≤ r < 1 and 0 ≤ θ ≤ 2π ,

Re g ′

n(z) =
b0
2

+

n−1−
k=1

rkbk cos kθ and Im g ′

n(z) =

n−1−
k=1

rkbk sin kθ,

where, b0 = 2 and for all k ≥ 1,

bk =
n + β

n
Aβ

n−k−1

Aβ
n

(k + 1)ak+1 H⇒ bk+1 =
(n − k − 1)

(n − k − 1 + β)

(k + 2)ak+2

(k + 1)ak+1
bk.

For a given α, a straightforward computation gives

(2 + α)−γ
=

2 − αγ

2(γ+1)
+

(γ , 2)α2

2(γ+3)

[
1 −

1
6
(2 + γ )α

]
+

(γ , 4)α4

3.2(γ+7)

[
1 −

1
10

(4 + γ )α

]
+

(γ , 6)α6

45 · 2(γ+10)

[
1 −

1
14

(6 + γ )α

]
+ · · ·

≥
1

2(γ+1)
[2 − αγ ]

and 
1 +

1
k + α

−γ

=

[
1 −

γ

k + α

]
+

(γ , 2)
2(k + α)2

[
1 −

(2 + γ )

3(k + α)

]
+

(γ , 4)
24(k + α)4

[
1 −

(4 + γ )

5(k + α)

]
+

(γ , 6)
720(k + α)6

[
1 −

(6 + γ )

7(k + α)

]
+ · · ·

≥

[
1 −

γ

k + α

]
, ∀k ≥ 2.

Hence,

1
(2 + α)γ

b1 − b2 ≥
1

2(γ+1)
[2 − αγ ]b1 − b2

=
b1

2(γ+1)

[
(2 − αγ ) − 2γ (n − 2)

(n − 2 + β)

3a3
a2

]
≥ 0.

Similarly, for all k ≥ 3,

(k + α)γ

(k + 1 + α)γ
bk − bk+1 ≥

[
1 −

γ

k + α

]
bk − bk+1

=
bk−1

k − 1 + α

[
(k − 1 + α − γ ) − (k − 1 + α)

(n − k)(k + 1)ak+1

(n − k + β)kak

]
≥ 0.
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Therefore, {bk}n−1
k=0 satisfies the hypothesis of Theorem2.1. This clearlymeans that, from theminimumprinciple for harmonic

functions,

Re g ′

n(z) > 0.

Similarly, we have either

Im g ′

n(z) ≡ 0 in − 1 < z = x + i0 < 1
or Im g ′

n(z) > 0 in D ∩ {z : Im z > 0}.

The first case implies gn(z) = z, and hence the conclusion. For the second case, using the reflection principle, we have

Im g ′

n(z) < 0 in D ∩ {z : Im z < 0}.

Now gn(z) is close-to-convex with respect to z, follows from Re g ′
n(z) > 0 in D. On the other hand,

Re (1 − z)g ′

n(z) = Re (1 − z)Re g ′

n(z) + Im zIm g ′

n(z) > 0

implies that gn(z) is close-to-convex with respect to the starlike function z/(1 − z). By virtue of Theorem 3.1 (with µ = 0),
it is easy to conclude that gn(z) is starlike and this completes the proof. �

Example 4.1. Let 1 ≤ γ < 2, 0 ≤ α ≤
6

γ+4 and

β ≥ max
n≥1


0, (n − 2)


2γ

2 − αγ
− 1


,

γ (n − 3)
2 + α − γ


.

Then n+β

n σ
β
n (z, − log(1−z)) is close-to-convexwith respect to z and z/(1−z). Under the same conditions, it is also starlike

univalent.

Remark 4.1. It is well known that f (z) = − log(1 − z) is close-to-convex with respect to starlike function z/(1 − z). Now
taking α = 0, γ = 1 in Example 4.1, we can say that for 1 ≤ n ≤ 5 and β ≥ β ′, where 0 ≤ β ′ < 3,

n + β

n
σ β
n (z, − log(1 − z))

is close-to-convex with respect to the starlike function z/(1 − z). Note that for this particular f and 1 ≤ n ≤ 5, the same
conclusion cannot be obtained by Corollary 4.2. But we have no information for other values of f in general. On the other
hand, for n ≥ 6, the order of Cesàro mean of f (z) = − log(1 − z) given in Corollary 4.2 is better.

The following two examples will provide a partial answer to the Problem 4.1.

Example 4.2. For 1 ≤ γ < 2 and 0 ≤ α ≤
6

γ+4 , let

β ≥ max
n≥1


3(n − 1), (n − 2)


2γ

2 − αγ
− 1


,

γ (n − 3)
2 + α − γ


.

Consider the function

f (z) = − log(1 − z) +
3
2
z2 = z + 2z2 +

∞−
k=3

zk

k
.

Clearly, f ′(z) =
1

1−z + 3z and (1 − z)f ′(z) = 1 + 3z(1 − z). By easy computations, we have

(Re f ′(z))z=−2/3 < 0, and (Re (1 − z)f ′(z))z=−2/3 < 0.

Hence f (z) is not close-to-convex with respect to the starlike functions z and z/(1 − z), z ∈ D. In fact, f (z) is not even
univalent inD as f ′(z) = 0 at z =

3−
√
21

6 ∈ D. But,with givenβ , the coefficient of f (z) satisfies the hypothesis of Theorem4.1.
Hence n+β

n σ
β
n (z, − log(1 − z) +

3
2 z

2) is close-to-convex with respect to z and z/(1 − z). It is also starlike univalent.

Example 4.3. For 1 ≤ γ < 2 and 0 ≤ α ≤
6

γ+4 ,

n + β

n
σ β
n


z, − log(1 − z) +

1
2
z4


is close-to-convex with respect to z and z/(1 − z) z ∈ D, where

β ≥ max
n≥1


1, (n − 2)


2γ+1

2 − αγ
− 1


, (n − 3)


3(2 + α)

2 + α − γ
− 1


, (n − 4)


(3 + α)

3(3 + α − γ )
− 1


,

γ (n − 5)
4 + α − γ


.
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It is also starlike univalent.
Let f (z) = − log(1 − z) +

1
2 z

4
= z +

1
2 z

2
+

1
3 z

3
+

3
4 z

4
+
∑

∞

k=5
zk
k , z ∈ D.

Clearly, f ′(z) =
1

1−z + 2z3 and (1 − z)f ′(z) = 1 + 2z3(1 − z). By easy computations, we have

(Re f ′(z))z=−2/3 < 0 and (Re (1 − z)f ′(z))z=−3/4 < 0.

Hence f (z) is not close-to-convex with respect to both the starlike functions z and z/(1 − z), z ∈ D. But with the given β ,
the coefficient of f (z) satisfies the hypothesis of Theorem 4.1. Hence

n + β

n
σ β
n


z, − log(1 − z) +

1
2
z4


is close-to-convex with respect to z and z/(1 − z). It is also starlike univalent.

Theorem 4.2. Let {ak}∞k=1 be a sequence of positive real numbers with a1 = 1 and satisfy the hypothesis of Theorem 4.1. Then
n+β

n σ
β
n (z, f ) ∈ R(µ1), where

µ1 ≤ 1 −
2(n − 1)a2
n − 1 + β

.

Proof. Let for 0 ≤ r < 1 and 0 ≤ θ ≤ 2π ,

Re
g ′
n(z) − µ1

1 − µ1
=

b0
2

+

∞−
k=1

rkbk cos kθ,

where b0 = 2 and bk =
n+β

n(1−µ1)

Aβ
n−k−1

Aβ
n

(k + 1)ak+1, ∀k ≥ 1. Now

µ1 ≤ 1 −
2(n − 1)a2
n − 1 + β

H⇒ b0 ≥ 2b1.

We note that,

bk+1 =
(n − k − 1)

(n − k − 1 + β)

(k + 2)ak+2

(k + 1)ak+1
bk, ∀k ≥ 1.

Using this, we obtain the remaining part of the proof, similar to the proof of Theorem 4.1. We omit details. Hence, by the
virtue of Theorem 2.1, we have Re g ′

n(z)−µ1
1−µ1

> 0 H⇒ Re g ′
n(z) > µ1. �

Theorem 4.3. Let {ak}∞k=1 be sequence of positive real numbers such that a1 = 1. If, for 1 ≤ γ < 2 and 0 ≤ α ≤
6

γ+4 ,

1. (2 − γ )(n − 1 + β)a1 ≥ (3 − γ )(n − 1)a2,
2. (2 − αγ )(n − 3 + β)(3 − γ )a2 ≥ 2γ+1(n − 3)(4 − γ )a3, and
3. (k + α − γ )(n − k + β)(k + 1 − γ )ak ≥ (k + α)(n − k)(k + 2 − γ )ak+1, ∀k ≥ 3,

then, n+β

n σ
β
n (z, f ) ∈ S∗(γ − 1).

Proof.

gn(z) =
n + β

n
σ β
n (z, f ) = z +

n−
k=2

dkzk, (4.4)

where,

d1 = 0, and dk =
n + β

n
Aβ

n−k

Aβ
n

ak, k ≥ 2.

It is enough to prove that under the given hypothesis, {dk} satisfies the conditions of Theorem 3.2. By simple calculation, we
have (2 − γ )d1 ≥ (3 − γ )d2. Now

1
(2 + α)γ+1

(3 − γ )d2 − (4 − γ )d3 ≥
(2 − αγ )(3 − γ )

2γ+1
d2 − (4 − γ )d3 =

d2
2γ+1

[
(2 − αγ )(3 − γ ) − (4 − γ )

d3
d2

]
=

d2
2γ+1

[
(2 − αγ )(3 − γ )(n − 3 + β) − (4 − γ )(n − 3)

a3
a2

]
≥ 0.
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Again, for k ≥ 3, by a simple calculation using the given hypothesis of the theorem, we have

(k + 2 − γ )dk+1 ≤
(k − 1 + α)γ

(k + α)γ
(k + 1 − γ )dk, for k ≥ 3.

Hence, by Theorem 3.2, the result follows and the proof is complete. �

Note that for γ close to 2, the hypothesis of the above theorem restricts the coefficients and hence the coefficients {ak} are
too small. Numerical experiments suggest that, for 1 ≤ γ ≤ 3/2, the coefficients {ak} are comparatively bigger and can
have further applications.

Theorem 4.4. Let {ak}∞k=1 be a sequence of positive real number such that a1 = 1. Suppose that, for 1 ≤ γ < 2 and
0 ≤ α ≤

6
γ+4 ,

1. (n − 1 + β)a1 ≥ 2γ+2(n − 1)a2,
2. k(k + α − γ )(n − k + β)ak ≥ (k + α)(n − k)(k + 1)ak+1, ∀k ≥ 2.

Then, n+β

n σ
β
n (z, f ) is close-to-convex with respect to the starlike function z

1−z2
.

Proof. Consider gn(z) given in (4.3). Then for 0 ≤ r < 1 and 0 ≤ θ ≤ 2π , we have

Im zg ′

n(z) =

n−
k=1

rkbk sin kθ (4.5)

where,

bk =
n + β

n
Aβ

n−k

Aβ
n

kak H⇒ bk+1 =
n − k

n − k + β

(k + 1)ak+1

kak
bk; ∀k ≥ 1.

Now,

1
(2 + α)γ

b1 − b2 ≥
1

2(γ+1)
[2 − αγ ]b1 − b2 =

b1
2(γ+1)

[
(2 − αγ ) − 2(γ+1) b2

b1

]
=

b1
2(γ+1)

[
(2 − αγ ) − 2(γ+2) (n − 1)

(n − 1 + β)

2a2
a1

]
≥ 0.

Similarly, for k ≥ 2,

(k + α)γ

(k + 1 + α)γ
bk − bk+1 ≥

[
1 −

γ

k + α

]
bk − bk+1 =

bk
k + α

[
(k + α − γ ) − (k + α)

bk+1

bk

]
=

bk−1

k + α

[
(k + α − γ ) − (k + α)

(n − k)
(n − k + β)

(k + 1)ak+1

kak

]
,

which is non-negative. Now by the same argument as Theorem 4.1, zg ′
n(z) is typically real in D. Hence by Lemma 3.1, we

have the result. �

Remark 4.2. Since, for β = 0, n+β

n σ
β
n (z, f ) = fn(z), and as the class of all close-to-convex functions with respect to a

particular starlike function is a Normal family, f (z) = limn→∞ fn(z) is also close-to-convex with respect to the same starlike
function. By the same argument f (z) is also starlike when fn(z) is starlike.

Note that, with reference to Remark 3.1, we have no result for the close-to-convexity of n+β

n σ
β
n (z, f ) with respect to the

starlike functions z/(1 − z)2 and z/(1 − z + z2). Hence it will be interesting if one can find results in this direction. In
particular, with respect to the starlike function z/(1− z + z2), there are not many results on close-to-convexity of functions
f ∈ A in the literature.
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