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Abstract 

A Hausdorff space X is called (countably) connectifiable if there exists a connected Hausdorff 
space Y (with IY \ XI <w respectively) such that X embeds densely into Y. We prove that it 
is consistent with ZFC that there exists a regular dense in itself countable space which is not 
countably connectifiable giving thus a partial answer to Problem 3.9 of Watson and Wilson (1993). 
On the other hand we show that Martin’s axiom implies that every countable dense in itself space 
X with xw(X) < 2w is countably connectifiable. We also establish that a separable metrizable 
space without open compact subsets can be densely embedded in a metric continuum. 

Keywords: Connectifiable; Countably connectifiable; Connectifying family; Remainder; 
Extremally disconnected space 
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0. Introduction 

We study Hausdorff spaces which admit dense embeddings in connected Hausdorff 

spaces. Such spaces are called connectifiable and their connected extensions are referred 

to as connectifications. If Y is a connectification of X and Y \ X is countable then Y 

is called an w-connectification of X and if X has an w-connectification, then it is called 

w-connectifiable, or countably connectifiable. 
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Although a characterization of Hausdorff connectifiable spaces is still unknown, sig- 

nificant progress in studying connectificability has been achieved in [ 1,2]. For example, 

the following classes of Hausdorff spaces are shown to be subclasses of the class of 

connectifiable spaces: 
_ paracompact, first countable spaces with a o-locally finite r-base (in particular, the 

metric ones) and with no proper open compact subsets [2]; 

- countable spaces without isolated points [l]; 

- Tychonoff nowhere locally compact spaces with countable r-weight [ 11. 

Also, various examples of nonconnectifiable spaces are given in those papers. 

It was asked in [I] (Problem 3.9) whether every countable dense in itself Hausdorff 

space is countably connectifiable. We prove that there is a Tychonoff counterexample in 

every model of ZFC for which there exist P-points in /3w \ w. On the other hand we 

show that if Martin’s axiom holds, then every countable dense in itself Hausdorff space 

X with ~zo(X) < 2w is countably connectifiable. 

Of course, countable connectihcations of countable spaces have to be nonregular. How- 

ever, we prove that every second countable regular space without open compact subspaces 

has a metrizable compact connectitication. It was established in ]2] that nowhere locally 

compact second countable regular spaces have a Tychonoff connectification. 

1. Notations and terminology 

All spaces under consideration are assumed to be Hausdorff. If X is a space then 

T(X) is its topology and T*(X) = T(X) \ {a}. If A c X then 

T(A, X) = {U E T(X): A c U} 

and T(rc, X) = T({z},X). A n end of a proof of a statement or a substatement is 

marked by 0. A clopen subset of a topological space is called proper, if neither it nor its 

complement are empty. If X is a space and S c X is countable, then S + z says that 

the sequence S converges to IC. We use the abbreviation BL for Booth’s lemma. A space 

X is called Urysohn space if 2, y E X & 5 # y implies the existence of U, E T(z, X) 

and U, E T(y,X) with ??, n u, = 8. If r is a cardinal, then expr is 2’. All other 

notations are standard. 

2. Connectifying countable spaces 

A countable dense in itself space is connectifiable and it is w-connectifiable if its 7r- 

weight is countable. These results were obtained in [l], where the following question 

was posed: [ 1, Problem 3.91. Is every countable space without isolated points countably 

connectifiable? We show that a counterexample exists if pw \ w has P-points. 

Proposition 2.1. Let X be a countable Tychonoff space without isolated points. Suppose 

that X is dense in a connected space Y. Let 
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3y= n{cl17x~unx): UET(~,Y)): y~~\x 
{ 

. 

Then 3~ consists of nonempty compact subsets of PX \ X and 

(1) for every proper clopen 0 c ,0X we have F n 0 # 0 # F n (/3X \ 0) for some 

F E 3~; 

(2) if X is extremally disconnected, then 3~ is a disjoint family. 

Proof. That every member of 3~ is compact and nonempty is evident. The space Y 

Hausdorff so that for any II: E X and y E Y \ X there is a U E T(y, Y) with cly(U) 5 z 

and hence clx(U n X) $5. Therefore clgx(U n X) 9 z and the set 

Fy = n { Clpx(u n x): u E q&Y)} 

does not contain z. This shows that all elements of 3~ lie outside X. 

If 0 is a proper clopen subset of PX then so is 0 n X (in X). Suppose that for all 

y E Y \ X we have Fv n 0 = 0 or Fu n (PX \ 0) = 0. Then for every y E Y \ X 

there is a U, E T(y, Y) with (X n U,) n 0 = 0 or (X n U,) c 0 the set Fg being an 

intersection of compact subsets of PX. 

The space Y is connected, so there is a point y E cly(0 n X) n cly(X \ 0). Hence 

U, n (0 n X) # 8 and U, n (X \ 0) # 0 which is a contradiction, proving (1). 

If X is extremally disconnected, then for distinct y, z E Y \ X take U E T(y, Y) and 

V E T(z, Y) with U n V = 8. Then clgx(U n X) n clgx(V n X) = 0 by the extremal 

disconnectedness of X. Therefore Fv n F, = 8 and (2) is proved. 0 

Corollary 2.2. IfX is a countable Tychonoffcountably connectifiable space, then pX\X 

has a dense o-compact subspace. 

Proof. Let Y be a countable connectification of X. Then the family 3~ defined in 

Proposition 2.1 is countable and 

Corollary 2.3. Let M be a model of ZFC in which there is a P-point in w* = pw \ 

w. Then there is a countable dense in itself space X E M which is not countably 

connectifiable. 

Proof. Let X = G,, where G, is the space, constructed in [3] using P-points. Remark 1 

of [3] states that ,DX \ X has no dense c-compact subset. Now Corollary 2.2 shows that 

X can not be countably connectifiable. q 

We wish to thank J. Porter for bringing this example to our attention. 
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Our next step is to show that there are sufficiently many countable countably connec- 

tifiable spaces. 

Proposition 2.4. Let X be a Tychonoff countable dense in itself space. Suppose that 

X has a compacfiJication bX for which there exist compact sets F,,, n E C,.I with the 

following properties: 

(1) F, n F, = 0 for d$erent m and n; 

(2) F,, c bX \ X for all n E w; 

(3) for every pair (LJ, V) of nonempty disjoint open subsets of bX with U U V dense 

in bX there is an n E w with F,, n U # 8 # F,, n V. 

Then X is countably connecti$able (and we will call the family 3 = {F,: n, E w} 

connectifjing for X). 

Proof. Let Y = X U {YyL: n E w}, yTL @ X where X is open in Y and a base of 

open neighborhoods of a point gn consists of sets O,(W) = {yn} U (IV fl X), where 

W E T(FrL, bX). 

We need only prove that Y is Hausdorff and connected (the density of X in Y being 

clear). 

To separate yn from an z E X take any W E T(F,, bX) and U E T(rc, bX) with 

U f? W = 8. Then O,(W) f’ (U n X) = 0. If m # n then take disjoint I& and W, such 

that Wt E T(F,, bX), IV* E T(F,,, bX). Then OIL(Wi) n 0n(W2) = 0 and so Y is 

Hausdorff. 

To check that Y is connected, take any proper clopen 0 c Y. The set 01 = 0 n X is 

clopen in X, so that there are disjoint open sets U and V in bX such that U n X = 01 
and V n X = X \ 01. It is clear that clb~(U U V) = bX so we can use (3) to find 

an 71 E w with F, n U # 8 # F,, n V. It follows from clb~(Ot) = ~lr,x(U) and 

&x(V) = &X(X \ 01) that 

F, n ClbX(Ol) # 8 # F,, n ClbX(X \ 01). 

Hence WrlOi #@#I&‘n(X\Oi)f or any W E T(F,, bX). Thus O,(W) n 0, # 0 
and O,,(W)n(X\OI) # 0 f or all W E T(FY1, bX) so yJn E cly(Ol) n cly(X \ 01) 
which is a contradiction. 0 

Corollary 2.5. Let X be a countable Tychonoff spuce without isolated points. Suppose 

that X has a compactification bX for which there exists a sequence {(x1,, yTL): 71 E w} 

with the following properties: 

(1) {zc,,, yn} c bX \ X for all n E w, 

(2) {Gl, Yn.1 I-T {Gn, Ym > = @for difSerent m and n, 

(3) for every pair (U, V) f o nonempty open subsets of bX there is an n E w with 

xn E U and yn E V. 

Then X is countably connect@able (and we will call the sequence {(x,,, yn): n E w} 

strongly connecttfying for X). 

Proof. Let F, = {a~,, yn} and apply Proposition 2.4. 0 
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Corollary 2.6. Let X be a countable dense in itself extremally disconnected regular 

space. Then X is countably connectifiable iff there is a family {F,: n E w} with the 

following properties: 

(1) F, is a compact subset of ,0X \ X for all n E w; 

(2) F, n F, = 8 for different m and n; 

(3) tf U is a proper clopen subset of PX, then F, n U # 0 # F, n (PX \ U) for some 

n E w. 

Proof. If X can be densely embedded into a countable connected Y, then the family 

.7+ constructed in Proposition 2.1 has properties (l)-(3) if we enumerate it with w. 

This proves necessity. If {F,: n E w} satisfies (l)-(3), then let bX = /3X and apply 

Proposition 2.4. 0 

The following result has been recently announced by Porter. We are not aware of 

the methods used in his proof, but we give one here to illustrate the usefulness of 

Corollary 2.5. 

Corollary 2.7 (J.H. Porter). Given an infinite ordinal /J < 2w, let Ma be a second 

countable regular space with 1Ma\ > 1 f or all cy < ,B. If X is a countable dense subset 

of n{MQ: o < ,f3}, then it is w-connectifable. 

Proof. If ,B is countable, then X has a countable weight and we can apply the relevant 

results of [l]. 

If ,0 > w, then we may assume that all Ma’s are compact, metrizable and dense in 

themselves for if not we can replace Ma by a metrizable compactification of Ma and 

then consider the product of all disjoint countably infinite subproducts of 

M = n{Ma: (Y < ,B}. 

We are going construct a sequence {(z,, yin): n E w} as in Corollary 2.5, where 

bX = M. Let rro: M + MO be the natural projection. Using the countability of rrc(X) 

find for every Z, E X = {xi: i E w } a countable number of sequences 

S; = {tkk: lc E w} c MO \ TO(X) 

such that 

(i) S% + 7rc(1c,) for every n,m E w; 

(ii) t;,, # t& if p # q and Sk, n S& = 0 if ml # m2; 

(iii) for all ml, m2 E w we have S$ n S”’ = 0 if ni # n2. 

Now for every pair (m, n) E (w x w) de?ne a sequence Tz c M \ X as follows: 

T,” = {&: k E w} where skk (cx) = z,(o) for all Q: > 0 and skk(0) = tzk. It is 

clear that TG --i\ z, for every m E w. For every pair (m,n) E w such that m # n let 

F(m, n) = {{s$, szk}: k E w}. The set 

F = U {F(m,n): m #n; m,n E w} 
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is countable, so F = {{u,, w,,}: n E w}. It IS easy to check that the extension bX = M 

and the set of pairs {{Us, 21,): n E w} satisfy all the conditions of the Corollary 2.5 

for X. 0 

Corollary 2.8. Any countable Tychonoff space can be embedded (maybe not densely) 

into a countable connected space. 

Proof. Indeed, any such space embeds into D = (0, l}2w. Add to it some countable 

dense subset of D and use Corollary 2.7. 0 

Theorem 2.9 [BL]. Every countable dense in itself(Hausdofl space X with 7rw(X) < 

2” is w-connectifiable. 

Proof. We first prove the theorem for regular spaces. To that end let us reduce it to the 

case when w(X) < 2”. This will be achieved with the following 

Lemma 2.10. Let (X, t) b e a countable regular space with a x-base y. Then there exists 

a regular Tl-topology t* on X such that y c t* c t and w(X, t*) < (71 . w. 

Proof. Being countable X is hereditarily LindelBf. Hence for every open set V in X 

there exists a continuous function fv from X to the unit segment I = [0, l] such that 

X \ V = f;‘(O). Let f be the diagonal product of functions fv, V E y U p, where p 

is a countable family of open sets in X separating points of X. Let 6 = y U p. Then f 

is a continuous one-to-one mapping of X into 16, and 161 < IyI . w. Let B be a base of 

I” with (Bl < 161. Then the topology t* on X generated by the base {f-‘(O): 0 E a} 

has the required properties. 0 

Lemma 2.11 [BL]. Suppose that X is a countable regular space without isolated points, 

and w(X) < 2w. Then the remainder ,13x \ X is separable (and dense in PX). 

Proof. By a theorem of Eda, Kamo and Nogura [4], under Booth’s lemma every count- 

able regular nonscattered space Y with w(Y) < 2w contains a copy of the rationals Q. Let 

y be a maximal disjoint family of subspaces of X homeomorphic to Q. Then 2 = UT 

is dense in X. We claim that for each z E Z one can find a sequence S, c /3X \ X 

converging to z. Indeed, choose C E y with z E C. The point z has countable character 

in K = clgx C, so that there exists a sequence S, c K \ X converging to z. Now put 

D = U{S,: z E 2). Then D is countable and dense in PX. •I 

Lemma 2.12. Let X be a countable regular space which is dense in a regular space 

Z and such that Z \ X is separable and also dense in Z. Then X has a strongly 

connectcfiing sequence (and is therefore w-connectifiable). 

Proof. Pick a countable D dense in Z \ X. Both D and X are dense in Z. For each 

z E X we have x(x, Z) = x(x,X) < w(X) < 2”. S’ mce D is dense and countable, BL 

implies that for each 5 E X there exists a sequence S, c D, converging to z [5]. 
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Let {z,: n E w} be any enumeration of X. There exists an onto mapping cp: w\(O) -_j 

w x w such that ‘p-l (Ic, 1) is infinite for each pair (Ic, 1) E w x w. Let Fo be any subset 

of 2 \ X with 18’01 = 2. Suppose that for some n > 0 we have already defined disjoint 

subsets F, of 2 \ X for all m < n such that \Fm\ = 2. If p(n) = (Ic, Z), choose points 

with yin # zn and put F, = {yn, z,}. 

The inductive construction being accomplished let us verify that the family 3 = 

{F,: n E w} is strongly connectifying for X. For U, V E T(,BX) pick zk E X n U 

and 21 E X n V. By the choice of cp the set M = ‘p-l (Ic, I) is infinite and F, n S,, # 
8 # F, n S,, for each n E M. Furthermore, both sets S,, \ U and S,, \ V are finite 

while the infinite family {F,: n E M} is disjoint; hence there exists an n E M such 

that F, n U # 0 # F, n V. 0 

Now let us finish the Tychonoff case of Theorem 2.9. Denote by t the topology of 

X and choose a r-base y for X with IyJ < 2”. Apply Lemma 2.10 to find a regular 

T,-topology t* for X such that y c t* c t and It*1 f Iy/ < 2”. Let Y = (X, t*) and 

denote by id the identity mapping of X onto Y. Let f: /3X + PY be the continuous 

extension of id. By Lemma 2.12 there exists a strongly connectifying family 3~ for 

Y with U3y c PY \ Y. Now let 3 x = {f-‘(F): F E _&}. We claim that 3~ is 

connectifying for X. 

Indeed, let U be a proper clopen subset of PX and V = /3X\U. There exist U1, VI E y 

such that UI c U and VI c V. By the definition of the topology t* on Y the sets 

I and f(K) are open in Y, hence their closures in PY have nonempty interi- 

ors. Consequently, there is an F E & which intersects both these interiors. Therefore 

f-l(F) n U # 0 # f-‘(F) n V an so 3~ is a connectifying family for X. d 0 

Finally let us turn to the general case. Our main weapon will be the following lemma, 

which seems to be interesting in itself. 

Lemma 2.13 [BL]. Let X be a countable dense in itself space with W(X) < 2”. Then 

X has a dense regular subspace. 

Proof. Let B be a base in X with IB( < 2”. The family C of boundaries of elements 

of f? has the power less than continuum and for every finite subfamily y of C we have 

IB \ Url 2 w for every B E a. This enables us to use the Booth’s lemma to find a 

subset Y c X such that Y n B is infinite for all B E 23 and Y n C is finite for all C E C. 

The first condition implies that Y is dense in X, while the second says that Y has a 

base, all elements of which have finite boundaries. This implies regularity of Y. Indeed, 

if y E Y and U E T(y, Y), then y E W C U for some W with finite boundary. Let 

V E T(y, Y) separate y from this boundary. Such a set V exists since Y is Hausdorff. 

It is clear that cly (V n W) c U and we are done. 0 
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Now if X is Hausdorff and ‘1r2u(X) = 7 < 2”, take some T-base y in X with IyI = 7 

and find some countable family B of open subsets of X separating all pairs of points of 

X. Generate a topology TJ on X by the family yUl?. Then Tt is Hausdorff, w(X, Tt ) = r 

and y c Tl. By Lemma 2.13 there is a dense regular subspace Y of (X, 7’1). 

For every point II: E X \ Y let 

Fz = {UflY: u E T&X)} 

and 

F, = r){cluy A: A E Fz}. 

It is clear that the set H = lJ{Fz: IL’ E X \ Y} c ,DY \ Y. The space 2 = /3Y \ H is 

Tech complete and Y c 2. 

We claim that 2 \ Y is separable. Indeed, if P C Y is a copy of rationals, then 

PI = clz P is tech complete, so that 9 \ P is dense in PI. Now apply the fact that 

every point of P has countable character in Pl to conclude that PI \ P is separable 

(see the proof of Lemma 2.11). Pick a countable disjoint family I_L consisting of copies 

of rationals lying in Y with U,Q dense in Y and for every P E p choose a countable 

Ap c cl2 P \ P dense in cl2 P. Then the set A = U{Ap: P E p} c 2 \ Y is dense 

in 2 \ Y. 

Now use Lemma 2.12 to find a countable strongly connectifying family for Y consist- 

ing of two-element subsets of 2 \ Y. Let ZA,, be the family of corresponding open filters 

on Y. For each U E Un find fi E T(X) with 3 n Y = U and put V, = (6: U E 24,). 

Now let 2 = X U {pn: n E w} where a base at p, is {{pn} U U: U E Vn}. 
To prove that 2 is the required connectification, observe first that 

unv=0 u unv=s 

which clearly implies that in X U {plL: n E w} any two points p, # p, can be separated. 

That any two points of X can be separated is evident and there can be no problem in 

separating points of Z \ X and Y. Finally, take any x E X \ Y and n E w. 

Let P, be the two-point set in 2 \ Y, generating the filter 24,. It follows from 

P,, n F, = 0 

that there is an open neighborhood U of the point x in X and V E T(P,, PY) with 

(UnY)n(VrlY)=0. 

Let VI be a neighborhood of p, with VI n Y = V. It is clear that U and VI are disjoint 

neighborhoods of x and p, respectively and we established herewith the Hausdorffness 

of 2. 

Finally, if U is a proper clopen subset of X U {pn: n E w}, then find V, W E y such 

that V c U and W c X \ U. The sets V n Y and IV n Y are nonempty open disjoint 

subsets of Y. Hence there is an n E w with every element of U, intersecting both V and 
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IV. Therefore p,, E clz(U n X) n clz(X \ U) an we proved that Z is connected thus d 

finishing Theorem 2.9. 0 

Remark 2.14. It is not possible to drop Booth’s lemma from the hypothesis of Theorem 

2.9. Indeed, there are models of ZFC with P-points in ,Dw \ w of character less than 2w 

[7] (we thank S. Watson for bringing this fact to our attention). Now let X = &,, where 

&, is the space, constructed in [3] using P-points. It is immediate from the definition of 

&,, that the weight of X is less than continuum. Use Corollary 2.3 to see that X is not 

w-connectifiable. 

The following result extends what is known for countable spaces (see [l]) to some 

uncountable ones. 

Proposition 2.15. Let X be a dense in itself Hausdorff Urysohn space with 1x1 < 2”. 

Then X is (not necessarily countably) connectiJiable. 

Proof. Theorem 2.2 of [2] states that a space X is connectifiable in case no proper clopen 

subset of X is feebly compact (E there is no infinite locally finite families of nonempty 

open subsets of X) and the number of clopen subspaces of X is less than or equal to 

exp(exp(w)). Of course, the number of all subspaces of X does not exceed exp(exp(w)), 

so we have to prove only that no proper clopen subset of X is feebly compact. Indeed, 

if some proper clopen U C X were feebly compact we could use the standard procedure 

to construct a Cantor tree of regular closed sets in U (i.e., take two closure-disjoint open 

subsets of U and the same inside each of them and so on). Feeble compactness clearly 

implies that every branch of this tree has nonempty intersection and so IUI 3 2” which 

is a contradiction with 1x1 < 2w. 0 

Corollary 2.16. Let X be a dense in itself Qchonoff space with IX/ < 2”. Then X is 

connectifiable. 

Remark 2.17. Proposition 2.15 can not be proved for Hausdorff spaces (i.e., the word 

“Urysohn” can not be dropped from the hypothesis) because there even exist H-closed 

dense in themselves Hausdorff spaces X of power less than continuum. For any such X 

the space X 69 X is not connectifiable. 

3. Trying to construct Tychonoff connectifications 

All spaces considered in this section will be Tychonoff. In the paper of Porter and 

Woods [2, Theorem 5.71 it is proved that any nowhere locally compact separable metric 

space has a Tychonoff connectification. The following result strengthens this theorem. 

Theorem 3.1. Let X be a second countable Tychonoff space without nonempty open 

compact subsets. Then there is a metrizable connected compact Y with X c Y = 52. 



Proof. This will follow from several lemmas 

Lemma 3.2. Let X be a second countable noncompact space. Then there is a metrizable 

compact Z such that X c Z = x and Z \ X has no isolated points. 

Proof. The space ,0X \ X has no isolated points for otherwise some closed neighborhood 

ofayEPX\X would consist of a second countable subset plus {y} which would 

imply existence of a countable network in this neighborhood and hence its metrizability. 

But then xTL 3 y for some sequence S = {z,,: n E w} c X while the closure of S 

in /3X is homeomorphic to /3w the space X being normal. This gives a contradiction 

proving that there are no isolated points in ,0X \ X. 

Let Ze be any metrizable compactitication of X. Let A0 be the set of isolated points 

of Ze (which of course has to be countable) and ~0: /3X + Za the natural map. For 

any z E A0 pick different t,, IL, E no’ (z) and a continuous map fi : PX -+ [0, l] with 

fZ(tZ) = 1, fi(uz) = 0. Now let 

7ri = 7r,A(A{f,: z E Ao}) : ,DX --;r Z, , 

where Zt = ~1 (OX) is a metrizable compact space. Clearly there exists a continuous 

onto map n; : Zt + Za with pi 1 X = id. 

Let Al c Zt \ X be the (again countable) set of isolated points of Zt \ X. Use the 

same procedure to find a metrizable compactihcation Zz of X and a map nf : Z2 + Zi 

After having repeated this construction w times we will have an inverse system 

of metrizable compactifications of X such that 71-g” [ X = idx. Now we have 

if z E Ai (E the set of isolated points of 2, \ X), then ](7rf”)-‘(z)] 3 2. (*) 

We claim that the space Z = lim Z,, is what required. Indeed, it is evident that Z is 

an extension of X. If z E Z \ Xxisolated, then there is an n E w with cpn(z) isolated 

in Z, \ X (here (pT1 : Z + Z, is 72th limit projection) because cp,(Z \ X) C Z, \ X for 

all 72. Now p,(z) is not only isolated in Z, \ X but ]~;‘((P~(z))] = 1 which implies 

l(r:+’ )-‘((Pi)] = 1 while this contradicts (*). 0 

Lemma 3.3. Let Z be a second countable space with a totally bounded metric p. Let 

y=(UcZ: U#0#Z\U and U is clopen in Z and p(U, Z \ U) > O}, 

Then for every E > 0 the set {U E y: p(U, Z \ U) > E} is finite. 

Proof. Indeed, if it were not so, then there would have been an infinite y’ C y with 

p(U, 2 \ U) > E for all U E 7’. Let zr , . . , zTL be an E/2-net in Z with respect to the 

metric p; this exists by the total boundedness of p. Now for every U E y’ if zi E U then 

O,(G) = {y E z: P(Y,Zi) < &} c u ===+ u = u {o,(zi): zi E u}. 
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But there are only finitely many subsets of the finite family {O,(zi): i = 1, , n} so 

there will be two different U, V E y’ with 

u = U {o&i): i E A} = V 

for some A c { 1, . . , n}, which is a contradiction. 0 

Lemma 3.4. Suppose that we have a metrizable compact space Z with a metric p and a 

sequence {{x~, yn}: n E w} of disjoint two-element subsets of Z. If limn+oo ,o(xn, yn) = 

0 then q(Z) will be a metrizable compact space, where q is a quotient map defined on 

Z by identifying the points x, and yn for all n E w. 

Proof. We have a closed decomposition 3 of Z consisting of one- or two-point subsets 

of Z. To prove that the relevant quotient map gives a Hausdorff space (that’s all we 

actually need) we must check that for any F E 3 and for any open U > F there is a 

V E T(F, Z) such that G n V # 8 implies G C U for any G E 3 (see [6, p. 921). 

Choose an E > 0 with O,(F) c U. Let V = 0,/z(F) \ A, where A = {G E 

3: diam(G) 3 &/2}. The set V is an open neighborhood of F the set A being finite by 

lim n-,oo p(x,, yn) = 0. It is straightforward that V is as required. 0 

Now let us take up to the proof of Theorem 3.1. 

Using Lemma 3.2 find a metrizable (with a metric p) compact Z 3 X with X dense 

in Z and Z \ X perfect. The set y of all proper clopen subsets of Z is countable and 

p(U,Z \ U) > 0 for any U E y. Let 77 = {U n (Z \ X): U E r}. All elements of 77 

are proper, because there are no open compact subsets of X. Clearly, for any U E 77 

there is an EU > 0 such that p(U, (Z \ X) \ U) > EU. Hence by Lemma 3.3 we have 

limucn P(V (Z \ X) \ U) = 0. 
Let 77 = {Un: n E w} and let 5, E U, \ X, yn E (Z \ X) \ U, be such that 

P(X R1 Y/n) < 2P(Un, (Z \ X) \ &) f or all n E w. Using perfectness of Z \ X we can 

choose {x,, yn} c Z \ X in such a way that {x,, yin} n {IC,, ym} = 0 if m # n. 

Now identify x, and yTL for all n E w. The resulting space Y = q(Z) will be a 

compact metrizable (by Lemma 3.4) extension of X. 

We claim that Y is connected. Indeed, if U is a proper clopen subset of Y, then 4-l (U) 

is a proper clopen subset of Z and therefore q-‘(U) n (Z \ X) = U, for some n E w 

which is impossible, because q-‘(U) IS saturated with respect to {{xn, yn}: n E w}. 

This contradiction proves Theorem 3.1. 0 

Corollary 3.5. Let X be a locally separable metric space without open compact sub- 

spaces. Then X has a Tychonoff connectification. 

Proof. It is well known, that every such space is a discrete union of separable metrizable 

spaces. Evidently, none of these clopen separable metric summands has proper compact 

open subspaces. Hence we can use Theorem 3.1 to densely embed X into a discrete 

union of connected metrizable compact spaces. Now every summand of this union has 
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a point which is not in X. Pick it and identify all the points thus chosen. The resulting 

space will be a connected Tychonoff extension of X. 0 

4. Formulating unsolved problems 

In this section we pose twenty natural questions we did not succeed in solving while 

working at this paper. Of course we could ask many more, but the following are repre- 

sentative, illustrate the wide scope of the field and appear to be interesting. 

Question 4.1. Is it consistent with ZFC that every countable dense in itself Tychonoff 

space is countably connectifiable? 

Question 4.2. Is it consistent with ZFC that every countable dense in itself Hausdorff 

Urysohn space is countably connectifiable? 

Question 4.3. Is it consistent with ZFC that every countable dense in itself Hausdorff 

space is countably connectifiable? 

Question 4.4. Let X be a countable dense in itself Tychonoff space such that ,0X \ X 

has a dense a-compact subspace. Is then X countably connectifiable? 

Question 4.5. Let X be a countable dense in itself Tychonoff w-connectifiable space. 

Does X have a strongly connectifying family (see Corollary 2.5)? 

Question 4.6. Let X be a countable dense in itself Tychonoff sequential space. Is then 

X countably connectifiable? 

Question 4.7. Let X be a countable dense in itself Tychonoff Frechet-Urysohn space. 

Is then X countably connectifiable? 

Question 4.8. Let X be a countable dense in itself Tychonoff space with ,BX \ X sep- 

arable. Is then X countably connectifiable? 

Question 4.9. Let X be a countable dense in itself Tychonoff space. Does X have a 

Tychonoff (then clearly uncountable!) connectification? 

Question 4.10. Let X be a Tychonoff space with a countable network and without open 

compact subspaces. Does X have a Tychonoff connectification? 

Question 4.11. Let X be metric space without open compact subspaces. Does X have 

a Tychonoff connectification? 

Question 4.12. Let X be metric space without open compact subspaces. Does X have 

a metrizable connectification? 
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Question 4.13. Let X be a countable dense in itself Hausdorff space. Does X have a 

dense Tychonoff subspace? 

Question 4.14. Let X be a countable dense in itself Hausdorff space. Does X have a 

dense Urysohn subspace? 

Question 4.15. Let X be a countable dense in itself Hausdorff Urysohn space. Does X 

have a dense Tychonoff subspace? 

Question 4.16. Let X be a countable dense in itself Hausdorff space which has a dense 

Tychonoff subspace. Is then X countably connectifiable? 

Question 4.17. Let X be a countable dense in itself Hausdorff space which has an 

w-connectifiable dense subspace. Is then X countably connectifiable? 

Question 4.18. Let X be a countable dense in itself Hausdorff Urysohn space which 

has an w-connectifiable dense subspace. Is then X countably connectifiable? 

Question 4.19. Let X be a countable dense in itself Tychonoff space which has an 

w-connectifiable dense subspace. Is then X countably connectifiable? 

Question 4.20. Let G be a countable nondiscrete Hausdorff topological group. Is G 

countably connectifiable? 
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