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ABSTRACT

The problem of minimizing differentiable functions on an entire vector space and
on bounded subsets thereof has been studied by many authors. In this paper, we
consider the problem of minimizing a nondifferentiable function ¢ of the form

p(2) = max f(2)
i€{1,..-,N})

on the entire space E,, or on a bounded set 2 in E, , where the f; are continuously
differentiable functions. In Section 1 an expansion of ¢ is found, and continuous and
discrete algorithms for finding a stationary point (that is, a point satisfying the necessary
condition) are given. Some special cases are discussed.

Most of the results obtained here can be applied to minimax problems in function
spaces and in particular to some time optimal control problems, optimal control
problems in the presence of constraints on the phase coordinates, and some pursuit
problems.

In this paper we shall consider the problem of minimizing the function
¢(2) = max f(z)
i€1.N

on the entire space E, (Sections 1-3) or on the bounded set 2 (Sections 4-8). For
both cases necessary (and sufficient if possible) conditions for a minimum are proved
and successive approximation methods for finding a stationary point (i.e., a point
satisfying the necessary condition) are given.

The standard mathematical programming problem is a special case of this problem.

1. NoTaTION

Let the fi(z), 1 <<i < N, be real, scalar-valued functions defined and of class C?,
1 < I < o0, in some neighborhood S C E,, of the point y € E,, . Then we can write the

* The author’s present address is Mathematics and Mechanics Department, Leningrad
State University, Leningrad V 178, U.S.S.R.
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following Taylor’s series expansion of f; in the direction g for any arbitrary
g€ E(lgll < M < o) and any real number « such that (y + ag) € S,

1o +o0) =)+ % 3 22 4 oa ) (1)

k=1

where
y= (yl yesey yn): g = (gl :'"sgn):
Ofily) __ ofly) _ (6f,(y) ,g)' Py _ ( : %y_)g)’___,

ot g\ oy °r ogr oy
If(y) . Ify) ol « Y
ZIRT) — IR g g g 1<kN), -2 —>0
3gk jl.--Z:,j,‘=1 3}’,-1 6}’:’2 reres 3J’fkg“g’2 &iy » ( =N = ) l ® ]t a0

for 1 < ¢ << N. The notation (4 , B) designates the scalar product of vectors 4 and B,
and the notation 1, N designates the index set {1, 2,..., N}.

Now let us consider the function

¢(2) = max fi(z) (1.2)
i€, N
The function ¢(z) is not necessarily differentiable, but it will be shown later that it is
directionally differentiable. We shall now obtain the expansion of ¢(z) in the given
direction g.
Let us consider sets Ry(y, g), 0 << k& << N, defined by the relations:

Ry=Ry(y, &)=L N
— s Iy Gl £16))
R, = Ry(y,8) = {i|ie Ry (3, 8), —8?’;1_ = jeRI:lillé,g) “ogh (L.3)

It may be seen in (1.3) that RO Ri(y,£) D Ry(¥,£) D «*+, and that R, does not
depend on y and g. Since Ry(y, g) does not depend on g, we may use the notation

Ry(y) = Ry(y, ).
Let us consider sets Ry(y, 2, €1, €350, ), | <R N, witheg 20,6, > 0,..., ¢, =0,

given by the relation
Ry, &) = {lie LN, o(y) — fi(y) < &}

Ry, 8 €15 €50 €8) = {i | 1€ Ry, 8, €1 yoes €1 (1.4)

() _ 8L

. m — - - %= €
JeRp_1(¥,2,6,..., €x—1) agk 1 3g" 1




344 DEMJANOV

From (1.4), it may be shown that there exist ;0 > 0, g0 > O,..., ;0 > 0 such that
for any ke 1, N and any ¢, € ,..., € (¢; < €¢,f = 1,..., k) we have

Rk(y’g’ €], € ,"'yek) = Rk(y)g)- (1.5)

Before proceeding further, we shall establish the following functional inequality for
arbitrary real, scalar-valued continuous on £2 functions 4(x) and B(x), x€ E,, :

max{A(x) + B(x)] > max A(x) + max B(), (1.6)
where £2 is a compact set,
Q= {x|x€Q, A(x) = max 4(z)}
Proof. For any &' € 2, we have
max[A(x) + B()] > A) + B(x')
So that (1.6) is true for 2" € Q. But for such &', A(x") = max,, A(x) and we obtain
max[4(s) + B()] > max A(x) + B(x)

Since this inequality is valid for all " € Q, the correctness of (1.6) is obvious. From
(1.1), (1.2), and (1.6) we have, for « > 0 and such that (y + ag) € 2,

Py + og) = maxf(y) + max, [ Z - aggiy) o,(e)]- (L.7)

i€l N

By repeatedly applying (1.6) to the second term of the right-hand side of (1.7), we
obtain

o(y +og) = () + Z & .ERk%y"g)a);;,(y) o(od) (1.8)
where
o(a?) = min o,(a.})
i€1,N

On the other hand if for any ¢; > 0 there exists oy > 0 such that if « € [0, o], then

P(y + oag) = maxf(y +og) = max f(y + o)

W 1€R (voer)

ok afz(y)

~ o, [0 + X D o] < e 100)

[z o 3fz(y) +0,(al)]

1eR (yc )

lERl(y €)

= 9(3) + Jmax [2 o aé’g(,f“ ) 4 oa)]. (19)
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Let ¢ >0, €3 > 0,..., ¢ > 0 be fixed numbers. In a manner analogous to the
derivation of (1.9) it follows that there exists a* = min,g;«; > 0 such that if
o€ [0, a*] then

P(y + og) < () + Z o 01

P SHC g c1 <2 o) K aglc + o() (1.10)

where 6(o!) = max 0,(cd). It is obvious that o(!) < 9(c!) and that both o(a') and
(") depend on g.

If e;(k € 1, N)are such that ¢, < €y, then (1.5) is valid. Hence from (1.8) and (1.10),
we obtain that if « is small enough then

zEl N

max = =
~ ieRy(v.e) KR! OgF

o(e!) < gy + og) — p(3) — 3  B50) < o

ie.,
4 ok
oy +o0) = o) + T 57 T+ o) (1-11)
where
o) _ max YD) N, (1.12)

ogk ieR(v.e) Og*

and o(o?) depends on g and y, and
o(a) < o(a?) < 6(at).

If the f; have continuous (/ 4+ 1) — st derivatives, then o(a’)/al —> 0 uniformly
with respect to g (gl < 1)
Thus, we have obtained that if « is a sufficiently small positive number such that

(¥ + og) € S, then the expansion (1.11) is valid. The quantity

a0

g ieRy(y)

o(y) _ oY)
2 = max ( o ,g) (1.13)
shall be referred to as the first directional derivative of the function ¢ at the point y

with respect to the direction g. In [7] it has been shown that

a—+0 [+ i€Ry(y)

(6ﬂ(y) ’ g) 3«1;?)

Thus g is a directionally differentiable function. Now it is also possible to obtain that

L ey og) —e(0) _ ()
a—+0 a ag

98
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Note that dg(y)/0g is a continuous function of g, but that o*p(y)/og (k = 2,..., I)
are not necessarily continuous in g. The function 6%¢( y)/og* as a function of y (where
g is fixed) is not continuous, in general.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR A MINIMUM

Let us consider the following problem. Suppose that f(2), 1 << ¢ <{ N, are real-
valued functions, continuous and continuously differentiable in E, . It is required to
find min,.g_¢(2). In [7], the following theorem is proved:

THEOREM 1. In order that the point y (| v| << o©) be a mintmum point of ¢(y),
it is necessary (and if ¢ is also convex it is sufficient) that

Aly) g) =0 2.1)

lpl(y) ”g||<l zgR}l(y)( 3)’

We shall call a point y satisfying (2.1) a stationary point of ¢ on E,, .

Remark 1. Instead of condition (2.1) we can write

o) ’ g) >0 (2.2)

¢2(y) ||g[]_1 :é}%?(y) ( a.y

Let us note that conditions (2.1) and (2.2) are equivalent, i.e., if at the point y we
have ¢,(y) = 0, then also s, y) > 0, and conversely.

Proof. 1f (2.1) holds, then (2.2) holds necessarily, because otherwise there exists a

vector (|| g1l = 1) such that

op(y)/%% <0,
whereupon we would obtain

du(y) = o 23) - %e(y)

IS og < A <0.

The above inequality contradicts the assumption that (2.1) holds. Conversely, if (2.2)
does not hold, then for some g, ||Z]] <1, we would have dp(y)/dF < 0, since
() < 0, for all y. It means that || 7|| > 0 and for § = || Z||"g we have

op(y) a<1D(y) - S
% = gt <0, Jgi=1

Moreover, ¢,(y) = min,,,_, dp(y)/ég < dp(y)/0F < 0, which is again a contra-
diction.
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Remark 2. Let us consider functions i,(y) and () defined at every point of
E,, . Let the set H(y) be defined as

,i1e Ry(»)t.

H(y) = 3er,, |x = afgyy)

Now let us consider the convex hull L(y) of H(¥). (L(¥) is a polyhedron in E,).
Let the function A(g) = 0gp(y)/dg = (g, O(g)), where O(g) €L(y), and such that

(g O(2) = max (g, 2) = max (g, 2) (see Fig. 1)

zeL(y) zeH(y)
L(y)
' Qg )
! !
P |
A |
7 ! i
o"/_!.__’ ______ JE N
9
Fic. 1.

Note that Q( y) is not necessarily unique. It is clear that the function k(g) is continuous
ing.
Let us show that k() is also convexingon E, .

Proof. Let gy and g, be arbitrary vectors, and let O; = O(g;) and Q, = O(gs)-
Then, for any x € L(y) and for « € [0, 1], we have

(&1 %) < (&1,01) = k(g1
and
(825 %) < (g2, Q2) = h(gs)-
(g1 + (1 — ) g, %) = g1, %) + (1 — )82, %) < Agy,01) + (1 — a)(ge, Q)

Since the above expression is valid for an arbitrary x € L( y), it follows that

h(ogy + (1 — ) g5) = max (ag; + (1 — &) g2, %) < oh(gy) + (1 — o) h(gs)

xeL(y)

and hence A(g) is convex.
Now, we claim that if ;(y) << 0, then A(g) has only one minimum point on the set

gl < 1.
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Proof by Contradiction. Let || g, || =g <1, &.1% &5, and A(g,) = h(g,) =
min,,, <, A(g). Then

B ($588) < i) + i) = min, He) = th(3).

ilell=<1

Since

B=l¥a+olF <UalP+Ha g +HalP<l(eHg) <1 as gF#g)

and
h(yg) = yh(g)  for y >0,
it follows that

h(g) = h(1/28)(g1 + &) = (1/B) h(k(g1 + £2)) < (1/B) $a(9) < ta(9)

since (1/8) > 1. This is contradiction, as [[g]| = 1. (If 8 = 0, then instead of
(g1 + g2) we could choose any point ag; + (1 — @) gy(a € (0, 1), « 7 §)). It is clear
that if ¢,(y) <O, then ||g(y)]| = 1, where the vector g(¥) is such that #y(y) =
op(»)/95(y)-

Thus we have proved that if the point y is not a stationary point, then there exists
one and only one vector g(¥), | g(¥)]| < 1, such that J,(y) = 0p(¥)/0g(y) and in
addition || g(»)| = 1.

To find g(y), it is possible to use the standard quadratic programming technique
([2)-14D-

Geometrically, if ¥ is not a stationary point then ,(y) = y(y) = —p << 0, where
p is the distance between the origin and L(y). (See Fig. 1).

In fact, if for some g we define

_ LG
x(g)=,.ggfg§)( o ,g)— pFr<0

then min, ;) [ 2| = p’ (see Fig. 2), i.e., there is no point of L(y) inside the sphere
%l < p’. Now let x, € L(y) be such that

= mi
1o || = min || %]

FiG. 2.
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Then for g, = || %, || %%, we have x(g;) = —|i %, !l. Let us prove that —p = i;(3) =
~—| %, {i- First of all
h(3) = min, x(e) < e =~

Now suppose also that (¥} 7= —|| %, ||, i.e., for some 7 : y(§) << —| %, |l. Then there
is no point of L(y) inside the sphere || x || < —x(£). This is a contradiction, since
[ %!} < —x(8)-

Now let y be a stationary point, then () = 0 but 5(y) = r, where 7 is the radius
of the largest sphere (with the origin as center) which can be inscribed in L(y) (see
Fig. 3). Geometuically, the necessary condition for a minimum is that at the minimum
point y, the origin must belong to the convex hull L( y).

Fic. 3.

This is a generalization of the well-known necessary condition for a point y to be
a minimum of a differentiable function. If ¢ is differentiable at y, then ép(y)/éy == 0
necessarily at a minimum point of ¢. In this case (i.c., where ¢ is differentiable) the
sets H(y) and L(y) consist of one point dp(y)/¢y. For any point y the dircction
Gy(y) = op(y){éy is the direction of steepest ascent (this direction is called the
gradient) and —G\(y) is the direction of steepest descent, and

op()/og — (Gy(), &)- (2.3)

In the case where ¢ is given by (1.2), then the steepest descent direction at y is the
direction —g(y).

Note that, in general, ¢ is not differentiable, so that the direction g(y) is not neces-
sarily the direction of the steepest ascent. In this case, we must use (1.13) instead
of (2.3).

We now assert that if () == r > 0, then

(1) the point y is a local minimum point, and
(2) the point v is a discontinuity point of the set function Ry(y).

571/2/4-2
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Proof (1). Foralliel, N, we have

16) =105 + =) = £49) + (s = 5. L) + o5 = 3.
Then
()
) = maxf(s) > maxfi(y) + max, (x — 3 T ) + amax o= — 1)
= o) + 12— 31 gax, (o L2 + max o1 — 51

Ze(y) tllx—ylr+ollx—yl)  where g=jx—y[x—y)
Since 7 > 0, it follows that there exists ¢ > 0 such that
(=) > o(y) 24)

whenever || x — y || < e. But this implies that y is a local minimum point of ¢.

Proof (2). Now let us prove that the point y is a discontinuity point of the set
function R, along any direction g. The set function R, is said to be continuous at the
point y if

p(Ry(x), Ry(»)) = (21 — %) + max min (2; — 2,)

2 ER1<") zleR ()’) 26R, (¥) z)ER,(x) llx—y|l-0
The set function R, is said to be continuous at the point y along the direction
g(lgll < ooy if

P(Ry(y + ag), Ry(»)) o 0

It is clear that the discontinuity of R, at y along any (and one is enough) direction g
implies that R, is discontinuous at y.

Let us show that if ,(y) > 0, then y is a discontinuity point of the set function R,
along any direction g. We shall prove an even stronger statement: There exists no
sequence {y;} such that || ¥, — ¥l = € 552> 0 and Ry(yx) 5> o R,(y). This means
that there exists a neighborhood S, of y such that for any ' € S, (3" # ¥)

R(¥) 7 Ri(y)  (and Ry(y')C Ry(y))

Proof by Contradiction. Suppose that the sequence {y,} is such that ||y, — y|| =
€ 752> 0 and Ry(yx) 5> e R,(»). Since the range of R,(x) consists of a finite number
of values (i.e., Ry(x) is a “step-function”) we have, that beginning with some &,
R\(y:) = Ry(»). Since the f;, 1 <{ 7 < N, are continuously differentiable then if

is large enough, we have y(y,) = 3r.
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Now we have

() = o(yr + (¥ —y)) = max fi(y, + (¥ — )

iel.N
of (ys)

o) T e, oy = 3el)

1€R,(¥y;, )’-y )

;r:a:f i(7i) + mmax (;v — Vx>

~ 900 + 1y =3l max (8 ZL52) + o1y =31
> 9(3s) + x5 + ofesh

where @ = ||y — 3, I"Y(y¥ — ¥x). For & large enough we obtain, recalling (2.4) and
assuming that ¢, << e,

?(3) = @y + dree > @(3) > #(y)

which is absurd. This contradiction proves our assertion.

Remark 3. If the functions f; are twice continuously differentiable on some
neighborhood S of y, and if y is a stationary point of ¢, then a sufficient condition for
the point y to be a local minimum point is

()

llgh=1 isR,(y 2) ( y?

8,8 )>0

If all the functions f;, f € Ry(y) are strictly positive definite at y then y is a local
minimum point, assuming of course that (2.1) holds. If the functions f; ,7€ 1, N, are
convex, then g is a convex function since

ploxy + (1 — o)x;) = max fiaxy + (1 — @)xp) < max [ofy(xy) + (1 — o) fi(xo)]

i€1,N i€l N
<a rria_Xfe(xx) + (1 —a) ma_:f.-(xz) = ap(xy) + (1 — o) (x,).
€l,N i€l,

In this case, any stationary point y is a (global) minimum point of ¢, so that if the
fi » 1€ Ry(), are strictly convex, then y is the unique minimum point of ¢.

Let us denote the minimal value of ¢ on E, by ¢*. If the f;, i€ 1, N, are convex,
and if for some set O € 1, NV we have at the point y

(L2 g) = min, xte) = 0 @5)

min max
lgi<1l seQ

then
min f(y) < * < 9(y) (2.6)
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Since the right hand inequality is obvious, let us prove the left hand inequality.

Really assuming the contrary, if for some x we have @(x) << min,of,(y) then
f{x) < f{»), i €Q. Since the f; are convex, we have

(%ﬂ,x——y)<0, ieQ.

It follows that

L 62)
mex (T e =) <0
and
= o (y) -
x(&) %%X(W’g)<0
where

hence, a fortiori,
min x(g) < x(&) <0
which contradicts (2.5). Thus the inequality (2.6) is valid. This inequality enables us
to stop searching for the minimum point after achieving the desired precision. If
it turns out that Q C Ry(y e), i.e., if we can find the corresponding ¢ > O for any set
QO CI1, N, then
oy) —e* <e

3. SOME SUCCESSIVE APPROXIMATION METHODS

The problem being considered is a generalization of the standard mathematical pro-
gramming problem, for which there exist many methods of successive approximations.
(See [5]-{13].) Here, we shall discuss some methods of successive approximations
which can be obtained from the minimax approach and which are useful not only for
solving this problem but also for finding minimum points of more complicated
functions (arising, for example, in optimal control problems).

The main difficulty in developing methods of successive approximations arises
because of the discontinuity of the set function R,(y). To show this difficulty, let us
consider the “obvious” generalization of the gradient method. Since g() is the direc-
tion of steepest descent, we can use the following procedure: Let y; be an arbitrary
point of E, , and let g; = g(y,). If ¢41(3,) = 0, then y, is a stationary point, and the
process is finished, If 4(3,) < 0, then let us consider the ray

Yu=Ntag (x=0)
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and find «,; € (0, o) such that

‘P(ylal) = ae‘{})i’g) (P(yla)‘

At this point we set y, = 3, and continue in the same manner. This “obvious”
method fails, in general, to lead us to a stationary point because of the discontinuity of
R\(¥). One of the methods for overcoming this difficulty has been described in [/].
At the point y we can construct sets Qu(3), O ¥)seres Om(3), Ox(3) C 1, N and
with f(y) — ¢(¥) = a;, for all {€Q;, and such that ai(y) > a,(y) > - > au(y).
It is clear that m = m(y) < N — 1. Let R*(y) = U¥,04(»), 0 < k < m. Note
that Ry™(y) = Ry(y). Now let us consider some methods.

Method 1. Let y,€ E, be an arbitrary point. Suppose that y, has been found.
If §,° = ¢»(3;) = 0, then y, is a stationary point and the process is finished. If §,° < 0,
then let RY, = R*(y,), and the g%, 0 < & <X m;, where m; — m(y,) satisfy the
following relation

of . of;
s = man (T2 ) = minma(TEPL ) o)
sHERG

Note that 0 << 8;° < 8 < 82 < -+» < 87 Denote a; = ai(1,), 0 < 2 < my,
and ay; = 0 << a@;; << *** < @y, . Let us consider the rays

y;cu =M + aglk(a € [0’ OO))(k € 6:—7;1)

and find a,; € [0, 00) such that g(y%, ) = min,c,«) P(¥E)(E €0, m;). Let k; be such
that &, € 0, m; and

PVi,) = min o(¥ic,) (3.2)

ke€0,my

(if there exist several points of this kind, choose any of them). At this point we set
ok
Y=Y lc:kl
and continue in the same manner. Note that

P(y1) > @(32) > = > @) > -+

Thus we construct the sequence {¥;}. If this is a finite sequence, then the extreme
right point is a stationary point of . If it is an infinite sequence (i.e., if it consists of an
infinite number of points y,) then the following theorem is valid:

THeEOREM 2. If the set
D = {xcE, | p(x) < ()}
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ts bounded and if all the functions f(x)(i € 1, N) are continuously differentiable on D,
then any limit point y* of the sequence {y,} is a stationary potnt of ¢.

Proof. Let
limp(y) = ¢*  —0 <¢* <o, ¢(n)>e" 33

This limit exists because the sequence {¢(y,)} is monotone and bounded from below
(all the y;, 1 < i < o, belong to D, and ¢ is continuous on D). Let

lairg »n,=y*eD(l, - o).

Since ¢ is continuous, we have ¢(y*) = ¢*. We shall show that y* is a stationary
point. Let us prove this by contradiction: Suppose that ¢;,(y*) = —8* < 0(8* > 0).
Then if J, is large enough, ¥,(y;) < —318*, since Ry(y,) C Ry(y*) for [, = I* (where
I* is large enough) and

( (1)

&) < . m
oy g) = iR, (3%

( Uy ,g)

max ay

i€R, (v;)

There exist ¢, > 0 and ¢, > 0, ¢, < ¢€,, such that for any /, > [ (where [ > I*
is large enough) we can find %, such that

a,, < &, 8y,41.1, = € (3.4)
and
R} = R(»). (3:5)
As long as
Ry, CRy  for kel k, andfor [ >1
we have

8 < —} 8%, (3.6)

Now for 1 € Ryj, we have

o)
S = o, + &gt = filn) + o ( f‘éyy i ,gz:) + 0i1,,(2)-

From (3.4) and (3.5) we have, for « € (0, «*), where o* is the same for I/, > [,

IER
oy o

max o”,,,‘(a).

kY (v
st = mmax, f(/) <o) + o max X

I'ER‘(yl‘)
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Recalling (3.6), we obtain
o) < 9(31,) — dad* + o)
where o(a)/a ——> 0 uniformly on /; and &, . For a € (0, @) (& < «*) we have

#(i%) < @() — Jod*.

Choose some G € (0, @). Aslong as ¢(y,) = ¢* + €, &, > 0, ¢, v 0, for I, large
enough (and, of course, /; > I*) we have

P(yi) < 9* — §ad* < o¥,

and then, certainly,

P(yi,m) = min  min ¢(yi.) < @(yh) < 9%
m

el g a€[0, o

which contradicts (3.3). Thus, Theorem 2 is proved.

Remark 4. It is clear from the preceding proof that the method can be modified
in the following way. A

Method 1a. Let us choose some ¢ > 0 and some %, in (3.2) such that k, € 0, m]
and

3 k
P(yl ) = min ¢(yL,),
! keo.m

where m; is such that
Ay < € < gy

Remark 5. Note that by increasing / we cannot change ¢, (see (3.4) to make ¢
as small as desired. However, we can apply the following method:

Method 1b. Let {8;} be a decreasing sequence such that 8; > 0, 8, > B,_;, and
B: 75> 0.

e

As usual, choose an arbitrary y, € E,, . Let y, have already been found. If §° =
Y1(y1) = 0, then y, is a stationary point and the process is finished. If 8, < 0, then
let us find a subsequence {8, } of {8}, consisting of a finite set of numbers, such that

ak¢‘+1l < Bl( < akl‘l < akziﬂl :
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Now let &, be such that ; € {£, } and

Eroy o : %
(V) = in, P(Vie)-

This method enables us to reduce the labor involved in finding a minimum point.
Applying Methods I, la, and b, each step requires minimization of ¢ on several
rays. If this is too laborious, we can use other methods.

Method 2. For the first approximation, we choose an arbitrary vector y, € E,, .
Let y, have already been found. Suppose that 6,° <C 0, because otherwise y, would
be a stationary point. In accordance with (3.1) we have

0>8" <8 <& <~ <&M
0 <ay <ay < <dwy
Find the largest 4, € 0, m; such that

8! < —payy (.7)

where 1 is some fixed number. Note that if §,* < —pua;,; (and if £ > {) then a fortiori
8:‘:_1 < —pay; . In fact, lfszch‘l = 8% — prry prr = 0, 4510 = @y — xu1, iz > 0, then
S = 8" — iy <~y — pr = — P11 — B — Pt < —PBlr-g.;
which is the desired result. And now, certainly, recalling (3.7) we have
Slk < —u1ay for ke O, kl —1
Let us form the ray
Yia = ¥+ ag(x€[0, 00)

and find «; € [0, c0) such that

k . . b3
P(yi) = min o(3,). 3.7)
Now we may set
Yip = y:c;,,t
By construct:on:
P(Yin) < @(31), (3.8)

and we may continue in the same manner. The sequence {y;} which we have thus
constructed tends to a stationary point of @. This statement may be given as the
following theorem:
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TuroreM 3. If the hypotheses of Theorem 2 are satisfied, then the sequence {y}
Sformed in accordance with (3.7) converges to a stationary point of . This theorem can be
proved in just the same way as one of the theorems in [1].

Remark 6. 'Theoretically, u can be chosen arbitrarily, but there exist more or less
reasonable values of p in particular cases.

Remark 7. Method 2 can be modified in the following way:

Method 2a. Let p > 0and ¢ > 0 be fixed. For the first approximation, we choose
an arbitrary vector y, € E, . Let 3, have been found. Suppose that §,° < 0 (because
otherwise if 8, = 0, y, is a stationary point of ¢ and the process is finished). Let
€3 = €. If

o) ofy1)

8 = min ( y ) - ( ) < —ue
i< iRy, (D) dy iRy, (v0) ay yfu) S —Mey

where

Rlen(yz) ={ilie, N, o(y) — fly) < en)s
then we set ¢; = ¢, g; = gy and form the ray y,, = 3, 4 agy(« € [0, ©)) and find
o € (0, 00) such that

P(Yie) = 100 @(y1)-

Now we may set
Y1 = Ve, -

If 8, > —pey, then we repeat the same process beginning with €, = 1e; until

we obtain 8;;, <C —pe;;, . Note that in this case, the set R, (y;) coincides with one of the
€

sets R\¥(y), 0 <<k <m;.

Remark 8. At each step of all these methods it is required to find minima or
mini-maxima of comparatively simple functions. It may be shown that it is possible
to obtain approximate solution of these auxiliary extremal problems. For example it is
possible, instead of finding min,egg ) P(¥5), to try to find min,q 47 ¢(¥1,), Where
A, 0 <A < o0, is fixed and does not depend on I (For other details, see [14],
pp- 284-285).

Remark 9. Let y(t)c E, be a vector-valued function, continuous on [0, T,
0 < T << o0, such that y(t) € S for t € [0, T], where S C E,, is a bounded closed set,
and whose derivative satisfies the following equation

y.() =g,  ¥0) =y,
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where y,(2) = lim, ¢+ [¥(t + o) — ¥(t)]/o, and where the vector-valued function
g(t) = g(¥(t)) is piecewise continuous and bounded on [0, T']. Suppose that the set
function R,(t) = Ry((t)) is such that meas w == 0, where w = {r€[0, T}|ris a
dicontinuity point of R;}. Note that if R(z) is continuous on [¢/, ¢"] it means that
R,(2) is constant on [, t"]. Then we shall prove that

#00) = o3 + [ 2 g, (39)

where as usual

op(y(r)) _ af.(y(f))
frent max, (P 8)-

Proof. Letd =tim,t, =0,t, = k4,t, =t, k =0, 1,..., m. Since

70560 =30 + [ (P ) an

and recalling (1.6), we have for an arbitrary 4 > 0
t-4 t !
max f(t) > max [f(y0) + [ " xtr)dr] + max, [ w()an (3.10)

lEl N lEl N

where
10 =£00.  x=(ZEL0). RO = RO

By repeatedly applying (1.6) we obtain from (3.10)

m-—-1

#H0) > 930 + 3 max, f xi(r) dr (3.11)
On the other hand, for the same 4, we have

max [£(30) + [ str) ] = max max (£t — 4) +[ xtryar]

i€l,N

= max [t — D)+ :_4 xdr) dr| < max fit — 4) + max  xln)dr

feR, (1) feR (D)

< maxfe — 2) + gax [ i) dn

el N
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Continuing in the same manner we obtain

m—1 tis1
P <o)+ X max [ ) dr (3.12)

—o ER1(t
Let
— (k| kD, m =1, Ry(r) = Ry(t) for € [ty , tnr]} -

Then Ry(t;) = Rl(t,,ﬂ) for k € K,,, and we can rewrite (3.11) and (3.12) as follows
eyl
#(t) = #() > 903 + ¥ max, [ xi(r)dr
kekK,, VY b

k+1
+ 2 max f x{7) dr (3.13)

ke0,m—1
k¢K,,

teg1
O <ol + T e, [, xord

byl

T _Z_ tERl(t,,H)J. x‘(f) dr (3.14)
ke0,m—1
kK,
Note that
teya
J"=+ X()dr = x6a) 4 (€], N,kel,m—1) (3.15)
i
where

O: € [t 5 tra]
Since the f(t) are continuously differentiable on S then for any € > 0 we can find
M such that for m > M

| max x:(0;) — max xi(te) < e (3.16)

whenever 6, €[, , t, ), ke K,,; AC1, N
Now from (3.15) and (3.16) we have

799

Y .max j X(rydr = 3, i X 4

xek,, ‘<Fatd
m-—1
- L amua+ 3 [max, xu(O) — max xi(1)] 4
- X m (,,x.(tk)d (3.17)
ked,m—1

k¢K,,
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Let
max | () = H  (H < o)

i€l N
zes

then from (3.13), (3.14) and (3.17) we have

m—1

o(t) —pl0) — }, max x(i)d | < et + 3Hpd
k=0

where p= p(m) is the number of ksuch that k€0, m, k¢ K,,. Since p4 ——> means w

= 0 and since € —> 0, 4 = 4,, ———> 0, we obtain

m-1

#t) = 70) + Jim ¥ max ()4

= 00 + [ max xie)dr = o) + | 6 ar (3.18)

In addition we have proved that the limit in (3.18) exists. Thus (3.9) is proved.
Note that the formula

#((0) = ¢(30) + t 3""3(’(‘;’”, 6¢10,1),

is not valid in this case since p(y(7))/0g(r) is not a continuous function. In this case
we will have

P(¥(8)) = ¢(30) + 20

where

B0l ae(y()
Oc | infy o 0 ey )

Now let us consider the following system of differential equations

) =2@),  ¥(0) =0 (3.19)
where g(#) is given by
#@) ()
ieRm)( gt )) - n?ﬁ<1 zeRl(t)( oy ,g) —(t),

&(t) = po(?) £@®)-

We shall assume that there exists a solution of system (3.13) for any ¢ € [0, o0).
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Suppose that the set M(y,) = {x | p(x) << ¢(¥,)} is bounded, and the fi(x) are as
described above (in Section 1), and Ry(x) is a piecewise continuous set function on
M(y,). Then any limit point of y(t), given by (3.19), is a stationary point of ¢, i.e.,
if {t;} is a sequence such that

b O () =%

then

P(¥*) = du(9*) = 0.
Note that since y(t) € M(y,) for t € [0, c0), then there exists at least one limit point.
First of all, for any € > 0, we must have meas w(e) <X M, < o0, where w(e) =

{t | p(t) = €}. For otherwise (see (3.9)), ¢(¥(¢)) ;55> —o0, which is impossible by
assumption.

Thus
ess lim Y(3(1)) = 0.

- We shall prove that §(y*) = 0 where y* = lim, ., y(t)-
First of all let us prove that if ¢ (y(t;)) — 0, ¥(t) — y*, then J(x*) = 0. In fact,
even though the function i, is not necessarily continuous, it turns out that as
lim R,(#,) C Ry(y*), then for k > k,

Ry(t) C Ry(y*).
Since || g]] < 1 then for any e > 0 there exists ky(e) such that if & > &y(e), then
of (y(t)) afz(y*)
( % o < (T g) +e (3.20)

uniformly in g and 7€ 1, N,
Let k() = max{k, , ky(¢)}. For & > k(e), we have

f ¥(t)) o y(tw)
ieRlak)( oy ’g) < zeﬂ%‘*)( oy ,g).
Hence,
_ of ¥(ts) . ofy(t))
o) = min, s, (5 oy .8) < gmin, e, ('"_ay_— 8) G2D
From (3.20) we obtain
o ¥(ts) ) — b
Ilgﬁgll 13211(’5*)( dy ,g) < SR e ( oy ,g) te=hM+e 32
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Making use of (3.21) and (3.22), we have
(30 < h(y*) + &

and therefore

0 = lim y(3(t) < $a(¥*) + <

k— 0

Since e is as small as desired,

< $(y*) (3.23)
On the other hand, by the property of the function i, , we have
| $u(¥™) < (3-24)
From (3.23) and (3 24) we finally obtain
$u(3*) = 0.

Now let us prove that ¢, y*) = 0 for any limit point y*. Suppose that our assumption
is false, i.e., $3(y*) = —p* < 0. Since for y close enough to y*, Ry(y) C Ry(y*),
then there exists 8§ > 0 such that ‘ '

h(9) < —3p*  whenever |y —y*[| <8

Let {t;} be a subsequence of {#;} such that || yr, —¥* |l < 33. Then, since g(t) is
bounded there exists 8; > 0 such that || y(z) — y(tk ) <C 8 whenever | t — te, | <Oy .
This means that for ¢ such that |¢ — | < 81, we have || y(2) — y*|| < 5, i.e.,
() < '—3p*. In the sequence {t; . We leave only terms for which

[ty — &, | =8

(Assume that the ty, have been obtained and that #(,) is the first ty, such that
i — te, =8y, 8O that we may put £, = fy). Using (3.9), and remembermg
that ,(v) << 0, we have

m@) by 48

(1)) = 9(30) +f WD) dr <o) + % j () dr

m(t) 173 +31

< @yo) — Y pis> —© since p; = — f - o(r) dr = p* >0,

i=1

where m(t) issuch thaty, = +8, <t <t , +8.

This result contradicts the boundedness assumed for M(y,) and the continuity of
@ on E, . Thus we have obtained that if (3.19) has a solution (we are not discussing
here the question of existence and uniqueness of the solution of (3.19)) and if M(y,) is
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a bounded set, then this “continuous” method converges to a stationary point of ¢.
Generally speaking, (3.19) is not stable. This is why some of the well-known numerical
methods of solving (3.19) failed to give us a stationary point of ¢, and, hence, we were
forced to use various alternate methods of successive approximations.

4, MINIMIZATION ON BOUNDED SETS

Let QCE, be a compact set (not necessarily convex or connected). An element
g € E,, will be called an admissible direction at the point y € £2 if there exists a sequence
{g:}(g; € E,) and a number sequence {«,} such that

1) y+asgse.Q
2) g,—¢g
3) o« >0, g —> 0

We shall denote the cone of admissible directions by M, , M, is a closed set [15]. Now
let ¢(y) = min, ;= fi(y), where the fi(y) (i€ 1, N) are continuously differentiable on
Q. where Q, ={x ||| —y|| € &, ¥y €2, € > 0}. We are interested in the minimization
of the function ¢(y) on £2. The following theorem is valid:

THEOREM 4. In order that a point y € 22 be a minimum point of @ on 8, it is necessary
(and in case where the set 2 and the function @ are convex it is also sufficient) that

h(y) = I =0 @.1)

llgll<l teRl(y) (
g2eM,

As usual, we shall call a point y satisfying (4.1) a stationary point of the function ¢
on the set Q.

Proof. Necessity. We shall argue by contradiction. Note that for all y € 2, we have
() < 0. Let y be a minimum point and suppose that (4.1) is violated, i.e., there
exists g, | Z|l < 1, §e M, such that

() .
ian?(y) ( By g) p < 0. 4.2)
Then from (1.11) we have

o7 + 8 = 9(9) + & 22 ""y’ + o(ay),

where {5}, {Z,} are sequences, corresponding to 7 in the definition of M, . If s is large
enough we have from (4.2) that

Py + &ds) < o(y) — 3pa, + o(&,)-
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Since o(&,)/x; ——> 0 uniformly with respect to g, , we would have for s large enough

8->00

Py + asfs) < @(¥) — 1p% < ()
which is absurd, since y + &,£, € £2and y is a minimum point of ¢ on £ by assumption.

Thus necessity is proved.

Sufficiency. Let (4.1) hold at y and let the set £2 and the functions ¢(y) be convex.
We shall prove that y is a minimum point. Assume the contrary. Let 5 € 2 be such that

oF) < #(y). (4.3)

Now let us consider the line segment [y, j] entirely contained in £2 since 2 is convex.
Since ¢ is convex we have

(¥ + oy =) = ey + (1 —)y) < op(y) + (1 — o) ¢().

From (4.3), we obtain for g = % — y that

3%(;,) _ ml_i)f_f_lo o(y + Ay ;‘J’)) — o) < @(F) — () <O.

Then, certainly, for & = gz =l 5 —yI-(F —), we have op(3)/0g < O
which contradicts (4.1). Thus the theorem is proved.

Remark 10. Suppose that M, is a convex set. Let us form the projection of the
convex hull —L(y) onto the come M, at the point y. We shall denote the convex hull
of the projection by P(y). The necessary condition for a minimum means geometrically
that the set P(y) must contain the origin. To see this, let (4.1) hold at y and let us
prove that the origin indeed belongs to P(y). Let us assume the contrary then there
exists %y € P(y) such that

— min 2% — x.2
p(y) = Inin 4% = x > 0. (4.4)
Let g, = || %, ||, . Then we assert that
Uy ,\ _ o mi
iéﬂf‘é)( Py ,gl) = max (z,81) = —min (2 6) < —(*1,6) <0 (4.5)

Proof. (by Contradiction). Suppose the contrary. Let z; € —L(y) be such that
(21, 81) < (%1, &)

The projection %, of 2, onto M, is such that (1): (% , g1) = (%, , g) (for otherwise
one can find a point x! (belonging to the line segment [#,, x;]) such that x'% < x,2
which is impossible, because of (4.4).
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(2): (% — 2,)?* < (2; — 2,)% (see Fig. 4), because otherwise 2, is the projection of
2z, and (4.4) is again violated.

Now from the triangle X,X,0 (the angle X,X,0 is obtuse) we have that
(2, — Z,)? > (Z, — X,)* which is impossible, since X] is the projection of Z, onto M, .

Fic. 4.

If the angle X,0Z, is obtuse then we have again contradiction since || Z;]| <|| Z,— X, ||.
Thus we have proved that if (4.5) holds, then (4.1) is violated. The contradiction so
obtained proves that the set P(y) contains the origin.
Conversely, let the origin belong to P(y). We shall prove that (4.1) holds at y.
Assume the contrary: Let g,(| g, || = 1, g, € M,) be such that

iRy (a—f:’)%zy_) ’gl) = o (v 8) = —p < 0.
This implies
Join (x,g1) = —p >0
ie.,

in x2 2
xgll}(ly) x 2 P > 0.
For every x € —L(y) we have (P, — x)? < (¥ — x)?, where P, is the projection of x
onto M, and ¥ is the point of the ray {x | ¥ == ag, , « > 0} which is nearest to x.
Then (see Figure 5)

[ Poll = [#* 4 (» — &)} —l|x — %] > 0.

Since L(y) is a bounded and closed set, it follows that min,, 7, [| P, || > 0, which
contradicts the assumption that the origin belongs to P(y).

Thus we have obtained that at a stationary point the origin belongs to the convex
hull of the projection of the set —L(y) onto the cone M, . Note that the projection
itself is not a convex set, even though M, and —L(y) are convex.

571/2/4-3
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x|

0

F1a. §S.

Remark 11. Condition (4.1) is equivalent to the condition

R L 6))
%(y)—igzlx}g} Jmax o £) =0 (4.6)

Using the same reasoning as in Section 1, we can obtain that if ,(y) = r > 0, then

1) the point y is a local minimum point of ¢, and

2) y is a discontinuity point of the set function R,(y), and moreover, there
exists no sequence {y;} such that

ye€L, Ve e s Ry(y:) —— Ry(y)-

Remark 12. 1If Qis convex, then (4.1) can be written as

min max (3ﬁ(y) y X — y) = 0. 4.7)

xeR2 ieR,(y) 3y

Remark 13. If the functions f; are twice continuously differentiable on 2,N §
(where S is some neighborhood of y) and if y is a stationary point of ¢, then a sufficient
condition for the point y to be a local minimum point of ¢ on 2 is

&f(y)
IEG}E} ieg:a;)fg)( 3y2 & g) > 0. (4.8)

One can prove this statement by using (1.11) for / = 2 and taking into consideration
that if (4.8) holds, then for some ¢ > 0

2
min _max (a;j);(g)g’ g) >0

llgll=1 feRy(¥,8)
geM,
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where .
M,={g|ly+ogec® forsome ac(0,¢],¢> 0}

It is clear that M, C M, for any ¢ > 0, but is is not necessarily the case that M, C M,

5. CONSIDERATION OF SOME SPECIAL (CASES

If the set £ is given by the inequalities
= {x]gx) < 0,iecl, Ny} 5.1)

where the g(x) are continuously differentiable functions on £, , then Theorem 4 can
be rewritten as follows:

THEOREM 4'. In order that a point y, where y is such that g(y) <0,icl, N
be a minimum point of ¢ on Q2 (given by (5.1)) it is necessary (and in case where g(x) are
convex and where

min ¢(x) <0,  where (x) — max gi(x)

el Ny
and the function @ is convex it is also sufficient) that
- mi ¥y %) ;
W) = [ ;;2}1(” ( oy ) g rest ( =0 (5-2)

where
O(y)=1{jljel, Ny,g/(y) = 0}

Geometrically, condition (5.2) means that at a stationary point the origin must belong
to the convex hull H(y) of the vectors

____af:-a(yy) (icRy(y) and g’(y)( €Q()-

From the necessary condition, it is also true that if:
There is no stationary point of the function max g,(x) on the set {x | max g;(x) = 0}
jel,Ny j€LN, :
(5.3)

then there exist multipliers (so-called Lagrange multipliers) A;; > 0 (€ 1, N) and
Ay; = 0(j e 1, N,), where the A,; are not all zero, such that

Z s 3fi(yy) Z Ay agégy) 0.
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Conversely, if there exist real numbers A;; > 0(ie I, N), Ay; > 0(je1, N;) not
all equal to zero, such that (5.4) holds, then y is a stationary point of ¢ on Q.

If the convex hull H(y) is a simplex, then the vector (Ayg ...y Ay s Agg yeeey Aen,)
satisfying (5.4) is unique. It is clear, from geometrical reasoning, that the set of vectors
in (N 4 N;)-th dimensional Euclidean space satisfying (5.4) is convex.

Note that (5.4) holds not only if (5.3) is valid, but also in the case where A,; = 0
foralljel, N,.

If min, g ¢(x) < min,cq ¢(x) then in (5.4) the multipliers A,; are not all zero.

Let us consider the case

={x|gx) = 0,i=1,Ny} (5.5)

where the g,(x) (7 € 1, N;) satisfy the above conditions. Generally speaking, £ is not a
convex set (but it is convex if, for example, the g(x) are linear functions). The
following theorem is valid:

THEOREM 4. In order that a point y (where y is such that g(y) = 0 for all
1€ 1, Ny and [0g{y)/oy] (i€ 1, N,) are linearly independent) be a minimum point of
@ on 2 (given by (5.5)) it is necessary that

min ma (f'(y),g) 0, (5.6)

geM, ieRl(y) oy

where

M, = 2g|”g” <1, (ag’(y),g) —Oforalljel, N,!.

The linear independence required in the statement of Theorem 4” is essential.
This may be seen from the following examples: Let

Q, ={x|xeckE,,(x—A?*—1=0,(x4+ A2 —1=0,4€E,,|| 4| =1}
2y ={x|x€E,,(x— AP —1=0,(x —242 —4=0,4€E,,||4A| =1}

In both cases £; and £, consist of only one point (the origin), and the vectors
og{y)/oy (j = 1, 2) are linearly dependent. Any function achieves its minimum
value on £ (where 2 is £2; or £2,) at 0, but condition (5.6) is not valid.
Finally, let us consider the case where
v

= {#8u(*) < 0,i€1, Ny, g5(x) = 0 je 1, Ny} (5.7

and where the g,(x) and g,,(x) are continuously differentiable on Q, . Suppose that at
y € Q2 the vectors [8g,(y)/y] (j € 1, N,) are linearly independent. Then the following
theorem is valid:
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THEOREM 4”. In order that the point y € 2 be a minimum point of ¢ on 2 (given
by (5.7)) it is necessary that

min max
geM,

max
i€Ry(y)

(B2 o) (282 )| = 0 68

where
0 ={jljel, Ny, z(y) =0},

03 p—
M, =letigl < 1,(222 g) = 0 for atlj T W,
y
Proof. Suppose the contrary. Let y be a minimum point of ¢ on £2 and let § e M,
be such that

i) = max | max (420 ), max (B52), g){ = —p <o

i$ﬁ§) ( ay oy

We can assume that || §|| = 1 since § #~ 0.

Let £’ be the intersection of surfaces g,;(x) = 0, then every g € M, belongs to the
tangent plane to 2’ at y. _

Now let us consider the ray y 4 of = y,(a > 0) and let 5,€ £’ be such that

17 =yll=o [ Fa—2aull = min ||z —y.]
[fz—yil=c
Note that A(of) = —op.

There exists o > 0 such that for any « € (0, «,] there is at least one y,. We can
find & > 0 such that & < o and A(J, — y) << —3op, then for o sufficiently small
¥, € 2 and ¢(y,) < ¢(y) which is a contradiction. Thus the theorem is proved.

Necessary conditions for a minimum in different problems have been considered

in ([16], [17]).
6. METHODS OF SUCCESSIVE APPROXIMATIONS
Let 2 be a compact set of E, and let the f; be as described above. Also let
Ri(y) ={|ie, N, 9(3) —fl(y) < &, ¢ > O
Foranyg, |lg|l = 1, and for p > 0, we may define the set

St p) = |alllall = 1,(8,0) = costy — ), cosy = 57, cos B =
H U>)

M = sup max
V€2 el N
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If for some g, || g|| = 1, we were to have

max (12)

ieR () \ Oy ,g) =P <

then for g € S(g, p) we have
U(y)
&%(@,QS—M
Let
S(gpy)=1{919—y =0, qeS(g p),« >0},

so that S is a cone. Now suppose that the following condition holds:

Condition A. For every geM,, (|gil=1), and for p > 0, there exists
8,(g, p,¥) > O such that for any &' € (0, 8,(g, p, ¥)) we can find ' € 2 N S(g, p, ¥)
such that (g, x* —y) = &. By (g, p, ) we shall denote the greatest such 3,(g, p, ¥).
In many practical problems, the above condition is realized automatically. Let

(Wmﬂ)

X ) = max (43

i€Ry (¥)

Let us define the following set (which may be empty for some §):

M,,(e, 8) = {g | “g” = LgEMV)S(g’ X(g’ G’y)»y) = 0}
where

é>0, p>0 6>0.

For the first approximation, we choose any y, € £2.

Let y, have already been found and let y(y,) = —h,. If b, =0, then y; is a
stationary point of ¢ on £ and our process is finished. If 4, > 0, then we set ¢,; = €,
pr = p,and 8,; = &. Let g, € M be a vector such that

&riy € My (€ksy » 825) = My, s Sk;‘. = 3(&riy » Priy » Vic)s

- o yx) i
TPri = ieka(yk)( 3}' ’gkj') - egggk X(g’ €Ki ’yk)'
If
ﬁkig > Pki. (6‘1)
then we set
& = ska'k ’ sk = Sk:’. ’ Pr = Pkip>» Pr = Priy» € = €xjp

and 2, = g, . If (6.1) is not satisfied, then we set ¢, ,; = Yer, » Peiy1 = 3Puiy»
833,41 = 104, and continue in the same manner until 3, S+ Pi» Pr» € » and g are



ALGORITHMS FOR SOME MINIMAX PROBLEMS 371

found. Since p, > 0, there do indeed exist such 8, > 0, §, > 0, p, > 0, 5; >0,
€ > 0. Now let us consider the set
{yi(o)} = {x | x€ QN S(gk,px»Ye) (8 ¥ —y) =}

where {y,(a)} is not empty, by the above assumption, for any « € [0, §]. For « > §,
it may turn out that {y;(«)} is an empty set. Let y,, be the point of {y,(«)} which is
nearest to the point (y, + ag.).

Let us find o € [0, o0) such that

P(Yea) = 0 @(Yr).

Now if we set ¥,3 = Yy, , then clearly ¢(y:,1) < ¢(y:). We may continue in the
same manner. Thus we have developed a sequence {y,}, such that

A Verr) < P(2)- (6.2)

If this sequence is finite (i.e., contains a finite number of vectors) then the rightmost
element of this sequence is a stationary point of @ on L. If the sequence {y,} contains
infinite number of terms, then the following theorem holds:

THEOREM 5.
lim p, =0, lim 7, = 0 (63)
and any limit point of the sequence {y,} is a stationary point of the function ¢ on S2.

Proof. Let y* be a limit point of {y,}, i.e., there exists a subsequence {y; } of
{ %} such that y,, T y*. Let C denote lim,_, ¢(y;). From (6.2) we have

#(yi) = C. (6.4)

Since £ is a compact set, and since the f; are continuously differentiable, we have
C> —w.
If we suppose that g* = lim; o, gi, , £* = lim, ,, £, , then two cases are possible:

Case (1). There exist as many k; as may be desired such that

€, = € >0, pr, = p* >0, sk, =8 >0 (6.5)

ie.,

Ui yx,) , _k) < "

__max ( —
'elekl(Yk‘) 6y

For k, large enough and satisfying (6.5)

Rlekl(yk;) 3 Rl(e'lz)(y*)
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and

Il*) o«
hCAA LA < —1p% *) — C,
iERl(s*lz)(J’*)( ay 28 ) = TP (¥*)

8 = 8(g*, p*, ¥*) = 8% Let y(x)e RN S(g*, p* y*) be a point such that
(g*, (@) — ) = . Then for any « & [0, §] there exists such a y(«). By definition of
8(g, p, ), we have

)
PN AL AL B P
iR, o (3%) (y (@) — % oy )\ 3P

We can find o* € (0, ) such that
) < C—p<C  p>0
For %, large enough (and satisfying (6.5)) we have

PP o) < C—4p < C

where y; (a*) e 2N S(g,cl » Pr,» Yx,) is such that (& , yg(e*) — ) = o* The
inequality (6.6) is valid for all such y, («*). Moreover,

HIoper) = 0. () < 9(Jir) = () < €

which contradicts (6.4). Thus, we have established the correctness of (6.3).

Case (2). e, —0,py, —> 0, Skz — 0 (these sequences either tend to zero or do not
tend to zero simultaneously). We claim in this case that y* is a stationary point, i.e.,

$u(y*) = 0.

Proof by Contradiction. Assume the contrary. Let g(y*)e M+, lig(y*) =1,
be such that

8fi(y*) *N) — * .3
s (T 80) = —h <0, et S(e(y%), b y*) =8 > 0.

Then for € € (0, €], €, > 0, we have

U{y*)

* 1
,-e%:f‘(’ﬁ*,( oy ,8(y )) < —3h <0,

Choose another such € so that for &, large enough we have

Ri(y*) O Rie(yr,)  forany € €(0, 4]
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and

( LEC) ,g(y*)) ( LECR) ,g(y*))

ieR, e (V) iR

and

( of ()
_ max
iR ' (Vi) oy

%) < s, (2 250) 44

Uy
< * 1 .
< ;e%}f(’y‘*)( 80y )) +ih<—{h <0

Since &; > 0 for %, large enough, then for any ¢ € (0, €], where 0 < € < ¢; and
where € does not depend on %;, it turns out that g(y*)e M, (e £8,). Now choose
another such €. Then

X(g’ )\ fz(ykl), ( *))

min max (
geM,, (€,10) i€Rye () \ Oy
which contradicts the assumption that e, — 0, p;, — 0, 8, — 0. This contradiction
completes the proof of Theorem 5.

Remark 14. Instead of Condition A, we could assume that for every ge M, ,
llgll = 1, and for every p > O there exists 8,(g, p, ¥) € {8;}, where &; > 0, 8 == 0,

dp1 < 8, i€, 8y(g, p, ¥) = O, is such that for any &,(k > k;) we can find at least
one x' € 2 N S(g, p, y) such that (g, ' — y) €[5, 8;_,) where 8(g, p, y) denotes the

largest 8,(g, p, ¥).

7. SpeciaL CASE

Consider the case where £2 is convex. Then (4.7) is a necessary condition for a
minimum. Let Q () ={xeQ||lx —y]| < « > 0}. Suppose x(y, a, €) is a point
such that x(y, «, €) € Q,(y) and

Aly) ’

max, (T =) =
er (y) iRy (v) \ Oy 1ER15(3’)

Mowd=m x, (B2 s(.0,9 —3). (1)

Let us choose € > 0,5 > 0. For the first approximation, we select any y, € £ and begin
the iterations. Suppose we have arrived at y;, and found (y,) = —h;. If b, = 0,
then y; is a stationary point, and we stop. Otherwise, if s, > 0, then we set ¢, = ¢
and pr, = p. Let € M be such that

o yx) 5o — yk)

ma
ieRl(yk)( oy 7k

( & yx)

3y y X “‘yk)'

= min max
1@ ieRy(vy)

—h, =
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Suppose that
oflye) -

m -— ) = mln max
iequ (¥i) ( 8y » Vi Yk xe iR, (.Vk)

_},'kl = ( of(¥s)

If Hkl Pi,» then we set e, = €, pr = py,, by = ﬁk,a Ve = Frpand Ry, = qu (¥e)-
Otherwise if h,, < p;,, we set ¢, = 36, and continue in the same manner “until
€+ Pi» Px» Fi » Ry, are found (such that ki, > p,).

The next approximation y,,; can be chosen by one of the following methods.

Method 1. Let us consider the linear segment y,, = ¥, + o(F. — yi), € [0, l]
where y,, € 2 (since £ is convex), and let us find o) € [0, 1] such that ¢ Yio) =
MiN,e(o,1) P(Vra), and then set i, = y,, . In addition, we have q:(ykﬂ) < (p(yk) We
may continue this process to subsequent steps.

Method 2. Lety,, = x(y;, a, ) (see (7.1)) and let us find «, € [0, ) such that
W Vko,) = MiNyero.0) P Vi) and sety,,; = Yk, -
Method 3. Fix any «* > 0 (not depending on k) and let

Yo = Vi + x(yi, o¥, &) — y), «€0,1], ye®
and let o € [0, 1] be such that

P(Vea) = MR P Yra)-

Then y,; = ¥ia,, and so on. Generally speaking, Method 3 becomes Method 1
when o* tends to infinity.

The convergence of the sequence {y,} (constructed according to Method 1) to a
stationary point has been proved in [/]. We can prove this fact in a similar manner
for Method 3. For Method 2, the following theorem holds:

THEOREM 6. Any limit point of the sequence {y;} constructed according to Method 2
1S a stationary point of ¢ on £2.

Proof. Let
C=lme(y), ¢(y)=C (7.2)

Let y* be a limit point of {y,}, i.e., there exists a subsequence of {y,} of {y:}
such that y, — e y*. We can assume that §, — 7, i, — 7. Two cases are possible:

Case (1). There exist as many %, as may be desired such that

e, = €* >0, pr, = p* >0 (71.3)
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For such %,
%k
| ¥e, — Y, | = pe M = L (where M = max max ” 8f,(x) “
M A iel,N
Then we have for « € (0, M~1p*)
UAy) A Fre — Iu) — %Pt ap*
h s Xy ax ’ p < — < - o !
O ee) < o, (05 e ell) < Tom ol <~ 9

where 2 is the diameter of 2 (since the point 2, , = o Fi, — e Ml ¥, — ¥x, I €Qu(¥))-
Thus for k; large enough and satisfying (7.3), and for « € (0, M~1p*), we have

Jlye) < filor) — ap*PD 7 + 0,(a)
P Ire) < 9(¥r) — ™27 + o)
where o(a) does not depend on %, . For a sufficiently small,
lo() < (12D) op*,  #(Yia) < §(I1)) — (1/22) p*a

Let us choose such an «, which we shall designate as a*. Since ¢(y; ) — C, for &,
large enough, we obtain

(Vi) < C — (1/42) p*o.
Furthermore,

‘P(J’k,ﬂ) ‘P(J’k,«) = ‘P(yk,a*) < C — (1/49) p*a* <0,

aE[O G))

which contradicts (7.2). Thus (7.3) is impossible.

Case (2). €, — 0, pp, > 0. Then we claim that y* is a stationary point. We shall
argue by contradiction. Suppose that for x* € §2 we have

Ady*) - p
.-Jz%*)( oy y)— h <0

Then there exists e* > 0 such that for € € (0, €*]

HlY*) v

< — .
A (T =) < — <o
Choose some such e. For k, large enough, we have

of Y1)

x* — ) < — 1
ieRl(‘/z)(ykl)( oy ) < 4
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Moreover,

Y1)
_sz_,x —J’k,) < —th

min __max (

x€2 i€Ry(e/a)(¥x,)
But now it is obvious that if &, < 3¢, then Eki > $h, and for Pr, < 3 we have
Ek, 2 px, » i.e., neither ¢, nor p, tend to zero, which contradicts our assumption. This
contradiction completes the proof of Theorem 6.

Remark 15. In Method 2, it is not necessary to choose oy € [0, ). Rather, it is
sufficient to find o, € [0, a*] (Where a* > 0 is fixed and does not depend on &) such
that

P Vio) = <P(yk.,) and set Vi1 = Vio, -

5[0
In all these methods it is necessary to solve some auxiliary optimization problems.
In just the same way as in [/4] one can solve all these problems approximately.

8. NONLINEAR MATHEMATICAL PROGRAMMING PROBLEMS

Let the set 2 be given by (5.1). To obtain a stationary point (satisfying (5.2)), we
can apply the following modification to the above algorithms. Let us define

Q) ={jel,N| —e <g(») <0,¢>0} (8.1)

Let us choose anye > 0,p > 0, u > 0.

For the first approximation, let us choose any arbitrary y, € 2 and begin the
iterations. Suppose we have arrived at y; . Let ., Ry, O, denote ¢(y:), Ri(yz),
O(yy), respectively. If s, = 0 then y, is a stationary point, and the process is finished.
But if ¢y, <O, then weset e, =€, py, = p, py, = 1 and find

IS{yw) , g) 3 g yx)

Pre = D, mangenrﬁ,f‘ffm( oy ’ 'feéf,i’(‘yp( ay ’g)i (8.2)

where £ > 0 is in general an arbitrary number not depending on k. Let gi; be a
vector such that || g1, || << 1and

a ( %4(I5)
7€,  (vx) oy

Hx1

LASDRPAN’ 83)

= max max
{/lkskl 3,@}31%1(3,,0) ( 3y

,gkl) .

£ —‘/’kskl = pry, We Set € = €xq, P = Pr1» Mx = Mr1, and g = g . However,
. — — 1 1 M

if —4hpe,, < pr1»> Welet egy = Jexy, pro = §Pr1 s Mre = ptia , and we continue in an

analogous manner until 7 is found such that —</:k€k'k > Pyr,, » and then we set ¢, = €4,
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Pk = Piry» Bx = Mr, > and g, = &ur, - Such an 7, will necessarily be found since
¢ << 0. Let us now con81der the ray y,, = y; + agi(a > 0). (Note that for o small
enough y;, € 2 because ¢, < —pi < 0.) Find o, € A4, such that

P(Iis) = 100D @ Vi)
where

Ay ={a|la>0,y, + g2}

and set Y1 = Yy, - It is obvious that ¢(y,.,;) < ¢(yx). We continue in the same
manner. The sequence {y,} constructed in this fashion converges to a stationary
point. This statement can be proved by arguments similar to those used for proving
the above theorems.

In the above method, we supposed that y, € 2. The following method is free of this
assumption. Let the f; and g; be defined on the entire space. Choose any ¢ > 0,
p >0, p > 0. For the first approximation we choose an arbitrary y, € E, . Let y;
have already been found. Let us denote &, = max;ery, 8 Ye)- by, < Oand g(y,) =0
(see 5.2), then y, is a stationary point of ¢ on £2 and our process is finished. Otherwise
we take €3 = €, py; = p, and pyy = p. Three cases are possible.

Case (1). hy > pyy . Then we set Ry, = / (an empty set) and

Qukl ={jljel, Ny, b — gi(ye) < pra}-

Case (2). 0 < b < pgy - Then we set

Ry, = {111, N, max fiyx) — fl¥e) < e}

j€1,N

Qukl ={jljel, Ny, b — — & ¥e) < paat

Case (3). B < 0. Then we set

R, ={iliel, N, max fi(yi) — fyr) < e}

j€1,N
Qukl = {]I]E 1, Nl » —Hr <g-”(yk) < 0}

(clearly, if A(y;) < —per, thenQ, = 4.)

Now we find i, (see 8.2) and the vector gy, (see 8.3). Then we find gy, €, pr»
and u, as above. Then we form the ray y,, = y; + agi(e¢ > 0) and find o;, > 0 such
that:
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1) Ifh(y,) > Oand R, = Athen

max (Vi) = Min g4 Yeo)-

JeLN, acl0, =)
2) Ifh(yy) > Oand R, 7 Athen

max{$(Ve,) — P(Vi)s Max g Yeo,) — H(¥1)}

i€l N,

= min max{p(yr) — P(), MaX g yr) — (i)}

€lo, €T,

3) I h(y,) <O, then

P Vrw) = 1000 9(30)
where

Ay = {a|a >0, max g(yr,) < 0}.
jeLLN,

Now we set y¢,; = ¥y, and continue in the same manner. Note that if y, is far enough
from Q, the next y,, is chosen as if we were minimizing A(y) = max; 5, £i(¥)-
If y, € £, then all succeeding y, are chosen as in the previous method. We have some
difficulties only if y;; does not belong to 2 but is close enough to it.

The sequence {y,} thus constructed converges to a stationary point of ¢ on £ in the
sense of the following theorem:

THEOREM 7. Let y* be any limit point of {yy}, i.c., there exists a subsequence {y,}
of {y} such that y,, e ¥*, ¥i, € {¥}- The following statements are true:

1) Ify*¢Q, then
20" )\ _
TR fé?zz(‘;{*)( oy ,g) =0
where

Dy*) ={jljel, Ny, g(y*) = max g(y*)}

kel,N,

2) Ify*eQ then

=V,

of(y*) o>l y*) , g)g

min maxg max ( oy ’g)’jI%??)( oy

lighi<t 1€R, (v*)

where Q(y) ts the same as in (5.2).
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Remark 16. We can choose %, ¢, p and p in Section §, taking into consideration
previous computational experience. For each particular class of problems, reasonable
auxiliary coeflicients 4, ¢, p and u may be found.

Remark 17. If N = 1, then ¢(X) = f(X), where f is a continuously differentiable
function. Then £ is given by (5.1), and we have a standard mathematical programming
problem. Our methods for this particular case are similar to those of G. Zoutendijk
([51, [8]) and Zuchovitskit ([5], [1]).

In (5.2) we have || g|| <C 1. Instead of the unit sphere we can consider an arbitrary
closed bounded set with the origin as an interior point. By choosing different sets one
can obtain new methods for solving nonlinear mathematical programming problems.
These correspond to different Zoutendijk normalizations.

Remark 18. For each of the methods in Section 2, we can form systems of
differential equations similar to that in Section 1 whose solutions, under suitable
assumptions, tend to a stationary point. However, we have no assurance that these
solutions are stable. This instability is a reason for the so-called zigzagging effects of
numerical methods for solving these differential equations.

Remark 19. The methods discussed above are applicable if the auxiliary linear
problem arising therein can easily be solved. In many cases this problem is simple
enough (for example if € is given by (5.11)). In other cases it is necessary to try
various methods of successive approximation for solving the auxiliary linear problem.
This problem has been discussed in detail in [/8] for some particular cases of £2.

Remark 20. Other methods of successive approximation can be obtained by using
modifications of the algorithms in Section 3.
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