
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Mathematics 216 (2007) 212–254
www.elsevier.com/locate/aim

The Lp boundary value problems on Lipschitz domains

Zhongwei Shen 1

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Received 18 April 2006; accepted 16 May 2007

Available online 6 June 2007

Communicated by Gang Tian

Abstract

Let Ω be a bounded Lipschitz domain in R
n. We develop a new approach to the invertibility on Lp(∂Ω)

of the layer potentials associated with elliptic equations and systems in Ω . As a consequence, for n � 4 and
2(n − 1)/(n + 1) − ε < p < 2 where ε > 0 depends on Ω , we obtain the solvability of the Lp Neumann
type boundary value problems for second order elliptic systems. The analogous results for the biharmonic
equation are also established.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

Let Ω be a bounded Lipschitz domain in R
n. The Dirichlet and Neumann problems for

Laplace’s equation in Ω with boundary data in Lp(∂Ω) had been well understood more than
twenty years ago. Indeed it is known that the Lp Dirichlet problem is uniquely solvable for
2 − ε < p � ∞, while the Lp Neumann problem is uniquely solvable for 1 < p < 2 + ε, where
ε > 0 depends on n and Ω . Furthermore, the ranges of p’s are sharp; and the solutions may be
represented by the classical layer potentials [5,6,15,30]. Due to the lack of maximum principles
and De Giogi–Nash Hölder estimates, the attempts to extend these results to second order elliptic
systems as well as to higher order elliptic equations had been successful only in the case n � 2
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for p close to 2 [8,9,11–13,16,20,31,32], and in the lower dimensional case n = 2 or 3 for the
sharp ranges of p’s [7,18,19,21]. Recently in [25,26], we introduced a new approach to the Lp

Dirichlet problem via L2 estimates, reverse Hölder inequalities and a real variable argument. For
second order elliptic systems as well as higher order elliptic equations, this led to the solvability
of the Lp Dirichlet problem for n � 4 and 2 < p < 2(n − 1)/(n − 3) + ε. In the case of elliptic
equations of order 2�, the upper bound of p is known to be sharp for 4 � n � 2� + 1 and � � 2
[20,21].

The main purpose of this paper is to study the solvability of the Lp Neumann type bound-
ary value problems for elliptic systems and higher order equations. We develop a new approach
that can be used to establish the Lp invertibility of the trace operators ±(1/2)I + K∗ of the
double layer potentials for a limited range of p’s. This limited-range approach is essential to
the higher order elliptic equations, as the Lp invertibility of ±(1/2)I + K∗ fails in general for
large p in higher dimensions. By duality, the invertibility of ±(1/2)I + K∗ on Lp implies the
invertibility of the Neumann trace operators ±(1/2)I + K on Lp′

of the single layer potentials.
As a consequence, we are able to solve the Lp Neumann type problems for p in the dual range
2(n − 1)/(n + 1) − ε1 < p < 2. We remark that in the lower dimensional case n = 2 or 3, our
approach recovers, without the use of the Hardy spaces, the Lp solvability of the Neumann prob-
lem for 1 < p < 2 obtained in [7] for elliptic systems. The analogous results for the biharmonic
equation, however, are new even in the case n = 2 or 3. It is also interesting to point out that the
approach we use here is in contrast with the method used in [6], where the operators ±(1/2)I +K
for the Neumann problem are shown to be invertible first and the invertibility of ±(1/2)I +K∗
for the Dirichlet problem is then established by duality.

This paper may be divided into three parts: elliptic systems, the biharmonic equation,
and Laplace’s equation. In the first part we consider the system of second order elliptic op-
erators (L(u))k = −ak�

ij DiDju
� in Ω , where Di = ∂/∂xi and k, � = 1, . . . ,m. Let N =

(N1,N2, . . . ,Nn) be the unit outward normal to Ω and

(
∂u
∂ν

)k

= ak�
ij

∂u�

∂xj

Ni (1.1)

denote the conormal derivatives of u on ∂Ω . We are interested in the Lp Neumann type boundary
value problem ⎧⎪⎪⎨

⎪⎪⎩
L(u) = 0 in Ω,

∂u
∂ν

= f ∈ Lp(∂Ω) on ∂Ω,

(∇u)∗ ∈ Lp(∂Ω),

(1.2)

where (∇u)∗ denotes the nontangential maximal function of ∇u, and the boundary data f is
taken in the sense of nontangential convergence. We will assume that ak�

ij , 1 � i, j � n, 1 � k,

� � m, are real constants and satisfy the symmetry condition ak�
ij = a�k

ji and the strong ellipticity
condition

μ0|ξ |2 � ak�
ij ξ k

i ξ �
j � 1

μ0
|ξ |2, (1.3)

for some μ0 > 0 and any ξ = (ξk
i ) ∈ R

nm. Let ‖ · ‖p denote the norm in Lp(∂Ω) with respect to
the surface measure dσ on ∂Ω . The following is one of main results of the paper.
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Theorem 1.1. Let Ω be a bounded Lipschitz domain in R
n, n � 4, with a connected boundary.

Then there exists ε > 0 depending only on n, m, μ0 and Ω such that, given any f ∈ Lp(∂Ω) with∫
∂Ω

fdσ = 0 and

2(n − 1)

n + 1
− ε < p < 2, (1.4)

the Neumann type problem (1.2) has a unique (up to constants) solution u. Furthermore, the
solution u satisfies the estimate ‖(∇u)∗‖p � C‖f‖p and may be represented by a single layer
potential with a density in Lp(∂Ω).

Theorem 1.1 will be proved by the method of layer potentials. Let Γ (x) = (Γ k�(x))m×m

denote the matrix of fundamental solutions for operator L on R
n. For g ∈ Lp(∂Ω), let S(g) and

D(g) denote the single and double layer potentials respectively with density g, defined by

(
S(g)

)k
(x) =

∫
∂Ω

Γ k�(y − x)g�(y) dσ (y), (1.5)

(
D(g)

)k
(x) =

∫
∂Ω

{
∂

∂ν(y)
Γk(y − x)

}�

g�(y) dσ (y), (1.6)

where Γk(x) = (Γ k1(x), . . . ,Γ km(x)) is the kth row of Γ (x). Let u = S(g) and v = D(g), then
L(u) = L(v) = 0 in R

n \ ∂Ω . Moreover,

∂u+
∂ν

=
(

1

2
I +K

)
g,

∂u−
∂ν

=
(

−1

2
I +K

)
g, (1.7)

v+ =
(

−1

2
I +K∗

)
g, v− =

(
1

2
I +K∗

)
g, (1.8)

on ∂Ω , where I denotes the identity operator, and ± indicate the nontangential limits taken from
Ω+ = Ω and Ω− = R

n \ Ω respectively. We remark that in (1.7)–(1.8), K is a singular integral
operator on ∂Ω and K∗ is the adjoint of K. By [4], K and K∗ are bounded on Lp(∂Ω), and
‖(∇u)∗‖p + ‖(v)∗‖p � C‖g‖p for any 1 < p < ∞. In view of the trace formulas (1.7), the Lp

Neumann type problem (1.2) is reduced to that of the invertibility of the operator (1/2)I +K on
Lp(∂Ω) (modulo a finite dimensional subspace). Similarly, because of (1.8), one may solve the
Lp Dirichlet problem

{L(u) = 0 in Ω,

u = f ∈ Lp(∂Ω) on ∂Ω,

(u)∗ ∈ Lp(∂Ω),

(1.9)

by showing that −(1/2)I + K∗ is invertible on Lp(∂Ω). This is the so-called method of layer
potentials for solving boundary value problems.
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For n � 2, the invertibility of ±(1/2)I +K on Lp(∂Ω) was indeed established in [9,12] (also
see [11,16,17]) for 2 − ε < p < 2 + ε, where ε > 0 depends on the Lipschitz character of Ω . To
do this, the main step is to show that for suitable solutions of L(u) = 0 in R

n \ ∂Ω , one has

∥∥∥∥∂u+
∂ν

∥∥∥∥
2
∼ ‖∇tu+‖2 and

∥∥∥∥∂u−
∂ν

∥∥∥∥
2
+ ‖u‖2 ∼ ‖∇tu−‖2 + ‖u‖2, (1.10)

where ∇tu denotes the tangential derivatives of u on ∂Ω . As in the case of Laplace’s equation
[30], the proof of (1.10) relies on the Rellich type identities.

If we let u = S(g) in (1.10), since ∇tu+ = ∇tu− a.e. on ∂Ω , we obtain

∥∥∥∥∂u+
∂ν

∥∥∥∥
2
+ ‖u‖2 ∼

∥∥∥∥∂u−
∂ν

∥∥∥∥
2
+ ‖u‖2. (1.11)

It follows that

‖g‖2 �
∥∥∥∥∂u+

∂ν

∥∥∥∥
2
+

∥∥∥∥∂u−
∂ν

∥∥∥∥
2
� C

∥∥∥∥
(

±1

2
I +K

)
g

∥∥∥∥
2
+ C

∥∥S(g)
∥∥

2. (1.12)

This is essentially enough to deduce the invertibility of ±(1/2)I + K and hence of ±(1/2)I +
K∗ on L2(∂Ω), modulo some finite dimensional subspaces. By a perturbation argument of
A.P. Calderón, the invertibility can be extended to Lp(∂Ω) for p close to 2. As a consequence,
the Lp Dirichlet and Neumann type problems are solved for 2 − ε < p < 2 + ε.

For Laplace’s equation on Lipschitz domains, the invertibility of the corresponding operators
±(1/2)I + K on Lp(∂Ω) was established for the sharp ranges of p’s in [6] (the case p = 2 is
in [30]). The method used in [6] relies on the classical Hölder estimates for solutions of second
order elliptic equations of divergence form with bounded measurable coefficients. Because of
this, the extension of the results in [6] to elliptic systems has only been successful in the lower
dimensional case (n = 2 or 3) [7]. As we mentioned in the beginning of this section, we recently
introduced a new approach to the Lp Dirichlet problem for p > 2 in [25,26]. Roughly speaking,
this approach reduces the solvability of the Lp Dirichlet problem to a weak reverse Hölder in-
equality on I (P, r) with exponent p for L2 solutions whose Dirichlet data vanish on I (P,3r).
Here I (P, r) = B(P, r) ∩ ∂Ω , where P ∈ ∂Ω and 0 < r < r0, is a surface ball on ∂Ω . Com-
bined with the W 1,2 regularity estimate ‖(∇u)∗‖2 � C‖∇tu‖2, this allows us to establish the
solvability of the Lp Dirichlet problem (1.9) for n � 4 and

2 < p <
2(n − 1)

n − 3
+ ε1. (1.13)

In this paper we will show that if v = D(g) is a double layer potential, then

∥∥(v)∗
∥∥

p
∼ ‖v±‖p, (1.14)

for any p satisfying (1.13), where the nontangential maximal function (v)∗ is defined using non-
tangential approach regions from both sides of ∂Ω . Since g = v− − v+ by (1.8), estimate (1.14)
implies that ±(1/2)I + K∗ are invertible on Lp(∂Ω). By duality, ±(1/2)I + K are invertible
on Lp(∂Ω) for p in the dual range (1.4).
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By a refinement of the approach used in [25,26], we may reduce the proof of (1.14) to the
weak reverse Hölder inequality

{
1

rn−1

∫
I (P,r)

∣∣(v)∗
∣∣p dσ

}1/p

� C

{
1

rn−1

∫
I (P,2r)

∣∣(v)∗
∣∣2

dσ

}1/2

, (1.15)

where v = D(g), and either v+ = 0 or v− = 0 on I (P,3r). The proof of (1.15) relies on appli-
cations of localized L2 estimates (or Rellich identities) on the domains B(P, r) ∩ Ω±. It also
depends on the fact that

∂v+
∂ν

= ∂v−
∂ν

on ∂Ω (1.16)

for any double layer potential v. This crucial fact allows us to estimate the L2 norm of ∇v±
on I (P, r) by the L2 norm of ∇tv∓ on I (P,2r) respectively, plus some lower order terms. See
Lemma 2.4. We mention that the upper bound of p in (1.13) is dictated by the use of Sobolev
inequality on I (P, r). Whether this upper bound is necessary for the invertibility of ±(1/2)I +
K∗ on Lp(∂Ω) for second order elliptic systems remains open.

In this paper we also study the traction boundary value problem for the system of elastostatics

⎧⎨
⎩

μ
u + (λ + μ)∇(div u) = 0 in Ω,

λ(div u)N + μ
(∇u + (∇u)T

)
N = f ∈ Lp(∂Ω),

(∇u)∗ ∈ Lp(∂Ω),

(1.17)

where μ > 0, λ > −2μ/n are Lamé constants, and T indicates the transpose of a matrix. One
may put (1.17) in the general form of (1.2) with

ak�
ij = μδij δk� + λδikδj� + μδi�δjk (1.18)

for i, j, k, � = 1,2, . . . , n. It is easy to verify that the coefficients satisfy the Legendre–Hadamard
ellipticity condition

ak�
ij ξiξj η

kη� � μ|ξ |2|η|2 for any ξ, η ∈ R
n. (1.19)

However they do not satisfy the strong elliptic condition (1.3). Thus Rellich type identities alone
are not strong enough to give estimate (1.10). Nevertheless, this difficulty was overcome in [9]
by establishing a Korn type inequality on ∂Ω . Consequently, the Lp traction problem (1.17) was
solved in [9] for |p −2| < ε. In the case n = 2 or 3, the problem was solved in [7] for the optimal
range 1 < p < 2 + ε. Here we will show that with a few modifications, the proof of Theorem 1.1
may be used to solve the Lp traction problem for p in the same range given in (1.4). More
specifically, let Ψ denote the space of vector valued functions g = (g1, . . . , gn) on R

n satisfying
Dig

j + Djg
i = 0 for 1 � i, j � n. It is easy to show that g ∈ Ψ if and only if g(x) = Ax + b,

where b ∈ R
n and A is a real skew-symmetric matrix, AT = −A. Let

L
p
Ψ (∂Ω) =

{
f ∈ Lp(∂Ω):

∫
∂Ω

f · gdσ = 0 for all g ∈ Ψ

}
. (1.20)
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Theorem 1.2. Let Ω be a bounded Lipschitz domain in R
n, n � 4, with a connected boundary.

Then there exists ε > 0 depending only on λ, μ, n and Ω such that for any f ∈ L
p
Ψ (∂Ω) with p

satisfying (1.4), the traction problem (1.17) has a solution u, unique up to elements of Ψ . Fur-
thermore, the solution u satisfies the estimate ‖(∇u)∗‖p � C‖f‖p and may be represented by a
single layer potential with a density in Lp(∂Ω).

The general program we outlined above for the second order systems should apply to higher
order elliptic equations and systems, once the L2 invertibility of the layer potentials is estab-
lished. In the second part of this paper, we study the biharmonic Neumann problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


2u = 0 in Ω,

ρ
u + (1 − ρ)
∂2u

∂N2
= f ∈ Lp(∂Ω) on ∂Ω,

∂

∂N

u + 1

2
(1 − ρ)

∂

∂Tij

(
∂2u

∂N∂Tij

)
= Λ ∈ W

−1,p

0 (∂Ω) on ∂Ω,

(1.21)

where ∂
∂Tij

= NiDj −NjDi , and W
−1,p

0 (∂Ω) denotes the space of bounded linear functionals Λ

on W 1,p′
(∂Ω) such that Λ(1) = 0. The Lp Neumann problem (1.21) was recently formulated

and studied by G. Verchota in [32], where the solvability was established for p ∈ (2 − ε,2 + ε)

by the method of layer potentials. The following is the second main result of the paper.

Theorem 1.3. Let Ω be a bounded Lipschitz domain in R
n, n � 4, with a connected boundary.

Let (1/(1 − n)) < ρ < 1. Then there exists ε > 0 such that given any f ∈ Lp(∂Ω) and Λ ∈
W

−1,p

0 (∂Ω) with 2(n − 1)/(n + 1)− ε < p < 2, there exists a biharmonic function u, unique up
to linear functions, satisfying (1.21) and (∇∇u)∗ ∈ Lp(∂Ω). Moreover, there exists a constant
C depending only on n, p, ρ and Ω so that

∥∥(∇∇u)∗
∥∥

p
� C

{‖Λ‖W−1,p(∂Ω) + ‖f ‖p

}
, (1.22)

and the solution u may be represented by a single layer potential. If n = 2 or 3, above results
hold for 1 < p < 2.

We refer the reader to Remark 7.3 for the ranges of p’s for which the Lp Dirichlet problem
for the biharmonic equation is uniquely solvable. In particular the sharp ranges are known in the
case 2 � n � 7.

In the last part of this paper we apply the method used above for systems and the biharmonic
equation to the classical layer potentials for Laplace’s equation. This allows us to recover the
sharp Lp results in [6], without the use of the Hardy spaces. In fact we are able to establish the
following stronger result.

Theorem 1.4. Let Ω be a bounded Lipschitz domain in R
n, n � 3, with a connected boundary.

Then there exists δ > 0 depending only on n and Ω , such that

1
I +K :L2

0

(
∂Ω,

dσ
)

→ L2
0

(
∂Ω,

dσ
)

,

2 ω ω
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−1

2
I +K∗ :L2(∂Ω,ω dσ) → L2(Ω,ω dσ) (1.23)

are isomorphisms for any A1+δ weight ω on ∂Ω .

We remark that the sharp Lp invertibility of (1/2)I + K and −(1/2)I + K∗ follows from
Theorem 1.4 by an extrapolation theorem, due to Rubio de Francia [22]. Theorem 1.4 allows us
to solve the Neumann problem for Laplace’s equation with boundary data in L2(∂Ω, dσ

ω
). This,

combined with the weighted regularity estimate in [24], shows that∥∥∥∥ ∂u

∂N

∥∥∥∥
L2(∂Ω, dσ

ω
)

∼ ‖∇t u‖
L2(∂Ω, dσ

ω
)
, (1.24)

if 
u = 0 in Ω and (∇u)∗ ∈ L2(∂Ω, dσ
ω

) with ω ∈ A1+δ(∂Ω).
The paper is organized as follows. Throughout Sections 2–4, we will assume that the coeffi-

cients ak�
ij of L satisfy the symmetry condition ak�

ij = a�k
ji and the strong ellipticity condition (1.3).

In Section 2 we prove the reverse Hölder inequality (1.15). See Theorem 2.6. This is used in Sec-
tion 3 to establish the invertibility of ±(1/2)I +K∗ on Lp . The proof of Theorem 1.1 is given in
Section 4, while the proof of Theorem 1.2 can be found in Section 5. Sections 6 and 7 deal with
the biharmonic equation. The corresponding reverse Hölder inequality for biharmonic functions
is proved in Section 6. The proof of Theorem 1.3 is given in Section 7. Finally the classical layer
potentials are studied in Section 8, where the proof of Theorem 1.4 can be found. We point out
that the usual conventions on repeated indices and on constants are used throughout the paper.

2. Reverse Hölder inequalities

Let Ω be a bounded Lipschitz domain in R
n. Denote Ω+ = Ω and Ω− = R

n \ Ω . For con-
tinuous function u in Ω±, the nontangential maximal function (u)∗± on ∂Ω is defined by

(u)∗±(P ) = sup
{∣∣u(x)

∣∣: x ∈ Ω± and x ∈ γ (P )
}
, (2.1)

where γ (P ) = {x ∈ R
n \ ∂Ω: |x − P | < 2 dist(x, ∂Ω)}.

Assume 0 ∈ ∂Ω and

Ω ∩ B(0, r0) = {
(x′, xn) ∈ R

n: xn > ψ(x′)
} ∩ B(0, r0), (2.2)

where ψ : Rn−1 → R is a Lipschitz function, and ψ(0) = 0. For r > 0, we let

Ir = {(
x′,ψ(x′)

) ∈ R
n−1: |x1| < r, . . . , |xn−1| < r

}
, (2.3)

and

D+
r = {

(x′, xn): |x1| < r, . . . , |xn−1| < r, ψ(x′) < xn < ψ(x′) + r
}
,

D−
r = {

(x′, xn): |x1| < r, . . . , |xn−1| < r, ψ(x′) − r < xn < ψ(x′)
}
. (2.4)

Note that if 0 < r < cr0, then Ir ⊂ ∂Ω and D±
r ⊂ Ω±.

We begin with a boundary Cacciopoli’s inequality.
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Lemma 2.1. Suppose that L(u) = 0 in Ω± and (∇u)∗± ∈ L2(I2r ) for some 0 < 2r < cr0. Then

∫
D±

r

|∇u|2 dx � C

r2

∫
D±

2r

|u|2 dx + C

∫
I2r

∣∣∣∣∂u±
∂ν

∣∣∣∣|u±|dσ. (2.5)

Proof. The proof is rather standard. We first choose a nonnegative function ϕ ∈ C∞
0 (Rn) such

that ϕ = 1 in D+
r , ϕ = 0 in Ω \ D+

2r and |∇ϕ| � C/r . Let a(ξ, η) = ak�
ij ξ k

i η�
j for ξ = (ξk

i ),

η = (η�
j ) ∈ R

mn. It follows from the integration by parts that

∫
Ω

a(ξ, ξ)ϕ2 dx = −2
∫
Ω

a(ξ, η)ϕ dx +
∫

∂Ω

∂u+
∂ν

· u+ϕ2 dσ, (2.6)

where ξ = (ξk
i ) = ( ∂uk

∂xi
) and η = (η�

j ) = (u� ∂ϕ
∂xj

). Since a(ξ, ξ) � 0 for any ξ ∈ R
mn, by the

Cauchy inequality, we have

∣∣a(ξ, η)
∣∣ � a(ξ, ξ)1/2a(η, η)1/2 � 1

4
a(ξ, ξ) + a(η, η). (2.7)

This, together with (2.6), gives

∫
Ω

a(ξ, ξ)ϕ2 dx � 4
∫
Ω

a(η,η)ϕ dx +
∫

∂Ω

∂u+
∂ν

· u+ϕ2 dσ. (2.8)

Since a(ξ, ξ) � μ0|∇u|2, estimate (2.5) for the case D+
r follows easily from (2.8). It is clear that

the argument above also applies to the case D−
r . �

Lemma 2.2. Suppose that L(u) = 0 in Ω± and (∇u)∗± ∈ L2(I2r ) for some 0 < 2r < cr0. Then

∫
Ir

|∇u±|2 dσ � C

∫
I2r

∣∣∣∣∂u±
∂ν

∣∣∣∣
2

dσ + C

r

∫
D±

2r

|∇u|2 dx, (2.9)

∫
Ir

|∇u±|2 dσ � C

∫
I2r

|∇tu±|2 dσ + C

r

∫
D±

2r

|∇u|2 dx, (2.10)

where ∇tu denotes the tangential derivatives of u on ∂Ω .

Proof. To show (2.9), we observe that the L2 Neumann problem is solvable, uniquely up to
constants, on D±

sr for any 1 < s < 3/2. This yields

∫
Ir

|∇u±|2 dσ �
∫

±
|∇u|2 dσ � C

∫
±

∣∣∣∣∂u
∂ν

∣∣∣∣
2

dσ
∂Dsr ∂Dsr
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� C

∫
I2r

∣∣∣∣∂u±
∂ν

∣∣∣∣
2

dσ + C

∫
Ω±∩∂D±

sr

|∇u|2 dσ. (2.11)

Estimate (2.9) now follows by integrating both sides of (2.11) with respect to s over inter-
val (1,3/2). Similarly, estimate (2.10) follows by applying the regularity estimate

∫
∂D±

sr

|∇u|2 dσ � C

∫
∂D±

sr

|∇tu|2 dσ (2.12)

for the Dirichlet problem on D±
sr . We remark that the regularity estimate (2.12) and hence (2.10)

in fact hold for elliptic systems satisfying the Legendre–Hadamard ellipticity condition (1.19)
[11,13,16]. This will be used in the proof of Theorem 1.2. �

In order to handle the solid integrals like those in (2.9)–(2.10), we introduce a localized non-
tangential maximal function,

(u)
∗,r
± (P ) = sup

{∣∣u(x)
∣∣: x ∈ Ω±, |x − P | < cr and |x − P | < 2 dist(x, ∂Ω)

}
(2.13)

where c > 0, depending on ‖∇ψ‖∞ and n, is sufficiently small.

Lemma 2.3. Let u be a continuous function on D±
2r . Then

{
1

rn

∫
x∈D±

r
δ(x)�cr

|u|p dx

}1/p

� C

{
1

rn−1

∫
I2r

∣∣(u)
∗,r
±

∣∣q dσ

}1/q

(2.14)

where δ(x) = dist(x, ∂Ω) and 1 < q < p < nq/(n − 1).

Proof. We only consider the case D+
r . Note that if x = (x′, xn) ∈ D+

r and δ(x) � cr , then
|u(x)| � (u)

∗,r
+ (y′,ψ(y′)) for |y′ − x′| � cδ(x). Hence, if 0 < α < n − 1,

∣∣u(x)
∣∣δα(x) � C

∫
|Q−P |<cδ(x)

(u)
∗,r
+ (Q)

|P − Q|n−1−α
dσ(Q)

� C

∫
|Q−P |<c r

(u)
∗,r
+ (Q)

|P − Q|n−1−α
dσ(Q), (2.15)

where P = (x′,ψ(x′)). It follows that if αp < 1,

∫
x∈D+

r

∣∣u(x)
∣∣p dx � Cr1−αp

∫
Ir

dσ (P )

{ ∫
|Q−P |<cr

(u)
∗,r
+ (Q)

|P − Q|n−1−α
dσ(Q)

}p

. (2.16)
δ(x)�cr
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This leads to the desired estimate (2.14) by the Lq −Lp bounds of the fractional integrals on ∂Ω

[28], where 1 < q < p and (1/q) − (1/p) = α/(n − 1). Finally we observe that the condition
αp < 1 is equivalent to p < qn/(n − 1). �
Lemma 2.4. Suppose that L(u) = 0 in R

n \ ∂Ω . Assume that u+ = 0 on I32r and (∇u)∗+ +
(∇u)∗− ∈ L2(I32r ) for some 0 < 32r < cr0. Then

∫
Ir

|∇u−|2 dσ � C

r2

∫
I4r

|u−|2 dσ + C

r3

∫
D+

32r∪D−
32r

|u|2 dx

+ C

∫
I4r

∣∣∣∣∂u+
∂ν

− ∂u−
∂ν

∣∣∣∣
2

dσ. (2.17)

Similarly, if u− = 0 on I32r , we have

∫
Ir

|∇u+|2 dσ � C

r2

∫
I4r

|u+|2 dσ + C

r3

∫
D+

32r∪D−
32r

|u|2 dx

+ C

∫
I4r

∣∣∣∣∂u+
∂ν

− ∂u−
∂ν

∣∣∣∣
2

dσ. (2.18)

Proof. Assume u+ = 0 on I32r . By using (2.9) and (2.5) as well as the Cauchy inequality, we
have

∫
Ir

|∇u−|2 dσ � C

∫
I4r

∣∣∣∣∂u−
∂ν

∣∣∣∣
2

dσ + C

r2

∫
I8r

|u−|2 dσ

+ C

r3

∫
D−

4r

|u|2 dx. (2.19)

Similarly, by (2.10) and (2.5), we obtain

∫
I4r

∣∣∣∣∂u+
∂ν

∣∣∣∣
2

dσ � C

r3

∫
D+

32r

|u|2 dx, (2.20)

where we have used the assumption u+ = 0 and hence ∇tu+ = 0 on I32r . Using

∣∣∣∣∂u−
∂ν

∣∣∣∣ �
∣∣∣∣∂u+

∂ν

∣∣∣∣ +
∣∣∣∣∂u+

∂ν
− ∂u−

∂ν

∣∣∣∣,
it is not hard to see that (2.17) follows from (2.19) and (2.20). The proof of (2.18) is exactly the
same. �
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Observe that estimates (2.17) and (2.18), together with the Sobolev inequality

{
1

|Ir |
∫
Ir

|u|pn dσ

}1/pn

� Cr

{
1

|Ir |
∫
Ir

|∇tu|2 dσ

}1/2

+ C

{
1

|Ir |
∫
Ir

|u|2 dσ

}1/2

, (2.21)

where pn = 2(n − 1)/(n − 3) for n � 4, and p3 may be any exponent in (2,∞), allow us to
control the Lpn average of u over Ir by its L2 average over I4r , provided we can handle the last
two terms in the right sides of (2.17) and (2.18). Since we will apply (2.17)–(2.18) to solutions
given by the double layer potentials plus possible corrections, the term involving ∂u+

∂ν
− ∂u−

∂ν
is

negligible in view of (1.16). In order to manage the remaining solid integrals, it will be convenient
to work with the nontangential maximal function of u.

If u is a function on R
n \ ∂Ω , we let (u)∗(P ) = max{(u)∗+(P ), (u)∗−(P )} and

(u)∗,r (P ) = sup
{∣∣u(x)

∣∣: x ∈ γ (P ) and |x − P | < cr
}
, (2.22)

for P ∈ ∂Ω , where c > 0 is sufficiently small. By a simple geometric observation, we have

{
1

|Ir |
∫
Ir

∣∣(u)∗
∣∣p dσ

}1/p

�
{

1

|Ir |
∫
Ir

∣∣(u)∗,r
∣∣p dσ

}1/p

+ C

|I2r |
∫
I2r

∣∣(u)∗
∣∣dσ (2.23)

for any p > 1.

Lemma 2.5. Let p̄ > 2. Suppose that the Lp̄ Dirichlet problem for operator L is uniquely solv-
able for any bounded Lipschitz domain in R

n. Then for any 2(n − 1)/n < p � 2,

{
1

|Ir |
∫
Ir

∣∣(u)∗
∣∣p̄ dσ

}1/p̄

� C

{
1

|I4r |
∫
I4r

(|u+| + |u−|)p̄
dσ

}1/p̄

+ C

{
1

|I4r |
∫
I4r

∣∣(u)∗
∣∣p dσ

}1/p

, (2.24)

where L(u) = 0 in R
n \ ∂Ω and (u)∗ ∈ Lp̄(I4r ).

Proof. Since the Lp̄ Dirichlet problem is solvable on the Lipschitz domain D±
sr , we have

∫
Ir

∣∣(u)∗,r
∣∣p̄ dσ � C

∫
+

|u|p̄ dσ +
∫

−
|u|p̄ dσ (2.25)
∂Dsr ∂Dsr



Z. Shen / Advances in Mathematics 216 (2007) 212–254 223
for s ∈ (3/2,2). It follows by an integration in s over (3/2,2) that

∫
Ir

∣∣(u)∗,r
∣∣p̄ dσ � C

∫
I2r

(|u+| + |u−|)p̄
dσ + C

r

∫
D+

2r∪D−
2r

|u|p̄ dx. (2.26)

This, together with estimates (2.23) and (2.14), yields that

{
1

|Ir |
∫
Ir

∣∣(u)∗
∣∣p̄ dσ

}1/p̄

� C

{
1

|I3r |
∫
I3r

(|u+| + |u−|)p̄
dσ

}1/p̄

+ C

{
1

|I3r |
∫
I3r

∣∣(u)∗
∣∣q dσ

}1/q

(2.27)

for any q > (n − 1)p̄/n. Since the Lq Dirichlet problem for L is also uniquely solvable for any
2 � q < p, it is not hard to see that one may deduce estimate (2.24) for p = 2 from (2.27) by
using above argument repeatedly to decrease the exponent q in (2.27) to 2. From here another
application of the argument reduces the exponent from 2 to any q in (2(n − 1)/n,2). �

Finally we are ready to state and prove the desired reverse Hölder inequality for elliptic sys-
tems.

Theorem 2.6. Suppose that L(u) = 0 in R
n \ ∂Ω and n � 4. Assume that either u+ = 0 or

u− = 0 on I64r . Then, if (∇u)∗ ∈ L2(I64r ) and (u)∗ ∈ Lpn(I64r ), we have

{
1

|Ir |
∫
Ir

∣∣(u)∗
∣∣pn dσ

}1/pn

� C

{
1

|I64r |
∫

I64r

∣∣(u)∗
∣∣2

dσ

}1/2

+ Cr

{
1

rn−1

∫
I32r

∣∣∣∣∂u+
∂ν

− ∂u−
∂ν

∣∣∣∣
2

dσ

}1/2

, (2.28)

where pn = 2(n − 1)/(n − 3). If n = 3, estimate (2.28) holds for any p3 > 2.

Proof. It is proved in [25] that if 2 < p < 2(n − 1)/(n − 3) + ε, the Lp Dirichlet problem is
uniquely solvable for any bounded Lipschitz domain in R

n. Thus estimate (2.24) holds for p̄ =
pn. This, combined with the Sobolev inequality (2.21), gives

{
1

|Ir |
∫
Ir

∣∣(u)∗
∣∣pn dσ

}1/pn

� Cr

{
1

|I4r |
∫ (|∇tu+| + |∇tu−|)2

dσ

}1/2

+
{

1

|I4r |
∫ ∣∣(u)∗

∣∣2
dσ

}1/2

. (2.29)
I4r I4r
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We now use (2.17)–(2.18) to estimate the term in (2.29) with the tangential derivatives. Note
that the solid integrals in (2.17)–(2.18) are easily bounded by the maximal function (u)∗. Esti-
mate (2.28) then follows. �
3. Invertibility of double layer potentials in Lp

Given g ∈ Lp(∂Ω) for some 1 < p < ∞, let u = D(g) be the double layer potential defined
in (1.6). Then u+ = (−(1/2)I + K∗)g and u− = ((1/2)I + K∗)g on ∂Ω . Moreover, we have
(∇u)∗ ∈ Lp(∂Ω) and ∂u+

∂ν
= ∂u−

∂ν
on ∂Ω , if ∇tg ∈ Lp(∂Ω).

Since Ω− is connected, the kernel of operator (1/2)I + K on L2(∂Ω) is of dimension m.
Suppose {f�, � = 1, . . . ,m} spans the kernel. Then

∫
∂Ω

f� dσ �= 0, and S(f�) is a nonzero constant
vector in Ω . Let

X p(∂Ω) =
{

f ∈ Lp(∂Ω):
∫

∂Ω

f · f� dσ = 0, for all � = 1, . . . ,m

}
(3.1)

for p � 2. Since S :Lp(∂Ω) → W 1,p(∂Ω) is invertible for some p > 2 [13], f� ∈ Lp(∂Ω) for
some p > 2. Thus the space X p is also well defined for p > 2 − ε. It was proved in [9] that

1

2
I +K∗ :X p(∂Ω) →X p(∂Ω),

−1

2
I +K∗ :Lp(∂Ω) → Lp(∂Ω) (3.2)

are isomorphisms if n � 3 and |p − 2| < ε. In the case n = 3, the operators in (3.2) are iso-
morphisms for 2 − ε < p < ∞ [7]. The goal of this section is to establish the invertibility of
±(1/2)I +K∗ for n � 4 and 2 < p < (2(n − 1)/(n − 3)) + ε.

Theorem 3.1. There exists ε > 0, depending on n, m, μ0 and the Lipschitz character of Ω ,
such that the operators ±(1/2)I + K∗ in (3.2) are isomorphisms for n � 4 and 2 < p <

2(n − 1)/(n − 3) + ε.

The proof of Theorem 3.1 is based on a real variable argument, inspired by a paper of Caf-
farelli and Peral [3] (see also [33]). In [25,26], the argument was used to solve the Lp Dirichlet
problem for elliptic systems and higher order elliptic equations. This real variable argument may
be considered as a dual and refined version of the celebrated Calderón–Zygmund Lemma. We
should mention that a similar argument with a different motivation was also used in [2] (see
also [1]).

The real variable argument may be formulated as follows.

Theorem 3.2. Let Q0 be a cube in R
n and F ∈ L1(2Q0). Let p > 1 and f ∈ Lq(2Q0) for some

1 < q < p. Suppose that for each dyadic subcube Q of Q0 with |Q| � β|Q0|, there exist two
integrable functions FQ and RQ on 2Q such that |F | � |FQ| + |RQ| on 2Q, and

{
1

|2Q|
∫

|RQ|p dx

}1/p

� C1

{
1

|αQ|
∫

|F |dx + sup
Q′⊃Q

1

|Q′|
∫

′
|f |dx

}
, (3.3)
2Q αQ Q
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1

|2Q|
∫

2Q

|FQ|dx � C2 sup
Q′⊃Q

1

|Q′|
∫
Q′

|f |dx, (3.4)

where C1,C2 > 0 and 0 < β < 1 < α. Then

{
1

|Q0|
∫
Q0

|F |q dx

}1/q

� C

|2Q0|
∫

2Q0

|F |dx + C

{
1

|2Q0|
∫

2Q0

|f |q dx

}1/q

, (3.5)

where C > 0 is a constant depending only on p, q , C1, C2, α, β and n.

We postpone the proof of Theorem 3.2 to the end of this section.

Remark 3.3. Because of the local nature of Theorem 3.2, it may be extended easily to each
coordinate patch of ∂Ω . Indeed, assume that 0 ∈ ∂Ω and Ω ∩B(0, r0) is given by (2.2). Consider
the map Φ : ∂D = {(x′,ψ(x′)): x′ ∈ R

n−1} → R
n−1, defined by Φ(x′,ψ(x′)) = x′. We say Q ⊂

∂D is a surface cube of ∂D if Φ(Q) is a cube of R
n−1. Moreover, a dilation of Q may be defined

by αQ = Φ−1(αΦ(Q)). With these notations, one may state the extension of Theorem 3.2 to ∂D

in exactly the same manner as for the case of R
n−1. Of course in the case of ∂D, the constant C

in (3.5) also depends on ‖∇ψ‖∞.

Proof of Theorem 3.1. We will give the proof for the invertibility of (1/2)I +K∗ on X p(∂Ω).
The case of −(1/2)I +K∗ on Lp(∂Ω) is similar and slightly easier.

Let f ∈ X p(∂Ω) ∩ W 1,2(∂Ω) for some p > 2. Since (1/2)I + K∗ is invertible on X 2(∂Ω)

and on W 1,2(∂Ω)/span{f1, . . . , fm}, there exists g ∈ X 2(∂Ω) ∩ W 1,2(∂Ω) such that ((1/2)I +
K∗)g = f and ‖g‖2 � C‖f‖2. Let u = D(g) in R

n \ ∂Ω . We will show that there exists ε > 0,
depending only on n, m, μ0 and Ω , such that if 2 < p < pn + ε,

{
1

sn−1

∫
B(P,s)∩∂Ω

∣∣(u)∗
∣∣p dσ

}1/p

� C

{
1

sn−1

∫
B(P,Cs)∩∂Ω

∣∣(u)∗
∣∣2

dσ

}1/2

+ C

{
1

sn−1

∫
B(P,Cs)∩∂Ω

|f|p dσ

}1/p

, (3.6)

for any P ∈ ∂Ω and s > 0 small. Since |g| = |u+ − u−| � 2 (u)∗, by covering ∂Ω with a finite
number of small balls, estimate (3.6) implies that

‖g‖p � C ‖g‖2 + C ‖f‖p � C‖f‖p. (3.7)

This shows that (1/2)I +K∗ :X p(∂Ω) →X p(∂Ω) is invertible, since X p(∂Ω) ∩ W 1,2(∂Ω) is
dense in X p(∂Ω).

To prove (3.6), we use Theorems 3.2 and 2.6. By translation and rotation, we may assume
that P = 0 and B(0, r0) ∩ Ω is given by (2.2). We consider the surface cube Q0 = Is , defined
in (2.3) for 0 < s < cr0. Let Q be a small subcube of Q0. Choose ϕ ∈ C1(Rn) such that ϕ = 1
0
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on 200Q, ϕ = 0 in ∂Ω \ 300Q and |∇ϕ| � C/r , where r is the diameter of Q. Since L2(∂Ω) =
X 2(∂Ω) ⊕ R

m, there exist gQ ∈X 2(∂Ω) ∩ W 1,2(∂Ω) and b ∈ R
m such that

fϕ =
(

1

2
I +K∗

)
gQ + b on ∂Ω, (3.8)

and ‖fϕ‖2 ∼ ‖gQ‖2 + |b|. Let v = D(gQ) + b in R
n \ ∂Ω and w = u − v.

We will apply Theorem 3.2 with F = |(u)∗|2, f = |f|2 and

FQ = 2
∣∣(v)∗

∣∣2 and RQ = 2
∣∣(w)∗

∣∣2
. (3.9)

Note that by the L2 estimates,

1

|2Q|
∫

2Q

|FQ|dσ � C

|Q|
∫

∂Ω

∣∣(v)∗
∣∣2

dσ � C

|Q|
{‖gQ‖2

2 + |b|2}

� C

|200Q|
∫

200Q

|f|2 dσ. (3.10)

This gives condition (3.4). To verify (3.3), we observe that w− = u− − v− = f(1 − ϕ) on ∂Ω .
Hence w− = 0 on 200Q. Also note that (∇w)∗ ∈ L2(∂Ω) since g, gQ ∈ W 1,2(∂Ω). It follows
that (w)∗ ∈ Lpn(∂Ω) (see e.g. [23, p. 1094]). Since w = D(g)−D(gQ)−b, we have ∂w+

∂ν
= ∂w−

∂ν
on ∂Ω . Thus we may apply Theorem 2.6 to obtain

{
1

|Q′|
∫
Q′

∣∣(w)∗
∣∣pn dσ

}1/pn

� C

{
1

|64Q′|
∫

64Q′

∣∣(w)∗
∣∣2

dσ

}1/2

, (3.11)

where Q′ is any subcube of Q. It is well known that the reverse Hölder inequalities like (3.11)
have the self-improving property (see e.g. [14]). This implies that there exists ε > 0, depending
only on n, ‖∇ψ‖∞ and the constant C in (3.11), such that

{
1

|Q|
∫
Q

∣∣(w)∗
∣∣p̄ dσ

}1/p̄

� C

{
1

|2Q|
∫

2Q

∣∣(w)∗
∣∣2

dσ

}1/2

(3.12)

where p̄ = pn + ε. The right side of (3.12) may be estimated using (w)∗ � (u)∗ + (v)∗ and then
(3.10). Thus condition (3.3) in Theorem 3.2 holds for p = pn + ε. Consequently, estimate (3.6)
holds for 2 < p < pn + ε. The proof is complete. �

We now give the proof of Theorem 3.2. The argument is essentially the same as that in the
proof of Lemma 2.18 in [25]. We shall need a localized Hardy–Littlewood maximal function

MQ(g)(x) = sup
Q′�x
Q′⊂Q

1

|Q′|
∫
Q′

|g|dx (3.13)

for x ∈ Q, where Q′ is a subcube of Q.
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Proof of Theorem 3.2. For λ > 0, let

E(λ) = {
x ∈ Q0: M2Q0(F )(x) > λ

}
. (3.14)

We claim that for any 1 < q < p, it is possible to choose three constants 0 < δ < 1, γ > 0 and
C0 > 0 depending only on n, C1, C2, α, β in (3.3)–(3.4) and p,q such that

∣∣E(Aλ)
∣∣ � δ

∣∣E(λ)
∣∣ + ∣∣{x ∈ Q0: M2Q0(f )(x) > γλ

}∣∣ (3.15)

for all λ > λ0, where A = (2δ)−1/q and

λ0 = C0

|2Q0|
∫

2Q0

|F |dx. (3.16)

Multiplying both sides of (3.15) by λq−1 and then integrating the resulting inequality in λ ∈
(λ0,Λ), we obtain

Λ∫
λ0

λq−1
∣∣E(Aλ)

∣∣dλ � δ

Λ∫
λ0

λq−1
∣∣E(λ)

∣∣dλ + Cγ

∫
2Q0

|f |q dx, (3.17)

where we have used the fact that M2Q0 is bounded on Lq . By a change of variables in the left
side of (3.17), we may deduce that

A−q
(
1 − δAq

) Λ∫
0

λq−1
∣∣E(λ)

∣∣dλ � C|Q0|λq

0 + Cγ

∫
2Q0

|f |q dx. (3.18)

Note that δAq = 1/2 < 1. Let Λ → ∞ in (3.18). This gives

∫
Q0

|F |q dx � C|Q0|λq

0 + C

∫
2Q0

|f |q dx, (3.19)

which is (3.5) in view of (3.16).
To prove (3.15), we first note that |E(λ)| � Cn|Q0|/C0 for any λ > λ0. This follows from the

weak (1,1) estimate for M2Q0 . Thus we may choose C0 = 2Cn/δ so that |E(λ)| < δ|Q0| for any
λ > λ0. We now fix λ > λ0. Since E(λ) is open relative to Q0, we may write E(λ) = ⋃

k Qk ,
where Qk are maximal dyadic subcubes of Q0 contained in E(λ). By choosing δ sufficiently
small, we may certainly assume that |Qk| < β|Q0| and (α + 64)Qk ⊂ 2Q0.

We will show that it is possible to choose δ > 0 and γ > 0 so that

∣∣E(Aλ) ∩ Qk

∣∣ � δ|Qk|, (3.20)

whenever {x ∈ Qk: M2Q0(f )(x) � γ λ} �= ∅. Clearly, estimate (3.15) follows from (3.20) by
summation.
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Let Qk be such a maximal dyadic subcube. Observe that

M2Q0(F )(x) � max
{
M2Qk

(F )(x),Cnλ
}
, (3.21)

for any x ∈ Qk . This is because Qk is maximal and so

1

|Q′|
∫
Q′

|F |dx � Cnλ (3.22)

for any Q′ ∩ Qk �= ∅ and |Q′| � cn|Qk|. We may assume that A > Cn. Then

∣∣E(Aλ) ∩ Qk

∣∣ �
∣∣{x ∈ Qk: M2Qk

(F ) > Aλ
}∣∣

�
∣∣∣∣
{
x ∈ Qk: M2Qk

(FQk
)(x) >

Aλ

2

}∣∣∣∣
+

∣∣∣∣
{
x ∈ Qk: M2Qk

(RQk
)(x) >

Aλ

2

}∣∣∣∣
� Cn

Aλ

∫
2Qk

|FQk
|dx + Cn,p

(Aλ)p

∫
2Qk

|RQk
|p dx, (3.23)

where we have used |F | � |FQk
| + |RQk

| on 2Qk as well as weak (1,1), weak (p,p) bounds
of M2Qk

.
By assumption (3.4), we have

∫
2Qk

|FQk
|dx � C2|2Qk| sup

2Q0⊃Q′⊃Qk

1

|Q′|
∫
Q′

|f |dx

� C2|2Qk| · γ λ, (3.24)

where the last inequality follows from the fact {x ∈ Qk: M2Q0(f ) � γ λ} �= ∅. Similarly, we may
use (3.3) and (3.22) to obtain

∫
2Qk

|RQk
|p dx � C

p

1 · |2Qk|
{

1

|αQk|
∫

αQk

|F |dx + γ λ

}p

� Cn,αC
p

1 |Qk|{λ + γ λ}p. (3.25)

We now use (3.24) and (3.25) to estimate the right side of (2.23). This yields

∣∣E(Aλ) ∩ Qk

∣∣ � |Qk|
{

CnC2γ

A
+ Cn,α,pC

p

1

Ap

}

= δ|Qk|
{
CnC2γ δ

− 1
q
−1 + Cn,p,αC

p
δ

p
q
−1}

. (3.26)
1
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Finally we observe that since q < p, it is possible to choose δ > 0 so small that

Cn,p,αC
p

1 δ
p
q
−1

< (1/4).

After δ is chosen, we then choose γ > 0 so small that CnC2γ δ
− 1

q
−1

< 1/4. This finishes the
proof of (3.20) and thus the theorem. �

The following weighted version of Theorem 3.2 will be used in Section 8.

Theorem 3.4. Under the same assumption as in Theorem 3.2, we have

{
1

ω(Q0)

∫
Q0

|F |qω dx

}1/q

� C

|2Q0|
∫

2Q0

|F |dx + C

{
1

ω(2Q0)

∫
2Q0

|f |qω dx

}1/q

, (3.27)

where ω is an Aq weight on 2Q0 with the property that for some η > q/p,

ω(E)

ω(Q)
� C

( |E|
|Q|

)η

, (3.28)

for any E ⊂ Q ⊂ Q0.

Proof. Fix 1 < q < p. Since η > q/p, we may choose q1 ∈ (q,p) so that η > q/q1. Let A =
(2δ)−1/q1 in the proof of Theorem 3.2. Note that if |E(Aλ) ∩ Qk| � δ|Qk|, then ω(E(Aλ) ∩
Qk) � Cδηω(Qk). This follows from (3.28). Thus

ω
(
E(Aλ)

)
� Cδηω

(
E(λ)

) + ω
{
x ∈ Q0: M2Q0(f ) > γλ

}
, (3.29)

for any λ � λ0. We now multiply both sides of (3.29) by λq−1 and integrate the resulting inequal-
ity in λ from λ0 to Λ. By a change of variable, we obtain

(
A−q − Cδη

) Λ∫
0

λq−1ω
(
E(λ)

)
dλ � Cλ

q

0ω(Q0) + Cδ

∫
Q0

∣∣M2Q0(f )
∣∣qω dx

� Cλ
q

0ω(Q0) + Cδ

∫
2Q0

|f |qω dx, (3.30)

where the second inequality follows from the well-known property of M2Q0 on Lq(2Q0,ω dx)

with Aq weight ω (see e.g. [29]). Finally we note that since δ > q/q1, we have A−q − Cδη =
(2δ)q/q1 − Cδη > 0 if δ > 0 is sufficiently small. Estimate (3.27) follows from (3.30) by letting
Λ → ∞. �
Remark 3.5. If condition (3.3) holds for any 1 < p < ∞ (constant C1 may depend on p), then
estimate (3.27) in Theorem 3.4 holds for any ω ∈ Aq . This is because w ∈ Aq implies condi-
tion (3.28) for some η = η(ω) > 0.
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4. The Lp boundary value problems for elliptic systems

In this section we give the proof of Theorem 1.1 stated in the Introduction. Let

L
p

0 (∂Ω) =
{

f ∈ Lp(∂Ω):
∫

∂Ω

fdσ = 0
}
. (4.1)

Theorem 4.1. There exists ε1 > 0, depending on n, m, μ0, and the Lipschitz character of Ω ,
such that operators (1/2)I + K :Lp

0 (∂Ω) → L
p

0 (∂Ω) and −(1/2)I + K :Lp(∂Ω) → Lp(∂Ω)

are invertible for 2(n − 1)/(n + 1) − ε1 < p < 2.

Proof. Let p0 = 2(n − 1)/(n − 3) + ε, where ε > 0 is given in Theorem 3.1. Note that p′
0 <

2(n − 1)/(n + 1). Since −(1/2)I + K∗ :Lp(∂Ω) → Lp(∂Ω) is invertible for 2 < p < p0, by
duality, we see that −(1/2)I +K :Lp(∂Ω) → Lp(∂Ω) is invertible for p′

0 < p < 2.

Let f ∈ L
p

0 (∂Ω) for some p′
0 < p < 2. Given any g ∈ Lp′

(∂Ω), since Lp′
(∂Ω) = X p′

(∂Ω)⊕
R

m and (1/2)I + K∗ is invertible on X p′
(∂Ω) by Theorem 3.1, there exist h ∈ X p′

(∂Ω) and
b ∈ R

m such that g = ((1/2)I +K∗)h + b and ‖g‖p′ ∼ ‖h‖p′ + |b|. Thus

∣∣∣∣
∫

∂Ω

f · gdσ

∣∣∣∣ =
∣∣∣∣
∫

∂Ω

(
1

2
I +K

)
f · hdσ

∣∣∣∣
�

∥∥∥∥
(

1

2
I +K

)
f

∥∥∥∥
p

‖h‖p′ � C

∥∥∥∥
(

1

2
I +K

)
f

∥∥∥∥
p

‖g‖p′ . (4.2)

It follows by duality that ‖f‖p � C ‖((1/2)I + K)f‖p for any f ∈ L
p

0 (∂Ω). This shows that
(1/2)I + K :Lp

0 (∂Ω) → L
p

0 (∂Ω) is one-to-one and the range is closed. Note that the range is
also dense in L

p

0 (∂Ω). This is because the operator is known to be invertible on L2
0(∂Ω). Thus

we have proved that (1/2)I +K is invertible on L
p

0 (∂Ω) for any p′
0 < p < 2. �

Proof of Theorem 1.1. The existence follows directly from the invertibility of (1/2)I + K on
L

p

0 (∂Ω) for 2(n − 1)/(n + 1) − ε1 < p < 2.
In order to prove the uniqueness, we construct a matrix of the Neumann functions

Gx
ν(y) = Γ (x − y) − Wx(y), (4.3)

where for each x ∈ Ω , Wx is a matrix solution of the L2 Neumann problem (1.2) with boundary
data

∂

∂ν(y)

{
Γ (x − y)

} + 1

|∂Ω|Im×m. (4.4)

In (4.4), Im×m denotes the m × m identity matrix. By the L2+ε estimates for the Neumann
problem, we have (∇Wx)∗ ∈ Lp(∂Ω) for some p > 2. Consequently, (Wx)∗ ∈ Lp1(∂Ω) for
some p1 > 2(n − 1)/(n − 3) (see [23, p. 1094]).

Suppose now that L(u) = 0 in Ω , (∇u)∗ ∈ Lp(∂Ω) and ∂u
∂ν

= 0 on ∂Ω . Note that if
p > max(p′ ,p′ ), then (∇u)∗(Wx)∗ ∈ L1(∂Ω). Similarly, one may show that (u)∗(∇Wx)∗ ∈
0 1
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L1(∂Ω). Thus one can use the integration by parts, justified by the Lebesgue dominated conver-
gence theorem, to obtain the representation formula

u(x) =
∫

∂Ω

Gx
ν(y)

∂u
∂ν

dσ(y) −
∫

∂Ω

∂Gx
ν

∂ν
u(y) dσ (y) = 1

|∂Ω|
∫

∂Ω

udσ. (4.5)

Hence u is constant in Ω . The proof is finished. �
Remark 4.2. Theorem 1.1 also holds in the exterior domain Ω− = R

n \ Ω if one imposes addi-
tional condition |u(x)| = O(|x|n−2) as |x| → ∞. In this case the mean zero condition on f is not
needed. The proof is similar.

Remark 4.3. Since −(1/2)I +K∗ is invertible on Lp(∂Ω) for 2 < p < 2(n − 1)/(n − 3)+ε, the
unique solution of the Lp Dirichlet problem (1.9), which was solved in [25], may be represented
by the double layer potential

u(x) = D
((

−1

2
I +K∗

)−1

(f)
)

(x). (4.6)

Since Lp(∂Ω) = X p(∂Ω) ⊕ R
m, in the case of Ω−, the solution may be represented as u =

D(g) + S(h), where g ∈ X p(∂Ω), h ∈ Ker((1/2)I +K), and ‖u‖p ∼ ‖g‖p + ‖h‖p .

Remark 4.4. The Dirichlet problem with boundary data in W 1,p(∂Ω) for the elliptic sys-
tems satisfying the Legendre–Hadamard condition (1.19) was solved in [25] for n � 4 and
2(n − 1)/(n + 1) − ε < p < 2. This, combined with Theorem 1.1, gives

∥∥∥∥∂u
∂ν

∥∥∥∥
p

∼ ‖∇tu‖p

for any solution of (1.2) with p in the range (1.4).

5. The traction boundary value problem

Throughout this section we assume that

L(u) = −μ
u − (λ + μ)∇(div u) in Ω, (5.1)

∂u
∂ν

= λ(div u)N + μ
(∇u + (∇u)T

)
N on ∂Ω. (5.2)

If we write (L(u))k = −ak�
ij DiDju

�, the conormal derivatives (5.2) correspond to the choice of
coefficients given by (1.18). Note that ak�

ij do not satisfy the strong ellipticity condition (1.3).
However one has

ak�
ij

∂uk

∂x

∂u�

∂x
= λ|div u|2 + μ

2

∣∣∇u + (∇u)T
∣∣2 ∼ ∣∣∇u + (∇u)T

∣∣2
. (5.3)
i j
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Using this observation, by establishing a Korn type inequality on the boundary, Dahlberg, Kenig
and Verchota were able to strength the Rellich type inequalities. This allows them to show that

1

2
I +K :Lp

Ψ (∂Ω) → L
p
Ψ (∂Ω),

−1

2
I +K :Lp(∂Ω) → Lp(∂Ω), (5.4)

are invertible for |p − 2| < ε and n � 2 [9], where L
p
Ψ (∂Ω) is defined in (1.20). In the case

n = 2 or 3, it was proved in [7] that the operators in (5.4) are invertible for the optimal range
1 < p < 2 + ε. The goal of this section is to prove the following.

Theorem 5.1. There exists ε > 0, depending on n, λ, μ and the Lipschitz character of Ω , such
that the operators in (5.4) are invertible if n � 4 and 2(n − 1)/(n + 1) − ε < p < 2.

Let Ker((1/2)I + K) denote the kernel of operator (1/2)I + K on L2(∂Ω). If u = S(g)

for some g ∈ Ker((1/2)I + K), then ∂u+
∂ν

= 0 on ∂Ω . It follows from (5.3) and the integration
by parts that ∇u + (∇u)T = 0 in Ω . Thus S(g)|Ω ∈ Ψ . It is not hard to show that the map
g → S(g)|Ω from Ker((1/2)I + K) to Ψ is bijective. Suppose {gk: k = 1,2, . . . , n(n + 1)/2}
spans Ker((1/2)I + K). Since S :Lp(∂Ω) → W 1,p(∂Ω) is invertible for p close to 2 [13],
gk ∈ Lq0(∂Ω) for some q0 > 2. Define

Tp(∂Ω) =
{

f ∈ Lp(∂Ω):
∫

∂Ω

f · gk dσ = 0 for k = 1,2, . . . , n(n + 1)/2

}
(5.5)

for p � q ′
0.

Theorem 5.2. There exists ε > 0 such that operators

1

2
I +K∗ : Tp(∂Ω) → Tp(∂Ω),

−1

2
I +K∗ :Lp(∂Ω) → Lp(∂Ω), (5.6)

are invertible for n � 4 and 2 < p < 2(n − 1)/(n − 3) + ε.

Theorem 5.1 follows from Theorem 5.2 by duality. The case for −(1/2)I + K is obvious.
To see that (1/2)I + K is invertible on L

p
Ψ (∂Ω), we apply the same duality argument as in

the proof of Theorem 4.1. To do this, we only need to show that Lp′
(∂Ω) = Tp′

(∂Ω) ⊕ Ψ .
By a dimensional consideration, it suffices to prove that Tp′

(∂Ω) ∩ Ψ = {0}. To this end, let
g ∈ Tp′

(∂Ω) ∩ Ψ . Then g = S(h) on ∂Ω for some h ∈ Ker((1/2)I + K). Let u = S(h) in R
n.

Since h = ∂u+
∂ν

− ∂u−
∂ν

= − ∂u−
∂ν

, we obtain

∫
ak�
ij

∂uk

∂xi

∂u�

∂xj

dx = −
∫

∂u−
∂ν

· udσ =
∫

h · gdσ = 0, (5.7)
Ω− ∂Ω ∂Ω
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where the last equality follows from the fact that g is in the range of (1/2)I + K∗ on L2(∂Ω).
One may deduce from (5.7) that u|Ω− ∈ Ψ . This implies that ∂u−

∂ν
= 0 and thus h = 0.

Since the proof of Theorem 5.2 uses the same line of argument as in the proof of Theorem 3.1,
we will only point out the necessary modification needed here.

First, because of (5.3), estimate (2.5) is replaced by

∫
D±

r

∣∣∇u + (∇u)T
∣∣2

dx � C

r2

∫
D±

2r

|u|2 dx + C

∫
I2r

∣∣∣∣∂u±
∂ν

∣∣∣∣|u±|dσ. (5.8)

The proof is exactly the same.
Next, estimate (2.9) needs to be modified, as we used

‖∇u‖L2(
∂D±

sr

) � C

∥∥∥∥∂u
∂ν

∥∥∥∥
L2(∂D±

sr )

(5.9)

for any L2 solutions. In the case of (5.1), we know that estimate (5.9) is true for one of such
solutions, v, given by a single layer potential with density ((1/2)I + K)−1( ∂u

∂ν
). If u is another

solution with the same traction boundary data on ∂D±
sr , then w = u−v = Ax +b ∈ Ψ . It follows

that ∫
∂D±

sr

|∇u|2 dσ � C

∫
∂D±

sr

|∇v|2 dσ + Crn−1 |A|2

� C

∫
∂D±

sr

∣∣∣∣∂u
∂ν

∣∣∣∣
2

dσ + Crn−1 |A|2. (5.10)

Since w is a linear function and thus harmonic, we have∫
D±

sr

|∇w|2 dx �
∫

∂D±
sr

|w| |∇w|dσ. (5.11)

It follows that

|A| � C

rn

∫
∂D±

sr

|w|dσ � C

rn

∫
∂D±

sr

(|u| + |v|)dσ

� C

r

{
1

rn−1

∫
∂D±

sr

|u|2 dσ

}1/2

+ C

{
1

rn−1

∫
∂D±

sr

∣∣∣∣∂u
∂ν

∣∣∣∣
2

dσ

}1/2

. (5.12)

This, together with (5.10), gives

∫
±

|∇u|2 dσ � C

∫
±

∣∣∣∣∂u
∂ν

∣∣∣∣
2

dσ + C

r2

∫
±

|u|2 dσ. (5.13)
∂Dsr ∂Dsr ∂Dsr
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By integrating both sides of (5.13) in s ∈ (1,3/2), we obtain

∫
Ir

|∇u±|2 dσ � C

∫
I2r

∣∣∣∣∂u±
∂ν

∣∣∣∣
2

dσ + C

r

∫
D±

2r

∣∣∇u + (∇u)T
∣∣2

dx

+ C

r3

∫
D±

2r

|u|2 dx. (5.14)

This replaces estimate (2.9). The extra term in (5.14) is harmless.
Finally in the proof of Lemma 2.4, we used estimate (2.5) to estimate the solid integral

of |∇u|2 on D±
sr . In the case of (5.1), we consider v = u − Ax, where

A = 1

2|D±
sr |

∫
D±

sr

(∇u − (∇u)T
)
dx. (5.15)

Then by Korn’s inequality (see [9, Lemma 1.18]), we have

∫
D±

sr

|∇v|2 dx � C

∫
D±

sr

∣∣∇v + (∇v)T
∣∣2

dx. (5.16)

Note that the integration by parts gives

|A| � C

rn

∫
∂D±

sr

|u|dσ. (5.17)

It follows that

∫
D±

sr

|∇u|2 dx � C

∫
D±

sr

∣∣∇u + (∇u)T
∣∣2

dx + Crn|A|2

� C

∫
D±

sr

∣∣∇u + (∇u)T
∣∣2

dx + C

r

∫
∂D±

sr

|u|2 dσ. (5.18)

We now integrate both sides of (5.18) in s ∈ (1,3/2). This yields

∫
D±

r

|∇u|2 dx � C

∫
D±

2r

∣∣∇u + (∇u)T
∣∣2

dx + C

r

∫
I2r

|u±|2 dσ

+ C

r2

∫
D±

|u|2 dx. (5.19)
2r
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Estimate (5.19), combined with (5.8), allows us to bound the solid integral of |∇u|2 in the
same manner as in the strong elliptic case. Because of this, Lemma 2.4 and therefore Theo-
rem 2.6 hold for the system of elastostatics. Consequently, Theorem 5.2 is proved using the
same line of argument as in the proof of Theorem 3.1. We should point out that since ak�

ij

satisfy the Legendre–Hadamard ellipticity condition, the Lp Dirichlet problem is solved for
2 < p < 2(n − 1)/(n − 3) + ε and n � 4 in [25]. This is used in the proof of Theorem 5.2.
We omit the details.

We end this section with

Proof of Theorem 1.2. The existence follows from the invertibility of (1/2)I +K on L
p
Ψ (∂Ω)

for p in the range given in (1.4). As in the case of Theorem 1.1, to prove the uniqueness, one
constructs a matrix Neumann function Gx

ν(y) = Γ (x −y)−Wx(y), where Wx is a matrix whose
ith row is an L2 solution of (1.17) with the traction boundary data

∂

∂ν(y)

{
Γi(y − x)

} −
n(n+1)

2∑
k=1

Cx
i,k{Aky + bk}. (5.20)

Here {Aky + bk, k = 1,2, . . . , n(n + 1)/2} is an orthonormal basis of Ψ with respect to the
L2(∂Ω) norm, and

Cx
i,k =

∫
∂Ω

∂

∂ν(y)

{
Γi(y − x)

} · (Aky + bk) dσ (y) = −(Akx + bk)
i (5.21)

so that the functions in (5.20) belong to L2
Ψ (∂Ω). The same argument as in the proof of Theo-

rem 1.1 shows that if L(u) = 0 in Ω , (∇u)∗ ∈ Lp(∂Ω) for some p > 2(n − 1)/(n + 1) − ε, and
∂u
∂ν

= 0 on ∂Ω , then

u(x) = −
∫

∂Ω

∂Gx
ν

∂ν
udσ = (Akx + bk)

∫
∂Ω

{Aky + bk} · u(y) dσ (y). (5.22)

Thus u ∈ Ψ . This finishes the proof. �
6. Reverse Hölder inequalities for biharmonic functions

For simplicity, we will assume that 1/(1 − n) < ρ < 1. Some modifications are needed in the
case ρ = 1/(1 − n). Following [32], we let

Mρ(u) = ρ
u + (1 − ρ)
∂2u

∂N2
= ρ
u + (1 − ρ)NiNjDiDju,

Kρ(u) = ∂
u

∂N
+ 1

2
(1 − ρ)

∂

∂Tij

(
∂2u

∂N∂Tij

)

= ∂
u

∂N
+ 1

2
(1 − ρ)(NiDj − NjDi)

(
Nk(NiDj − NjDi)Dku

)
, (6.1)

where ∂ = NiDj − NjDi . Observe that NiNj
∂u = 0.
∂Tij ∂Tij
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Assume 0 ∈ ∂Ω and Ω ∩ B(0, r0) is given by (2.2). Let W 1,2(Ir ) denote the space of
functions f on Ir such that |∇t f | ∈ L2(Ir ), where Ir is defined in (2.3). We will use the scale-
invariant norm

‖f ‖W 1,2(Ir )
=

{∫
Ir

|∇t f |2 dσ + 1

r2

∫
Ir

|f |2 dσ

}1/2

(6.2)

for W 1,2(Ir ), whose dual space is denoted by W−1,2(Ir ).
The following is a boundary Cacciopoli inequality.

Lemma 6.1. Suppose 
2u = 0 in Ω± and (∇∇u)∗± ∈ L2(I3r ). Then

∫
D±

r

|∇∇u|2 dx � C‖uϕ‖W 1,2(I2r )

∥∥ϕKρ(u)
∥∥

W−1,2(I2r )

+ C

∥∥∥∥∂(uϕ2)

∂N

∥∥∥∥
2

∥∥Mρ(u)
∥∥

L2(I2r )

+ C

r2

∫
D±

2r

|∇u|2 dx + C

r2

∫
I2r

|u||∇u|dσ, (6.3)

where ϕ is a function in C∞
0 (B(0, (3/2)r)) such that ϕ = 1 in B(0, r), 0 � ϕ � 1 and |∇ϕ| �

C/r .

Proof. Let v = uϕ2. It follows from the integration by parts and 
2u = 0 in Ω± that

∫
∂Ω

{
vKρ(u) − ∂v

∂N
Mρ(u)

}
dσ

= ∓
∫

Ω±

{
(1 − ρ)DiDjv · DiDju + ρ
v · 
u

}
dx. (6.4)

Note that

DiDjv · DiDju = ϕ2|∇∇u|2 + 4ϕDiuDjϕ · DiDju + uDiDjϕ
2 · DiDju (6.5)

and 
v · 
u = ϕ2|
u|2 + 4ϕDiuDiϕ · 
u + u
ϕ2 · 
u. The second term in the right side
of (6.5) can be absorbed by the first term using the Cauchy inequality with an ε. To handle the
last term in the right side of (6.5), one uses the integration by parts again. This produces the last
integral in (6.3). Finally, to finish the proof, we observe that

(1 − ρ)|∇∇u|2 + ρ|
u|2 � cρ |∇∇u|2, (6.6)

if 1/(1 − n) < ρ < 1 (see [32]). �
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Remark 6.2. If, in addition, in Lemma 6.1 we assume that u± = |∇u±| = 0 on I2r , then

∫
D±

r

|∇∇u|2 dx � C

r2

∫
D±

2r

|∇u|2 dx. (6.7)

This is the usual boundary Cacciopoli’s inequality for the biharmonic equation.

Remark 6.3. It follows from (6.3) and the Cauchy inequality with an ε that

∫
D±

r

|∇∇u|2 dx � εr
∥∥ϕKρ(u)

∥∥2
W−1,2(∂Ω)

+ εr
∥∥Mρ(u)

∥∥2
L2(I2r )

+ Cε

r

∫
I2r

|∇u|2 dσ + C

r2

∫
D±

2r

|∇u|2 dx. (6.8)

We remark that the integrals in (6.3) which involve |u|2 on I2r may be handled by replacing |u|2
with |u − c|2 and using the Poincaré inequality.

Our next lemma relies on the following Rellich type identity discovered by G. Verchota [32,
pp. 232–233] for the biharmonic equation,

1

2

∫
∂Ω

〈N,α〉{(1 − ρ)|∇∇u|2 + ρ|
u|2}dσ

=
∫

∂Ω

∂

∂N
(α · ∇u)Mρ(u)dσ −

∫
∂Ω

(α · ∇u)Kρ(u)dσ

± (1 − ρ)

∫
Ω±

Eij (α,u)Lij (u) dx, (6.9)

where Lij = DiDj + θδij
 and

Eij (α,u) = 1

2
div(α)Lij (u) − Lij (α) · ∇u − 2Diα · ∇Dju − 2θδijDkα · ∇Dku.

In (6.9), α ∈ C∞
0 (Rn,R

n) is a vector field and u is a suitable biharmonic function in Ω±. Also
θ is related to ρ by ρ = (nθ + nθ2)/(1 + 2θ + nθ2). With identity (6.9), Verchota was able to
extend the method of layer potentials from second order equations and systems to the fourth order
biharmonic equation. This identity will also play a crucial role in our study of the Lp biharmonic
Neumann problem.

Lemma 6.4. Under the same assumption as in Lemma 6.1, we have
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∫
Ir

|∇∇u|2 dσ � C
∥∥ϕKρ(u)

∥∥2
W−1,2(I2r )

+ C
∥∥Mρ(u)

∥∥2
L2(I2r )

+ C

r2

∫
I2r

|∇u|2 dσ + C

r

∫
D±

2r

|∇∇u|2 dx + C

r3

∫
D±

2r

|∇u|2 dx, (6.10)

where ϕ ∈ C∞(B(0, (3/2)r)) is the same function as in Lemma 6.1.

Proof. Let α = −enϕ
2 where en = (0, . . . ,0,1). We apply the Rellich identity (6.9) on the Lip-

schitz domain D±
sr , where s ∈ (3/2,2). Since 〈N,−en〉 � c > 0 on I2r , this gives

c

∫
Isr

|ϕ∇∇u|2 dσ

� C

∫
Ω±∩∂D±

sr

|∇∇u|2 dσ + C‖ϕ∇u‖W 1,2(I2r )

∥∥ϕKρ(u)
∥∥

W−1,2(I2r )

+ C
∥∥∇(α · ∇u)

∥∥
L2(I2r )

∥∥Mρ(u)
∥∥

L2(I2r )

+ C

r

∫
D±

2r

|∇∇u|2 dx + C

r3

∫
D±

2r

|∇u|2 dx. (6.11)

Using the Cauchy inequality with an ε, it is not hard to see that the higher order terms in
‖ϕ∇u‖W 1,2(I2r )

and ‖∇(α · ∇u)‖L2(I2r )
may be absorbed by the left side of (6.11). Finally a fa-

miliar integration in s over (3/2,2) enables us to handle the first term in the right side of (6.10),
as in Section 2. �
Remark 6.5. Suppose 
2u = 0 in Ω± and (∇∇u)∗± ∈ L2(I3r ). If u± = |∇u±| = 0 on I2r , then

∫
Ir

|∇∇u|2 dσ � C

r3

∫
D±

2r

|∇u|2 dx. (6.12)

This follows from the regularity estimate [31]

∫
∂D±

sr

|∇∇u|2 dσ � C

∫
∂D±

sr

|∇t∇u|2 dσ, (6.13)

together with estimate (6.7), by an integration in s ∈ (3/2,2).

Recall that (∇∇u)∗ = max{(∇∇u)∗+, (∇∇u)∗−} for functions u defined in R
n \ ∂Ω .

Lemma 6.6. Suppose 
2u = 0 in R
n \ ∂Ω and (∇∇u)∗ ∈ L2(I32r ). Assume that either u+ =

|∇u+| = 0 or u− = |∇u−| = 0 on I32r . Then
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∫
Ir

|∇∇u±|2 dσ � C

r2

∫
I8r

{|∇u+|2 + |∇u−|2}dσ + C

r3

∫
D+

16r∪D−
16r

|∇u|2 dx

+ C
∥∥ϕ1

[
Kρ(u+) − Kρ(u−)

]∥∥2
W−1,2(I4r )

+ C
∥∥ϕ2

[
Kρ(u+) − Kρ(u−)

]∥∥2
W−1,2(I4r )

+ C
∥∥Mρ(u+) − Mρ(u−)

∥∥2
L2(I4r )

, (6.14)

where ϕ1, ϕ2 are two functions in C∞
0 (B(0,4r)) with the properties that 0 � ϕi � 1 and |∇ϕi | �

C/r for i = 1,2.

Proof. Assume that u+ = |∇u+| = 0 on I32r . By (6.10) and (6.8), we obtain∫
Ir

|∇∇u−|2 dσ � C
∥∥ϕ1Kρ(u−)

∥∥2
W−1,2(I4r )

+ C
∥∥ϕ2Kρ(u−)

∥∥2
W−1,2(I4r )

+ C
∥∥Mρ(u−)

∥∥2
L2(I4r )

+ C

r2

∫
I4r

|∇u−|2 dσ + C

r3

∫
D−

4r

|∇u|2 dx (6.15)

where ϕ1 ∈ C∞
0 (B(0, (3/2)r)) and ϕ2 ∈ C∞

0 (B(0,3r)). In view of (6.14) and (6.15), we need to
estimate ‖ϕiKρ(u+)‖2

W−1,2(I4r )
, i = 1,2, and ‖Mρ(u+)‖2

L2(I4r )
. Clearly, by Remark 6.5,

∥∥Mρ(u+)
∥∥2

L2(I4r )
� C

∫
I4r

|∇∇u+|2 dσ � C

r3

∫
D+

8r

|∇u|2 dx. (6.16)

Finally, since suppϕi ⊂ B(0,3r), the term ‖ϕiKρ(u+)‖2
W−1,2(I4r )

is bounded by

C

∥∥∥∥ϕi

∂

∂N
(
u+)

∥∥∥∥
W−1,2(I4r )

+ C‖∇∇u+‖2
L2(I4r )

� C

∥∥∥∥ϕi

∂

∂N
(
u+)

∥∥∥∥
2

W−1,2(∂Dsr )

+ C‖∇∇u+‖2
L2(I4r )

� C‖
u+‖2
L2(∂Dsr )

+ C‖∇∇u+‖2
L2(I4r )

� C

∫
I5r

|∇∇u+|2 dσ + C

∫
Ω∩∂D+

sr

|∇∇u|2 dσ, (6.17)

for any s ∈ (4,5), where we have used the L2 regularity estimate in D+
sr for Laplace’s equa-

tion in the second inequality. With (6.12) and (6.7) at our disposal, the desired estimate for
‖ϕiKρ(u+)‖2

W−1,2(I4r )
now follows from (6.17) by an integration in s ∈ (4,5). The case u− =

|∇u−| = 0 on I32r is exactly the same. This completes the proof. �
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As in Section 2, estimate (6.14) leads to a reverse Hölder inequality.

Theorem 6.7. Under the same assumption as in Lemma 6.6, we have

{
1

|Ir |
∫
Ir

∣∣(∇u)∗
∣∣pn dσ

}1/pn

� C

{
1

|I32r |
∫

I32r

∣∣(∇u)∗
∣∣2

dσ

}1/2

+ C
∥∥ϕ1

[
Kρ(u+) − Kρ(u−)

]∥∥2
W−1,2(I4r )

+ C
∥∥ϕ2

[
Kρ(u+) − Kρ(u−)

]∥∥2
W−1,2(I4r )

+ C
∥∥Mρ(u+) − Mρ(u−)

∥∥2
L2(I4r )

, (6.18)

where pn = 2(n − 1)/(n − 3) for n � 4. If n = 2 or 3, estimate (6.18) holds for any 2 < pn < ∞.

Proof. The proof is similar to that of Theorem 2.6 with ∇u in the place of u. We leave the
details to the reader. However we should remark that the proof uses the solvability of the Lpn

Dirichlet problem for the biharmonic equation on any bounded Lipschitz domains. But this has
been established in [18] for n = 2 or 3, and in [25] for n � 4. �
7. The Lp biharmonic Neumann problem

This section is devoted to the proof of Theorem 1.3. We begin with the definition of the
biharmonic layer potentials introduced by Verchota in [32]. Fix x ∈ R

n, let Bx = Bx(y) denote
the fundamental solution for operator 
2 with pole at x, given by

Bx(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2(n − 2)(n − 4)ωn

· 1

|x − y|n−4
, n = 3 or n � 5,

− 1

4ω4
log |x − y|, n = 4,

− 1

8π
|x − y|2(1 − log |x − y|), n = 2.

(7.1)

Given (F,g) ∈ W 1,p(∂Ω) × Lp(∂Ω) for 1 < p < ∞, the double layer potential for the bihar-
monic equation is defined by

w(x) = Dρ(F,g)(x) =
∫

∂Ω

{
Kρ

(
Bx

)
(y)F (y) + Mρ

(
Bx

)
(y)g(y)

}
dσ(y), (7.2)

for x ∈ R
n \ ∂Ω . Clearly 
2w = 0 in R

n \ ∂Ω . By computing Kρ(Bx) and Mρ(Bx) in (7.2),
one may show that

w(x) =
∫

∂Ω

{
∂Γ x

∂N
F + Γ xg + (1 − ρ)

∂

∂Tjk

DkB
x ·

(
Ni

∂F

∂Tij

− Njg

)}
dσ, (7.3)

where Γ x = 
Bx is the fundamental solution for 
 with pole at x. Also
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D�w(x) = −
∫

∂Ω

{
DiΓ

x · ∂F

∂T�i

+ D�Γ
x · g

}
dσ

− (1 − ρ)

∫
∂Ω

{
∂

∂Tjk

DkD�B
x ·

(
Ni

∂F

∂Tij

− Njg

)}
dσ. (7.4)

It follows by [4] that

∥∥(∇w)∗
∥∥

p
� C

{‖∇tF‖p + ‖g‖p

}
. (7.5)

To compute the nontangential limits of w and ∇w, one uses

lim
x→P∈∂Ω

x∈Ω±∩γ (P )

∫
∂Ω

DiDjDkB
x · f dσ

= ±1

2
NiNjNkf (P ) + p.v.

∫
∂Ω

DiDjDkB
P · f dσ. (7.6)

This, together with (7.3)–(7.4), gives

(
w±,−∂w±

∂N

)
=

(
±1

2
+K∗

ρ

)
(F,g), (7.7)

where K∗
ρ is a bounded operator on W 1,p(∂Ω) × Lp(∂Ω).

For (Λ,f ) ∈ W−1,p(∂Ω)×Lp(∂Ω) with 1 < p < ∞, the single layer potential is defined by

v(x) = S(Λ,f )(x) = Λ
(
Bx(·)) −

∫
∂Ω

∂Bx

∂N
f dσ. (7.8)

Clearly 
2v = 0 in R
n \ ∂Ω . By writing Λ = ∂hij

∂Tij
+ h0 with hij , h0 ∈ Lp(∂Ω) so that

Λ
(
Bx

) =
∫

∂Ω

{
−∂Bx

∂Tij

hij + Bxh0

}
dσ, (7.9)

one sees that

∥∥(∇∇v)∗
∥∥

p
� C

{‖Λ‖W−1,p(∂Ω) + ‖f ‖p

}
(7.10)

for 1 < p < ∞ by [4]. Also

(
Kρ(v)±,Mρ(v)±

) =
(

∓1
I +Kρ

)
(Λ,f ) (7.11)
2
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where operator Kρ , whose adjoint is K∗
ρ in (7.4), is bounded on W−1,p(∂Ω) × Lp(∂Ω). We

point out that the trace of Kρ(v)± in (7.11) is taken in the sense of distribution, i.e.,

Kρ(v)±(φ) = lim
k→∞

∫
∂Ω±

k

Kρ(v)φ dσ, (7.12)

for φ ∈ C1
0(Rn), where Ω±

k is a sequence of smooth domains which approximate Ω± from inside,
respectively [30]. Because of (7.6), to prove (7.11), we only need to take care of the term ∂

∂N

v.

To do this, we note that


v = −
∫

∂Ω

{
∂Γ x

∂Tij

hij + ∂Γ x

∂N
f

}
dσ +

∫
∂Ω

Γ xh0 dσ

= Dj

∫
∂Ω

Γ x{Nihij − Nihji + Njf }dσ +
∫

∂Ω

Γ xh0 dσ. (7.13)

This allows us to express ∂
∂N


v on ∂Ωk in terms of tangential derivatives plus a higher order
term,

∂
v

∂N
= ∂

∂T�j

D�

∫
∂Ω

Γ x{Nihij − Nihji + Njf }dσ + ∂

∂N

∫
∂Ω

Γ xh0 dσ. (7.14)

We remark that the computation of the trace operators in [32] used the harmonic extension of
functions in W 1,p′

(∂Ω) to Ω . On general Lipschitz domains, this would require p > 2 − ε.
Let Xp(∂Ω) denote the subspace of W−1,p(∂Ω) × Lp(∂Ω) whose elements (Λ,f ) satisfy

Λ(1) = 0 and Λ(xj ) =
∫

∂Ω

f Nj dσ for j = 1, . . . , n. (7.15)

One of the main results in [32] is that

1

2
I +Kρ :W−1,p(∂Ω) × Lp(∂Ω) → W−1,p(∂Ω) × Lp(∂Ω),

−1

2
I +Kρ : Xp(∂Ω) → Xp(∂Ω) (7.16)

are isomorphisms for p ∈ (2 − ε,2 + ε). Let {(Λ∗
j , f

∗
j ): j = 0,1, . . . , n} be the set of the

affine equilibrium distributions (see [32, p. 261]). This set spans the kernel of −(1/2)I + Kρ

on W−1,2(∂Ω) × L2(∂Ω). It follows from (7.16) and duality that for p close to 2,

1

2
I +K∗

ρ :W 1,p(∂Ω) × Lp(∂Ω) → W 1,p(∂Ω) × Lp(∂Ω),

−1
I +K∗

ρ : Zp(∂Ω) → Zp(∂Ω), (7.17)

2
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are isomorphisms, where Zp(∂Ω) is a subspace of W 1,p(∂Ω)×Lp(∂Ω) whose elements (F,g)

satisfy

Λ∗
j (F ) +

∫
∂Ω

f ∗
j g dσ = 0 for j = 0,1, . . . , n. (7.18)

Note that Zp(∂Ω) is well defined for p > 2 − ε.

Theorem 7.1. There exists ε > 0 such that the operators in (7.17) are isomorphisms for 2 < p <

2(n − 1)/(n − 3) + ε and n � 4. If n = 2 or 3, the operators in (7.17) are isomorphisms for any
2 < p < ∞.

Theorem 7.1 follows from Theorem 6.7 by the same line of argument that we used to prove
Theorem 3.1. To carry out the proof, we need to compute the Neumann trace of the double layer
potential. Let WA

p

2 (∂Ω) denote the space of Whitney arrays ḟ = {f0, f1, . . . , fn} ⊂ W 1,p(∂Ω)

which satisfy the compatibility conditions ∂f0
∂Tij

= Nifj − Njfi for 1 � i < j � n [31].

Lemma 7.2. Let ḟ = {f0, f1, . . . , fn} ∈ WA
p

2 (∂Ω). Let w(x) = Dρ(F,g) with F = f0 and
g = −Nifi . Then (∇∇w)∗ ∈ Lp(∂Ω) and

(
Kρ(w)+,Mρ(w)+

) = (
Kρ(w)−,Mρ(w)−

)
, (7.19)

on ∂Ω .

Proof. Using (7.4) and the compatibility conditions, we have

D�w(x) = −
∫

∂Ω

{
DiΓ

x · ∂F

∂T�i

+ D�Γ
x · g + (1 − ρ)

∂

∂Tik

DkD�B
x · fi

}
dσ

=
∫

∂Ω

∂Γ x

∂N
f� dσ +

∫
∂Ω

{
Γ x · ∂fi

∂T�i

+ (1 − ρ)DkD�B
x · ∂fi

∂Tik

}
dσ. (7.20)

It follows that

DjD�w(x) =
∫

∂Ω

{
DiΓ

x · ∂f�

∂Tij

+ DjΓ
x · ∂fi

∂Ti�

+ (1 − ρ)DjDkD�B
x · ∂fi

∂Tki

}
dσ. (7.21)

By [4], this implies ‖(∇∇w)∗‖p � C
∑

i ‖∇t fi‖p < ∞. Also it follows from (7.6) that

DjD�w+ − DjD�w− = Ni

∂f�

∂Tij

+ Nj

∂fi

∂Ti�

+ (1 − ρ)NjNkN�

∂fi

∂Tki

. (7.22)

This yields that Mρ(w)+ = Mρ(w)− on ∂Ω by a simple computation. To find Kρ(w)± =
∂ 
w± + (1 − ρ) ∂ (N�NiDjD�w)± on ∂Ω , we note that by (7.21),
∂N ∂Tij
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w(x) = (1 − ρ)

∫
∂Ω

DjΓ
x · ∂fi

∂Tji

dσ. (7.23)

Thus we may write

∂
w

∂N
= (1 − ρ)

∂

∂T�j

∫
∂Ω

D�Γ
x · ∂fi

∂Tji

dσ. (7.24)

It then follows from (7.24), (7.21) and (7.6) that

[
Kρ(w)+ − Kρ(w)−

]
(φ)

= (1 − ρ)

∫
∂Ω

N�

∂fi

∂Tji

· ∂φ

∂Tj�

dσ

+ (1 − ρ)

∫
∂Ω

N�Ni

{
Nm

∂f�

∂Tmj

+ Nj

∂fm

∂Tm�

+ (1 − ρ)NjNkN�

∂fm

∂Tkm

}
∂φ

∂Tji

dσ

= (1 − ρ)

∫
∂Ω

{
N�

∂fi

∂Tji

· ∂φ

∂Tj�

+ N�NiNm

∂f�

∂Tmj

· ∂φ

∂Tji

}
dσ

=
∫

∂Ω

{
NiNj

∂f�

∂Tj�

− ∂f�

∂Ti�

− N�Nm

∂f�

∂Tmi

}
Diφ dσ

= 0,

where we have used the compatibility condition

Ni

∂f�

∂Tjk

= Nk

∂f�

∂Tji

− Nj

∂f�

∂Tki

for k = � in the last step. This finishes the proof. �
Proof of Theorem 7.1. We will give the proof of the invertibility of −(1/2)I +K∗

ρ on Zp(∂Ω).
The case for (1/2)I +K∗

ρ on W 1,p(∂Ω) × Lp(∂Ω) is similar.
Let (G,h) ∈ Zp(∂Ω) for some 2 < p < ∞. Since −(1/2)I + K∗

ρ is invertible on Z2(∂Ω),
there exists (F,g) ∈ Z2(∂Ω) so that (−(1/2)I + K∗

ρ)(F,g) = (G,h). Let u(x) = Dρ(F,g) be
the double layer potential. We will show that if n � 4 and 2 < p < pn + ε, or if n = 2, 3 and
2 < p < ∞,

{
1

sn−1

∫
B(P,s)∩∂Ω

∣∣(∇u)∗
∣∣p dσ

}1/p

� C

{
1

sn−1

∫
B(P,Cs)∩∂Ω

∣∣(∇u)∗
∣∣2

dσ

}1/2

+ C

{
1

sn−1

∫ (|∇tG| + |h|)p
dσ

}1/p

, (7.25)
B(P,Cs)∩∂Ω
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for any P ∈ ∂Ω and s > 0 small. Since (F,g) = (u+ − u−,− ∂u+
∂N

+ ∂u−
∂N

), by covering ∂Ω with
a finite number of small balls, we obtain

‖∇tF‖p + ‖g‖p � C
∥∥(∇u)∗

∥∥
p

� C
{∥∥(∇u)∗

∥∥
2 + ‖∇tG‖p + ‖h‖p

}
� C

{‖∇tF‖2 + ‖g‖2 + ‖∇tG‖p + ‖h‖p

}
� C

{‖∇tG‖p + ‖h‖p

}
. (7.26)

This shows that −(1/2)I +K∗
ρ is invertible on Zp(∂Ω). Note that by a density argument, we may

assume that (G,h) = (f0,−fiNi) for some {f0, f1, . . . , fn} ∈ WA2
2(∂Ω). This would imply

that (F,g) = (f̃0,−f̃iNi) for some {f̃0, f̃1, . . . , f̃n} ∈ WA2
2(∂Ω) by [32, p. 265]. Consequently

(∇∇u)∗ ∈ L2(∂Ω) by Lemma 7.2.
To establish estimate (7.25), we may assume that P = 0 and B(0, r0) ∩ Ω is given by (2.2).

Let Q0 = Is be a surface cube defined in (2.3). For any subcube Q of Q0, we choose a function
ϕ = ϕQ ∈ C2

0(Rn) such that 0 � ϕ � 1, ϕ = 1 in 100Q, ϕ = 0 outside of 200Q, and |∇ϕ| � C/r ,
|∇∇ϕ| � C/r2 where r is the diameter of Q. Let

β = 1

|200Q|
∫

200Q

Gdσ. (7.27)

Since

W 1,2(∂Ω) × L2(∂Ω) = Z2(∂Ω) ⊕ span
{
(1,0), (xj ,−Nj), j = 1, . . . , n

}
, (7.28)

there exist (FQ,gQ) ∈ Z2(∂Ω) and (α0, α1, . . . , αn) ∈ R
n+1 such that

(
(G − β)ϕ,−hϕ − (G − β)

∂ϕ

∂N

)

=
(

−1

2
I +K∗

ρ

)
(FQ,gQ) + α0(1,0) + αj (xj ,−Nj),

∥∥(G − β)ϕ
∥∥

W 1,2(∂Ω)
+

∥∥∥∥hϕ + (G − β)
∂ϕ

∂N

∥∥∥∥
2

∼ ‖FQ‖W 1,2(∂Ω) + ‖gQ‖2 +
n∑

j=0

|αj |. (7.29)

Let v(x) = Dρ(FQ,gQ)+ α0 + αjxj and w = u− v − β = Dρ(F − FQ,g − gQ)− β . Note that

(
w−,−∂w−

∂N

)
=

(
(G − β)(1 − ϕ),−h(1 − ϕ) + (G − β)

∂ϕ

∂N

)
. (7.30)

Thus w− = |∇w−| = 0 on 100Q. Since (−(1/2)I + K∗
ρ)(FQ,gQ) is given by an array

in WA2(∂Ω), we may deduce that (FQ,gQ) is also given by an array in WA2(∂Ω). It fol-
2 2
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lows from Lemma 7.2 that (∇∇w)∗ ∈ L2(∂Ω) and (Mρ(w)+,Kρ(w)+) = (Mρ(w)−,Kρ(w)−)

on ∂Ω . This allows us to apply Theorem 6.7. We obtain

{
1

|Q′|
∫
Q′

∣∣(∇w)∗
∣∣pn dσ

}1/pn

� C

{
1

|32Q′|
∫

32Q′

∣∣(∇w)∗
∣∣2

dσ

}1/2

(7.31)

for any subcube Q′ of Q. Since the reverse Hölder inequality (7.31) is self-improving [14], in
the case n � 4, this means that there exists ε > 0 depending only on ‖ψ‖∞, n and the constant C

in (7.31) so that

{
1

|Q|
∫
Q

∣∣(∇w)∗
∣∣p̄ dσ

}1/p̄

� C

{
1

|64Q|
∫

64Q

∣∣(∇w)∗
∣∣2

dσ

}1/2

� C

{
1

|64Q|
∫

64Q

∣∣(∇u)∗
∣∣2

dσ

}1/2

+ C

{
1

|64Q|
∫

64Q

∣∣(∇v)∗
∣∣2

dσ

}1/2

, (7.32)

where p̄ = pn + ε.
Finally we note that by (7.29)

{ ∫
∂Ω

∣∣(∇v)∗
∣∣2

dσ

}1/2

� C

{ ∫
∂Ω

(|∇tFQ| + |gQ|)2
dσ

}1/2

+
n∑

j=1

|αj |

� C

{ ∫
200Q

(|∇tG| + |h|)2
dσ

}1/2

, (7.33)

where we also used the Poincaré inequality. With (7.33) and (7.32), estimate (7.25) follows by
Theorem 3.2. This completes the proof of Theorem 7.1. �
Remark 7.3. The Lp Dirichlet problem for the biharmonic equation

⎧⎪⎪⎨
⎪⎪⎩


2u = 0 in Ω,

u = F ∈ W 1,p(∂Ω),
∂u

∂N
= g ∈ Lp(∂Ω) on ∂Ω,

∗ p

(7.34)
(∇u) ∈ L (∂Ω),



Z. Shen / Advances in Mathematics 216 (2007) 212–254 247
is uniquely solvable if

n = 2,3, 2 − ε < p � ∞,

n = 4, 2 − ε < p < 6 + ε,

n = 5,6,7, 2 − ε < p < 4 + ε,

n � 8, 2 − ε < p < 2 + 4

n − λn

+ ε,

(7.35)

where λn = (n + 10 + 2
√

2(n2 − n + 2) )/7. See [8,18,25,27]. The ranges of p’s in (7.35) are
known to be sharp in the case 2 � n � 7 [18]. This implies that the ranges of p’s in Theorem 7.1
are sharp for n = 2,3,4,5.

Corollary 7.4. Let 2 < p < pn + ε for n � 4 and 2 < p < ∞ for n = 2 or 3. The unique solution
to the Dirichlet problem (7.34) for the biharmonic equation with boundary data (F,g) is given by

u(x) = Dρ

((
1

2
I +K∗

ρ

)−1

(F,g)

)
. (7.36)

By duality and an argument similar to that in the proof of Theorem 5.1, we may deduce the
following from Theorem 7.1.

Theorem 7.5. There exists ε > 0 such that the operators ±(1/2)I + Kρ in (7.16) are isomor-
phisms for n � 4 and 2(n − 1)/(n + 1) − ε < p < 2. If n = 2 or 3, the operators are iso-
morphisms for 1 < p < 2.

Proof of Theorem 1.3. The existence follows from the invertibility of −(1/2)I + Kρ on
Xp(∂Ω), while the uniqueness was proved in [32, p. 273] by constructing a Neumann func-
tion. �
8. The classical layer potentials on weighted spaces

In this section we consider the classical layer potentials for Laplace’s equation 
u = 0 in Ω .
In order to be consistent with our notation for elliptic systems, we shall use the fundamental
solution for L = −
 in the definitions of single and double layer potentials. It is well known
that the operators (1/2)I +K :Lp

0 (∂Ω) → L
p

0 (∂Ω) and −(1/2)I +K :Lp(∂Ω) → Lp(∂Ω) are
isomorphisms for n � 2 and 1 < p < 2 + ε. The case p = 2 was proved in [30], using Rellich
identities as we indicated in Section 1. The sharp range 1 < p < 2 + ε was obtained in [6]. This
was done by establishing L1 estimates for solutions of the Neumann and regularity problems
with boundary data in the atomic Hardy spaces. It follows by duality that (1/2)I + K∗ and
−(1/2)I + K∗ are isomorphisms on Lp(∂Ω)/{h0} and Lp(∂Ω) respectively, where 2 − ε1 <

p < ∞ and h0 is a function which spans the kernel of (1/2)I +K on L2(∂Ω).
With the method from previous sections, it is possible to recover the sharp Lp invertibility

in [6] without the use of the Hardy spaces. To do this, we will prove directly that (1/2)I +
K∗ :Lp(∂Ω)/{h0} → Lp(∂Ω)/{h0} and −(1/2)I +K∗ :Lp(∂Ω) → Lp(∂Ω) are invertible for
2 − ε1 < p < ∞. In fact we shall prove a stronger result. Let X 2(∂Ω,ω dσ) denote the space of
functions f in L2(∂Ω,ω dσ) such that

∫
f h0 dσ = 0.
∂Ω
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Theorem 8.1. Let Ω be a bounded Lipschitz domain in R
n, n � 3, with a connected boundary.

Then there exists δ ∈ (0,1] depending only on n and the Lipschitz character of Ω such that the
operators

(1/2)I +K∗ :X 2(∂Ω,ω dσ) → X 2(∂Ω,ω dσ),

−(1/2)I +K∗ :L2(∂Ω,ω dσ) → L2(∂Ω,ω dσ), (8.1)

are isomorphisms for any A1+δ weight ω on ∂Ω .

We refer the reader to [29] for the theory of Ap weights. In particular the boundedness of
operator K∗ on L2(∂Ω,ω dσ) with ω ∈ A2(∂Ω) follows from [4] and the standard weighted
inequalities for Calderón–Zygmund operators. Also, by the Hölder inequality, L2(∂Ω,ω dσ) ⊂
Lp(∂Ω) if ω ∈ A1+δ(∂Ω) and p = 2/(1 + δ). Since h0 ∈ Lq(∂Ω) for some q > 2, this implies
that the space X 2(∂Ω,ω dσ) is well defined if ω ∈ A1+δ and δ > 0 is sufficiently small.

Note that by an extrapolation theorem of Rubio de Francia (see e.g. [10]), Theorem 8.1 yields
the Lp invertibility of ±(1/2)I +K∗ for the sharp range 2−ε < p < ∞. Furthermore, by duality,
we obtain the following.

Theorem 8.2. Let Ω be a bounded Lipschitz domain in R
n, n � 3, with a connected boundary.

Then there exists δ ∈ (0,1] depending only on n and the Lipschitz character of Ω such that the
operators (1/2)I + K and −(1/2)I + K are isomorphisms on L2

0(∂Ω, dσ
ω

) and L2(∂Ω, dσ
ω

)

respectively, for any A1+δ weight ω on ∂Ω .

Here L2
0(∂Ω, dσ

ω
) denotes the space of functions f in L2(∂Ω, dσ

ω
) such that

∫
∂Ω

f dσ = 0.
To prove Theorem 8.2, one uses the fact that L2(∂Ω,ω dσ) = X 2(∂Ω,ω dσ) ⊕ R and precedes
as in the proof of Theorem 4.1.

As in the Lp case, the invertibility of (1/2)I +K on L2(∂Ω, dσ
ω

) gives us the existence for the
Neumann problem with boundary data in the weighted L2 space. Since L2(∂Ω, dσ

ω
) ⊂ Lp(∂Ω)

for some p > 1, the uniqueness follows from the uniqueness for the Lp Neumann problem [6].

Corollary 8.3. Let Ω be a bounded Lipschitz domain in R
n, n � 3, with a connected boundary.

Then there exists δ ∈ (0,1] depending only on n and the Lipschitz character of Ω such that given
any g ∈ L2

0(∂Ω, dσ
ω

) with ω ∈ A1+δ(∂Ω), there exists a harmonic function u on Ω , unique up to

constants, such that ∂u
∂N

= g and (∇u)∗ ∈ L2(∂Ω, dσ
ω

). Moreover, the solution u satisfies

∥∥(∇u)∗
∥∥

L2(∂Ω, dσ
ω

)
� C‖g‖

L2(∂Ω, dσ
ω

)
, (8.2)

and is given by the single layer potential with density ((1/2)I +K)−1(g).

Remark 8.4. The condition ω ∈ A1+δ in Theorems 8.1 and 8.2 (and in Corollary 8.3) is sharp
in the context of Ap weights. This is because they imply the sharp ranges of p’s for the Lp

invertibility. However in the case n � 4, there are weights ω which are not in the sharp Ap

class and for which ±(1/2)I + K are invertible on L2(∂Ω, dσ
ω

). Indeed, consider the power
weight ωα = |Q − Q0|α , where Q0 ∈ ∂Ω and α > 1 − n. It is shown in [24] that (1/2)I + K
and −(1/2)I + K are invertible on L2

0(∂Ω, dσ
ωα

) and L2(∂Ω, dσ
ωα

) respectively, if 1 − n < α <

n − 3 + ε. However we observe that ωα ∈ A1+δ if and only if 1 − n < α < (n − 1)δ.
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It remains to prove Theorem 8.1. To do this, we need to establish a reverse Hölder inequality
similar to (2.28), but with pn replaced by any exponent p > 2. Since |∇u| on the boundary is
only Lq integrable for some q > 2, the Sobolev inequality is not useful in higher dimensions.
Instead we use the following Morrey space estimate (see e.g. [14, Ch. 3]),

sup
I (P0,R)

|u| � C

Rn−1

∫
I (P0,2R)

|u|dσ + CλR
λ−n+3

2 sup
0<r<R

P∈I (P0,R)

{
r−λ

∫
I (P,r)

|∇t u|2 dσ

}1/2

(8.3)

where λ > n − 3 and I (P, r) = B(P, r) ∩ ∂Ω for P ∈ ∂Ω and 0 < r < r0.
Assume 0 ∈ ∂Ω and Ω ∩ B(0, r0) is given by (2.2).

Lemma 8.5. Suppose 
u = 0 in Ω±. Assume that (∇u)∗± ∈ L2(I4R) and u± = 0 on I4R for some
0 < 4R < cr0. Then there exists λ > n − 3 depending only on n and Ω such that

sup
0<r<R

r−λ

∫
Ir

|∇u±|2 dσ � C

Rλ+3

∫
D±

4R

|u|2 dx. (8.4)

Proof. Since u± = 0 in I4R , we may use (2.10) and (2.5) to obtain∫
Ir

|∇u±|2 dσ � C

r3

∫
D±

4r

|u|2 dx. (8.5)

By the boundary Hölder estimates, we have

∣∣u(x)
∣∣2 � C

(
r

R

)δ 1

Rn

∫
D±

4R

|u|2 dx, (8.6)

for any x ∈ D±
4r , where δ > 0 depends only on n and Ω . Estimate (8.4) with λ = n − 3 + δ now

follows easily from (8.5) and (8.6). �
Lemma 8.6. Suppose that 
u = 0 in Ω± and (∇u)∗± ∈ L2(I4R) for some 0 < 4R < cr0. Then
there exists λ > n − 3 depending only on n and Ω such that

sup
0<r<R

r−λ

∫
Ir

|∇u±|2 dσ

� C sup
0<r<2R

r−λ

∫
Ir

∣∣∣∣∂u±
∂N

∣∣∣∣
2

dσ + C

Rλ+3

∫
D±

4R

|u|2 dx + C

Rλ+1

∫
I4R

|u±|
∣∣∣∣∂u±
∂N

∣∣∣∣dσ. (8.7)

Proof. We use the following estimate established in [24, Lemma 4.18, p. 2855],

∫
Ir

|∇u|2 dσ � Crλ0

∫
∂D±

| ∂u
∂N

|2
{|P | + r}λ0

dσ(P ), (8.8)
sR
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where n − 3 < λ0 < n − 3 + ε. It follows that if n − 3 < λ < λ0,

sup
0<r<R

r−λ

∫
Ir

|∇u|2 dσ � C sup
0<r<2R

r−λ

∫
Ir

∣∣∣∣ ∂u

∂N

∣∣∣∣
2

dσ + C

Rλ

∫
Ω±∩∂D±

sR

|∇u|2 dσ, (8.9)

for 1 < s < 2. Estimate (8.7) now follows by an integration in s over (1,2) and using (2.5). �
Lemma 8.7. Suppose that 
u = 0 in R

n \ ∂Ω and (∇u)∗+ + (∇u)∗− ∈ L2(I16R) for some 0 <

16R < cr0. Assume that either u+ = 0 or u− = 0 on I16R . Then there exists λ > n−3 and p0 < 2
depending only on n and Ω such that

sup
0<r<R

r−λ

∫
Ir

|∇u±|2 dσ � C sup
0<r<2R

r−λ

∫
Ir

∣∣∣∣∂u+
∂N

− ∂u−
∂N

∣∣∣∣
2

dσ

+ C

Rλ+1

∫
I8R

(|u+| + |u−|)∣∣∣∣∂u+
∂N

− ∂u−
∂N

∣∣∣∣dσ

+ C

Rλ+3

∫
D+

16R∪D−
16R

|u|2 dx

+ CRn−λ−3
{

1

Rn−1

∫
I8R

(|u+| + |u−|)p0 dσ

}2/p0

. (8.10)

Proof. We only consider the case u+ = 0 on I16R . The case for u− is exactly the same.
The estimate for r−λ

∫
Ir

|∇u+|2 dσ is contained in (8.4). To estimate r−λ
∫
Ir

|∇u−|2 dσ , in
view of (8.7) and (8.4), we only need to take care of the term

1

Rλ+1

∫
I4R

|u−|
∣∣∣∣∂u−
∂N

∣∣∣∣dσ. (8.11)

To this end, first we replace | ∂u−
∂N

| in (8.11) by | ∂u+
∂N

|, since the difference is bounded by the
second term in the right side of (8.10). Next we use the Hölder inequality. This reduces the
problem to the estimation of

Rn−λ−1
{

1

Rn−1

∫
I4R

∣∣∣∣∂u+
∂N

∣∣∣∣
p′

0

dσ

}2/p′
0

. (8.12)

Finally we use the Lp′
0 estimate for the regularity problem on D+

sR for s ∈ (4,5) and then a
familiar integration in s to bound the term in (8.12) by

CRn−λ−1
{

1

Rn

∫
D+

|∇u|p′
0 dx

}2/p′
0

� C

Rλ+1

∫
D+

|∇u|2 dx � C

Rλ+3

∫
D+

|u|2 dx, (8.13)
5R 6R 16R
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where we have used a higher integrability estimate in the first inequality (see e.g. [14]). We
remark that Lp′

0 regularity estimate holds if p0 is close to 2 [6]. This completes the proof
of (8.10). �

We now are ready to prove the desired reverse Hölder inequality.

Theorem 8.8. Suppose that 
u = 0 in R
n \ ∂Ω and (∇u)∗+ + (∇u)∗− ∈ L2(I300R) for some 0 <

300R < cr0. Also assume that ∂u+
∂N

= ∂u−
∂N

on I300R and that either u+ = 0 or u− = 0 on I300R .
Then for any 2 < q < ∞,

{
1

Rn−1

∫
IR

∣∣(u)∗
∣∣q dσ

}1/q

� Cq

{
1

Rn−1

∫
I300R

∣∣(u)∗
∣∣p0 dσ

}1/p0

, (8.14)

where p0 < 2 depends only on n and Ω .

Proof. It follows from (8.3) and (8.10) that

{
1

Rn−1

∫
IR

(|u+| + |u−|)q
dσ

}1/q

� C

{
1

Rn

∫
D+

32R∪D−
32R

|u|2 dx

}1/2

+ C

{
1

Rn−1

∫
I16R

(|u+| + |u−|)p0 dσ

}1/p0

� C

{
1

Rn−1

∫
I64R

∣∣(u)∗
∣∣p0 dσ

}1/p0

, (8.15)

where we also used (2.14) for the second inequality. Since the Lp Dirichlet problem for Laplace’s
equation is solvable for any p � 2 (this follows from the L2 solvability and the maximum prin-
ciple), estimate (8.14) follows from (8.15) and (2.24). �
Proof of Theorem 8.1. We only give the proof for the invertibility of (1/2)I + K∗ on
X 2(∂Ω,ω dσ). The case of −(1/2)I +K∗ is similar.

Let f ∈ X 2(∂Ω,ω dσ) ∩ W 1,2(∂Ω). Since (1/2)I + K∗ is invertible on W 1,2(∂Ω)/{h0}
and L2(∂Ω)/{h0} [30], there exists g ∈ W 1,2(∂Ω) such that ((1/2)I + K∗)g = f and ‖g‖2 �
C‖f ‖2. We need to show that

∫
∂Ω

|g|2ωdσ � C

∫
∂Ω

|f |2ωdσ. (8.16)

To this end, we fix P0 ∈ ∂Ω and s > 0 sufficiently small. Let u = D(g). We will show that there
exists p0 < 2 such that
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{ ∫
I (P0,s)

∣∣(u)∗
∣∣2

ωdσ

}1/2

� C
{
ω

(
I (P0,Cs)

)}1/2
{

1

sn−1

∫
I (P0,Cs)

∣∣(u)∗
∣∣p0 dσ

}1/p0

+ C

{ ∫
I (P0,Cs)

|f |2ωdσ

}1/2

, (8.17)

for all ω ∈ A2/p0(∂Ω). Note that ‖g‖p0 � C‖f ‖p0 if p0 is close to 2. Thus the first term in the
right side of (8.17) is bounded by

Cs

{
ω(∂Ω)

}1/2‖g‖p0 � Cs

{
ω(∂Ω)

}1/2‖f ‖p0 � Cs‖f ‖L2(∂Ω,ω dσ). (8.18)

Since |g| � 2(u)∗, estimate (8.16) follows from (8.17) and (8.18) by covering ∂Ω with a finite
number of small surface balls.

We will use Theorem 3.4 to prove (8.17). We may assume that P0 = 0 and B(0, r0) ∩ Ω is
given by (2.2). Let Q be a small subcube of Is . We proceed as in the proof of Theorem 3.1
to choose function ϕ = ϕQ ∈ C1

0(Rn) and then gQ so that f ϕ = ((1/2)I + K∗)(gQ) + b and
‖f ϕ‖p0 ∼ ‖gQ‖p0 + |b|. Let

F = ∣∣(u)∗
∣∣p0 , RQ = 2p0−1

∣∣(w)∗
∣∣p0, and FQ = 2p0−1

∣∣(v)∗
∣∣p0, (8.19)

where p0 < 2 is given in Theorem 8.8, v = D(gQ) + b and w = u − v. Since w− = f (1 − ϕ)

and ∂w+
∂N

= ∂w−
∂N

, by Theorem 8.8, we have

{
1

|2Q|
∫

2Q

|RQ|p dσ

}1/p

� C

|Q|
∫

600Q

|RQ|dσ (8.20)

for any p > (2/p0). Also note that

‖FQ‖1 = ∥∥(v)∗
∥∥p0

p0
� C

{‖gQ‖p0 + |b|}p0 � C‖f ϕ‖p0
p0 . (8.21)

This shows that conditions (3.3) and (3.4) in Theorem 3.2 hold for any 1 < p < ∞. It then
follows from Theorem 3.4 and Remark 3.5 with q = (2/p0) that estimate (8.17) holds for any
w ∈ A2/p0(∂Ω). This completes the proof. �
Remark 8.9. If ω ∈ A1+δ(∂Ω), the Dirichlet problem for Laplace’s equation with boundary
data in L2(∂Ω,ω dσ) is uniquely solvable. This follows easily from [5]. In [24], we solved the
regularity problem with data in W 1,2(∂Ω, dσ

ω
) for ω ∈ A1+δ(∂Ω), and established the sharp

estimate

∥∥(∇u)∗
∥∥

L2(∂Ω, dσ
ω

)
� C‖∇t u‖

L2(∂Ω, dσ
ω

)
. (8.22)

This, together with (8.2), gives the Rellich estimate (1.24) in the weighted L2 space.
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