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Abstract

Fuzzy cognitive map is a soft computing technique for modeling systems, which

combines synergistically the theories of neural networks and fuzzy logic. Developing of

fuzzy cognitive map (FCM) relies on human experience and knowledge, but still exhibits

weaknesses in utilization of learning methods. The critical dependence on experts and the

potential uncontrollable convergence to undesired steady-states are important deficien-

cies to manage FCMs. Overcoming these deficiencies will improve the efficiency and

robustness of the FCM methodology. Learning and convergence algorithms constitute

the mean to improve these characteristics of FCMs, by modifying the values of cause–

effect weights among concepts. In this paper a new learning algorithm that alleviates the

problem of the potential convergence to a steady-state, named Active Hebbian Learning

(AHL) is presented, validated and implemented. This proposed learning procedure is a

promising approach for exploiting experts’ involvement with their subjective reasoning

and at the same time improving the effectiveness of the FCM operation mode and thus

it broadens the applicability of FCMs modeling for complex systems.
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1. Introduction

Fuzzy cognitive map (FCM) is a soft computing technique, which is capable

of dealing with complex systems in situations exactly as a human does using a

reasoning process that can include uncertain and ambiguity descriptions. FCM

is a promising modeling method for describing particular domains showing the

concepts (variables) and the relationships between them while it encompasses

advantageous features. The most pronounced features for FCMs are the

flexibility in system design, model and control; the comprehensive operation

and the abstractive representation of behavior for complex systems. These
advantageous modeling features of FCMs, encourage us to investigate their

structure, attempting to broaden the FCM functionality and applicability in

any problem and system.

FCMs were introduced by Kosko to represent the causal relationship be-

tween concepts and analyse inference patterns [1,2]. FCMs represent knowledge

in a symbolic manner and they model systems and behaviour relating states,

variables, processes, events, values and inputs according to their cause effect

relationship. Compared to either expert systems or neural networks, FCMs
have several desirable properties such as: FCMs are relatively easily used for

representing structured knowledge, and permitting feedback relationships and/

or hidden interrelationships. For their inference FCMs utilize IF/THEN rules

but finally their inference is computed by simple numerical matrix operation [3].

FCMs are appropriate to represent the knowledge and experience which has

been accumulated on the operation of a system. FCM are built by experts with

an interactive procedure of knowledge acquisition [4]. FCMs have gained con-

siderable research interest and have been applied in different scientific areas such
as biomedical engineering [5–7], manufacturing and supervisory systems [8,10],

organization behavior [9], political science [11], decision making for geographic

information systems [12,13]. However, FCMs had initially some deficiencies that

sometimes restricted their application, they are also inefficient in adapting ex-

perts’ knowledge via optimization and learning techniques which are crucial in

many applications. Thus the FCM methodology needs enhancement, and

improvement by eliminating its weaknesses such as the dependence on experts’

intervention for the FCM design. Following this direction, learning algorithms
have been investigated in order to improve the FCM capabilities [14–19].

This research work proposes an advanced learning algorithm based on the

unsupervised Hebbian learning rule to improve the FCM structure, to eliminate

the deficiencies in the usage of FCMand to enhance the flexibility and dynamical

behavior of the FCM model. The proposed learning algorithm is a modified

version of the general unsupervised Hebbian learning algorithm for neural

networks [20]. We called this algorithm ‘‘Active Hebbian Learning’’ (AHL),

because it introduces the determination of the sequence of activation concepts.
Furthermore it is based on the well-known Hebbian principles for neural
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adaptation. This training algorithm increases the robustness of FCM, and it is

accompanied with the utilization of the acquired knowledge of the given system.
The updated FCM structure, after training with AHL, guarantees the successful

implementation of the proposed modeling procedure for real case problems.

The outline of this paper is as follows. Section 2 presents an overview of

FCM modeling technique, how FCMs are developed and how they model a

system. Section 3 discusses different learning methods of neural networks

concentrating in unsupervised Hebbian learning methods and especially pre-

senting the requirements of training for FCMs. Section 4 introduces the Active

Hebbian Learning algorithm and it presents the mathematical formulation and
justification of the algorithm for FCMs. Section 5 describes a methodology

how to implement the AHL algorithm for training FCMs. In Section 6, the

proposed AHL algorithm is applied to train the FCM model of a process

control problem, while conclusions are provided in Section 7.

2. Fuzzy cognitive maps

Axelord [11] for the first time used cognitive maps as a formal way to

represent social scientific knowledge and to model decision-making in social
and political systems. Then, Kosko [1,2] introduced fuzzy cognitive maps. An

FCM illustrates the model of a system using a graph of concepts and showing

the cause and effect among concepts (Fig. 1). An FCM describes the behavior

of a system in terms of concepts; each concept represents a state, variable or a

characteristic of the system. Values of concepts (nodes) change over time, and

take values in the interval ½0; 1�. The causal links between nodes are represented

by directed weighted edges that illustrate how much one concept influences the

interconnected concepts, and the causal weights of the interconnections belong
in the interval ½�1; 1�.

FCM graphical illustration reflects which concept influences other concepts,

showing the interconnections between concepts and facilitates suggestions in

Fig. 1. A simple fuzzy cognitive map.
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the reconstruction of the FCM, as the adding or deleting of an interconnection

or a concept [21]. If the sign of the weight indicates positive causality wij > 0
between concept Ci and concept Cj, then an increase in the value of concept Ci

will cause an increase in the value of concept Cj and a decrease in the value of

concept Ci will cause a decrease in the value of concept Cj. When there is

negative causality between two concepts, wij < 0, then an increase in the value

of the first concept Ci causes a decrease in the value of the second concept and a

decrease of concept Ci causes an increase in value of Cj. When there is no

relationship between two concepts, then wij ¼ 0. The strength of the weight wij

indicates the degree of influence between concept Ci and concept Cj.
Generally, the value of each concept at every simulation step is calculated,

computing the influence of the interconnected concepts to the specific concept,

[8], by applying the following calculation rule:

AiðtÞ ¼ f Aiðt � 1Þ þ
Xn
j¼1
j 6¼1

Ajðt � 1Þ � wji

0
BB@

1
CCA ð1Þ

where AiðtÞ is the value of concept Ci at time t, Ajðt � 1Þ is the value of concept
Cj at time t � 1, wji is the weight of the interconnection from concept Cj to

concept Ci and f is the sigmoid function.

The sigmoid function, f , belongs to the family of squeezing functions, and
usually the following function is used:

f ðxÞ ¼ 1

1þ expð�kxÞ ð2Þ

This is the unipolar sigmoid function, where k > 0 determines the steepness of

the continuous function f ðxÞ.
All the values of concepts and weights on the FCM have fuzzy nature

representing issues, states and variables using linguistic notion. These fuzzy

variables need to be defuzzified in order to use mathematical functions and

calculate the corresponding results. Thus, values of concepts belong to the
interval ½0; 1� and values of weights to the interval ½�1; 1�. Using the sigmoid

function the calculated values of concepts after each simulation step will belong

to the interval ½0; 1� where concepts take values.

Experts design and develop the fuzzy graph structure of the FCM, con-

sisting of concept-nodes that represent the key principles-factors-functions of

the system operation. Then, they determine the structure and the weighted

interconnections of the FCM using fuzzy conditional statements [22]. More

specifically, experts are asked to describe the relationships between concepts
and they use IF–THEN rules to justify their cause and effect suggestions

among concepts, inferring a linguistic weight for each interconnection. Every

expert describes each interconnection with a fuzzy rule; the inference of the rule
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is a linguistic variable, which describes the relationship between the two con-

cepts and determines the grade of causality between the two concepts. Then the
inferred fuzzy weights, are aggregated, as they are suggested by experts, and an

overall linguistic weight is produced, which with the defuzzification method of

Center of Area (CoA) [23], is transformed to a numerical weight wji, belonging

to the interval ½�1; 1� and representing the overall suggestion of experts. Thus

an initial matrix winitial ¼ ½wji�, i; j ¼ 1; . . . ;N , with wii ¼ 0, i ¼ 1; . . . ;N , is

obtained, that gathers the weights of all the interconnections of the FCM.

3. Learning methods

Learning in Artificial Neural Networks (ANNs), is the process of searching
a multidimensional parameter space for a Neural Network (NN) state that

optimizes a predefined criterion function J . Learning algorithms can be

supervised, reinforcement or unsupervised and the function J is commonly

referred to an error function, or a cost function, or an objective function. In

fact, most of the learning algorithms have well-defined analytical criterion

functions [24–26]. Learning rules implement local search technique (gradient

descent) to obtain weight vector solutions, which optimize the associated cri-

terion function. Therefore, it is the criterion function that mainly determines
the implementation of the learning rule; there are different minimization

methods that have been used for training feed forward neural networks (NNs)

[27].

A learning algorithm is a mathematical method that determines the weights

and outlines the convergence for an ANN to reach the steady state of its

parameters successfully. Typically one starts with an error function, which is

expressed in terms of the weights and the values of the output nodes. The

learning objective is to reach a minimum error that corresponds to a set of
weights for the NN. When the error is zero or conveniently small, then the

steady state for the NN and the weights is reached. The steady-state weights

define the learning process and the ANN model [28]. Proofs of convergence for

these algorithms, and presentation of the different methods can be found in

[29–31].

The general weight-learning rule, which is shown in Fig. 2, has the following

general form:

Dwi ¼ q � rðwi; xÞ � x ð3Þ

where q is a positive number called the learning constant which determines the

rate of learning, r is the learning signal which is in general a function of wi and

x is the input signal. This learning form indicates that the increment of the
weight vector wi (the weights of all the other nodes towards node i that means
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the ith column of the weight matrix w) is proportional to the product of the
learning signal r and the input x.

One of the main algorithms used in unsupervised learning is the Hebbian

learning algorithm [30]. The simplest networks consist of a set of input vectors

x and outputs y connected by a weight matrix, w, where wij connects xi to yj.
Then the problem in unsupervised learning is to find the values of the weights,

w, which will minimize the error function. During the training session, the NN

receives as input many different excitations, or input patterns, and it arbitrarily

organizes the patterns into categories. The Hebb’s learning law is usually
implemented by

wijðk þ 1Þ ¼ wijðkÞ þ q � yj � xi ð4Þ

The weight-learning rule requires the definition and calculation of a criterion

function. The objective is the criterion function to reach a minimum error that
corresponds to a set of weights of NN. The steady-state weights define the

learning process and the NN model. Thus, the minimization of an objective

function is the ultimate goal [32–34].

3.1. Learning methods for FCMs

Learning of FCM involves updating the strengths of causal links. A learning

strategy is to improve FCMs by fine-tuning its initial causal link or edge

strengths applying training algorithms similar to that of artificial neural net-

works. Up-to-date, there have been proposed some FCM learning algorithms

[2,15–17,19].
Kosko has initially proposed the Differential Hebbian Learning (DHL), as a

form of unsupervised learning, but without any mathematical formulation and

implementation in real problems [1,2]. The Balanced differential learning

algorithm for FCM training, based exactly on the DHL, has also investi-

Fig. 2. The general unsupervised weight-learning rule for neural networks.
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gated [14]. This algorithm is a modified version of the DHL and seems to do

better in learning patterns and in modeling a given domain than the classical
approach. But till today no concrete procedure exist for applying DHL and

balanced differential learning algorithm in FCMs. Another proposed approach

for FCMs training is the Adaptive Random FCMs based on the theoretical

aspects of Random Neural Networks [16]. This algorithm starts from an initial

state and an initial weight matrix of the FCM and adapt the weights in order to

compute a weight matrix that leads the FCM to a desired steady-state.

Recently, another unsupervised learning algorithm, the Nonlinear Hebbian

Learning (NHL), have been investigated to train FCMs [17]. This algorithm is
based on the nonlinear Hebbian-type learning rule and updates only the ini-

tially suggested (non-zero) weights of the FCM. These weights are updating

synchronously at each iteration step till the termination of the algorithm. The

calculated values of weights keep their initial signs and directions, as suggested

by experts. All the other weights remain zero and no new interconnections are

assigned.

In addition to the unsupervised learning-based techniques for FCMs,

methods based on Evolutionary Computation techniques have been investi-
gated. Particle Swarm Optimization (PSO) method has been proposed and

used for first time for FCM learning giving very promising results [18]. PSO

algorithms are a part of swarm intelligence, which is a rapidly growing area of

artificial intelligence. This method provides a search procedure, which opti-

mizes a problem-depended fitness function uð Þ, by maintaining and evolving a

swarm of candidate solutions. Using this learning approach a number of

appropriate weight matrices can be derived leading the system to desired

convergence regions. Furthermore, Evolution Strategies have been used for the
computation of the desired output concepts’ values and system’s configuration

[19]. Exactly the same technique has been used in neural networks training; it

does not take into consideration the initial structure and experts’ knowledge

for the FCM model, but uses data sets determining input and output concepts

in order to define the cause-effect relationships satisfied the fitness function.

More investigation is needed for the evolutionary computation methods.

After this discussion it is clear that a formal methodology and a learning

algorithm suitable for FCMs convergence has not yet proposed and accepted
widely.

4. The Active Hebbian Learning algorithm

Here, an unsupervised learning algorithm to train FCMs is proposed and
developed, namely Active Hebbian Learning (AHL) algorithm, which intro-

duces the determination of the sequence of activation concepts. When the

experts develop the FCM they determine the sequence of activation, the steps
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of activation and the cycle of simulation. At every simulation step, one (or

more) concept(s) becomes Activation concept that triggers the other inter-
connecting concepts, which in turn, at the next simulation step, become

Activation concept. When all the concepts have become Activation concepts,

according to the sequence of activation the simulation cycle has closed and a

new one starts.

A simulation cycle is consisted of steps, at each simulation step one or more

concepts are the Activation concepts that influence the interconnected concepts

and so on till the termination of the sequence of activation that close the cycle.

This concept, at the next iteration step, becomes Activated concept. For
example, let us say the jth concept Cj, is the triggering concept that influ-

ences concept Ci, as shown in Fig. 3. The concept Cj is declared the Activa-

tion concept, with the value Aact
j and it triggers the interconnected

corresponding concept Ci, which is the Activated concept. At next iteration

step, the concept Ci influence the other interconnected concepts Cl and so on. It

is assumed that there is asynchronous stimulation mode due to which the

concept Ci is becoming the Activation concept that triggers Cl and the other

interconnected concepts and there is a sequence of activation steps. During
every activation step the weight wji of the causal interconnection of the related

concepts is updated and the modified weight wðkÞ
ji is derived for each iteration

step k.
In addition to the determination of sequence of activation concepts; a lim-

ited number of concepts are selected (by experts) as outputs for each specific

problem and these concepts are defined as the Activation Decision Concepts

Fig. 3. The proposed activation weight-learning process for FCMs.
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(ADCs). These concepts are in the center of interest; they stand for the main

factors and characteristics of the system, known as outputs, whose values we
want to estimate and they represent the final state of the system.

The distinction of FCM concepts as inputs, intermediate or outputs depends

on the modeled system and the focus of experts. In general, all the concepts of

FCM for the given system may be inputs which take their values externally,

intermediates which are influenced by other concepts and influence the outputs

concepts. However, the training phase is conducted in selecting a limited

number of concepts as outputs (those we want to estimate their values). The

expert’s intervention is the only way to address this definition. The design of
this learning algorithm extracts the valuable knowledge of experts and can

increase the operation of FCMs and implementation in real case problems just

by analyzing previous information and experts’ knowledge about the given

systems.

Fig. 3 illustrates an FCM-model, consisting of n-nodes, with the following

parameters: Ci is the ith concept with value AiðkÞ, 16 i6 n; wji is the weight

describing the influence from Cj to Ci, and its value is modified using the AHL

rule; Aact
j ðkÞ is the activation value of concept Cj, which triggers the intercon-

nected concepts, behaving as Activation concept; c is the weight decay

parameter; g is the learning rate parameter, depending on simulation cycle c
and AiðkÞ is the value of Activated concept Ci.

The value Aiðk þ 1Þ of the Activated concept Ci, at iteration step k þ 1, is

calculated, computing the influence of other Activation concepts with values

Aact
j to the specific concept Ci due to modified weights wjiðkÞ at iteration step k,

through the mathematical equation

Aiðk þ 1Þ ¼ f AiðkÞ
 

þ
X
l

Aact
l ðkÞ � wliðkÞ

!
ð5Þ

where Al are the values of Activation concepts Cl that influence the concept Ci,

and wliðkÞ are the corresponding weights that describe the influence from Cl to
Ci. For example, in Fig. 3, the l takes the numbers 1, 2 and j, and A1, A2 and Aj

are the values of Activation concepts C1, C2 and Cj, respectively, that influence

Ci in this simulation step. Thus the value of Activated concept Ci is calculated

using the following equation:

Aiðk þ 1Þ ¼ f ðAiðkÞ þ Aact
1 ðkÞ � w1iðkÞ þ Aact

2 ðkÞ � w2iðkÞ
þ Aact

j ðkÞ � wjiðkÞÞ ð6Þ

The AHL algorithm relates the values of concepts and values of weights in the
FCM model. We introduce a mathematical formalism for incorporating the

learning rule, with the learning parameters and the introduction of the

sequence of activation.
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The proposed rule has the general mathematical form:

Dwji ¼ g � rðwji;Aact
j Þ � Ai � c � wji ð7Þ

where the coefficients g, c are positive learning factors called learning para-

meters. The function rðwji;Aact
j Þ is analogous to the learning signal function

r ¼ rðwi; xÞ in the case of general weight-learning rule [23].

In this algorithm, we propose the learning activation function r to be equal

to the Activation value Aact
j of concept Cj that is considered as the Activation

concept influencing the other concepts of FCM

r ¼ rðwji;Aact
j Þ ¼ Aact

j ð8Þ

From the learning equation (8), substituting the learning function r of Eq. (7),
the learning rule for adjusting the FCM model, for discrete time dynamical

type is

Dwji ¼ g � Aact
j ðk � 1Þ � Aiðk � 1Þ � c � wjiðk � 1Þ ð9Þ

where the g is the learning rate parameter and c is the weight decay parameter.

The role and values of parameters g and c will be explained later.

This simple rule states that if Aðk�1Þ
i is the value of concept Ci at iteration

k � 1, and Aact
j is the value of the Activation concept Cj triggering the concept

Ci at iteration step k � 1, the corresponding weight from concept Cj towards

the concept Ci increases proportional to their product multiplied with the
learning rate parameter minus the weight decay.

Solving Eq. (9), the training weight rule takes the following form:

wjiðkÞ ¼ ð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � Aiðk � 1Þ ð10Þ

In order to prevent indefinitely growing of weight values, we suggest nor-

malization of weight at value 1, kwk ¼ 1, at each step update:

wjiðkÞ ¼
ð1� cÞ � wjiðk � 1Þ þ g � Aact

j ðk � 1Þ � Aiðk � 1Þ"P
j¼1
j 6¼i

ðð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � Aiðk � 1ÞÞ2

#1=2

ð11Þ

where the addition in the denominator covers just all the synapses connected to

the Activated concept Ci.

When the learning rate parameter g is sufficiently small, then the second and
higher-order terms can be neglected and the denominator, (considering the ith
row of the weight matrix w constant and calculating the weights belonging

to jth column of the weight matrix w), becomes
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XN
j¼1
j 6¼i

ðð1� cÞ � wjiðk � 1Þ þ g � Aact
j � Aiðk � 1ÞÞ2

’
XN
j¼1

ð1
�

� cÞ2 � w2
jiðk � 1Þ þ 2g � ð1� cÞ � wjiðk � 1Þ � Aact

j � Aiðk � 1Þ
�

’ ð1� cÞ2 þ
XN
j¼1

ð2g � ð1� cÞ � Aact
j ðk � 1Þ � Aiðk � 1Þ � wjiðk � 1ÞÞ

¼ ð1� cÞ2 þ 2g � ð1� cÞ � ðAact
j ðk � 1ÞÞ2

¼ ð1� cÞ2 1

�
þ 2g
ð1� cÞ � ðA

act
j ðk � 1ÞÞ2

�

where N is the number of concepts.
The parameter c is also a small weight decay parameter (it is defined in

Section 4.3) and thus it can be considered that ð1� cÞ2 ’ 1. Continuing the

approximation, one gets:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g

ð1�cÞ � ðAact
j ðk � 1ÞÞ2

q ’ 1

1þ g
ð1�cÞ � ðAact

j ðk � 1ÞÞ2

’ 1� g
ð1� cÞ � ðA

act
j ðk � 1ÞÞ2 ð12Þ

So the weight updating rule in Eq. (11), after normalization, using Eq. (12),

becomes

wjiðkÞ ¼ ½ð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � Aiðk � 1Þ�

� 1

�
� g
ð1� cÞ � ðA

act
j ðk � 1ÞÞ2

�
) ð13Þ

wjiðkÞ ¼ ð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � Aiðk � 1Þ

� g � wjiðk � 1Þ � ðAact
j ðk � 1ÞÞ2 ð14Þ

Thus the weight-training rule can––without much loss of precision–– be sim-

plified to

wjiðkÞ ¼ ð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � ½Aiðk � 1Þ

� wjiðk � 1Þ � ðAact
j ðk � 1ÞÞ� ð15Þ

The first two terms ð1� cÞ � wjiðk � 1Þ þ g � Aact
j ðk � 1Þ � Aiðk � 1Þ in Eq. (14)

represent the usual Hebbian modification of weights wji. They account for

the self-amplification effect responsible for the self-organizing nature of the

E.I. Papageorgiou et al. / Internat. J. Approx. Reason. 37 (2004) 219–249 229



described infrastructure. The last term �wjiðk � 1Þ � ðAact
j ðk � 1ÞÞ2, prevents an

unlimited growth of wji and is responsible for stabilization.
If we consider a hypothetical concept C0

i with the A0
iðk � 1Þ where:

A0
iðk � 1Þ ¼ Aiðk � 1Þ � wjiðk � 1Þ � Aact

j ðk � 1Þ ð16Þ

then Eq. (15) is in direct correspondence to the classical Hebbian learning of

Eq. (4).

The special form of decay of the previous equation (15) stops the weights

from growing too large and helps the convergence of the learning process [27].

Thus, Eq. (1) that calculates the value of each concept of FCM is updating,

taking the form of Eq. (5) where the value of weight wjiðkÞ is calculated using

Eq. (15).

4.1. First criterion: objective function

The proposed Active Hebbian Learning algorithm has an asynchronous

stimulation mode. Some concepts are considered as Activation and Activated

concepts in each iteration step, where the Activated concepts are stimulated by

the other interconnected Activation concepts. Also there are defined the out-

puts or Activation Decision Concepts that indicate the final states of the cor-
responding concepts after the applied stimulations.

The proposed learning algorithm of FCMs, is to some extent similar to

correlation learning networks and Hebbian learning. A criterion function J is

proposed for the AHL, which examines the values of outputs concepts that are

the values of Activation Concepts we are interested about. We propose the

criterion function J

J ¼ kADCi � Amin
i k2 þ kADCi � Amax

i k2 ð17Þ
where Amin

i is the minimum target value of the concept ADCi and Amax
i is the

corresponding maximum target value of ADCi. This type of criterion function

is appropriate for the AHL rule for FCMs. At the end of each cycle, the value

of J calculates the Euclidean distance of ADCi value from the minimum and

maximum target values of the desired ADCi, respectively. The minimization of
the criterion function J is the ultimate goal, according to which we update the

weights and determine the learning process.

If we consider the case of an FCM-model, where there are m Activation

Decision Concepts, then for the calculation of J , we take the sum of the square

differences between the m-ADCs values and the Eq. (17) takes the following

form:

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ðADCi � Amin
i Þ2 þ ðADCi � Amax

i Þ2
h is

ð18Þ
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The objective is to reach a minimum value of the criterion function J , for a set

of weights. When criterion function J is minimized the desired equilibrium
point-steady state of the FCM is reached.

4.2. Second criterion function

In addition to the previous statements, we introduce one more criterion for

the AHL algorithm of FCMs in order to terminate the algorithm after a limited

number of cycles, when the desired values for ADC(s) are reached, and so the

system converges in the steady state (or fixed point). This second criterion is

determined by the variation of the subsequent values of ADCi concept, for

simulation cycle c, yielding a value e, which has to be minimum, taking the

form:

jADCðcþ1Þ
i �ADCðcÞ

i j < e ð19Þ
where ADCi is the value of ith concept.

The term e is a tolerance level keeping the variation of values of ADC(s) as

low as possible and it is proposed equal to e ¼ 0:001, satisfying the termination

of iterative process.

Thus we proposed and developed two criteria functions for the AHL

algorithm, the first one ensures the convergence to the desired values for ADCs

with the minimization of the criterion function J . The second one ensures the
minimization of the variation of two subsequent values of Activation Decision

Concepts (ADCs). Both criterion functions are represented in Eqs. (18) and

(19), respectively, and they determine and terminate the iterative process of the

learning algorithm.

4.3. Determination of learning parameters

In Eq. (15), g and c are the learning parameters of the proposed algorithm.
The learning rate parameter g is a small positive scalar parameter that is de-

fined to decrease exponentially with simulation cycle, following Eq. (20):

gðcÞ ¼ b1 � expð�k1 � cÞ ð20Þ
Convergence of FCMs depends on the step size gðcÞ decay with time, thus gðcÞ is
selected to decrease and the rate of decrease depends on the speed of conver-

gence to the optimum solution and on the weight updating mode. The

parameters b1 and k1 are positive learning factors, which are determined using

the trial and error method [14].

The learning factor gðcÞ takes the following values that ensures convergence
of concepts values:

gðcÞ ¼ 0:02 � expð�0:2 � cÞ ð21Þ
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The weight decay coefficient c may be zero, constant or may decrease by the

number of simulation cycles c. This depends on the problem’s constraints and
the desired region. The parameter c can be selected for each specific problem to

ensure that the learning process converges in a desired steady state. If the

parameter c is selected as a decreasing function at each simulation cycle c, the
following form is proposing:

cðcÞ ¼ b2 � expð�k2 � cÞ ð22Þ
where b2 and k2 are positive constants which are determined using trial and

error experimental process. These values influence the rate of convergence to

the desired region and the termination of the algorithm.

The ‘‘learning rate’’ g determines the amount that the value of ADCi is

incremented during each simulation cycle. The weight decay c determines the
amount of the previous connection weight that is carried forward, i.e. how

much the previous time weight value affect the next calculated weight value.

Updating of weights continues until the final calculated weights no more

change or change in a negligible amount for the process. High values of

parameters g, c may cause the objective function and FCM system to oscillate.

The convergence process in desired equilibrium points is very sensitive to the

values of g and c. Thus the suggested bounds for these parameters are within

½0 0:1�. Values of learning rate parameter g greater than around 0.1 cause the
FCM to oscillate.

5. Implementation of AHL algorithm for training fuzzy cognitive maps consisting

of n-concepts

In the previous section there were presented the theoretical justification of

the proposed AHL rule, there were introduced the determination of the se-

quence of activation concepts, the Activation Decision Concepts (ADCs) and

there were introduced two objective criteria functions. Here the proposed

learning algorithm will be structured into a set of steps explaining the method
of implementing the AHL algorithm.

During the development of FCMs, experts determine the concepts of the

FCM, based on their knowledge and experience that models the behavior and

the operation of the system. They know the relevant factors, the main char-

acteristics of the system, and thus they determine the number and kind of

concepts that consist of the FCM. Then, they determine the structure and the

interconnections of the FCM using fuzzy conditional statements [8]. Also, they

determine the sequence of activation concepts, the mode of the activation
among concepts (synchronous-asynchronous) and they select the ADC(s).

The proposed training algorithm is consisted of seven steps. The third step is

consisted of n� p þ 1 sub-steps, where 16 p6 n, n is the number of concepts
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and p is the number of synchronously (at the same step) Activated concepts.

Thus, experts have to determine which of the concepts are the synchronously
Activated concepts for the same iteration step. For example, for an FCM

model consisting of six nodes, experts may determine that the three of the six

nodes are triggered at the same iteration step that being the Activated concepts;

this means that p is equal to 3, so the number of sub-steps would be

n� p þ 1 ¼ 4.

• If p ¼ n� 1, all the n-concepts are synchronously activated and from asyn-

chronous type learning we pass to synchronous,
• when p ¼ 1, all the n-concepts are activated asynchronously and the number

of sub-steps is n, equal to the number of FCM concepts.

The number of all n� p þ 1 sub-steps are considered as a recursive cycle,

declared as c-cycle.
A flowchart of the proposed learning procedure is given in the Fig. 4.

Considering an n-node FCM-model, the learning procedure using the AHL

rule is consisted of the following steps:

Step 1: Initial values for concepts vector A0 and weight matrix winitial are as-

signed. Experts determine the sequence of activation concepts and

the Activation Decision Concepts (ADCs).

Step 2: Determination of learning parameters gðcÞ and cðcÞ, and the first simu-

lation cycle starts ðc ¼ 1Þ.
Step 3: Consisting of the following sub-steps, taking into account the sequence

of activation:
Sub-step 1: The first Activation concept is Cj which triggers concept Ci,

which is the Activated concept at this step. The value of Activated con-

cept Ci is calculated for the k step by Eq. (5) using the previous (deter-

mined) activation values of the interconnected concepts and the

updated weight matrix. Notably only the weights wjiðkÞ from the Acti-

vation concept Cj to its interconnecting Activated concepts Ci are

updating, through Eq. (15) and all other weights remain unchanged

at this step.
Sub-step 2: The Activation concept Ci affects the next Activated con-

cepts Cl according to the sequence of activation. The value of step k is

increased by 1, and concept Cl is updating. Its value AðkÞ
l is calculated

from Eq. (5). At the same time only the weights wilðkÞ from the Activa-

tion conceptCi to its interconnected Activated conceptsCl are updating,

through Eq. (15) and all other weights remain unchanged at this step.

. . .
Sub-step n� p þ 1: The nth Activated concept Cn is fired due to influ-
ences from the Activation concepts Cl at this iteration step
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k ¼ n� p þ 1. This nth Activated concept Cn supposed that it is se-

lected by experts as the output concept and is defined as the Activation

Decision Concept with value ADCn.

When the cycle has closed the concept vector Aact
final is formed that

represents the new state vector of the whole system after the simulation
sub steps.

At this point, one recursive cycle is accomplished, after k ¼ n� p þ 1

substeps. The value(s) ADCðcÞ
n of the Activation Decision Concept(s) at

c-cycle is (are) used in the following steps.

Step 4: IF c < M , where M ¼ 100 cycles, the objective function J is calculated

for the c-cycle. ELSE GO TO Step 2 and redefine the parameters gðcÞ

and cðcÞ, which have to be within their initially suggested bounds in

subsection 4.3 and in order to lead the system in convergence.

Fig. 4. Flowchart of the proposed AHL procedure.
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Step 5: IF Jðc� 2Þ > Jðc� 1Þ > JðcÞ is true GO TO next step, ELSE return to

step 3, and a new cycle starts with simulation step c ¼ cþ 1 and new
value for k ¼ k þ 1.

Step 6: Examination of second criterion and calculation of the difference be-

tween values of ADCn for two subsequent recursive cycles, where the

variation of ADCn is less than the tolerance level, e.
IF Eq. (19) is false GO TO step 3.

Step 7: The two criteria are synchronously satisfied and the system converges

in equilibrium state within accepted bounds. Thus the process STOPs.

Step 8: When the learning parameters have updating for 10 times then experts
are asked to reconstruct the FCM model and the process starts from

the beginning. The new initial weight matrix which derived after recon-

struction of the FCM model, is used next in the AHL process till the

system’s convergence in equilibrium states.

This learning algorithm drives the system to converge in a desired region

values for ADC concepts. The iteration of training process stops when the two

suggested criteria are fulfilled simultaneously. The process of computing the
objective function J , and adjusting the weights is repeated until a minimum

value of J and a minimum variation of subsequent values for Activation

Decision Concepts ðADCnÞ are reached.

6. Implementation of AHL algorithm in FCM model for a process control
problem

6.1. Statement of the problem

In this section the new proposed Activation Hebbian Learning (AHL) is

implemented to train the FCM model for a process control problem. The most

important component in developing the FCM is the determination of the

concepts that best describe the system and the direction and grade of causality
between concepts. These aspects will be represented through the following

example. A part of a chemical plant is considered consisting of two tanks, three

valves, one heating element and two thermometers for each tank, as depicted

in Fig. 5.

Each tank has an inlet valve and an outlet valve. The outlet valve of the first

tank is the inlet valve of the second tank. The objective of the control system is

firstly to keep the height of liquid, in both tanks, between some limits, an upper

limit Hmax and a low limit Hmin, and secondly the temperature of the liquid in
both tanks must be kept between a maximum value Tmax and a minimum value

Tmin. The temperature of the liquid in tank 1 is regulated through a heating

element. The temperature of the liquid in tank 2 is measured through a sensor
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thermometer; when the temperature of the liquid two decreases, valve 2 needs

opening, so hot liquid comes into tank 2 from tank 1. The control objective

is to keep values of these variables in the following range of values:

H 1
min 6H 1

6H 1
max

H 2
min 6H 2

6H 2
max

T 1
min 6 T 1

6 T 1
max

T 2
min 6 T 2

6 T 2
max

ð23Þ

Fuzzy cognitive map that models and controls this system is developed and

depicted on Fig. 6. Three experts constructed the FCM and jointly determined

the concepts of the FCM [8,22]. Variables and states of the system, such as the

Fig. 6. The FCM model of the process problem.

Fig. 5. The illustration of the chemical process example.
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height of the liquid in each tank or the temperature, will be the concepts of the

FCM model, which describes the system. Then concepts are assigned for
the system’s elements that affect the variables such as the state of the valves.

The values of the concepts correspond to the real measurements of the physical

magnitude. Each concept of the FCM takes a value, which ranges in the

interval ½0; 1� and it is obtained after threshold the real measurement of the

variable or state, which each concept represent. The values of the weights will

be determined after training the FCM using AHL algorithm. The Activation

Decision Concepts (ADCs) in this problem, as experts propose them, are the

concepts: C1 of ‘‘Tank 1’’, C2 of ‘‘Tank 2’’, C6 of ‘‘Temperature 1’’ and C7 of
‘‘Temperature 2’’.

For this simple system eight concepts are proposed and they give a good

model of the system:

Concept 1. The height of the liquid in tank 1. The height of liquid is depen-

dent on state of valve 1 and valve 2.

Concept 2. The height of the liquid in tank 2. The height of liquid is depen-

dent on state of valve 2 and valve 3.

Concept 3. The state of the valve 1. The valve is open, closed or partially

open.

Concept 4. The state of the valve 2. The valve is open, closed or partially

open.

Concept 5. The state of the valve 3. The valve is open, closed or partially

open.

Concept 6. The temperature of the liquid in tank 1.

Concept 7. The temperature of the liquid in tank 2.

Concept 8. Describes the operation of the heating element, which has differ-

ent levels of operation and which increases the temperature of the liquid in

tank 1.

Experts described how these concepts are connected with each other. The

interconnections among concepts can easily be changed and any new can be

added or others can be removed if the human operator decides so, in order to

have a better model and operation of the system. Three experts used the
methodology of Section 2 to determine the cause-effect relationship among

concepts [22]. As an example, experts describe the influence of valve 1 (concept

3) on the amount of liquid in tank 1 (concept 1) using a set of fuzzy rules from

which it is inferred that there is positive influence, transformed in numerical

weight 0.76. Each connection between concepts has a weight, which ranges

between ½�1; 1� and was determined by the group of experts.

Experts have suggested the initial weights for the FCM model that are

shown in the following weight matrix:
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winitial ¼

0 0 0:21 0:38 0 0 0 0
0 0 0 0:70 0:60 0 0 0

0:75 0 0 0 0 0 0 0
�0:80 0:70 0 0 0 0 0:09 0

0 �0:42 0 0 0 0 0 0
0 0 0:40 0 0 0 0 0:50
0 0 0 0:30 0 0 0 0
0 0 0 0 0 0 0:40 0

2
6666666664

3
7777777775

ð24Þ

For the FCM model of the process control problem, experts determined that

the values of concepts change asynchronously. Experts determined the se-

quence of Activation concepts and which concepts are fired at the same iter-

ation step. Concept C1 is defined as the first Activated concept. Concepts C3

and C4 are the synchronously Activated concepts, at next sub step, that are the

second Activated concepts. Concept C2 is the third Activated concept, concept

C5 is the fourth Activated concept, concepts C6 and C8 are the synchronously
fifth Activated concepts and concept C7 is the sixth Activated concept. Thus

the c-cycle is consisted of six sub-steps.

The desired regions for the Activation Decision concepts (outputs), which

reflect the proper operation of the modelled system, have been defined by the

experts:

0:556ADC1 6 0:75

0:756ADC2 6 0:8

0:756ADC6 6 0:82

0:656ADC7 6 0:75

ð25Þ

Before the implementation of the proposed AHL algorithm, we apply Eq. (1)

to check the FCM model interactions for the previously described chemical

process control problem. The initial values of concepts are given in vector
A0 ¼ ½0:48 0:57 0:58 0:68 0:59 0:59 0:52 0:58�, and they represent the real data

of the physical process (after thresholding). These values and the initial weights

from matrix winitial are used in Eq. (1) to calculate the final state of the process

without training. After 10 iteration steps an equilibrium state is reached and

Fig. 7 gives the subsequent values of calculated concepts. The values of

concepts for this equilibrium state are:

Aequil ¼ ½0:6256 0:7334 0:7675 0:8600 0:7704 0:7390 0:6810 0:7548 �
It is observed that the values of concepts C2 and C6, in the final state, are out
of the suggested desired regions in Eq. (25).

6.2. Training scenarios

In this section, three different training scenarios will be examined. In the first

scenario, experts propose the initial values of concepts, they determine the
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sequence of activation, and the parameter c is considered equal to zero. When
we implement the proposed AHL rule for the asynchronous learning process

an updating weight matrix is derived. In the second scenario, the AHL algo-

rithm is implemented for the same initial concepts values and the same se-

quence of activation, but for a constant value for parameter c ¼ 0:02 and new

values of concepts and new convergence regions of Activation Decision Con-

cepts (ADCs) are calculated. In the third scenario, we follow the same process

implementing the AHL using an exponential attenuation equation for

parameter c. In this case the desired convergence regions for the proposed
Activation Decision Concepts (ADCs) are succeeded.

6.2.1. First scenario

The training process starts by applying the initial values of concepts

A0
first ¼ ½0:48 0:57 0:58 0:68 0:58 0:59 0:52 0:58�, representing the initial data of

the process, and using the initial weights winitial. At second step of algorithm, the

learning parameters g, c are determined and the first simulation cycle starts.

The parameter c is defined equal to zero and the learning rate parameter g takes
the suggested value of Eq. (21). At third simulation step (which is the first sub

step) and for iteration number k ¼ 1, the concept C1 is defined as the first

Activation concept and the value of Activation concept Að1Þ
1 , at iteration step

k ¼ 1, is calculated by Eq. (5). At the same time we calculate the weight values

wð1Þ
13 , w

ð1Þ
14 using Eq. (15). At second sub step the concept C1, with its new value
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Fig. 7. The values of concepts for 10 simulation steps without training.
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Að1Þ
1 , triggers the interrelated C3 and C4 concepts. The concepts C3 and C4 are

now the Activated concepts, and their activation values Að2Þ
3 and Að2Þ

4 , for iter-
ation number k ¼ 2, are also calculated by Eq. (5). At the same time the weight

values wð2Þ
31 , w

ð2Þ
42 , w

ð2Þ
47 are calculated using Eq. (15). At the third sub step the

previously activated concepts affect the concept C2, which now is the Activated

concept with value Að3Þ
2 , for k ¼ 3. At the same time we calculate the weight

values wð3Þ
24 , w

ð3Þ
25 using Eq. (15). Now the concept C2, with its calculated value Að3Þ

2

acts as Activation concept, triggering the concept C5. The C5 as the forth

Activated concept, takes the value Að4Þ
5 , for iteration k ¼ 4, and triggers subse-

quently the concepts C6 and C8. The C6 and C8 as the fifth Activated concepts,
take the values Að5Þ

6 and Að5Þ
8 respectively, using Eq. (15) for iteration k ¼ 5. At

this step we calculate the weight values wð5Þ
63 , w

ð5Þ
68 , w

ð5Þ
86 using Eq. (15). The last

Activated concepts C6, C8 act as Activation concepts, triggering the concept C7.

The C7 as the sixth Activated concept, takes the value Að6Þ
7 , for iteration k ¼ 6

and for the next simulation step triggers the other interconnected concepts.

Notably, only the weights connected from the Activation Concepts to the

Activated concepts are updated at each iteration step using Eq. (15). All other

weights remain unchanged at each iteration sub-step.

Thus, this AHL algorithmic procedure continues, until the synchronously

satisfaction of the two objective criteria are met. The result of training the FCM

is a set of connection weights wji that minimize the objective function J and

satisfy synchronously the second criterion. The AHL algorithm iteratively up-
dates the connection weights based on Eq. (15) and calculates the values of

concepts based on the previously described asynchronous updating mode.

The AHL process stops after eight cycles where the two proposed criteria,

Eqs. (18) and (19) are satisfied. The objective function J depends on the values

of Activation Decision Concepts-ADCs and the value of weights. Fig. 8 shows

the subsequent calculated values of activation concepts for eight recursive

cycles.

The vector of concepts values in this equilibrium region is

Aact
first ¼ ½0:7057 0:7658 0:8213 0:8965 0:8183 0:7964 0:7404 0:8105 �

The updated matrix of weights after eight cycles, is the following:

wfirst�scen ¼

0 0:022 0:244 0:413 0:039 0:040 0:035 0:041
0:043 0 0:045 0:721 0:617 0:046 0:039 0:047
0:754 0:026 0 0:055 0:047 0:049 0:042 0:050
�0:695 0:7052 0:054 0 0:052 0:080 0:131 0:054
0:045 �0:381 0:047 0:052 0 0:048 0:042 0:049
0:044 0:027 0:429 0:051 0:044 0 0:041 0:524
0:041 0:024 0:042 0:335 0:040 0:040 0 0:041
0:045 0:027 0:047 0:052 0:044 0:428 0:042 0

2
66666666664

3
77777777775

ð26Þ
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These new values for weights describe new relationships among the concepts of

FCM. Actually, a new FCM model for the process has been produced. It is

noticeable that the initial zero weights no more exist, and new interconnections

with new weights have been assigned but only diagonal values remain equal to

zero. This means that all concepts affect the related concepts, and the weighed

arcs show the degree of this relation. For example, the weighted arc w13 with

initial value 0.21, after eight cycles takes the value 0.244, which means that the
initial influence of C1 towards C3 increases at a small amount. The initial zero

value of weights w23 has changed and after eight cycles is 0.045, which means

that the concept C2 affects the concept C3 finally. Moreover, the weighted arc

w41 with initial value )0.80 takes the value )0.695, which means that there is a

negative decrease of the influence from concept C4 to the ‘‘Tank 1’’ C1. More

specifically, this means that when the valve 2 takes the desired value, it influ-

ences negatively but at a smaller amount the height of liquid in tank 1, which

will decrease opening the valve 2. Also, there are relative influences and
physical meaning for all other weights. Thus, this AHL affects the dynamical

behavior of the system and the equilibrium values for ADCs are within desired

regions defined at Eq. (25).

6.2.1.1. Testing first scenario for 1000 random cases. We implemented the

proposed AHL algorithmic approach and tested the FCM model for

1000 different A0
random with random initial values of concepts, calculating the
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Fig. 8. The variation of concepts for eight cycles for the first scenario.
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convergence regions for the four Activation Decision Concepts. All the results

fall into the ranges:

0:556ADC1 6 0:73

0:756ADC2 6 0:85

0:746ADC6 6 0:82

0:556ADC7 6 0:80

ð27Þ

We observe that the above convergence values for the Activation Decision

Concepts are different from the desired by experts. This means that using the

proposed values for learning parameters g, c the system reaches different
than the desired equilibrium regions, for any random set of initial concepts

values.

6.2.1.2. Evaluation of the modified weight matrix. Let us make now a testing for

a random initial vector A0
random but using the previously derived with AHL

algorithm weight matrix, wfirst�scenario as initial. It is A0
random: A0

random ¼
½0:1 0:45 0:37 0:20 0:85 0:04 0:18 0:01�. Applying the AHL algorithm, it will

stop after 9 simulation steps and the derived concept vector Arandom will be:

Arandom ¼ ½0:7058 0:7658 0:8214 0:8965 0:8183 0:7964 0:7404 0:8105�. This

new state vector has almost the same values as the previous state vector Aact
first, in

the convergence-desired region, that means if we use the wfirst�scenario for any
initial Arandom, FCM will reach the same equilibrium region. The Fig. 9 rep-

resents the variation values of concepts for this scenario for nine simulation

steps.

6.2.2. Second scenario

At this scenario the learning parameter c takes a constant value, equal to

0.02. For the same process example and following the same procedure de-
scribed in first scenario, with the same values for learning rate parameter g,
same initial values for concepts and weights, a new equilibrium region is

reached. Eq. (15) is used for updating the weights and Eq. (5) is used for

calculating the values of concepts. At every recursive c-cycle the two criteria

are calculated and when they are successfully and simultaneously satisfied the

training process terminates and the final Activation Decision Concepts states

are reached. This requires 15 cycles where the final state vector Aact
second is de-

rived

Aact
second¼ ½0:6972 0:7410 0:7882 0:8577 0:7857 0:7667 0:7226 0:7787 �:

Fig. 10 illustrates all the subsequent values of calculated concepts for the 15

cycles.
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The updated weight matrix of FCM is

wsecond-scen ¼

0 0:018 0:186 0:313 0:031 0:032 0:028 0:033
0:035 0 0:036 0:545 0:467 0:036 0:032 0:037
0:559 0:022 0 0:040 0:037 0:036 0:033 0:039
�0:510 0:533 0:043 0 0:041 0:042 0:101 0:043
0:036 �0:286 0:037 0:041 0 0:038 0:033 0:039
0:035 0:022 0:325 0:040 0:035 0 0:033 0:397
0:032 0:019 0:033 0:255 0:032 0:032 0 0:033
0:036 0:021 0:037 0:041 0:035 0:325 0:033 0

2
66666666664

3
77777777775
ð28Þ

Also, in this scenario we observe that new relationships among the concepts of

FCM are described; the initial zero weights no more exist, and new weights

have been assigned. This means that all concepts affect the related concepts,

and the weighed arcs show the degree of this relation. It is noticeable that some

of the weights diverge significantly from the initial weight values suggested by
experts. This happens because the algorithm affects the behavior of the systems,

determining new weights for the desired convergence equilibrium point.

6.2.2.1. Testing second scenario for 1000 random cases. The convergence regions

for the four Activation Decision Concepts resulting after simulation results

for 1000 different cases with random initial values are the following:
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Fig. 9. The variation of concepts for nine simulation steps for random initial values.
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0:56ADC1 6 0:75

0:726ADC2 6 0:78

0:746ADC6 6 0:79

0:586ADC7 6 0:77

ð29Þ

It is observed that the two concepts C1 and C7 have broaden regions than the

values required by experts. Only the concepts C2 and C6 keep their values in the

initial constraint regions.

6.2.3. Third scenario

In this scenario, the exponential attenuation for parameter c is used. The

learning parameter c is a learning weight decay coefficient defined equal to:

cðcÞ ¼ 0:08 � expð�cÞ ð30Þ

where the coefficient b2 ¼ 0:08 and k2 ¼ 1 of Eq. (22) are positive constants

that are determined using trial and error experimental results. The parameter c
is selected as a decreasing function at each simulation cycle c. The rate of
convergence to the desired equilibrium region and the termination of algorithm

are depend on the rate of decrease that mean on the selection of parameters

b2 and k2.
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Fig. 10. The variation of concepts for 15 cycles in third scenario.
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For this scenario, the same initial values for concepts and weights and the

same learning rate parameter g are used with the first scenario. The training
process terminates and the final Activation Decision Concepts states are

reached when the two proposed criteria synchronously satisfied. The values of

concepts after nine simulation cycles, are given in the following state vector:

Aact
third ¼ ½0:7045 0:7707 0:8058 0:8790 0:8042 0:7828 0:7334 0:7955�, and these

values are within the desired convergence regions.

The updated weight matrix derived after nine cycles is

wthird-scen ¼

0 0:035 0:213 0:358 0:037 0:038 0:033 0:038
0:041 0 0:042 0:624 0:535 0:043 0:038 0:044
0:634 0:042 0 0:051 0:044 0:045 0:039 0:046
�0:576 0:612 0:050 0 0:048 0:049 0:116 0:050
0:042 �0:305 0:044 0:048 0 0:045 0:039 0:045
0:041 0:039 0:375 0:047 0:041 0 0:038 0:455
0:038 0:036 0:039 0:293 0:037 0:038 0 0:039
0:042 0:040 0:043 0:048 0:041 0:372 0:039 0

2
66666666664

3
77777777775
ð31Þ

6.2.3.1. Testing third scenario for 1000 random cases. We tested this scenario by
implementing the AHL procedure for 1000 different cases using random initial

values for concepts and for all cases the results for the Activation Decision

Concepts where within the intervals:

0:556ADC1 6 0:72

0:766ADC2 6 0:79

0:776ADC6 6 0:80

0:656ADC7 6 0:75

ð32Þ

It is observed that the four Activation Decision Concepts take values in the

desired suggested regions in Eq. (27), and specifically the two Concepts C1, C2

and C6 take values in very narrow regions.

Fig. 11 represents the variation values of concepts for nine cycles after
implementing the AHL algorithm.

Therefore it is proved that using the AHL algorithm we improve the FCM

model, which exhibit equilibrium behaviour within the desired regions. With

the proposed procedure the experts suggest the initial weights of the FCM, and

then using the AHL algorithm a new weight matrix is derived that can be used

for any set of initial values of concepts. The FCM converge to a steady state

contributing to an updated weight matrix. Determining the learning parame-

ters g, c for the specific problem, and particularly, proposing the c to be
exponentially attenuated with the iteration steps, as described in third scenario,

the system converges within the desired regions for all ADCs and the two of the

four ADCs, take values in a range smaller than the proposed one.
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The main advantage of AHL is that it determines new FCM causal links

between all the concepts in order to succeed desired behavior of the system, and

not only modify the initial causal links. The AHL is problem-dependent, starts

using the initial weight matrix but all the process is independent from the initial

values for concepts and the system succeed to converge in desired equilibrium

regions for appropriate learning parameters.

7. Conclusions

The most significant weaknesses of the FCMs, namely their dependence on
the expert’s beliefs, and the potential convergence to undesired steady states,

can be overcome by learning procedures. A new unsupervised learning meth-

odology for Fuzzy cognitive maps training has been introduced, presented,

implemented and tested for a chemical process control problem. The proposed

AHL algorithm adjusts and modifies the weights of FCMs improving the

FCM’s efficiency and adaptability.

This paper proposes the mathematical analysis of Active Hebbian Learning

algorithm. The proposed mathematical formulation and the implementation of
the algorithm have been effectively investigated. Experimental results based on

simulations of a process control system, verify the effectiveness, validity and

especially the advantageous behavior of the proposed algorithm. Benefits of
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Fig. 11. The variation of concepts for nine cycles in second scenario.

246 E.I. Papageorgiou et al. / Internat. J. Approx. Reason. 37 (2004) 219–249



the proposed rule are in accordance with the practical framework of FCMs;

easy to be used combined with flexibility and wide adaptability. The proposed
AHL algorithm sustains a formal methodology for FCMs training, improving

the functional FCM reliability and providing the FCM developers with

learning parameters to adjust the influence of concepts. This type of learning

rule accompanied with the good knowledge of the given system, guarantee the

successful implementation of the proposed process.

In conclusion, this innovative training approach improves the FCM oper-

ation, eliminates the weaknesses, establish functional reliability and prove

the practical importance of the proposed AHL algorithm through a process
control application.
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