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ABSTmCr 

The problem of minimizing differentiable functions on an entire vector space and 
on bounded subsets thereof has been studied by many authors. In this paper, we 
consider the problem of minimizing a nondifferentiable function r of the form 

~o(z) = max fi(z) 
,~{l,..-,N) 

on the entire space E , ,  or on a bounded set f2 in E , ,  where the f~ are continuously 
differentiable functions. In Section 1 an expansion of q0 is found, and continuous and 
discrete algorithms for finding a stationary point (that is, a point satisfying the necessary 
condition) are given. Some special cases are discussed. 

Most of the results obtained here can be applied to minimax problems in function 
spaces and in particular to some time optimal control problems, optimal control 
problems in the presence of constraints on the phase coordinates, and some pursuit 
problems. 

In  this paper  we shall consider  the  p rob lem of min imiz ing  the  funct ion 

cp(z) = m a x / , ( z )  
i~l .N 

on the ent i re  space E~ (Sections 1-3) or  on the bounded  set f2 (Sect ions 4-8).  F o r  

both cases necessary (and sufficient if  possible) condit ions for a m i n i m u m  are proved 

and successive approximat ion  methods  for finding a s tat ionary point  (i.e., a point  

satisfying the  necessary condit ion)  are given. 

T h e  s tandard  mathemat ica l  p rog ramming  prob lem is a special case of  this problem.  

1. NOTATION 

Le t  the f , (z) ,  1 ~ i ~< N,  be real, scalar-valued funct ions def ined and of  class C ~, 

1 ~< l < oo, in some ne ighborhood S C E~ of the point  y ~ E , .  T h e n  we can write the  

* The author's present address is Mathematics and Mechanics Department, Leningrad 
State University, Leningrad V 178, U.S.S.R. 
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following Taylor's series expansion of f~ in the direction g for any arbitrary 
g e E~(llg II ~< M < o~) and any real number ~ such that (y + ~g) ~ S, 

where 

~ 8~f~(Y) + o,(I a I ~) A(Y + ~g) =A(Y)  + k! Og~ 
k = l  

(1.1) 

Y ~ (Yl ..... Yn), g ~ (gl ..... gn), 

82f,(y) A, , alf,(y)ag x __-- af,(y)ag ----(~]~)'g); a2i'(Y) (g' ~yZ-gJ "'" 

a~fi(y) --  ~ 8~S'(Y) (1 <~ k <~ N), 01(I 19 o~ 
8gk - -  Oy~, Oyr ..... Oy~,.gi~g~ "'" gs, , 0 

,.41o-.-,,,#t--1 [ OL i l ~l-~O ) 

for 1 <~ i ~ N. The notation (A ,B) designates the scalar product of vectors A and B, 
and the notation 1, N designates the index set (1, 2 ..... N). 

Now let us consider the function 

~(z) --= maxf~(z) (1.2) 
iel,N 

The function ~(z) is not necessarily differentiable, but it will be shown later that it is 
directionally differentiable. We shall now obtain the expansion of ~0(z) in the given 
direction g. 

Let us consider sets R~(y, g), 0 <~ k <~ N, defined by the relations: 

Ro ~ Ro(y, g) ~ l, N 

1 8~-lf~(Y) 8k-lfs(Y) I (1.3) Rk ~ R, (y ,g)  =_ i ] i e Rk- l (y ,  g), Og ~ - ~  "~- JeRk_xty,g)max 8gk_ ~ 

It  may be seen in (1.3) that R o D R i ( y , g  ) ~ R~(y ,g )~  ..., and that R o does not 
depend on y and g. Since Rl(y  , g) does not depend on g, we may use the notation 
Rl(y ) ~ Rx(y, g). 

Let us consider sets Rk(y, g, q ,  ~2 .... , %), 1 <~ k <~ N, with c x/> 0, e 2 >~ 0 ..... ~ ~ 0, 
given by the relation 

R~(y, q )  = {i [ i e 1,N, ~o(y) - -  f , ( y )  <~ •1) 

R~(y,  g, ~ , ~ ..... ~)  = {i ] i ~ g~_l(y ,  g, q ,  .... ek-~}, (1.4) 

0*-xfi(y) 0k-~f,(y) max ag~-i 8g~-i ~< ~ 
JeRk-l(Y,g,~l . . . . .  ~/e-1) 
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From 0.4) ,  it may be shown that there exist ~1o > 0, e2o > 0 .... , cko :~ 0 such that 
for any k e l, N and any ~1, e2 ..... % (Ej ~ er = 1 ..... k) we have 

Rk(y, g, E~, ~2 ..... ~k) : Rk(y, g). (1.5) 

Before proceeding further, we shall establish the following functional inequality for 
arbitrary real, scalar-valued continuous on .(2 functions A(x) and B(x), x �9 En : 

m~[A(x)  + B(x)] ~ max A(x) + max B(x), (1.6) 
xEO 

where ~ is a compact set, 

Q ~ {x I x �9 ~2, A(x) = max A(z))  
ZEKf 

Proof. For any x' ~ 12, we have 

m&x[A(x) + B(x)] >/A(x') + B(x') 

So that (1.6) is true for x' �9 p .  But for such x', A(x')  = maxxer2 A(x) and we obtain 

m~[A(x)  + B(x)] ~ max A(x) + B(x') 

Since this inequality is valid for all x' e Q, the correctness of (1.6) is obvious. From 
(l.1), (1.2), and (1.6) we have, for a > 0 and such that (y + ag) �9 ~Q, 

~o(y + ag) ~> maxf~(y) -/- max k[ + o~(a ~) . (1.7) 
iet,-'N ieRl(Y ) ~gk 

By repeatedly applying (1.6) to the second term of the right-hand side of (1.7), we 
obtain 

where 

9 ( y  + ag) >~ ~o(y) + ~=l k! max - -  = i~Rk(Y,g) 

o(~ ~) --= min oi(a:) 
iE1.N 

a~f~(y) 
ag~ + o(~) (1.8) 

On the other hand if for any q > 0 there exists ~1 > 0 such that if ~ �9 [0, ~1], then 

~o(y + ~g) = maxf i (y  + ag) = max f~(y + ~ )  
/ e l ,~  i~RI(Y ,~1) 

[fi ~ ~k ~kfi(y ) -~ Oi((Xl)] ~.l'rlax ,f,(y) = max (Y) + k! c3g~ ,~RI~y,w i~RI(Y'~I) ~:=1 

+ max [~ l  ak Okfi(y) +of(at)] 
i~Rt(y.e l) k! 8g k 

: ~0(y) + max + o~(~ z) . (1.9) 
i~&(y,,O = k! 8g~ 
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Let  ~l > 0, ez > 0,..., ~ > 0 be fixed numbers. In a manner analogous to the 
derivation of (1.9) it follows that there exists a* ~ min~T5 a, > 0 such that if 

~ [0, a*] then 

~ ~f~(y) q~(y + o~g) ~< ~(y) § ~ max k! q- O(a~) (1.10) 

where 0(at) --= m a x ~  o~(~t). It  is obvious that o(a t) ~< 0(a ~) and that both o(a t) and 
~(~) depend on g. 

If e~(k e 1, N)  are such that e~ ~< e~o, then (1.5) is valid. Hence from (1.8) and (1.10), 
we obtain that if a is small enough then 

o(~ t) ~< ~o(y + c~g) - -  ~(y) - -  ~=l '~' i~a~(Y'g)max k! c~g~ ~< o(a') 

i.e., 

where 

~ ( x  k ,9kq,(y) 
~o(y + ~g) = ~o(y) + kt be ~ q- ~ (1.11) 

~ ( Y ~ )  = max ak3~(Y) ( k =  1, . . . ,N),  (1.12) ~gk i~Rk(y,g) ~g~ 

and o(~ ~) depends on g and y, and 

o(~ ~) ~< o(~) ~< ~(~). 

If  the fi  have continuous (l + 1) --  st derivatives, then o(c~)/c~ ~ ~ 0 uniformly 
with respect to g (ll g I! <~ 1) 

Thus, we have obtained that if a is a sufficiently small positive number such that 
(y -k c~g) e S, then the expansion (1.11) is valid. The  quantity 

~ ( Y )  --  max ~fi(Y),g) (1.13) 
~g i~Rl(y) \ ~y 

shall be referred to as the first directional derivative of the function ~0 at the point y 
with respect to the direction g. In [1] it has been shown that 

= [~f~(y) ) a~(y) lim ~0(y -Fag) --  ~(Y) max \ - - -~y  ,g  
a ~ +  0 O~ ieRl(y) ~g  

Thus qo is a directionally differentiable function. Now it is also possible to obtain that 

lim ~0(y + c~q) - -  ~o(y) _ 8~o(y) 
�9 ~ + 0  o~ ~ g  
q~g 
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Note that a~y)/ag is a continuous function of g, but that akep(y)/~gk (k = 2,..., l) 
are not necessarily continuous in g. The  function ak~o(y)/Ogk as a function o f y  (where 
g is fixed) is not continuous, in general. 

2. NECESSARY AND SUFFICIENT CONDITIONS FOR A MINIMUM 

Let  us consider the following problem. Suppose that fi(z), 1 <~ i ~< N, are real- 
valued functions, continuous and continuously differentiable in En �9 It is required to 
find minz~e, ~(z). In [1], the following theorem is proved: 

THEOREM 1. In order that the point y (IIY [I < oo) be a minimum point of ~o(y), 
it is necessary (and i f  ~ is also convex it is sufficient) that 

fix(Y) = min max [Of , (y ) ,g )= 0 
Hgil~' ieRl(y) ~--~y (2.1) 

We shall call a point y satisfying (2.1) a stationary point of ~0 on En. 

Remark 1. Instead of condition (2.1) we can write 

fz(Y) = min max ( ~ , g ) > ~ 0  (2.2) 
IIg[]= 1 iERx(y) 

Let  us note that conditions (2.1) and (2.2) are equivalent, i.e., if at the point y we 
have ~bl(y ) : 0, then also f2(Y) > /0 ,  and conversely. 

Proof. If  (2.1) holds, then (2.2) holds necessarily, because otherwise there exists a 
vector g(llg 11 ---- 1) such that 

~o(y)/ag < O, 
whereupon we would obtain 

fl(Y) = min ~ ( Y )  e~(y) ,,l,<, ~ ~< ~ < 0. 

The above inequality contradicts the assumption that (2. I) holds. Conversely, if (2.2) 
does not hold, then for some g, I1~[I ~< 1, we would have O99(y)/a~ < O, since 
r ~< 0, for al ly.  It  means that Ilgll > 0 and fo rg  : II~ll-lg we have 

~ o ( y )  __ ~eg(y) [1 ,~ [[--1 < O, II ~ II = 1 

Moreover, f ~ ( y ) :  min,jgll~ 1 O~(y)/Og ~ O~(y)/Off < O, which is again a contra- 
diction. 
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Remark 2. Let  us consider functions ~I(Y) and 4J2(y) defined at every point of 
E . .  Let the set H(y) be defined as 

 /ty) - Ix I x - e/'tY), i a ty) I. ey 

Now let us consider the eonvex hull L(y) of H(y). (L(y) is a polyhedron in En). 
Let  the function h(g) ~ a~(y)/Og = (g, Q(g)), where Q ( g ) ~ L ( y ) ,  and such that 

(g, Q(g)) = max (g, z) ~ max (g, z) (see Fig. 1) 
z~L(y) z~H(y) 

/ 
/ 

' . ~ L ( y )  

I 
i I 

.g 

FIG. 1. 

Note that Q(y) is not necessarily unique. I t  is clear that the function h(g) is continuous 
ing.  

Let  us show that  h(g) is also convex in g on E~. 

Proof. Let gl and g~ be arbitrary vectors, and let Qx - -  Q(gx) and Q~ -~ Q(g2). 
Then,  for any x E L(y) and for ~ ~ [0, 1], we have 

( g l ,  x) ~ ( g l ,  Qx) = h(gl), 

and 

(g~, x) ~< (g~, Q~) = h(g~). 

(~gx + (1 - -  ~ )gz ,  x) = n(gl ,  x) + (1 - -  ~)(g2, x) ~< ~(gt ,Q1) + (1 - ~)(g2,Q~). 

Since the above expression is valid for an arbitrary x ~L(y) ,  it follows that 

h(c~g 1 + (1 - -  ~)g2) = max (~ga + (1 - -  ~)gz ,  x) ~< cd;(gl) + (1 - -  ~) h(g2) 
x~L(y) 

and hence h(g) is convex. 
Now, we claim that if ~bl(y ) < 0, then h(g) has only one min imum point on the set 

llgll ~< I. 
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Proof by Contradiction. Let II&ll = IIg~ll ~ 1, gx : / :g2 ,  and h(gx) = h(g~) = 
minHgH .<1 h(g). Then  

h ( ~ )  ~ lh(gl) .ql_ �89 = min h(g) -~ ~bl(y ). 
Ilgll ~< 1 

Since 

/32 _ ]] �89 + g2){12 ~ ~l[g~ [t 2 + �89 ,g~) + �88 2 < l((g, g2) < 1 

and 
h(~,g) = ~,h(g) for 7 > O, 

it follows that  

h(~) ~ h((l/2/3)(g 1 + g2)) = (1//3)h(�89 1 + g2)) <~ (1//3)~bl(y ) < ~bx(y ) 

since (1 / /3)>  1. This  is contradiction, as [Igl] = 1. (If  /3 = 0, then instead of  
�89 + g2) we could choose any point ~gx + (1 - -  ~)g2(~ ~ (0, 1), ~ :?6 �89 I t  is clear 
that if ~bl(y ) < 0, then ]lg(y)JI = 1, where the vector g(y) is such that ~bl(y ) = 
O~o( y)/ ag( y). 

Thus  we have proved that if the point y is not a stationary point, then there exists 
one and only one vector g(y), IIg(Y)ll ~< 1, such that ~bl(y ) = ~q~(y)/Og(y) and in 
addition II g(Y)ll = I. 

T o  find g(y), it is possible to use the standard quadratic programming technique 
([2]-[4]). 

Geometrically, i f y  is not a stationary point then ~bl(y ) : ~b2(y ) = - -p  < 0, where 
p is the distance between the origin andL(y) .  (See Fig. 1). 

In  fact, if for some g we define 

x(g) =-- max {Of,(y) ) _p ,  
i~RI(Y) ~ Oy , g = < 0 

then m i n ~ z ~  1[ x II ~> t,' (see Fig. 2), i.e., there is no point of L (y )  inside the sphere 
II x II ~< p'. N o w  let x x EL(y) be such that  

II xl  II = m i n  [] x II 
n~L(y) 

Fie. 2. 



ALGORITHMS FOR SOME MINIMAX PROBLEMS 349 

Then for gl ~ II xx ll-Xxx we have x(gl) = --I[ xl !!. Let us prove that --p = ~bt(y ) = 
--H xl ][. First of all 

el(Y) = min x(g) <~ x(gl) = --J[ x,  [[. 
Ilgll~<l 

Now suppose also that ~bx(y ) ~ --Jl xl !1, i.e., for some ~ : x(g) < --[] xl I!. Then  there 
is no point of L(y)  inside the sphere I[ x II ~ -x(g)- This is a contradiction, since 

II x~ !! < - -x(g) .  
Now let y be a stationary point, then ~ba(y ) = 0 but ~b2(y ) == r, where r is the radius 

of the largest sphere (with the origin as center) which can be inscribed in L(y) (see 
Fig. 3). Geometlically, the necessary condition for a minimum is that at the minimum 
point y, the origin must belong to the convex hull L(y). 

FIG. 3. 

This is a generalization of the well-known necessary condition for a point y to be 
a minimum of a differentiable function. If  ~p is differentiable at y,  then &p(y)/Oy =-- 0 
necessarily at a minimum point of r In this case (i.e., where ~ is differentiable) the 
sets H(y) and L(y) consist of one point Ogo(y)/gTy. For any point y the direction 
Gt(y ) = Oep(y)/~y is the direction of steepest ascent (this direction is called the 
gradient) and --Gx(y ) is the direction of steepest descent, and 

a9(y)/Og == (Gl(y), g). (2.3) 

In the case where 9 is given by (1.2), then the steepest descent direction at y is the 
direction --g( y ). 

Note that, in general, 9 is not differentiable, so that the direction g(y) is not neces- 
sarily the direction of the steepest ascent. In this case, we must use (1.13) instead 
of (2.3). 

We now assert that if ~b.,(y) = r > 0, then 

(1) the po in ty  is a local minimum point, and 

(2) the point v is a discontinuity point of the set function Rl(y  ). 

571[214-2 
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Proof (1). For all i e 1, N, we have 
0f,(y)] 1 f~(x) -- f~(y + (x -- y)) = f~(y) + ~x -- y, Oy ! + o,(11 x --  y 13- 

Then 

( 3f'(Y)~ max 9(x) =-- maxfi(x ) >/ maxf i (y  ) + max x - - y ,  Oy i + i~R2(Y,x-Y) 
iex,-~ ~El.-~ ieRt(Y) 

(g 0f,(y)] = ~0(y) + II x --  y II max + max o,(11 x - -  y I1) 
i~Ra(Y) Oy ] ieRl(g ) 

~> ~0(y) + II x --  y Ii r + o(11 x - -  y II), 

o,([ I x --  y [I) 

where g = 1[ x - -  y [[-a(x - -  y). 

Since r > O, it follows that there exists �9 > 0 such that 

9(x) > ~(y) (2.4) 

whenever 11 x - - y  [I ~< �9 But this implies t h a t y  is a local minimum point of  9. 

Proof (2). Now let us prove that the point y is a discontinuity point of  the set 
function R 1 along any direction g. The set function R 1 is said to be continuous at the 
point y if 

p(Ra(x ) ,Rx(y ) )=  max min (z 1 - z 2 )  ~ +  max min (z x - z 2 )  2 , 0  
z~eRl(x) ZlERI(y) z~Rt(Y) zl~Rl(x) I!x--y][~0 

The set function R~ is said to be continuous at the point y along the direction 
g(ll g [I < oo) if 

p(Rl(y + ag), Rx(y)) ~ O. 

It is clear that the discontinuity of R t at y along any (and one is enough) direction g 
implies that Rx is discontinuous at y. 

Let us show that if ~b2(y ) > 0, then y is a discontinuity point of  the set function R t 
along any direction g. We shall prove an even stronger statement: There exists no 
sequence {Yk} such that [1 y~ --  y [1 = ck ~ 0 and Rl(yk) ~ Ra(y ). This means 
that there exists a neighborhood Sa of y such that for any y '  e $1 (y '  # y)  

Rx(y' ) =fi Rl(y ) (and R~(y') C Rl(y)) 

Proof by Contradiction. Suppose that the sequence {Yk} is such that II Y~ - - Y  II = 
% ~ 0 and Rl(yk) ~ Rx(y ). Since the range of RI(X ) consists of a finite number 
of values (i.e., Rl(x) is a "step-function") we have, that beginning with some k, 
Rl(yk) = RI(y). Since the f~, 1 ~< i ~< N, are continuously differentiable then if k 
is large enough, we have ff2(Y~) >/�89 
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Now we have 

~(Y) =-- r + (Y --Yk)) = max f~(Yk + (Y --Yk)) 
i e l ,N  

>~ maxf i (y~)+ max (y - - y k ,  ~ ) + _  max .oi(lly --Y~I!) 
/el."N ieRI(Y~) ze~ 'Y t 'Y"-Ytd  

= ~(Yk) q- I[ Y --  Y~ 1[ max (g, Of,(y~,)~ i~R~(r~) Oy ! + o ( ; l y  --Ykf[) 

r 
>~ ~(Yk) + ,k ~ + o(,k), 

where g ~ II Y - -  Yk II-I(Y --  Yk). For k large enough we obtain, recalling (2.4) and 
assuming that *k < ~, 

~(Y) >~ ~(Yk) + �88 > ~Yk) > ~ Y )  

which is absurd. This contradiction proves our assertion. 

Remark 3. If the functions f ,  are twice continuously differentiable on some 
neighborhood S of y, and i f y  is a stationary point of 9, then a sufficient condition for 
the point y to be a local minimum point is 

min max l~Zf(y) , 
ilgll=l iER2(y,g ) ~ - - ~ y 2  g g )  > 0 

If all the functions f~, i e Rz(y ) are strictly positive definite at y then y is a local 
minimum point, assuming of course that (2.1) holds. If  the functions f~, i e 1, N, are 
convex, then qo is a convex function since 

~v(ax x + (1 --  a)x2) = maxf~(~xl + (1 --  a)x2) ~< max [af,(xl) + (1 --  ot)fi(x2) ] 
i~ l ,N iel ,N 

a maxA(xx) + (1 --  a) maxA(x2) = a~(xx) + (1 --  a) 9(xz). 
ie I ,N i e l ,N  

In this case, any stationary point y is a (global) minimum point of ~, so that if the 
f i ,  i a R1(y), are strictly convex, then y is the unique minimum point of 9. 

Let us denote the minimal value of ~o on E,~ by ~o*. If the f~ ,  i 6  l, N, are convex, 
and if for some set Q 6 I, N we have at the point y 

m ~ x ( ~  ) m i n x ( g ) = 0  (2.5) min ,g  ~ Ilgll~<! [!gll<~ I 

then 
m.~f~(y) ~< 9'* ~< ~(Y)- (2.6) 
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Since the right hand inequality is obvious, let us prove the left hand inequality. 
Really assuming the contrary, if for some x we have ~0(x) < min~af i (y  ) then 
fi(x) < fi(Y), i E Q. Since thefi  are convex, we have 

( oS,(Y) -- y) < 0 ,  i e Q .  Oy ,x  

It  follows that 

max {Of~(Y) - - y )  < 0 leo \ Oy , x 

and 

X(oa) = max [Ofi(y) , fl,) < 0 
iE O \ ~y--y 

w h e r e  

g -=  II x - y t l - l ( x  - y ) ,  [ Ig l l  = 1, 

hence, afortiori, 
min x(g) <~ x(g) < 0 
Ilgll~<l 

which contradicts (2.5). Thus the inequality (2.6) is valid. This inequality enables us 
to stop searching for the minimum point after achieving the desired precision. I f  
it turns out that Q C Rl(y ~), i.e., if we can find the corresponding e > 0 for any set 
Q C 1, N, then 

~0(y) - -  ~o* ~< E. 

3. SOME SUCCESSIVE APPROXIMATION METHODS 

The problem being considered is a generalization of the standard mathematical pro- 
gramming problem, for which there exist many methods of successive approximations. 
(See [5]-[13].) Here, we shall discuss some methods of successive approximations 
which can be obtained from the minimax approach and which are useful not only for 
solving this problem but also for finding minimum points of more complicated 
functions (arising, for example, in optimal control problems). 

The main difficulty in developing methods of successive approximations arises 
because of the discontinuity of the set function Rl(y ). To show this difficulty, let us 
consider the "obvious" generalization of the gradient method. Since g(y) is the direc- 
tion of steepest descent, we can use the following procedure: Let Yl be an arbitrary 
point of E . ,  and let gt = g(Yl). I f  ~bl(yl) = O, then Ya is a stationary point, and the 
process is finished. I f  ~bl(yl) < O, then let us consider the ray 

Yl~ = Yl + ~gl (o~ ~ O) 



ALGORITHMS FOR SOME MINIMAX PROBLEMS 353 

and find a l e  (0, oo) such that 

~o(yx=x)---- min ~(Ya~). ~e[0,oo) 

At this point we set Y2 = Yx~I and continue in the same manner. This "obvious" 
method fails, in general, to lead us to a stationary point because of the discontinuity of 
Rl(y  ). One of the methods for overcoming this difficulty has been described in [1]. 
At the point y we can construct sets Qo(y),QI(y) ..... Q~(y) ,Qk(y)  c 1, N and 
with f i (Y)  - -  r ~ ak for all i E Qk and such that ao(y ) > ax(y ) > ... > am(y). 
It  is clear that m = re(y) ~< N --  1. Let  R~k(y) ---- ULoQ,(y), o ~< h ~< m. Note 
that Rl~n(y) ---- Rx(y ). Now let us consider some methods. 

Method 1. Let Yl e E~ be an arbitrary point. Suppose that yt  has been found. 
I f  3z ~ = r ---- 0, then yt is a stationary point and the process is finished. I f  8t ~ <: 0, 
then let R[~ = Rlk(yz), and the g~, 0 ~< k ~ ml,  where mt ---- m(yz) satisfy the 
following relation 

8z k = max ( ~ f i ( Y ~ ) )  (Ofi(y~) ) 
ieR~z Oy , g k = Ilgll<lmin maxieR~ Oy , g k . (3.1) 

Note that 0 < 3z ~ ~< 3z 1 ~< 3~ 2 ~< -'" ~< 3~ .  Denote a~z ~ ak(y~), 0 <~ k <~ mz, 
and ao~ ~- 0 < air < " ' "  < amt �9 Let us consider the rays 

Y~ = Yz q- ~gk(~ e [0, ~))(k  e 0, mz) 

and find ak~ e [0, ~ )  such that ~o(y~) = min~[o.o~) ~o(y~)(k e O, mt). Let ht be such 
that h~ e 0, m~ and 

~o(ye~) = min 9 (Y~)  (3.2) 
k~O,m~ 

(if there exist several points of this kind, choose any of them). At this point we set 

and continue in the same manner. Note that 

~o(yl) > ~o(y2) > ... > ~o(y,) > ... 

Thus  we construct the sequence {Yz}. I f  this is a finite sequence, then the extreme 
right point is a stationary point of ~o. I f  it is an infinite sequence (i.e., if it consists of an 
infinite number of points Yz) then the following theorem is valid: 

THEOREM 2. I f  the set 

D -~ {x e E~ I ~0(x) <~ 9(Yx)} 
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is bounded and if all the functions fi(x)(i E 1, N) are continuously differentiable on D, 
then any limit point y* of the sequence {y~} is a stationary point of q~. 

Proof. Let 

~imrp(y,)----~o*, --oo < ~o* < oo, ~o(y~) > ~o*. (3.3) 

This limit exists because the sequence {~(Yz)} is monotone and bounded from below 
(all the Yi, 1 ~< i < 0% belong to D, and ~ is continuous on D). Let  

l imy~ = y * ~ D ( l  a ~ c o ) .  

Since ~o is continuous, we have 9(Y*) = ~0". We shall show that y*  is a stationary 
point. Let  us prove this by contradiction: Suppose that ~bx(y* ) = - -8"  < 0(8" > 0). 
Then if 1, is large enough, ~bl(yz) ~< --�89 since Rl(y~) C Rx(y* ) for/8 > / l *  (where 
l* is large enough) and 

(~f,(y,) ) (Ofi(yz) ) max , g < m a x  , g 
ieRl(y [) Oy i~Ra(Y*) Oy 

There exist c t > 0 and r > 0, r < c2, such that for any ls >~ l (where I >~ 1" 
is large enough) we can find ks such that 

and 

As long as 

we have 

a~.l .  ~ c i ,  ak~ ~ > / ~ z  (3 .4 )  

R~, = Rx(y*). (3.5) 

RI~,,CR~, for k E l ,  k, and for l, /> i 

Now for i ~ R~t ~ we have 

8, ~. ~< --�89 8". (3.6) 

{Of,(yz~ g~:) + oa.~,(oO" 

From (3.4) and (3.5) we have, for c~ ~ (0, a*), where ~* is the same for Is >~ l, 

( f,(yO g ,:t + max o .  k q:(.Yz,~)*' = iem'a~"')/'(y~),,a,~ <~ q~CY") + cx max iERI(Ylo ) ~ ' - - ~ y - -  ~ - ]  iERl(ylm ) o ~- 
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Recalling (3.6), we obtain 

l% 
9~(y~,~) ~ ~0(y~�9 --  �89 + o(a) 

where o(~1/~ ~ 0 uniformly on l~ and k , .  For ~ ~ (0, &) (& ~< a*) we have 
" "" r 

ks ~(y,.,,) ~< 9~(ys,) - -  �88 

Choose some ~ e (0, &). As long as ~Yz,) = ~o* + % % > 0, cs .-=---* 0, for l, large 
enough (and, of course, l~ > / l* )  we have 

~ ( y ~ )  ~< ~* - -  ]aS* < ~*, 

and then, certainly, 

~o(y~,+l ) = rain .~!n)~o(y~.~) ~< ~o(y~) < ~o*, 
~l . f f l l s  

which contradicts (3.3). Thus, Theorem 2 is proved. 

Remark 4. It is clear from the preceding proof that the method can be modified 
in the following way. 

Method la. Let  us choose some ~ > 0 and some k s in (3.2) such that k s e 0, m] 
and 

~ys~ , )  : min ~ ( y ~ ) ,  
keO.ra~ 

where m~ is such that 

a,niz ~< �9 < a ,~ i+ l . s .  

Remark 5. Note that by increasing l we cannot change ~2 (see (3.4) to make q 
as small as desired. However, we can apply the following method: 

Method lb. Let  {fl;} be a decreasing sequence such that fl~ > 0, fl~ > fit-t,  and 

As usual, choose an arbitrary YI ~ En. Let y~ have already been found. If  8~ ~ = 
~bt(yr) : 0, then y~ is a stationary point and the process is finished. If  3s ~ < 0, then 
let us find a subsequence {fls,} of {fl~}, consisting of a finite set of numbers, such that 

akq+ d "~ flt~ ~ akh~ < akq+z . 
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Now let kt be such that kt ~ {kt } and 

9~(yt~ ) = min ~(YL~)- ke{kq} 

This method enables us to reduce the labor involved in finding a minimum point. 
Applying Methods 1, la, and lb, each step requires minimization of ~ on several 
rays. I f  this is too laborious, we can use other methods. 

M e t h o d  2. For the first approximation, we choose an arbitrary vector y~  ~ En �9 

Let y~ have already been found. Suppose that 3o < 0, because otherwise y~ would 
be a stationary point. In  accordance with (3.1) we have 

0 > az ~ ~< az I ~ az 2 ~ "" < a~ 

0 < a  u < a ~ z < - - -  ~ a , ~ z  

Find the largest ks a 0, m~ such that 

~: < -va~,~, (3.7) 

where/z is some fixed number. Note that if 8k ~ _tzak z (and if k ~ i) then afortiori 
8~ -1 < --/zak~ �9 In  fact, ifS~ -1 = 3~ - -  p~t, pkt ~ 0, ak-l.t = ak~ - -  X~, X~t > 0, then 

3~ -1  ~ -  3z ~ - -  Pkt  ~ - - I ~ a ~  - -  Pkt  - ~  - - t z a k - l . t  - -  tzXkt  - -  Pkl  < - - t z a k - L z  

which is the desired result. And now, certainly, recalling (3.7) we have 

Let us form the ray 

3~ k < - - / ~ a k t  for k 6 0 ,  k z -  1 

y~2 = y~ + ~g~'(~ ~ [0, ~ ) )  

and find % ~ [0, ~ )  such that 

Now we may set 

By construct:or_ 

~o(yz, ). (3.7) ~o(y~k2) = min ~z ~[0, oo) 

/Q 
Yl+l ~ YZ~ 

9(Yt+l) < 9(Yz), (3.8) 

and we may continue in the same manner. The sequence {y~} which we have thus 
constructed tends to a stationary point of 9. This statement may be given as the 
following theorem: 
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THEOREM 3. I f  the hypotheses of Theorem 2 are satisfied, then the sequence {Yl} 
formed in accordance with (3.7) converges to a stationary point of q~. This theorem can be 
proved in just the same way as one of the theorems in [1]. 

Remark 6. Theoretically,/L can be chosen arbitrarily, but  there exist more or less 
reasonable values of/~ in particular cases. 

Remark 7. Method 2 can be modified in the following way: 

Method 2a. Let/~ > 0 and �9 > 0 be fixed. For the first approximation, we choose 
an arbitrary vector Yl E En �9 Let y~ have been found. Suppose that 3z ~ < 0 (because 
otherwise if 3~ ~ = 0, Yz is a stationary point of ~ and the process is finished). Let 
�9 |1 : E. If  

81i = min max ( O f i ( y t ) , g ]  = max ( .8 f i ( y~) ,ga]  ~ - - " e l l  
I lg l l~ l  ieRle~i (Y~) , Oy / i eR le~ t (Y  ~) ~ Oy ] 

where 

Rl~a(Yz) : {i] i e 1, N ,  q~(y~) --  f~(Yz) ~ Ea}, 

then we set ez = ell, g, = ga  and form the ray y ~  = y~ + agl(~ e [0, oo)) and find 
at e (0, oo) such that 

q~(Yl~,) = rain go(y,~). ~e[O,~o) 

Now we may set 

Y / + I  = Y~a / " 

I f  3,a > --/~e~l, then we repeat the same process beginning with E,z : �89 a until 
we obtain 8z~ ~< --/xE,k. Note that in this case, the set Rl ( y , )  coincides with one of the 
sets Rak(y~), 0 <~ k <~ m,.  

Remark 8. At each step of all these methods it is required to find minima or 
mini-maxima of comparatively simple functions. It  may be shown that it is possible 
to obtain approximate solution of these auxiliary extremal problems. For example it is 
possible, instead of finding mind,c0 o 0 ~(y,~), to try to find min~to.a I ~(y~), where 
A, 0 < A < 0% is fixed and does not depend on l. (For other details, see [14], 
pp. 284-285). 

Remark 9. Let y( t )~  En be a vector-valued function, continuous on [0, T], 
0 < T < 0% such that y(t) ~ S for t ~ [0, T], where S C E n is a bounded closed set, 
and whose derivative satisfies the following equation 

j,+(t) = g(t), y(o) = Yo 
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where y+(t)--lim~_.o+ [y(t + ~)--y(t)]/a, and where the vector-valued function 
g(t) = g(y(t)) is piecewise continuous and bounded on [0, T]. Suppose that the set 
function Rl(t ) ~ Rl(y(t)) is such that meas co = 0, where co = {r ~ [13, T] I r is a 
dicontinuity point of R1}. Note that if Rx(t ) is continuous on It', t ']  it means that 
Rt(t ) is constant on [t', t ']. Then we shall prove that 

where as usual 

f ,  0~(y(~)) qo(y(t)) = qo(yo) + dr 
o 0g(r 

OW(y(r)) [ Of,(y(r)) \ 
- -  max , g(r)l. ~ - ~  isRl(r ) ~" -~y 

Proof. Let  A = t/m, t o = 0, tk = k'4, t m =  t, k = 0, 1 ..... m. Since 

f,(y(t)) = f,(Yo) + fo (Ofi(y(r)) g(r))dr, 

and recalling (I .6), we have for an arbitrary A > 0 

maxfi( t )  > max [ f i (Yo)+ ] x,(r) a~ + max f '  x,(~) a,, 
iel,-"-N iel.-"N 0 i~Ri(t--~4) Jt--zl 

where 

[.O/,(y(t)) ,e(t)), f~(t) -~ f~(y(t)), x'(t) = ~ Oy 

By repeatedly applying (1.6) we obtain from (3.10) 

Rl(t ) = R,(y(t)). 

(3.9) 

(3ao) 

YwI--| tR.t_ 1 

~(y(t)) >~ ~(Yo) + ~ max f X,(r)dr (3.11) 
k=O i e R a ( t t )  a r t  

On the other hand, for the same A, we have 

t t 

max [f,(Yo) + fo x(I") dr] = max [ f , ( t -  A) + f x,(r)dr] 
i e l , -~  ~ e / ~  t-,a 

= max [ f , ( t -  ,4)q- f '  xi(r)dr]  ~< i~l(0 i~,(,) J t -a  i~nl(t) t-~ max A(t - -  A) + max f~ Xi(~') dr 

t 

<~ max fi(t -- A) + max f x,(r) dr. 
- -  i ~ R t ( t )  t--~l i ~ l . / ~  
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Continuing in the same manner we obtain 

m--1 tk+ 1 

~ t )  ~ ~(Yo) + ~ max f X,(r) d~" 
k=O iERl(tk+l) " tt. 

Let  

Km -= {k I k �9 O, m --  1, RiO" ) = Rl(t~) for ~" �9 [t~, tk+,] } . 

Then Rl(tk ) = Rt(t~+x) for k �9 K., and we can rewrite (3.11) and (3.12) as follows 

9(t)  -=- 9(Y(t))  >1 q~CYo) + Z max f " + '  X,0") dr 
k~Km iERl(tk) r  

f tk+t 
+ )-" max t Xi(') dr 

kc-O,m--I izRx(t~) J t t  
k~x,. 

q~(t) <<. ~ Y o )  + Z max  (t~+, X,(') dr 
k~Km iERl(tk) c t k  

+ Z max ft'+' X,(r) all" 
. . . .  ieRa(tk+t) a t~  

kc-O,m--I 
kCX,~ 

Note that 

where 

(3.12) 

(3.14) 

f ~§162 = x,(O,k) . A ( i � 9  1, N , k � 9  m - -  1) (3.15) 
tk 

Oi~ e [tk, t~+l] 

Since the f~(t) are continuously differentiable on S then for any E > 0 we can find 
M such that for m > M 

I m~x X,(0,) --  m~x X,(G)I ~< r (3.16) 

whenever 0i e [t~, t~+,], k E K~; A C 1, N. 

Now from (3.15) and (3.16) we have 

max [.,,+1 i~,(t.) Jr,. xi('r) dr = y '  max Xi(Oik)" A 
keK,,~ k'~X m iERa(tk) 

= ~" i~R~(t.)max x~(t~)A + ~" [ imp.)x,(O~) --  i~Rx(t.)max x/(tk)] d 
~=o ~ x =  

- -  ~ max x,(t~)d. (3.17) 
ieRt(tD 

k~O,m--I 
kCr,~ 

(3.13) 
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Let 

max I x~(x)i = H (H < oo) 
i e l , N  
xe~' 

then from (3.13), (3.14) and (3.17) we have 

m--1 

]9~( t ) -  ~0(o)-  ~ max xi(tk)A I ~ Et + 3HpA 
k=0 i~Ra(tk) 

where p ~p(m) is the number of k such that k e 0, m, k ~ K,~. Since pA ~ means r 
= 0 and since E ~ 0, A ~ Am ~ 0, we obtain 

ra--1 

r = ~(o) + lim~ k~__ ~ ,~Rl(tr,)max xi(tk).4 

~(o) + f max x,C-r) d~" ~ ~C o) + dr (3.18) 
8~(~-) 

o i~R,(~) Jo eg(~) 

In addition we have proved that the limit in (3.18) exists. Thus  (3.9) is proved. 
Note that the formula 

~(y(t)) = ~(Yo) + t ~9~(Y(O)~) O e [0, t], 
egO) ' 

is not valid in this case since ~(y('r))/~g('r) is not a continuous function. In this case 
we will have 

~)(y(t)) = ~(Y0) -k tO 
where 

0 e [ i n f  8~(y(r)___~), sup 89~(y(r))] 
t,~o,tl ag(.) ,~Eo:n ag ( , ) 1"  

Now let us consider the following system of differential equations 

.~+(t) = g(t), y(o) = Yo 

where g(t) is given by 

(3.19) 

max [~]~(Y(t)),~(t))= min max (Sfi(y(t)) ) 
iERI(0 \ 8y Ilell<l i~RI(O \ 8y ' g ~ --p(t), 

g(t) ~ p(t) ff,(t). 

We shall assume that there exists a solution of system (3.13) for any t ~ [0, oo). 
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Suppose that the set M(yo) =-- {x [ 9(x) ~< 9(Yo)} is bounded, and the fi(x) are as 
described above (in Section 1), and Rl(x ) is a piecewise continuous set function on 
M(yo). Then  any limit point ofy( t ) ,  given by (3.19), is a stationary point of % i.e., 
if {tk) is a sequence such that 

tk ~ 0% y(tk) ~ y*, 

then 

P(Y*) = r = O. 

Note that since y(t) e M(yo) for t e [0, oo), then there exists at least one limit point. 

First of all, for any �9 > O, we must have meas co(c) ~ M~ < 0% where co(E) 
{tip(t) >/E}. For  otherwise (see (3.9)), ~ ( y ( t ) ) ~ - - 0 %  which is impossible by 
assumption. 

Thus 

ess lim ~b(y(t)) = O. 
t---~ oo 

�9 We shall prove that r  = 0 where y*  = limt~| y(t~). 
First of all let us prove that if ~b (y(tk)) --* O, y(tk) --+ y*, then ~b(x*) = 0. In fact, 

even though the function ~b 1 is not necessarily continuous, it turns out that as 
lira Rl(tk) C Rl(y*), then for k ~> k~ 

Rx(tk) C Rl(y* ). 

Since II g II ~ 1 then for any E > 0 there exists ks(e ) such that if k > ks(e), then 

(Of~(y(t~)) , g( <~ ( Oft(y* ) 
~y ey 

uniformly in g and i e 1, N. 

Let  k(e) = max{kx, k2(e)). For k >/k(e),  we have 

- - ,  g) + e (3.20) 

max (~fi(y(tk)) ,g) <~ max (~fi(y(tk)) ,g). 
ieRl(t~) Oy ieRl(y*) ~y 

Hence, 

r = rain max (.Ofi(y(t,~)) ) 
Ilgll~l ieRx(t k) \ ~y ' g <~ 

From (3.20) we obtain 

min max (Of~(y(t~)) ) [Ofi(y*) IIgll~<l i~RI(y*) Oy ' g  ~< min max 
I l g l l ~ l  ieRx(y*) ~ ~y 

min max (~fi(y(t~))) 
IIg[t~<l i~RI (y* )  " 07 ' g �9 

(3.21) 

g) + E =  ~bl(y* ) + ~ .  (3.22) 
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Making use of (3.21) and (3.22), we have 

~l(Y(tk)) ~ ~ (y* )  + ~, 

and therefore 

0 = lim ~(y ( t , ) )  ~ ~t(y*) + E. 
k--~ ov 

Since ~ is as small as desired, 

0 ~< ~ba(y*). (3.23) 

On the other hand, by the property of the function ~bl, we have 

~bl(y*) ~< 0. (3.24) 

From (3.23) and (3.24) we finally obtain 

~l(y*)  = O. 

Now let us prove that ~bl(y* ) = 0 for any limit pointy*. Suppose that our assumption 
is false, i.e., ~bi(y* ) = --p* < O. Since for y close enough to y*, Rl(y  ) C R t ( y , )  , 
then there exists 8 > 0 such that 

, ~bl(y ) ~ --�89 whenever I[Y --Y*[I ~ 3. 

Let {tk, } be a subsequence of {tk} such that []y,, - - y *  ][ ~ �89 Then, since g(t) is 
bounded, there exists 81 > 0 such that ]l y(t) -- y(tk,)[ [ ~ [3 whenever I t -- t,, ] ~ 31 . 
This means that for t such that [ t t~, ] ~ 3t ,  we have Hy(t) - - y *  II ~< 3, i.e., 
~bt(y(t)) <~ ~--�89 In the sequence {ti,} we leave only terms for which 

I tk~ - -  tk~_a I /> 31 

(Assume that the tk~ have been obtained and that tk(~) is the first t~ such that: 
tk(o -- t~, ~ 31, so that we may put t~+~ ---- tk(i)). Using (3.9), and remembering 
that ~bt(r ) ~ 0, we have 

re(t) t~ t+8  i 

cp(y(t)) = qo(yo) + f ~ba(7 ) dT ~ (P(Yo) + )-'. f ~bl(r ) dr 
0 i = 1  ~162 

~< ~~ 2 m ~ - - o o  
1=I 

since f 
t k / + S t  

m r dr > /p*  > O, 
-- ,_81 

where re(t) is such that tk~.) + 81 ~ t < tk.,.)+t + 8 t . 
This result contradicts the boundedness assumed for M(yo) and the continuity of 

fo on E . .  Thus we have obtained that if (3.19) has a solution (we are not discussing 
here the question of existence and uniqueness of the solution of (3.19)) and if M(yo)is  
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a bounded set, then this "continuous" method converges to a stationary point of 9~. 
Generally speaking, (3.19) is not stable. This  is why some of the well-known numerical 
methods of solving (3.19) failed to give us a stationary point of % and, hence, we were 
forced to use various alternate methods of successive approximations. 

4. MINIMIZATION ON BOUNDED SETS 

Let  s C En be a compact set (not necessarily convex or connected). An element 
g ~ E,, will be called an admissible direction at the point y E s if there exists a sequence 
{gs}(g, ~ E,~) and a number  sequence {a,} such that 

1) y + ~ , g , ~ s  

2) g,  -~  g 

3) ~ , > 0 ,  ~ , - ~ 0  

We shall denote the cone of admissible directions by M~,  M~ is a closed set [15]. Now 
let ~0(y) ~ min i~ i~f , (y ) ,  where the f i (y )  (i ~ 1, N )  are continuously differentiable on 
s where ~2, = {x l II x - y It ~< ~, Y ~ s ~ > 0). W e  are interested in the minimization 
of the function ~0(y) on s The  following theorem is valid: 

THEOREM 4. In order that a point y ~ ~ be a minimura point of ~ on s it is necessary 
(and in case where the set s and the function r are convex it is also sufficient) that 

4Jl(y) = min max  (~fi,,(Y),gl = O. (4.1) 
IJgll~ 1 ia-Rl(y) k oy / g~M~ 

As usual, we shall call a point y satisfying (4.1) a stationary point of the function ~o 
on the set s 

Proof. Necessity. We shall argue by contradiction. Note that for all y ~ O, we have 
~bt(y ) ~< 0. Let  y be a minimum point and suppose that (4.1) is violated, i.e., there 
exists if, II gll ~< 1, g ~  Mu such that 

m a x  (ef,(y) , 4) i ~ ( y )  k Oy = - p  < 0. (4.2) 

Then  from (1.11) we have 

~0(y + s , g , )  = ~ ( y )  + - e~0(y) + o(S,), 

where {&s}, {if,} are sequences, corresponding to ff in the definition of M y .  I f  s is large 
enough we have from (4.2) that 

~ (y  + &,g,) ~< ~o(y) -- �89 + o(~,). 
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Since o(&s)/&~ ~ 0 uniformly with respect to ~vs, we would have for s large enough 

~0(y + a~g,) ~< v(y) - l p ~  < ~o(y) 

which is absurd, sincey § &sg, e ~2 a n d y  is a minimum point of~0 on ~2 by assumption. 
Thus necessity is proved. 

SuJ~ciency. Let (4.1) hold at y and let the set O and the functions ~o(y) be convex. 
We shall prove tha ty  is a minimum point. Assume the contrary. Let  37 e O be such that 

~0(y) < ~0(y). (4.3) 

Now let us consider the line segment [y, 37] entirely contained in ~2 since ~2 is convex. 
Since ~o is convex we have 

~o(y -]- ~(37 - - y ) )  = ~o(a37 q- (1 - -  coy ) ~< cr q- (I - -  ~) ~o(y). 

From (4.3), we obtain for g ~ 37 - - y  that 

8~o(y) _ lim ~(y q- a(37 - -  y)) - -  ~o(y) ~< ~(37) _ 9~(y ) < 0. 
~g c~q- 0 O~ 

Then, certainly, for ~ = Ilgll-Xg = II 37 -Y11-1(37 -Y), we have 8~(y)/8~ < 0 
which contradicts (4.1). Thus the theorem is proved. 

Remark 10. Suppose that My is a convex set. Let us form the projection of the 
convex hull --L(y) onto the come My at the point y. We shall denote the convex hull 
of the projection by P(y). The necessary condition for a minimum means geometrically 
that the set P(y) must contain the origin. To  see this, let (4.1) hold at y and let us 
prove that the origin indeed belongs to P(y). Let us assume the contrary then there 
exists x I ~ P(y) such that 

p(y) = m i n x  ~ = xl ~ > 0. (4.4) 
xeP(y) 

Let gl = 1] xl tl-lxl �9 Then we assert that 

max [~f'(Y) ) max (z, gl) = - -min (z, ex) ~ --(xl, gl) < 0. (4.5) 
i eRl (Y  ) \ ~ y  , g l  z e L ( y )  ze - -L(y)  " v . 

Proof. (by Contradiction). Suppose the contrary. Let z 1 ~ --L(y) be such that 

(z l ,  gl) < (x~, g~) 

The projection 21 of z I onto My is such that (1): (21, gl) ~ (xl ,  gl) (for otherwise 
one can find a point x 1 (belonging to the line segment [21, Xl] ) such that x 12 < xx 2 
which is impossible, because of (4.4). 
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(2): (xl - -  zl) 2 < (zl - -  zl) z, (see Fig. 4), because otherwise zl is the projection of 
z 1 and (4.4) is again violated. 

Now from the triangle XxXIO (the angle XIXIO is obtuse) we have that 
(Zx - -  21) ~ > (Z~ - -  X1) z which is impossible, since X 1 is the projection of Z~ onto My.  

m 

Fro. 4. 

• 

z ,  

0 

I f  the angle XIOZ 1 is obtuse then we have again contradiction since [[ Zx'll <11 Z1--Xx[I. 
Thus  we have proved that if (4.5) holds, then (4.1) is violated. T h e  contradiction so 

obtained proves that the set P(y) contains the origin. 
Conversely, let the origin belong to P(y). We shall prove that (4.1) holds at y. 

Assume the contrary: Let  grill gx II = 1, gx e My) be such that 

This  implies 

i . e . ,  

\ 
max { ~ , g l }  = max (x, g l ) - - - - p  < 0. 

ieRI(Y) \ u y  / x~.L(y) 

r a i n  
/ _ x > 0  ~x, g l )  = - p  

x e - L ( y )  

m i n x  ~ >~p2 > 0 .  
xe - -L (y )  

For every x E --L(y) we have (P~ -- x) z ~ (2 -- x) ~, where P~ is the projection of x 
onto My and 2 is the point of the ray {x I x = agl ,  c~ > 0} which is nearest to x. 
Then  (see Figure 5) 

II e~ II >~ [ e  ~ + ( x  - e )~ ]  1/2 - I! x - e l l  > 0 .  

Since L(y) is a bounded and closed set, it follows that min~,_Lt~) II P~ II > 0, which 
contradicts the assumption that the origin belongs to P(y). 

Thus  we have obtained that at a stationary point the origin belongs to the convex 
hull of the projection of the set --L(y) onto the cone M y .  Note that the projection 
itself is not a convex set, even though Mu and --L(y) are convex. 

57x/2/4-3 
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P 

O 

FIG. 5. 

Remark 11. Condition (4.1) is equivalent to the condition 

~b2(y ) = min max [a/,(y) ) Hgll=l iERx(y) ~ ay ' g -  ~ 0 (4.6) 
g~M~ 

Using the same reasoning as in Section 1, we can obtain that if ~bu(y) = r > 0, then 

1) the point y is a local minimum point of 90, and 

2) y is a discontinuity point of the set function Ra(y), and moreover, there 
exists no sequence {Yk} such that 

Yk ~ 12, Yk ~ Y, RI(Yk) " RI(y). 

Remark 12. I f O  is convex, then (4.1) can be written as 

min max (ef'(Y) - - y )  O. (4.7) 
xa_D iERt(y ) ~ ~y , x = 

Remark 13. I f  the functions f i  are twice continuously differentiable on 12, t~ S 
(where S is some neighborhood of y)  and i fy  is a stationary point of % then a sufficient 
condition for the point y to be a local min imum point of 9 on 12 is 

(e2f(y) g, g~ 
min max \ - -~y~  ] > 0. (4.8) 
I1g[l= 1 i~R2(y,g) 
g~M v 

One Can prove this statement by using (1.I 1) for l = 2 and taking into consideration 
that if (4.8) holds, then for some .E > 0 

rain max t~2f(Y) , \ 
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where 
M,r = {g [y + ag ~ ~ for some o~ ~ (0, e], �9 > 0}. 

I t  is clear that M~ C m ~  for any ~ > 0, but  is is not necessarily the case that My C m~u. 

5. CONSIDERATION OF SOME SPECIAL CASES 

I f  the set ~2 is given by the inequalities 

g2 = {x [ g,(x) ~ 0, i ~ 1, N~} (5.1) 

where the gi(x) are continuously differentiable functions on Q~, then Theorem 4 can 
be rewritten as follows: 

THEOREM 4'. In order that a point y ,  where y is such that g,(y) ~ O, i ~ 1, N 
be a minimum point of 9> on Q (given by (5.1)) it is necessary (and in case where gi(x) are 
convex and where 

min ~b(x) < 0, where ~b(x) = max gi(x) 
x ~ E  n 

J e l , N  1 

and the function ~ is convex it is also su~icient) that 

~(y) = min max t max [Ofi(Y),~], max [SgJ(Y) )t llg,l<<.l ~i~R~y) ~ ~y ~/ J~O~y) \ ~g 'g  = 0 ,  (5.2) 
where 

Q(y) : { j  I j E 1, N~ , gj(y) = 0). 

Geometrically, condition (5.2) means that at a stationary point the origin must  belong 
to the convex hull H(y)  of the vectors 

ef t (y)  (i ~ Rl(y)) and ~'~ "-~ (j E Q(y)). 
v y  

From the necessary condition, it is also true that if: 

There  is no stationary point of the function max g~(x) on the set {x I max g~(x) = O} 
j E 1 , N  1 JG1 ,N  t 

(5.3) 

then there exist multipliers (so-called Lagrange multipliers) ;~1i >~ 0 (i ~ 1, N)  and 
A~ > / 0  ( j  E 1, N1), where the All are not all zero,  such that 

A ~f~(Y) + ~ ;~2~ ~g~(Y) -- O. 
,=1 I ' - W -  ey - 
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Conversely, if there exist real numbers  AI~ ~> 0 (i c 1, N) ,  A2~. ~ 0 ( j  c 1, N1) not 
all equal to zero, such that (5.4) holds, then y is a stationary point of go on t-2. 

I f  the convex hull H(y)  is a simplex, then the vector (All ..... A1N , A2x ..... AzNa) 
satisfying (5.4) is unique. I t  is clear, f rom geometrical reasoning, that the set of vectors 
in (N + N1)-th dimensional Euclidean space satisfying (5.4) is convex. 

Note that  (5.4) holds not only if (5.3) is valid, but also in the case where A2~ = 0 
for all j c 1, N 1 . 

I f  minx~E~ go(x) < minx~a go(x) then in (5.4) the multipliers A~- are not all zero. 
Let  us consider the case 

g2 = {x I geCx) = 0, i = 1, Na} (5.5) 

where the gi(x) (i ~ 1, N1) satisfy the above conditions. Generally speaking, $2 is not a 
convex set (but it is convex if, for example, the gi(x) are linear functions). T h e  
following theorem is valid: 

TH~OaEM 4". In order that a point y (where y is such that g~(y) = 0 for all 
i ~ 1, N 1 and [Ogi(y)/Oy] (i ~ 1, Na) are linearly independent) be a minimum point of 
go on s (given by (5.5)) it is necessary that 

rain max ,g  = 0, (5.6) 
g~M~ ieRl(Y ) 

where 

l [eg~(Y) g) = 0 for all j ~ 1 NI  l M y =  g[liglt  <~ 1,\~-~-y , , . 

The  linear independence required in the statement of Theorem 4" is essential. 
This  may be seen from the following examples: Let  

121 = { x l x c E , ,  ( x - - A )  z - -  1 = 0, (x + A )  2 - -  1 = O, A c E , , I I A  11 = 1} 

~2z = {x ] x e E , ,  (x - -  A) 2 - -  1 = 0, (x - -  2A) 2 - -  4 = 0, A c E , ,  II AII = l} 

In  both cases $2x and $23 consist of only one point (the origin), and the vectors 
ag~(y)]Oy ( j  = 1, 2) are linearly dependent. Any function achieves its minimum 
value on $2 (where $2 is $21 or $22) at 0, but condition (5.6) is not valid. 

Finally, let us consider the ease where 
,Y 

$2 = {x ] gli(x) ~ O, i E 1, Na , g~j(x) = 0 j e 1, N2} (5.7) 

and where the gi(x) and g=i(x) are continuously differentiable on g2,. Suppose that at 
y E $2 the vectors [Og=~(y)/ay] ( j  ~ 1, N=) are linearly independent. Then  the following 
theorem is valid: 
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THEOREM 4". 
by (5.7)) it is necessary that 

min max ~ max [ ~f (y) ~ [Ogl~(Y) geM,, t ieRI(Y) [ ~ ' g J '  jeO(r)max \ ~  ,g  = 0 

fYd her  e 

Q(y) -- {j I j e 1, Y ,  , g~(y) = 0), 

In order that the point y ~ 12 be a minimum point of ~ on 12 (given 

(5.8) 

l~g~j(y) , ~ O for all j ~ 1, N2 l. M~ = lg [ l ie  II ~< 1, ~ g)  -= 

Suppose the contrary. Let  y be a min imum point of ~ on s and let g ~ M~ ~oo/.  
be such that  

h ( ~ ) =  tmax ( ~  ~),max [~gl~(Y) ~) 1 -<0 .  max , ~ ,  = - -p  
{ i~Rx(Y) J~Q(Y) 

We can assume that  Ii~ II = 1 s ince~ 3~ 0. 
Let  f2' be the intersection of surfaces g~(x) = 0, then every g ~ M~ belongs to the 

tangent plane to ~2' at y.  
Now let us consider the ray y -~ a~ = y~(a > 0) and let 37~ E s be such that 

IIY~-YI[ = ~, IlY~ - -Y~[I -=  min I l z - -Y~I I  
IIz-yll=~ 

Note that h ( ~ )  = --ap.  
There  exists al  > 0 such that for any a ~ (0, al] there is at least one 37~. We can 

find & > 0 such that  & < a 1 and h(y~ --y)  <~ --�89 then for a sufficiently small 
y~ ~ f2 and ~(y~) < ~0(y) which is a contradiction. Thus  the theorem is proved. 

Necessary conditions for a min imum in different problems have been considered 
in ([16], [17]). 

6. METHODS OF SUCCESSIVE APPROXIMATIONS 

Let  • be a compact  set of E n and let t h e ~  be as described above. Also let 

RI , (y)  = {ii i ~  l ,  N,  ~(y)  --f~(y) ~ ,, ~ > 0}. 

For  any g, [Ig ]] ---- I, and for p > 0, we may define the set 

M = sup max ~fi(Y) 
y~a i~i~ ~Y 
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If  for some g, II g I1 = 1, we were to have 

m a x  lOf~(y) ,g~  

then for q ~ S(g,  p) we have 

max toY'(Y) ~< 

Let 
,-r P, Y) =--- {q l q --  Y = o~1, q e S(g,  p), a > 0}, 

so that S is a cone. Now suppose that the following condition holds: 

Condition A. For every g EM~, ,  (Hgl] = 1), and for p > 0, there exists 
3a(g, p, y)  > 0 such that for any 3' ~ (0, 3x(g, p, y)) we can find x' ~ ~ t3 S(g, p, y)  
such that (g, x' - -  y)  = 3'. By 3(g, p, y)  we shall denote the greatest such 3x(g, p, y). 
In many practical problems, the above condition is realized automatically. Let 

x ( g , ' , Y )  = max ( ~ , g )  

Let us define the following set (which may be empty for some 3): 

i , ( ~ ,  3) = (g IHg H = l , g  ~ i v , 3(g, x(g, r  ~ O} 
where 

~ > 0 ,  t ~ > O ,  g > O .  

For the first approximation, we choose any Yx r 2 .  
Let Yk have already been found and let ~l(Yk) = - -h~ .  If  h~ = O, then Yk is a 

stationary point of ~ on g2 and our process is finished. If  hk > O, then we set Ekx = g, 
Pkx = P ,  and 3kt = g- Let gk e M be a vector such that 

g~, e M,~(~ , .  ~k~,) --= M~,,  ~ = ~(g~, ~ k ,  y~), 

--~5~r --= max ( ~ , g ~ r  min x(g ,%r  

If  

then we set 

(6A) 

and ~ = gkik" If  (6.1) is not satisfied, then we set %~k+l = �89 ,~ = ~PkJk, 
8ks~+x = ~y, and continue in the same manner until 3k, ~ ,  Pk,/$~, (k, and ~ are 
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found. Since pk > 0, there do indeed exist such 8k > 0, ~k > 0, p~ > 0, tSk > 0, 
c~ > 0. Now let us consider the set 

{yk(~)} = {x I x e o c~ S (~k ,  ~k, y~), (gk, x - -  y)  : ~} 

where {y~(a)} is not empty, by the above assumption, for any a e [0, ~k]. For ~ > Sk 
it may turn out that {y~(a)} is an empty set. Let Yka be the point of {yk(a)} which is 
nearest to the point (y~ + ag~). 

Let us find ak ~ [0, oo) such that 

q0(y~) = min ~(Yk~). 
~e[0,oo) 

Now if we set Yk+l = Yk%, then clearly ~Yk+l) < 9(Yk). We may continue in the 
same manner.  Thus  we have developed a sequence {y~}, such that 

9(Y~§ < ~(Yk). (6.2) 

I f  this sequence is finite (i.e., contains a finite number  of vectors) then the rightmost 
element of this sequence is a stationary point of ~0 on 12. I f  the sequence {y~} contains 
infinite number  of  terms, then the following theorem holds: 

THEOREM 5. 

lim Pk ---: 0, lira tSk = 0 (6.3) 
k-*~ k~o 

and any limit point of the sequence {Yk} is a stationary point of the function qo on Q. 

Proof. Let  y*  be a limit point of {Yk}, i.e., there exists a subsequence {y~} of 
{y~} such that Yk, ~ Y*. Let C denote l i m k ~  qo(yk). From (6.2) we have 

~(Yk) ~> C. (6.4) 

Since Q is a compact set, and since the f~ are continuously differentiable, we have 
C > --oo. 

If  we suppose that g* --  lim~c. ~ g ~ ,  ~* ---- limk _,, gk,,  then two cases are possible: 

Case (1). There  exist as many k~ as may be desired such that 

�9 k , / >  ~* > 0, t3~, ~> p* > 0, ~ ,  >~ 8* > 0 (6.5) 

i.e., 

max [Sf~(y~,) --P*. 

For k~ large enough and satisfying (6.5) 

R~,~,(y~,) D Rl~,./2)(y* ) 



372 

and 

D~MJ~'~OV 

(~fi(Y*) .~ max - - - ~ y  ,g ) ~ --�89 9~(y*) = C, 
ieRl(E*lz ) (Y*) 

~ 8(g*, p*, y * ) / >  8*. Let  y(o 0 � 9  ~ S(g*, p*, y*)  be a point such that 
(g*, y(~) - -  y)  = ~. Then  for any a E [0, ~] there exists such a y(~). By definition of 
8(g, p, y), we have 

~f'(Y*)X --IP* i~R,(,m/ax(v*) ( Y(~)--Y*' Oy J <~ 

We can find c~* �9 (0, $) such that 

~ ( y ( ~ * ) ) ~ < c - ~ < c ,  , > 0  

For k~ large enough (and satisfying (6.5)) we have 

~(y~,(~*)) < c - �89 < c 

where y k ~ ( a * ) � 9  S(~k~, ~k z , Ykz) is such that (gk~, Ykz(c~*)--Y~) = ~*- The  
inequality (6.6) is valid for all such y~(a*) .  Moreover, 

9(y~,+~) = ,~o!n)~(y~,~) ~< ~0(yk~. ) = ~(yk~(~*)) < C 

which contradicts (6.4). Thus,  we have established the correctness of (6.3). 

Case (2). ek~ --~ 0,/~k~ --~ 0, ~k~ --~ 0 (these sequences either tend to zero or do not 
tend to zero simultaneously). We claim in this case that y *  is a stationary point, i.e., 
r = 0. 

Proof by Contradiction. Assume the contrary. Let g(y*)�9 Mv.,  IIg(Y*)l] = 1, 
be such that 

* 
max [ )f~(Y ) " *'~ i~R~(y*) [ ~ ' g ( Y  )) = h < 0, let 8(g(y*), h,y*) = 8x > O. 

Then for e �9 (0, %], e o > 0, we have 

a * 
max [Of,(y*),g(y,)) <~ �89 < O. 

i~R~,(y*) ~ ~y 

Choose another such �9 so that for kz large enough we have 

RI,(y*) 3 Rw(y~,) for any �9 �9 (0, �89149 
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and 

a n d  

max [~fi(y*),e(y,)) ~ max [~f"(Y*),g(y*)), 
ieR~,(y~l ) t , - - " ~ y  i~R~,(y*) \ 8y 

[.8fi(y~,) ,g(y,)) <~ max lOft(y*) , ,  ,,X i~R~m,a~x~,) ~ Oy i~R~,,(y~? ~by- - -y  gtY )) + �88 

* 
[Of,(y*) d ,  *~] ~<i,Rx,(y*)max k ~y ,~x~ t ! + � 8 8  < - - l h  < 0 .  

Since 8t > 0 for k~ large enough, then for any ~' ~ (0, ~], where 0 < r ~< c 0 and 
where ~ does not depend on kt ,  it turns out that g(y*) ~ Mu~(E', 181). Now choose 
another such e'. Then  

[~f,(Ykl) g(Y*)l < -- �88 min ~,(g,r ~ max  \- ~ y  , / 

which contradicts the assumption that e~ ~ 0,/5,~ --+ 0, ~,~ --~ 0. Th is  contradiction 
completes the proof of Theorem 5. 

Remark 14. Instead of Condition A, we could assume that for every g ~ M~,  
IIg tl = 1, and for every p > 0 there exists 81(g, P, Y) ~ {Sk}, where 8, > 0, 8, ~ 0, 

~k+l < ~k, i.e., 81(g, P, Y) ---- 8,~ is such that for any 8k(k > kl) we can find at least 
one x' ~ s c3 ,~(g, p, y) such that (g, x'  - -  y) E [8, ,  ~,-1) where 8(g, p, y) denotes the 
largest $i(g, P, Y). 

7. SPECIAL CASE 

Consider the case where s is convex. Then  (4.7) is a necessary condition for a 
minimum. Let  Q ~ ( y ) ~  {x~s ] l [ x - y l l  ~< a > 0}. Suppose x(y, ~, ~) is a point 
such that x(y, o~, ~) ~ Q.(y)  and 

[~f,(y) - y )  = max [~f,(y) , ) Jl(y, c~,,) -~ min max \ - - ~ y  , x  x( y, (7.1) x~o~,(y) i~Rl,(y) i~RIE(y) \ ~y ,x, -- y / 

Let us choose ~ > 0,/5 > 0. For the first approximation, we select anyy  1 r s and begin 
the iterations. Suppose we have arrived at Yk and found Sx(Yk) = - - h , .  I f  h,  = 0, 
then Yk is a stationary point, and we stop. Otherwise, if h, > 0, then we set ~'1 ---- ~ 
and/sk~ =/5.  Let  3~k ~ M be such that 

- - h , =  max (O f i ( y , ) , . ~ , __y , )=min  max (Ofi(y,) x - - y , ) .  
isRl(Yk) ~y i~o i~Rl(Yl~) ~y ) 
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Suppose that 

/ e/,( y \ / 8f,(Yk) - - / i ~ t =  max t - ~ ' ~ - y k )  = min max ( x - - y e ) .  
ieRz~,t(y k) ~ y  ~ xeD ieRl~kl(yk) ey ' 

I f  hkx ~> Pk~, then we set ~k = ~k~, P~ ---- P~, /~k = /ik~, Yk = Yk~, and Ru~ = Rt,k~(yk). 
Otherwise if h~t < Pkz ' we set c~ ---- ~k~ and continue in the same manner  until 
~k, P~, l~k, Y k ,  Ru~ are found (such that h k > pk). 

The  next approximation Yk+z can be chosen by one of the following methods. 

Method 1. Let us consider the linear segment Yk~ ---- Yk + a(ye - -  Yk), a ~ [0, 1 ], 
where Yk~ e 12 (since $2 is convex), and let us find ak ~ [0, 1] such that ~(Yk~) = 
min~[0.~ l ~ y ~ ) ,  and then setyk+z = y~%. In addition, we have ~Y~+z) < ~(Y~). We 
may continue this process to subsequent steps. 

Method 2. Let  ye~ = x(y~,  a, ~ )  (see (7.1)) and let us find c~ ~ [0, o~) such that  
~y~%) = min~<o.~ ) ~ y ~ )  and setyk+~ = y~%. 

Method 3. Fix any a* > 0 (not depending on k) and let 

Y ~  = Yk + a(x(ye ,  ~*, ,~) - -  y~), ~ ~ [0, 1], y ~  e 12, 

and let et~ e [0, 1] be such that 

W(y,~,) = min ~(y~) .  
~[0,I]  

Then Yk+z = Yk%, and so on. Generally speaking, Method 3 becomes Method 1 
when a* tends to infinity. 

The  convergence of the sequence {Yk} (constructed according to Method 1) to a 
stationary point has been proved in [1]. We can prove this fact in a similar manner 
for Method 3. For Method 2, the following theorem holds: 

THEOREM 6. Any  limit point of the sequence {Yk} constructed according to Method 2 
is a stationary point of tp on $2. 

Proof. Let 

C ~ lira 9(Yk), 9(y~) ~> C (7.2) 

Let  y*  be a limit point of {Yk}, i.e., there exists a subsequence of {Yt~} of {y~} 
such that Yk~ ~ Y*. We can assume that .Yk~ ~ Y,.Ykz ~ Y. Two  cases are possible: 

Case (1). There  exist as many k~ as may be desired such that 

,~ >f E* > O, p~ /> p* > 0 (7.3) 
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For such k s , 

P* (where M = max ml. ~ ' ~fi(x) ) IlYkz--Yk, l[ ~ P k ,  M - I  ~ ~ , xea ~ " 

Then we have for ct e (0, M-lp *) 

h(y~, , c~, E~z ) <~ max ( ~ f ~ )  ~(Yk, - -Y, , ) )  --o~p~, ~ ~p* 

where ~ is the diameter of/2 (since the point zk~ = ~(37~, --  Yk~)[] Y~L --Ye~ ]]-~ eQ~(y)). 
Thus for k s large enough and satisfying (7.3), and for ~ e (0, M-lp* ) ,  we have 

A(Yk~,) <~f,(Y~,) - -  o~P *~-~  + o,(~) 

~(Yk,.) ~< ~0(yk,) -- ap*~-x + o(a) 

where o(a) does not depend on ks. For a sufficiently small, 

I o(,x)l < (1/2~) ap*, ~o(yk,~) < ~(y~,,) - -  (1/2~) p*a. 

Let us choose such an ~, which we shall designate as ~*. Since ~ y ~ )  --~ C, for kz 
large enough, we obtain 

Furthermore, 

9 ( Y ~ z + l )  = min. 9(Yk,~) ~ ~(Y~*) ~ C -- (1/4~) p ' a *  < 0, 
aeLO,r 

which contradicts (7.2). Thus (7.3) is impossible. 

Case (2). e~ --~ 0, p~ --~ 0. Then we claim that y* is a stationary point. We shall 
argue by contradiction. Suppose that for x* e ~ we have 

�9 ) max [Of~(y*) x*  - -h  < O. 
i~Rl(Y*) ~ Oy ' - -  y*  = 

Then there exists e* > 0 such that for �9 e (0, e*] 

i~R,.(y*)max [~[Of'(Y*), x* - -  y * !  ~ <~ - -  �89 < O. 

Choose some such e. For kt large enough, we have 

max ( Of~(y~____~) x * - - y ~ , )  <~ - -  �88 
ieRl(~/~)(Y~ l) ~y ' 
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Moreover, 

max ( Ofi(Y~,) -- y**) ~ -- ~h. rain 
x~2 i~Rl(r ) Oy , x 

But now it is obvious that if r ~< �89 then / ~  >~ �88 and for p~ ~< �88 we have 
] ~  ~> p ~ ,  i.e., neither % nor p~ tend to zero, which contradicts our  assumption. This 
contradiction completes the proof of Theorem 6. 

Remark 15. In  Method 2, it is not necessary to choose a~ e [0, o~). Rather, it is 
sufficient to find a~ �9 [0, a*] (where a* > 0 is fixed and does not depend on k) such 
that 

9~(y~) : rain 9~(y~) and set Y~+I : Y~a~- 
~e[0,~*] 

In  all these methods it is necessary to solve some auxiliary optimization problems. 
In just the same way as in [14] one can solve all these problems approximately. 

8. NONLINEAR MATHEMATICAL PROGRAMMING PROBLEMS 

Let the set f2 be given by (5.1). To  obtain a stationary point (satisfying (5.2)), we 
can apply the following modification to the above algorithms. Let us define 

Q~(y) = {j  e 1, N1 I - �9 ~ gr ~ O, �9 > O} (8.1) 

Let us choose any E > O, p > O,/x > O. 
For the first approximation, let us choose any arbitrary Yl ~ ~2 and begin the 

iterations. Suppose we have arrived at Yk- Let ~b~, Rlk,  Qk denote r RI(Y~), 
Q(yz), respectively. I f  Ck = 0 then Yk is a stationary point, and the process is finished. 
But if ~b k < 0, then we set ~k~ : ~, Pk~ : P, tzk~ = / x  and find 

r  : m i n m a x t  max ( ~ f i ( Y ~ ) , g ) , h "  max (~g i (Yk) ,g ) l  (8.2) 
IIg]l~ <1 { ieRlet:x(Yl~) ~y JeOttt~l(Yk) \ ~y 

where h > 0 is in general an arbitrary number not depending on k. Let  g~l be a 
vector such that I[ gkl II ~< 1 and 

~bk,kl : max t max ( .Sf i(Yk),gkl) ,  h . max (SgJ(Yk),g~l)l" 
ieRl,kl (Y~) ~y JEOt%l (Yk) ~y 

(8.3) 

If  --r 1 >/ Pkl, we set % = %1, Pk = P~I, /~k : /~kt, and ge = g~x �9 However, 
if --~b~,~l < pkl,  we let %2 ---- �89 P~ = �89 ---- �89 , and we continue in an 
analogous manner until r~ is found such that --  ~bk,~r ~/> Pk~, and then we set e k ---- %rk, 
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p~ = p~r~, /z~ = #e~ ,  and ge = g~r~. Such an r~ will necessarily be found since 
~be < 0. Let us now consider the ray y ~  = y~ + ~g~(~ > 0). (Note that for o~ small 
e n o u g h y ~  e O because r ~ --p~ < 0.) Find c~ ~ A~ such that 

where 

~0(y,~) ---- min ~0(y~) 
~z~A k 

A~ = {a [ c~ > 0, y~ + ~g~ ~ ~} 

and set Yk+l = Yk%. I t  is obvious that cp(yk+l) < 9(Yk). We continue in the same 
manner. The  sequence {Yk} constructed in this fashion converges to a stationary 
point. This statement can be proved by arguments similar to those used for proving 
the above theorems. 

In the above method, we supposed that Yl e s The following method is free of this 
assumption. Let the f i  and gi be defined on the entire space. Choose any r > 0, 
p > 0, tL > 0. For the first approximation we choose an arbitrary Yl e E~. Let Yk 
have already been found. Let us denote h k ~ maxj~i~ ~ g~(Yk). If  hk ~< 0 and r = 0 
(see 5.2), then Yk is a stationary point of ~o on ~2 and our process is finished. Otherwise 
we take ~k, = ~, P~t = P, and/z~ = / x .  Three cases are possible. 

Case (1). h~ > #~,.  Then we set Rt,~t = A (an empty set) and 

Q,~ = {j  [j e 1, N1,  hk --  gJ(Yk) ~ tzkt} �9 

Case (2). 0 < hk ~< ~ k l  �9 Then we set 

RI,** = {i l i e  1, 5f, ma__xfi(y~) -- fi(Yk) <~ "*a} 
jel,N 

g . , ,  = {J lJ ~ 1, N~ , h~ --g~(y~) <~ ~1}.  

Case (3). h k ~< 0. Then  we set 

R1,~1 = {il i e  1, N, maxfi(y~) --f~(y~) <~ Ekl} 
] e l , N  

Q,~ = {jl j e 1, N~,  - - t~ l  ~< gJ(Yk) <~ 0} 

(clearly, ifh(yk) < --tz~t, then O~kl ~ A.) 
Now we find ~k,k I (see 8.2) and the vector gk~ (see 8.3). Then  we find g~, ~k, Pk, 

and/~k as above. Then  we form the ray Yk~ = Yk + ~gk(a > 0) and find a~ > 0 such 
that: 
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1) I f  h(y~) > 0 and Ra,~ = A then 

max g~(yz,~) = 
Jal,N 1 

rain g~(y~,). 
~,~[0, ~o) 

2) I f  h(yk) > 0 and R1, ~ 5& A then 

max{~(y~,k ) - -  ~o(y~), ma_x_x gj(yk,,k ) - -  h(yk)} 
Jr~I,N I 

---- min max{~(yk~) - -  ~o(yk), max gJ(Yk~) --  h(y~)}. 
~,~[0,,~) jE1,N~ 

3) I f  h(y~) ~ O, then 

~o(yk~) = min ~ ( y ~ )  

where 

Ak = {o~ I cx > / 0 ,  max gj(y~) <~ 0}. 
Jel,N I 

Now we set y~+l = Y~k and continue in the same manner. Note that ifyk is far enough 
from I2, the next Yk+l is chosen as if we were minimizing h(y) -~ m a x ~ u ~ l g j ( y  ). 
I f y  k ~ 12, then all succeeding y~ are chosen as in the previous method. We have some 
difficulties only i f y  k does not belong to I2 but  is close enough to it. 

The  sequence {Yk} thus constructed converges to a stationary point of ~ on I2 in the 
sense of the following theorem: 

THEOREM 7. Let y* be any limit point of {Yk}, i.e., there exists a subsequence {y.~,} 
of {y~} such that Yk ~ Y*, Yk, ~ {Yk}. 7"he following statements are true: 

1) I f  y* r I2, then 

min max (8gJ(y*) ) Ilgll~l j ~ ( y* )  ~y  ' ~ = 0 

where 

~(y*) = {j l j~ 1, N1 ,gj(y*) = m a x  g ~ ( y * ) }  
kel,N I 

2) l f  y* ~ 12 then 

min max t max lOft(y*) ~ /~f~(y*), ~} 
Ilgll~ <1 (/ERI(Y*) ~ , g ] ,  J~Q(y)max [ - - ~ y - -  g}l = O, 

where Q(y) is the same as in (5.2). 
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Remark 16. We can choose h, E, p and/~ in Section 8, taking into consideration 
previous computational experience. For each particular class of problems, reasonable 
auxiliary coefficients h, ~, p and tz may be found. 

Remark 17. I f  N = 1, then q~(X) ~ f ( X ) ,  where f is a continuously differentiable 
function. Then  g2 is given by (5.1), and we have a standard mathematical programming 
problem. Our methods for this particular case are similar to those of  G. Zoutendijk 
([5], [8]) and Zuchovitskii ([5], [1]). 

In  (5.2) we have ]1 g I1 ~< 1. Instead of the unit sphere we can consider an arbitrary 
closed bounded set with the origin as an interior point. By choosing different sets one 
can obtain new methods for solving nonlinear mathematical programming problems. 
These correspond to different Zoutendijk normalizations. 

Remark 18. For  each of the methods in Section 2, we can form systems of 
differential equations similar to that in Section 1 whose solutions, under suitable 
assumptions, tend to a stationary point. However, we have no assurance that these 
solutions are stable. This instability is a reason for the so-called zigzagging effects of 
numerical methods for solving these differential equations. 

Remark 19. The  methods discussed above are applicable if the auxiliary linear 
problem arising therein can easily be solved. In  many cases this problem is simple 
enough (for example if g2 is given by (5.11)). In  other cases it is necessary to try 
various methods of successive approximation for solving the auxiliary linear problem. 
This problem has been discussed in detail in [18] for some particular cases of g2. 

Remark 20. Other methods of successive approximation can be obtained by using 
modifications of the algorithms in Section 3. 
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