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Using standard techniques in string/D-brane scattering amplitude computations, we evaluate the
scattering of open strings off D-particles in brane world scenarios. The D-particles are viewed as D3
branes wrapped up around three cycles, and their embedding in brane worlds constitutes a case of
intersecting branes, among which strings are stretched, representing various types of excitations of
the Standard Model (SM) particles in the low-energy limit. Our analysis, reveals interesting and novel
selection rules for the resulting causal time delays, proportional to the energy of the incident matter
state, from the processes of splitting, capture and re-emission of the latter by the D-particles. There are
relatively large time delays only for excitations that belong to the Cartan subalgebra of the SM gauge
group, which notably includes photons. We discuss the possible relevance of these results to models
of space time foam with non-trivial vacuum refractive index for photons and demonstrate how current
astrophysical observations can be used to discriminate low- from high-string-scale models in this context.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction: Lorentz-invariance-violating string-foam
backgrounds

The advent of the new generation of ground-based Čerenkov
or satellite γ -ray telescopes has inaugurated a new era in γ -
ray astronomy. In particular, these instruments may also be used
to probe fundamental physics, for example, a possible energy-
dependent vacuum refractive index for photon due to quantum-
gravitational effects in space–time foam [1,2]. MAGIC [3], HESS [4]
and Fermi [5] Collaborations have reported time-lags in the ar-
rival times of high-energy photons, as compared with photons of
lower energies. The most conservative interpretations of such time-
lags are that they are due to emission mechanisms at the sources,
which are still largely unknown at present. However, such delays
might also be the hints for the energy-dependent vacuum refrac-
tive index. Assuming that the refractive index n depends linearly
on the γ -ray energy Eγ , i.e., n ∼ 1 + Eγ /MQG where MQG is the
quantum gravity scale, it was shown that the time delays observed
by the MAGIC [3], HESS [4] and Fermi [5] Collaborations are com-
patible with each other [2] for MQG around 1018 GeV.

It is well known that many theories of quantum gravity pre-
dict non-trivial vacuum refractive indices, varying linearly with the
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energy scale of the photons and with the distance of the source.
However, there are several stringent restrictions coming from other
independent tests of Lorentz symmetry that must be taken into ac-
count [2]. To survive these stringent bounds on Lorentz invariance
violation imposed by the plethora of the current astrophysical ex-
periments, any model of quantum-gravity predicting non-trivial re-
fractive indices should be characterised by the following features:
(i) Photons are stable (i.e. do not decay) [6] but should exhibit a
modified subluminal dispersion relation with Lorentz-violating cor-
rections that should grow linearly with Eγ /MQG where MQG is
close to the Planck scale; (ii) The medium should not refract elec-
trons, so as to avoid the synchrotron-radiation constraints [7,8];
(iii) The coupling of the photons to the medium must be inde-
pendent of photon polarization, so as to avoid birefringence, thus
avoiding the stringent pertinent constraints [9–12]; (iv) The for-
malism of a local effective field theory Lagrangian in an effectively
flat space–time, including higher-derivative local interaction terms
to produce a refractive index [13], breaks down. This would be
signalled by quantum fluctuations in the total energy in particle
interactions [14], due to the presence of a quantum-gravitational
‘environment’. The only known model with all these properties has
been suggested by J. Ellis and two of us [8,15,16] within the frame-
work of string/brane theory, based on a stringy analogue of the
interaction of a photon with internal degrees of freedom in a con-
ventional medium. The space–time foam is modelled as a gas of
point-like D-brane defects (D-particles) in the bulk space–time of
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Fig. 1. Schematic representation of a D-particle foam. The figure indicates also the capture/recoil process of a string state by a D-particle defect for closed (upper) and open
(lower) string states, in the presence of D-brane world. The presence of a D-brane is essential due to gauge flux conservation, since an isolated D-particle cannot exist.
a higher-dimensional cosmology where the observable Universe is
a D3-brane (cf. Fig. 1). Within this class of D-foam models, a re-
fractive index for photon propagation in vacuo was re-derived by
using a detailed modelling of the interaction of an open string,
representing a photon, with a D-particle [2].

Indeed, in such a model, photons are represented as electri-
cally neutral open string states, which are captured by D-particles
during topologically non-trivial scattering processes, in which an
incident open string, with momentum p0 splits into constituent in-
termediate string states, stretched between the D-particle and the
D3 brane worlds. The life time of such intermediate states can be
calculated, as in [18], by means of computing the (causal) time de-
lays required for the first of a series of re-emitted outgoing waves,
with attenuating amplitudes. It is found proportional to the inci-
dent energy of the photon,

�t ∼ α′p0. (1)

Equivalently, this time delay is the time taken for an intermediate
string state, stretched between the D-particle and the D3 brane to
grow from zero size to a maximum one and back to zero, with the
end of the string attached to the D3 brane moving with the speed
of light [2,18]. This is a purely stringy effect, not existing in any
local quantum field theory limit, and is compatible with the string
space–time uncertainty relations [17] for this case. The result (1)
admits an interpretation [2] in terms of a non-trivial subluminal re-
fractive index of the D-particle foam, which scales linearly with the
photon energy. Interestingly, the D-particle foam looks transparent
to charged particles such as electrons due to charge conservation,
and then avoids the stringent constraints coming from synchrotron
radiation of the Crab Nebula [7–9]. In addition to this leading re-
fractive index effect, obtained form the causal outgoing waves dur-
ing the scattering of strings with D-particles, there are corrections
induced by the recoil of the D-particle itself, which contribute to
space–time distortions that we now proceed to discuss. To this
end we note that, from a world-sheet view point, the presence
of D-particle recoil may be represented by adding to a fixed-
point (conformal) σ -model action, the following deformation [19]:
V imp

D = 1
2πα′

∑d
i=1

∫
∂ D dτ ui X0Θ(X0)∂n Xi , where d in the sum de-

notes the appropriate number of spatial target-space dimensions.
For a recoiling D-particle confined on a D3 brane, d = 3. On writ-
ing the boundary recoil/capture operator as a total derivative over
the bulk of the world-sheet, by means of the two-dimensional ver-
sion of Stokes theorem we have (omitting from now on the explicit
summation over repeated i-index, which is understood to be over
the spatial indices of the D3-brane world):

V imp
D = 1

2πα′

∫
D

d2zεαβ∂β
([

ui X0]Θ(
X0)∂α Xi)

= 1

4πα′

∫
D

d2z(2ui)εαβ

(
∂β X0)[Θε

(
X0) + X0δε

(
X0)]∂α Xi

(2)
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where δε(X0) is an ε-regularised δ-function. This is equivalent to a
deformation describing an open string propagating in an antisym-
metric Bμν -background corresponding to an external constant in
target-space “electric” field, B0i ∼ ui, Bij = 0, where the X0δ(X0)

terms in the argument of the electric field yield vanishing con-
tributions in the large time limit ε → 0, and hence are ignored
from now on. To discuss the space–time effects of a recoiling D-
particle on an open string state propagating on a D3 brane world,
which is of interest to us here, we should consider a σ -model, in
the presence of the B-field, which leads to mixed-type boundary
conditions for open strings on the boundary ∂D of world-sheet
surfaces with the topology of a disc:

gμν∂n Xν + Bμν∂τ Xν
∣∣
∂D = 0, (3)

with B given above. Absence of a recoil-velocity ui -field leads to
the usual Neumann boundary conditions, while the limit where
gμν → 0, with ui �= 0, leads to Dirichlet boundary conditions. Con-
sidering commutation relations among the coordinates of the first
quantised σ -model in the above background, one also obtains a
non-commutative space–time relation [18]. In contrast, in the case
of strings in a constant magnetic field [20] (corresponding to B-
fields of the form Bij �= 0, B0i = 0), the non-commutativity is
only between spatial target-space coordinates. The pertinent non-
commutativity refers to spatial coordinates along the direction of
the electric field, and is expressed in the form

[
X1, t

] = iθ10, θ01(= −θ10) ≡ θ = 1

uc

ũ

1 − ũ2
(4)

where t is the target time, and we assume for simplicity and con-
creteness recoil along the spatial X1 direction. Thus, the induced
non commutativity is consistent with the breaking of the Lorentz
symmetry of the ground state by the D-particle recoil. The quan-
tity ũi ≡ ui

uc
and uc = 1

2πα′ is the Born–Infeld critical field. Notice
that the presence of the critical “electric” field is associated with a
singularity of both the effective metric and the non-commutativity
parameter, while, as we shall discuss below (6) there is also an ef-
fective string coupling, which vanishes in that limit. This reflects
the destabilization of the vacuum when the “electric” field intensity
approaches the critical value, which was noted in [21]. Since in our
D-particle foam case, the role of the ‘electric’ field is played by
the recoil velocity of the D-particle defect, the critical field corre-
sponds to the relativistic speed of light, in accordance with special
relativistic kinematics, which is respected in string theory, by con-
struction.

The space–time uncertainty relations (4) are consistent with
the corresponding space–time string uncertainty principle [17]
�X�t � α′ . Of crucial interest in our case is the form of the in-
duced open-string effective target-space–time metric. As discussed in
detail in refs. [18,20], to find it, one should consider the world-
sheet propagator on the disc 〈Xμ(z, z̄)Xν(0,0)〉, with the bound-
ary conditions (3). Upon using a conformal mapping of the disc
onto the upper half plane with the real axis (parametrised by
τ ∈ R) as its boundary [20], one then obtains: 〈Xμ(τ )Xν(0)〉 =
−α′ gμν

open, electric lnτ 2 + i θμν

2 ε(τ ), with the non-commutative pa-
rameters θμν given by (4), and the effective open-string metric,
due to the presence of the recoil-velocity field �u, whose direction
breaks target-space Lorentz invariance, by:

gopen,electric
μν = (

1 − ũ2
i

)
ημν, μ,ν = 0,1,

gopen,electric
μν = ημν, μ,ν = all other values, (5)

where, for concreteness and simplicity, we consider a frame of ref-
erence where the matter particle has momentum only across the
spatial direction X1, i.e. 0 �= k1 ≡ k ‖ u1, k2 = k3 = 0. Moreover,
there is a modified effective string coupling [18,20]:

geff
s = gs

(
1 − ũ2)1/2

. (6)

The fact that the metric in our recoil case depends on momentum
transfer variables, implies that D-particle recoil induces Finsler-
type metrics [22], i.e. metric functions that depend on phase-space
coordinates, that is space–time and momentum coordinates. The
induced metric (5), will affect the dispersion relations of the pho-
ton state, by means of kμkν gμνopen,electric = 0. However, because
the corrections on the recoil velocity ui are quadratic, such mod-
ifications will be suppressed by the square of the D-particle mass
scale. The presence of the D-particle recoil velocity will affect the
induced time delays (1) by higher-order corrections of the form, as
follows by direct analogy of our case with that of open strings in
a constant electric field [18]:

�twith D-foam recoil velocity = α′ p0

1 − ũ2
i

. (7)

As we mentioned previously, one observes that the D-particle re-
coil effects are quadratically suppressed by the D-particle mass
scales, since ũi ∝ gs�ki/Ms , with �ki the relevant string-state mo-
mentum transfer.

Some important remarks are in order here, to avoid some con-
fusion regarding testing the predictions of our model with exper-
iment. As we hope becomes clear from [2] and our discussion
above, the primary time delay (1), is derived in the limit of infi-
nite D-particle mass. The presence of D-particles, of course, breaks
the Poincaré invariance of the bulk vacuum, and their recoil the
associated Lorentz invariance of the D3-brane world. In this sense,
it is to be expected that non-trivial refractive indices characterise
our D-particle foam background, even in the limit of infinite D-
particle mass, where recoil motion of the D-particles is ignored.
Having said that, it is also clear from the above analysis, and that
of Ref. [2], that the calculation of time delays (1) is based on com-
puting the formation of an intermediate string and not point-like
state, of a finite extent. In this sense, such effects cannot be sim-
ply represented in terms of an effective local low-energy Lagrangian
formalism, in which one adds higher-derivative, higher-dimension
non-renormalizable operators in a flat space–time Lagrangian. On
the other hand, the effects of the induced Finsler metric, due to D-
particle recoil, as well as their non-commutative contributions (4),1

1 For instance, on averaging (〈〈. . .〉〉) the non-commutativity relation (4) over pop-
ulations of (quantum fluctuating) D-particles in the foam, and assuming an approx-
imately constant 〈〈ui〉〉, Eq. (4) becomes of the form [xμ, xν ] = iθμν , with θμν �
const. The latter relation may be interpreted [23] as implying a Lorentz violating
situation, leading, in the continuum low-energy field theory limit, to higher-order
derivative terms in a local effective Lagrangian, which, for the case of photons we
are interested in, would include terms of the form:

LEFT-NC � − 1

4
Fμν F μν − 1

2
θαβ Fαμ Fβν F μν + 1

8
θαβ Fαβ Fμν F μν + · · · .

The crucial qualitative difference in our case is the Finsler type of the non-
commutative space–time parameter, θ0i which in general depends on momenta.
Nevertheless, such links of our model with effective field theories of non-
commutative space–times imply that the D-particle recoil parameters can be con-
strained also by means of the same experiments that are used to constrain such
non commutative field theories [24]. However, in our cases of D-particle foam, the
most physically interesting cases are that of isotropic, Lorentz-invariant on aver-
age, Gaussian stochastically fluctuating foam, for which the average recoil veloc-
ity of D-particles vanishes, 〈〈ui〉〉 = 0, and only their fluctuations are non trivial,
〈〈ui u j〉〉 = σ 2δi j , etc. In such a case, non-commutativity is much harder to detect via
the methods discussed in [23,24], although the independent phenomenon of time
delays (1), (7), which is not linked to effective field theories, is much easier to fal-
sify in high-energy γ -ray astrophysics observations [3].
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may admit such an effective field theory interpretation. Hence, the
best experiments to test our model are the ones in which simply
one computes time delays in the arrival times of photons (or elec-
trically neutral particles) and checks their dependence on their en-
ergies. This has been done in [2]. In this respect, we should stress
that the analysis in [3], where a reproduction of the peak has been
used at an individual photon level, assuming linearly modified dis-
persion relations for photons, does not capture correctly the spirit
of the present model, in view of these comments, in the sense
that the latter analysis presupposes the existence of an underly-
ing local effective Lagrangian. It is for the same reason, namely the
de-association of the effect (7) from the effective field theory for-
malism, that ultrahigh energy cosmic rays constraints analyses [6]
also do not apply to our stringy D-foam framework.

In the model of [2] the D-particles are point-like D0-branes,
which are admitted in type IIA string theories. In this Letter we
consider an extension of these ideas in the phenomenologically
relevant Type IIB string theory with in which the role of D-
particles is played by D3-branes appropriately wrapped around
three cycles, while the D3 brane worlds are provided by D7-branes,
appropriately compactified to three large spatial dimensions. We
derive the vacuum refractive index for the photon, and find that it
depends linearly on the photon energy. In addition, in this model,
in contrast to that of [2], there can be a time-delay for electron,
which however, as we shall show, can be small enough to satisfy
the stringent constraints coming from synchrotron radiation of the
Crab Nebula [7–9]. We shall derive the time delays in the spirit
of [2], by considering scattering amplitude first in the limit where
the recoil of the D-particle is ignored. As we shall see, a formula
analogous to (1) will be derived. The inclusion of wrapped-up-D3-
brane/D-particle recoil corrections parallels that of D0-brane above,
and will not be repeated. The result is similar to (7), with the D3-
brane recoil to amount to quadratic and higher-order suppression
by the effective “D-particle” mass.

2. Type IIB string/brane foam and causal time delays

Let us consider the Type IIB string theory with D3-branes and
D7-branes where the D3-branes are inside the D7-branes. The D3-
branes wrap a three-cycle, and the D7-branes wrap a four-cycle.
Thus, the D3-branes can be considered as point particles in the
Universe, i.e., the D-particles, while the Standard Model (SM) par-
ticles are on the world-volume of the D7-branes. For simplicity,
we assume that the three internal space dimensions, which the
D3-brane wraps around, are cycles S1 × S1 × S1, and we denote
the radius of the i-th cycle S1 as Ri . The mass of the D3-brane
is [25]

MD3 = R1 R2 R3

gs�
4
s

, (8)

whereby gs is the string coupling, and �s is the string length, i.e.,
the square root of the Regge slope

√
α′ . If Ri � �s , we can per-

form a T-duality transformation along the i-th S1 Ri → �2
s

Ri
, and

then we obtain Ri � �s . In string theories with compact inter-
nal space dimension(s), there are Kaluza–Klein (KK) modes and
string winding modes. Under T-duality, the KK modes and wind-
ing modes are interchanged. In particular, these two theories are
physically identical [25]. Therefore, without loss of generality, we
can assume Ri � �s . Choosing Ri = 10�s and gs ∼ 0.5, we ob-
tain MD3 ∼ 2000/�s , and then the mass of the D3-brane can be
much larger than the string scale. Anticipating the result (7), we
shall ignore to a first approximation the recoil of the D-particles.
Their inclusion (as small, perturbative corrections) is straightfor-
ward, according to the discussion in the previous section, and we
shall come back briefly to this issue at the end of the article. In
this setting, for the particles (called ND particles) arising from the
open strings between the D7-branes and D3-branes which satisfy
the Neumann (N) and Dirichlet (D) boundary conditions respec-
tively on the D7-branes and D3-branes, their gauge couplings with
the gauge fields on the D7-branes are 1

g2
37

= V
g2

7
, where g7 are the

gauge couplings on the D7-branes, and V denotes the volume of
the extra four spatial dimensions of the D7 branes transverse to
the D3-branes [26]. Because the Minkowski space dimensions are
non-compact, V is infinity and then g37 is zero. Thus, the SM par-
ticles have no interactions with the ND particles on the D3-brane
or D-particle.

To have non-trivial interactions between the particles on D7-
branes and the ND particles, we consider a D3-brane foam, i.e.,
the D3-branes are distributed uniformly in the Universe. We as-
sume that V A3 is the average three-dimensional volume that has
a D3-brane in the Minkowski space dimensions, and R ′ is the ra-
dius for the fourth space dimension transverse to the D3-branes.
In addition, in the conformal field theory description, a D-brane is
an object with a well defined position. While in the string field
theory, a D-brane is a fat object with thickness of the order of
the string scale. In particular, the widths of the D-brane along the
transverse dimensions are about 1.55�s , as follows from an analy-
sis of the tachyonic lump solution in the string field theory which
may be considered as a D-brane [27]. Thus, our ansatz for the
gauge couplings between the gauge fields on the D7-branes and
the ND particles is

1

g2
37

= V A3 R ′

(1.55�s)4

�4
s

g2
7

= V A3 R ′

(1.55)4

1

g2
7

. (9)

We denote a generic SM particle as an open string ab̄ with both
ends on the D7-branes. For a = b, we obtain the gauge fields re-
lated to the Cartan subalgebras of the SM gauge groups, and their
supersymmetric partners (gauginos), for example, the photon, Z 0

gauge boson and the gluons associated with the λ3 and λ8 Gell-
Mann matrices of the SU (3)C group. For a �= b, we obtain the other
particles, for example, the electron, neutrinos, and W ±

μ boson, etc.

As in Fig. 2(a), when the open string ab̄ passes through the D3-
brane, it can be split and become two open strings (corresponding
to the ND particles) ac̄ and cb̄ with one end on the D7-brane (a or
b̄) and one end on the D3-brane (c or c̄). Then, we can have the
two to two process and have two out-going particles arising from
the open strings ac̄ and cb̄. Finally, we can have an out going parti-
cle denoted as open string ab̄. In particular, for a = b, we can have
s-channel process at the leading order, and plot it in the Fig. 2(b).
Interestingly, the time delays arise from the two to two process in
the box of Fig. 2(a), and we plot the corresponding string diagram
in Fig. 2(c).

To calculate the time delays, we consider the four-fermion scat-
tering amplitude and use the results in Ref. [28] for simplicity. We
can discuss the other scattering amplitudes similarly, for example,
the four-scalar scattering amplitude, and the results are the same.
The total four-fermion scattering amplitude is obtained by sum-
ming up the various orderings [28]:

Atotal ≡ A(1,2,3,4) + A(1,3,2,4) + A(1,2,4,3),

A(1,2,3,4) ≡ A(1,2,3,4) + A(4,3,2,1), (10)

where A(1,2,3,4) is the standard four-point ordered scattering
amplitude
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(a)

(b)

(c)

Fig. 2. (a) The splitting/capture/re-emission process of a (generic) matter string by a D-particle from a target-space point of view. (b) The same process but for photons (or
in general particles in the Cartan subalgebra of the gauge group in this (intersecting) brane world scenario. (c) The four-point string scattering amplitude (corresponding to
the parts inside the dashed box of (a)) between the constituent open ND strings of the splitting process. Latin indices at the end-points of the open string refer to the brane
worlds these strings are attached to.
(2π)4δ(4)

(∑
a

ka

)
A(1,2,3,4)

= −i

gsl4s

1∫
0

dx
〈

V (1)(0,k1)V (2)(x,k2)V (3)(1,k3)V (4)(∞,k4)
〉
,

(11)

where ki are the space–time momenta, and we used the SL(2, R)

symmetry to fix three out of the four xi positions on the boundary
of the upper half plane, representing the insertions of the open
string vertex fermionic ND operators V (i) , i = 1, . . . ,4, defined
appropriately in Ref. [28], describing the emission of a massless
fermion originating from a string stretched between the D7 brane
and the D3 brane.

The amplitudes depend on kinematical invariants expressible in
terms of the Mandelstam variables: s = −(k1 +k2)

2, t = −(k2 +k3)
2

and u = −(k1 + k3)
2, for which s + t + u = 0 for massless particles.

The ordered four-point amplitude A(1,2,3,4) is given by

A(1 j1 I1 ,2 j2 I2 ,3 j3 I3 ,4 j4 I4)

= −gsl
2
s

1∫
dx x−1−sl2s (1 − x)−1−tl2s

1

[F (x)]2
0

× [
ū(1)γμu(2)ū(4)γ μu(3)(1 − x) + ū(1)γμu(4)ū(2)γ μu(3)x

]
×

{
ηδI1, Ī2

δI3, Ī4
δ j̄1, j4

δ j2, j̄3

∑
m∈Z

e−πτm2�2
s /R ′2

+ δ j1, j̄2
δ j3, j̄4

δ Ī1,I4
δI2, Ī3

∑
n∈Z

e−πτn2 R ′2/�2
s

}
, (12)

where F (x) ≡ F (1/2;1/2;1; x) is the hypergeometric function,
τ (x) = F (1 − x)/F (x), ji and Ii with i = 1,2,3,4 are indices on
the D7-branes and D3-branes, respectively, and η is

η = (1.55�s)
4

V A3 R ′ , (13)

in the notation of [28], u is a fermion polarization spinor, and the
dependence of the appropriate Chan–Paton factors has been made
explicit. Thus, taking F (x) � 1 we obtain

A(1,2,3,4) ∝ gs�
2
s

(
t�2

s ū(1)γμu(2)ū(4)γ μu(3)

+ s�2
s ū(1)γμu(4)ū(2)γ μu(3)

)Γ (−s�2
s )Γ (−t�2

s )

2
,

Γ (1 + u�s )
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A(1,3,2,4) ∝ gs�
2
s

(
t�2

s ū(1)γμu(3)ū(4)γ μu(2)

+ u�2
s ū(1)γμu(4)ū(3)γ μu(2)

)Γ (−u�2
s )Γ (−t�2

s )

Γ (1 + s�2
s )

,

A(1,2,4,3) ∝ gs�
2
s

(
u�2

s ū(1)γμu(2)ū(3)γ μu(4)

+ s�2
s ū(1)γμu(3)ū(2)γ μu(4)

)Γ (−s�2
s )Γ (−u�2

s )

Γ (1 + t�2
s )

,

(14)

where the proportionality symbols incorporate Kaluza–Klein or
winding mode contributions, which do not contribute to the time
delays. Technically, it should be noted that the novelty of our re-
sults above, as compared with those of [28], lies on the specific
compactification procedure we adopted, and the existence of a uni-
formly distributed population of D-particles (foam), leading to (9).

Similarly to the discussion in Ref. [18], time delays arise from
the amplitude A(1,2,3,4) by considering backward scattering
u = 0. Noting that s + t + u = 0 for massless particles, the first
term in A(1,2,3,4) in Eq. (14) for u = 0 is proportional to
t�2

s Γ (−s�2
s )Γ (−t�2

s ) = −s�2
s Γ (−s�2

s )Γ (s�2
s ) = π

sin(π s�2
s )

. It has poles

at s = n/�2
s . The divergence of the amplitude at the poles is an es-

sential physical feature of the amplitude, a resonance correspond-
ing to the propagation of an intermediate string state over long
space–time distances. To define the poles we use the correct ε
prescription replacing s → s + iε , which shift the poles off the real
axis. Thus, the functions 1/ sin(π s�2

s ) can be expanded as a power

series in y which is y = eiπ s�2
s −ε . On noting that s = E2, we obtain

the time delay at the lowest order

�t = E�2
s . (15)

Let us discuss the time delays at leading order for concrete par-
ticles. We will assume that η is a small number about 10−6

or smaller. Then, for the gauge fields (and their corresponding
gauginos) which are related to the Cartan subalgebras of the SM
gauge groups, all the amplitudes A(1,2,3,4), A(1,3,2,4), and
A(1,2,4,3) will give the dominant contributions to the total am-
plitude due to j1 = j̄2. Thus, they will have time delays as given in
Eq. (15). The resulting delay for photon is independent of its po-
larization, and thus there is no birefringence, thereby leading to the
evasion of the relevant stringent astrophysical constraints [10–12].

However, for the other particles, we have j1 �= j̄2, and then only
the amplitude A(1,3,2,4) gives dominant contribution. Consider-
ing backward scattering [18] u = 0 and s + t + u = 0, we obtain

A(1,3,2,4) ∝ gs�
2
s

(
1

u�2
s

ū(1)γμu(3)ū(4)γ μu(2)

− 1

s�2
s

ū(1)γμu(4)ū(3)γ μu(2)

)
.

Because they are just the pole terms, we do not have time delays
for other particles with j1 �= j̄2 at the leading order, for exam-
ple, W ±

μ boson, electron, and neutrinos, etc. At order η (O(η)),
we have time delays for these particles, which arise from the forth
line in Eq. (12). The dispersion relation for the electron can be
parametrised as follows E2 = p2 + m2

e − ηp3/MSt, where MSt is
about the string scale. From the Crab Nebula synchrotron radia-
tion observations, we obtain the constraint on η [9] η � 10−6. This
can be realized easily, for example, by taking the following V A3
and R ′ in Eq. (13) V A3 ∼ (10�s)

3, R ′ ∼ 338�s . Interestingly, because
the neutrinos have a similar dispersion relation as the electron, we
might have implications in neutrino (oscillation) physics, and this
may lead to important phenomenological constraints [29,30] which
will be studied elsewhere.
Finally, we close this section by mentioning that the inclusion
of the recoil motion of the D-particles (wrapped up D3-branes in
the current model) is straightforward and parallels the discussion
leading to Eq. (7) in the introduction, at least in the limit we are
considering here, namely the case where the radii of the com-
pactified D3-branes are not much larger than the string length in
the problem, the latter being assumed to correspond to conven-
tional large string mass scales of order 1017–1018 GeV. For such
scales, the D3 brane is effectively viewed as point like to a good
approximation, for all practical (low-energy phenomenology) pur-
poses. Such a recoil, then, will lead to corrections suppressed by
quadratic and higher-order powers of the corresponding quantum
gravity scale, which in this case will be the effective D-particle
(wrapped up D3-brane) mass given in Eq. (8). As already pointed
out, the D-particle mass can be much heavier than the string scale,
upon choosing compactification radii larger than the string length,
and in such heavy D-brane cases recoil effects can be easily ne-
glected.

It should also be noticed that the presence of recoil leads to an
effective string coupling geff

s in Eq. (6), which implies that for rel-
ativistic scattering of D-particles, i.e., when the recoil velocity is of
order of the speed of light, the corresponding string scattering am-
plitudes, from which the delays are evaluated, will be suppressed.
Thus, although there would be infinitely long delays practically for
such relativistic particles (cf. (7)), nevertheless the pertinent ampli-
tudes would vanish, as in such a case they are given by expressions
of the form (12) but with the factors gs being replaced by the ef-
fective string coupling geff

s . Hence, there would be no observable
effects, since the corresponding cross section would be vanishing.2

This observation may have important consequences when one con-
siders models of string D-foam with low string scales Ms , say of a
few TeV. Indeed, in our type IIB foam, where each D-particle is
viewed as a compactified D3-brane, wrapped around three-cycles
with very small radii, so that one has an effectively point-like be-
haviour at low energies, the corresponding mass scales can be of
order of the string scale Ms , provided the compactification radii
are of order of the string length, Ri ∼ �s and gs ∼ 1. Thus, inci-
dent particles with energies higher than the order-TeV string scale
Ms on such D-branes can easily induce recoil velocities close to
the speed of light, and, as a consequence of the above discussion,
for such energetic particles the foam would look transparent.3 On
the other hand, for large compactification radii compared to the
string length Ri � 10�s , the resulting D-particle masses can be
very large (cf. (8)), thereby alleviating the transparency of the D-
foam to highly energetic particles in such models. What this means
is that, in the context of the above model, for low-string scales, say
Ms = O(TeV), time delays should be expected for photons with
energies much lower than TeV scales, whilst photons with ener-
gies above TeV will essentially remain undisturbed by the pres-
ence of D-particles, thereby not exhibiting any appreciable foam-
induced time delays. Therefore, astrophysical observations using
cosmic photons, such as those by MAGIC, HESS and FERMI Tele-
scopes, can be used to discriminate low- from high-string scale
models, provided of course that the respective source mechanisms
for the production of the cosmic photons are understood. These

2 For high-energy (compared to the string mass scale) string scattering, the higher
genus world-sheet amplitudes are more relevant. Although a resummation of higher
world-sheet topologies is not possible in a first quantised string framework, and
hence exact expressions for fully quantum high-energy string amplitudes are not
available, nevertheless time delays for a genus G amplitude have been calculated
in [31] and found suppressed by a factor 1/(G + 1), compared to the genus G = 0
tree level amplitudes, considered in [18] and here.

3 Similar observations are valid for the type IA (or IIA) D-foam model of [2], in-
volving truly point-like D-particles of mass Ms/gs .



T. Li et al. / Physics Letters B 679 (2009) 407–413 413
remarks are useful to bear in mind when considering phenomeno-
logical constraints on D-foam models imposed by observations of
very high energetic cosmic particles (with energies of order (or
higher than) 1020 eV) [6].

3. Conclusions

In this work we considered Type IIB string theory with D3-
branes and D7-branes. By wrapping up the D3 branes around three
cycles, and the D7 branes around four cycles, appropriately, we
have focused on a representation of a space–time foam situation in
this type of string theory, which extends non-trivially the type-IA
(and IIA) string theory foam model of [2] to the phenomenolog-
ically richer type IIB string theory. We derived the vacuum re-
fractive index for photon, and found that it depends linearly on
the photon energy, as in the case of [2]. However, in the cur-
rent model of foam, there are also non-trivial refractive indices
for charged probes, such as electrons. This was consistent with
electric charge conservation, as a result of our compactification
procedures, regarding the representation of D-particles as wrapped
up D3-branes, as well as our specific “foam” aspects of the model,
namely the presence of a uniform population of such D-particles
(leading to non-trivial couplings (9)). Nevertheless, as a result of
appropriate compactification, the time-delay for electron can be
small enough to satisfy the stringent constraints coming from syn-
chrotron radiation of the Crab Nebula.

A final remark we would like to make concerns the cosmol-
ogy of the model, which would epitomize the phenomenology of
such space–time foam models. The constraint on the density of
the D3(compactified)-brane defects at the current epoch of the
D7(compactified)-brane Universe, representing our world, in order
to fit the photon time-delay data available to date [3–5] needs to
be taken into account in conjunction with the other cosmological
parameters. This would affect the energy budget of the Universe,
and through this, the relevant astro-particle phenomenology, in
similar spirit to the type-IIA (and type IA) D-particle foam model
[2,16]. However, the calculation of the various cosmological pa-
rameters and in general the evolution of such a Universe depends
highly on the model, for instance on details of the target-space su-
persymmetry breaking after compactification, the bulk physics, etc.
The study of such issues is left for the future.
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