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Abstract

A Hausdorff space X is called (countably) connectifiable if there exists a connected Hausdorff
space Y (with |Y \ X| < w respectively) such that X embeds densely into Y. We prove that it
is consistent with ZFC that there exists a regular dense in itself countable space which is not
countably connectifiable giving thus a partial answer to Problem 3.9 of Watson and Wilson (1993).
On the other hand we show that Martin’s axiom implies that every countable dense in itself space
X with mw(X) < 2% is countably connectifiable. We also establish that a separable metrizable
space without open compact subsets can be densely embedded in a metric continuum.
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0. Introduction

We study Hausdorff spaces which admit dense embeddings in connected Hausdorff
spaces. Such spaces are called connectifiable and their connected extensions are referred
to as connectifications. If Y is a connectification of X and Y \ X is countable then Y
is called an w-connectification of X and if X has an w-connectification, then it is called
w-connectifiable, or countably connectifiable.
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Although a characterization of Hausdorff connectifiable spaces is still unknown, sig-
nificant progress in studying connectificability has been achieved in [1,2]. For example,
the following classes of Hausdorff spaces are shown to be subclasses of the class of
connectifiable spaces:

— paracompact, first countable spaces with a o-locally finite 7-base (in particular, the

metric ones) and with no proper open compact subsets [2];

— countable spaces without isolated points {1];

~ Tychonoff nowhere locally compact spaces with countable 7-weight [1].

Also, various examples of nonconnectifiable spaces are given in those papers.

It was asked in [1] (Problem 3.9) whether every countable dense in itself Hausdorff
space is countably connectifiable. We prove that there is a Tychonoff counterexample in
every model of ZFC for which there exist P-points in fw \ w. On the other hand we
show that if Martin’s axiom holds, then every countable dense in itself Hausdorff space
X with mw(X) < 2% is countably connectifiable.

Of course, countable connectifications of countable spaces have to be nonregular. How-
ever, we prove that every second countable regular space without open compact subspaces
has a metrizable compact connectification. It was established in [2] that nowhere locally
compact second countable regular spaces have a Tychonoff connectification.

1. Notations and terminology

All spaces under consideration are assumed to be Hausdorff. If X is a space then
T(X) is its topology and T*(X) = T'(X) \ {#}. If A C X then

TAX)={UeT(X): AcU}

and T'(z,X) = T({z},X). An end of a proof of a statement or a substatement is
marked by [J. A clopen subset of a topological space is called proper, if neither it nor its
complement are empty. If X is a space and S C X is countable, then § — z says that
the sequence S converges to . We use the abbreviation BL for Booth’s lemma. A space
X is called Urysohn space if 7,y € X & x # y implies the existence of U, € T(z, X)
and U, € T(y, X) with U, N U, = 0. If 7 is a cardinal, then exp7 is 27. All other
notations are standard.

2. Connectifying countable spaces

A countable dense in itself space is connectifiable and it is w-connectifiable if its 7-
weight is countable. These results were obtained in [1], where the following question
was posed: [1, Problem 3.9]. Is every countable space without isolated points countably
connectifiable? We show that a counterexample exists if fw \ w has P-points.

Proposition 2.1. Let X be a countable Tychonoff space without isolated points. Suppose
that X is dense in a connected space Y. Let
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Fy = {ﬂ{clgx(UﬂX)Z UeT(yY)}: yGY\X}-

Then Fy consists of nonempty compact subsets of 3X \ X and

(1) for every proper clopen O C 3X we have FNO # @ # Fn(BX \ O) for some
FeFy;

() if X is extremally disconnected, then Fy is a disjoint family.

Proof. That every member of Fy is compact and nonempty is evident. The space Y
Hausdorff so that forany z € X andy € Y\ X thereisa U € T(y,Y) withcly (U) Z x
and hence clx (U N X) ¥ z. Therefore clgx (U N X) # x and the set

Fy=({clgx(UNX): UeT(yY)}

does not contain z. This shows that all elements of Fy lie outside X.

If O is a proper clopen subset of 3X then so is O N X (in X). Suppose that for all
y€Y\X wehave F; NO =0 or F, N (BX \O) = 0. Then forevery y € Y \ X
there is a Uy € T(y,Y) with (X NU,)NO =0 or (X NU,) C O the set F, being an
intersection of compact subsets of X

The space Y is connected, so there is a point y € cly (O N X)) Ncly (X \ O). Hence
U,N(ONX) 0 and U, N (X \ O) # 0 which is a contradiction, proving (1).

If X is extremally disconnected, then for distinct y,z € Y\ X take U € T'(y,Y) and
VeT(z,Y) withUNV =0. Then clgx (U N X)Nclgx (VN X) =0 by the extremal
disconnectedness of X. Therefore F, N F, = § and (2) is proved. O

Corollary 2.2. If X is a countable Tychonoff countably connectifiable space, then 3 X\ X
has a dense o-compact subspace.

Proof. Let Y be a countable connectification of X. Then the family Fy defined in
Proposition 2.1 is countable and

U]'—y C ,BX\X - Clgx <U.7'-y>
by (1). O
Corollary 2.3. Let M be a model of ZFC in which there is a P-point in w* = fw \

w. Then there is a countable dense in itself space X € M which is not countably
connectifiable.

Proof. Let X = G,,, where G,, is the space, constructed in [3] using P-points. Remark 1
of [3] states that SX \ X has no dense o-compact subset. Now Corollary 2.2 shows that
X can not be countably connectifiable. O

We wish to thank J. Porter for bringing this example to our attention.
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Our next step is to show that there are sufficiently many countable countably connec-
tifiable spaces.

Proposition 2.4. Let X be a Tychonoff countable dense in itself space. Suppose that
X has a compactification bX for which there exist compact sets F,,, n € w with the
following properties:

(1) F,, N F,, = 0 for different m and n;

2) F, CbX \ X foralln € w;

(3) for every pair (U, V') of nonempty disjoint open subsets of bX with U UV dense
in bX thereisann € w with F,, "\U # 0 £ F,NV.

Then X is countably connectifiable (and we will call the family F = {F,,: n € w}
connectifying for X).

Proof. Let Y = X U {yn: n € w}, yn ¢ X where X is open in Y and a base of
open neighborhoods of a point y,, consists of sets On (W) = {y,,} U (W N X), where
W e T(F,,bX).

We need only prove that Y is Hausdorff and connected (the density of X in Y being
clear).

To separate y,, from an x € X take any W € T(F,,bX) and U € T(z,bX) with
UNW ={. Then O, (W)N(UNX) = 0.If m # n then take disjoint W, and W, such
that Wy € T(F,,bX), W, € T(F,,,bX). Then O,(W1) N O, (W,) = 0 and so Y is
Hausdorff.

To check that Y is connected, take any proper clopen O C Y. The set O; = ON X is
clopen in X, so that there are disjoint open sets U and V in bX such that UN X = O,
and VN X = X\ O Itis clear that clyx (U UV) = bX so we can use (3) to find
ann € w with F, NU £ @ # F, NV. It follows from clpx(07) = clpx(U) and
clpx (V) = clyx (X \ Or) that

FoNclpx(0)) #£ 0 # FNelyx (X \ O).

Hence WN O, £ 0#£WnN(X\Oy) forany W € T(F,,,bX). Thus O, (W) N O; # 0
and O,(W)YN (X \ Oy) # 0 for all W € T(F,,bX) so y, € cly(O)) Ncly (X \ Oy)
which is a contradiction. O

Corollary 2.5. Let X be a countable Tychonoff space without isolated points. Suppose
that X has a compactification bX for which there exists a sequence {(Zy,yn): 1 € w}
with the following properties:

() {Zn,yn} COX\ X foralln € w;

) {Zn, Yn} N {Zm, ym } = 0 for different m and n;

(3) for every pair (U, V') of nonempty open subsets of bX there is an n € w with
xn €U and y, € V.

Then X is countably connectifiable (and we will call the sequence {(xy,yn): n € w}
strongly connectifying for X).

Proof. Let F,, = {z,,yn} and apply Proposition 2.4. O
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Corollary 2.6, Let X be a countable dense in itself extremally disconnected regular
space. Then X is countably connectifiable iff there is a family {F,: n € w} with the
following properties:

(1) F,, is a compact subset of X \ X foralln € w;

(2) F, N F,, = 0 for different m and n;

(3) if U is a proper clopen subset of 3X, then F, NU # B # F,N(BX \U) for some

new.

Proof. If X can be densely embedded into a countable connected Y, then the family
Fv constructed in Proposition 2.1 has properties (1)-(3) if we enumerate it with w.
This proves necessity. If {F,,: n € w} satisfies (1)~(3), then let bX = GX and apply
Proposition 2.4. O

The following result has been recently announced by Porter. We are not aware of
the methods used in his proof, but we give one here to illustrate the usefulness of
Corollary 2.5.

Corollary 2.7 (J.H. Porter). Given an infinite ordinal § < 2%, let M, be a second
countable regular space with \My| > 1 for all o < 8. If X is a countable dense subset
of [[{Ma: « < B}, then it is w-connectifiable.

Proof. If 3 is countable, then X has a countable weight and we can apply the relevant
results of [1].

If 8 > w, then we may assume that all M,’s are compact, metrizable and dense in
themselves for if not we can replace M, by a metrizable compactification of M, and
then consider the product of all disjoint countably infinite subproducts of

M =][{Ms: a< B}

We are going construct a sequence {(zn,yn): n» € w} as in Corollary 2.5, where
bX = M. Let mp: M — My be the natural projection. Using the countability of mo(X)
find for every z, € X = {z;: ¢ € w} a countable number of sequences

S:Ln = {t?nk: ke u)} C M()\ﬂ'o(X)

such that
(i) 8% — mo(zy) for every n,m € w;

(i) th,, # th, if p# qand SP, N ST = if my # my;

(iii) for all my, my € w we have SP| NST2 = 0 if ny # ny.

Now for every pair {(m,n) € (w x w) define a sequence 772 C M \ X as follows:
T = {shi: k € w} where s, (o) = zn() for all @ > 0 and s7,(0) = t7,. It is
clear that T} — x, for every m € w. For every pair (m,n) € w such that m # n let
F(m,n) = {{sT,s" .} k€ w}. The set

F:U{F(m,n): m#mn; m,nEw}
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is countable, so F = {{un,vn}: n € w}. It is easy to check that the extension bX = M
and the set of pairs {{un,vn}: n € w} satisfy all the conditions of the Corollary 2.5
for X. O

Corollary 2.8. Any countable Tychonoff space can be embedded (maybe not densely)
into a countable connected space.

Proof. Indeed, any such space embeds into D = {0,1}?". Add to it some countable
dense subset of D and use Corollary 2.7. O

Theorem 2.9 [BL]. Every countable dense in itself (Hausdorff) space X with mw(X) <
2% is w-connectifiable.

Proof. We first prove the theorem for regular spaces. To that end let us reduce it to the
case when w(X) < 2¢. This will be achieved with the following

Lemma 2.10. Let (X, t) be a countable regular space with a m-base -y. Then there exists
a regular T)-topology t* on X such that v C t* C t and w(X,t*) < || w.

Proof. Being countable X is hereditarily Lindelsf. Hence for every open set V' in X
there exists a continuous function fy from X to the unit segment I = [0, 1] such that
X\V = f;l(O). Let f be the diagonal product of functions fy, V € vU u, where p
is a countable family of open sets in X separating points of X. Let § = v U u. Then f
is a continuous one-to-one mapping of X into I%, and 8] < || - w. Let B be a base of
I’ with |B| < |6|. Then the topology ¢* on X generated by the base {f~'(0): O € B}
has the required properties. O

Lemma 2.11 [BL]. Suppose that X is a countable regular space without isolated points,
and w(X) < 2%. Then the remainder 3X \ X is separable (and dense in 3X).

Proof. By a theorem of Eda, Kamo and Nogura [4], under Booth’s lemma every count-
able regular nonscattered space Y with w(Y') < 2* contains a copy of the rationals Q. Let
~ be a maximal disjoint family of subspaces of X homeomorphic to Q. Then Z = |~
is dense in X. We claim that for each 2 € Z one can find a sequence S, C X \ X
converging to z. Indeed, choose C € y with z € C. The point z has countable character
in K = clgx C, so that there exists a sequence S, C K \ X converging to z. Now put
D = J{S.: z€ Z}. Then D is countable and dense in 83X, O

Lemma 2.12. Let X be a countable regular space which is dense in a regular space
Z and such that Z \ X is separable and also dense in Z. Then X has a strongly
connectifying sequence (and is therefore w-connectifiable).

Proof. Pick a countable D dense in Z \ X. Both D and X are dense in Z. For each
xz € X we have x(z,Z) = x(z, X) € w(X) < 2% Since D is dense and countable, BL
implies that for each z € X there exists a sequence S, C D, converging to z [5].
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Let {z,: n € w} be any enumeration of X . There exists an onto mapping ¢: w\{0} —
w X w such that ¢~ !(k,[) is infinite for each pair (k,{) € w x w. Let Fy be any subset
of Z\ X with |Fp| = 2. Suppose that for some n > 0 we have already defined disjoint
subsets Fy,, of Z\ X for all m < n such that |F,,,| = 2. If ¢(n) = (k, 1), choose points

yn € Sz \ | Fm and zp € Sz \ | Fm

m<n m<n

with y,, # zn, and put F, = {yn, 20}

The inductive construction being accomplished let us verify that the family F =
{F,.: n € w} is strongly connectifying for X. For U,V € T(X) pick 2z, € X NU
and x; € X NV. By the choice of ¢ the set M = ¢~1(k,1) is infinite and F,, N S,, #
0 # F, NS, for each n € M. Furthermore, both sets S;, \ U and Sz, \ V are finite
while the infinite family {F,,: n € M} is disjoint; hence there exists an n € M such
that F, "\U #£0# F,NnV. O

Now let us finish the Tychonoff case of Theorem 2.9. Denote by ¢ the topology of
X and choose a w-base v for X with |y| < 2%. Apply Lemma 2.10 to find a regular
T -topology t* for X such that v C ¢* C ¢ and |*| < |y] < 2¥. Let Y = (X,¢*) and
denote by id the identity mapping of X onto Y. Let f: 83X — BY be the continuous
extension of id. By Lemma 2.12 there exists a strongly connectifying family Fy for
Y with JFy C BY \ Y. Now let Fx = {f~(F): F € Fy}. We claim that Fx is
connectifying for X.

Indeed, let U be a proper clopen subset of 3X and V = X \U. There exist U,V € v
such that Uy C U and V}; C V. By the definition of the topology t* on Y the sets
f(Uy) and f(V}) are open in Y, hence their closures in 3Y have nonempty interi-
ors. Consequently, there is an F' € Fy which intersects both these interiors. Therefore
FTUFRYNU #0# f~Y(F)NV and so Fx is a connectifying family for X. O

Finally let us turn to the general case. Our main weapon will be the following lemma,
which seems to be interesting in itself.

Lemma 2.13 [BL]. Let X be a countable dense in itself space with w(X) < 2%, Then
X has a dense regular subspace.

Proof. Let B be a base in X with |B| < 2%. The family C of boundaries of elements
of B has the power less than continuum and for every finite subfamily v of C we have
|B\ U~v| = w for every B € B. This enables us to use the Booth’s lemma to find a
subset Y C X such that Y N B is infinite for all B € B and Y NC is finite for all C € C.
The first condition implies that Y is dense in X, while the second says that Y has a
base, all elements of which have finite boundaries. This implies regularity of Y. Indeed,
ifyeYandU e T(y,Y), theny € W C U for some W with finite boundary. Let
V € T(y,Y) separate y from this boundary. Such a set V exists since Y is Hausdorff.
It is clear that cly (V N W) C U and we are done. O
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Now if X is Hausdorff and mw(X) = 7 < 2¥, take some 7-base v in X with |y| = 7
and find some countable family B of open subsets of X separating all pairs of points of
X. Generate a topology 77 on X by the family vUB. Then T is Hausdorff, w(X,T}) = 7
and v C T7. By Lemma 2.13 there is a dense regular subspace Y of (X, T}).

For every point z € X \ 'V let

Fo = {UﬂY: Ue T(a;,X)}
and
:m{clgy A: AG]‘}}

It is clear that the set H = | J{F,: 2 € X\ Y} C Y \'Y. The space Z = 8Y \ H is
Cech complete and Y C Z.

We claim that Z \ Y is separable. Indeed, if P C Y is a copy of rationals, then
P, = clz P is Cech complete, so that P, \ P is dense in P. Now apply the fact that
every point of P has countable character in Py to conclude that P, \ P is separable
(see the proof of Lemma 2.11). Pick a countable disjoint family p consisting of copies
of rationals lying in ¥ with | dense in Y and for every P € y choose a countable
Ap Ccly P\ P dense in clz P. Then the set A = (J{Ap: P € u} C Z\Y is dense
in Z\Y.

Now use Lemma 2.12 to find a countable strongly connectifying family for ¥ consist-
ing of two-element subsets of Z \ Y. Let U,, be the family of corresponding open filters
on Y. Foreach U € U, find U € T(X) with U NY = U and put V, —{U UelU,}.
Now let Z = X U{pn: n € w} where a base at p, is {{pn} UU: U € V,,}.

To prove that Z is the required connectification, observe first that

UNV=0 < UNnV=0

which clearly implies that in X U{p,,: n € w} any two points p,, # p,, can be separated.
That any two points of X can be separated is evident and there can be no problem in
separating points of Z \ X and Y. Finally, take any z € X \ Y and n € w.

Let P, be the two-point set in Z \ Y, generating the filter U,. It follows from

P,NF, =10
that there is an open neighborhood U of the point z in X and V € T'(P,, fY) with
UnyY)n(iVnyY) =

Let V] be a neighborhood of p,, with Vi NY = V. It is clear that U and V] are disjoint
neighborhoods of z and p,, respectively and we established herewith the Hausdorffness
of Z.

Finally, if U is a proper clopen subset of X U {p,: n € w}, then find V, W € v such
that V.C U and W € X \U. The sets VNY and W NY are nonempty open disjoint
subsets of Y. Hence there is an n € w with every element of U, intersecting both V' and
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W. Therefore p, € clz(U N X)Nclz(X \U) and we proved that Z is connected thus
finishing Theorem 2.9. O

Remark 2.14. It is not possible to drop Booth’s lemma from the hypothesis of Theorem
2.9. Indeed, there are models of ZFC with P-points in Jw \ w of character less than 2%
[7] (we thank S. Watson for bringing this fact to our attention). Now let X = G,,, where
G., is the space, constructed in [3] using P-points. It is immediate from the definition of
G.,, that the weight of X is less than continuum. Use Corollary 2.3 to see that X is not
w-connectifiable.

The following result extends what is known for countable spaces (see [1]) to some
uncountable ones.

Proposition 2.15. Let X be a dense in itself Hausdorff Urysohn space with | X| < 2%.
Then X is (not necessarily countably) connectifiable.

Proof. Theorem 2.2 of [2] states that a space X is connectifiable in case no proper clopen
subset of X is feebly compact (= there is no infinite locally finite families of nonempty
open subsets of X) and the number of clopen subspaces of X is less than or equal to
exp(exp(w)). Of course, the number of all subspaces of X does not exceed exp(exp(w)),
so we have to prove only that no proper clopen subset of X is feebly compact. Indeed,
if some proper clopen U C X were feebly compact we could use the standard procedure
to construct a Cantor tree of regular closed sets in U (i.e., take two closure-disjoint open
subsets of U and the same inside each of them and so on). Feeble compactness clearly
implies that every branch of this tree has nonempty intersection and so |U| = 2¢ which
is a contradiction with | X| < 2*. O

Corollary 2.16. Let X be a dense in itself Tychonoff space with |X| < 2*. Then X is
connectifiable.

Remark 2.17. Proposition 2.15 can not be proved for Hausdorff spaces (i.e., the word
“Urysohn” can not be dropped from the hypothesis) because there even exist H-closed
dense in themselves Hausdorff spaces X of power less than continuum. For any such X
the space X & X is not connectifiable.

3. Trying to construct Tychonoff connectifications
All spaces considered in this section will be Tychonoff. In the paper of Porter and
Woods [2, Theorem 5.7] it is proved that any nowhere locally compact separable metric

space has a Tychonoff connectification. The following result strengthens this theorem.

Theorem 3.1. Let X be a second countable Tychonoff space without nonempty open
compact subsets. Then there is a metrizable connected compactY with X C Y = X.
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Proof. This will follow from several lemmas.

Lemma 3.2. Let X be a second countable noncompact space. Then there is a metrizable
compact Z such that X C Z = X and Z \ X has no isolated points.

Proof. The space SX \ X has no isolated points for otherwise some closed neighborhood
of a y € X \ X would consist of a second countable subset plus {y} which would
imply existence of a countable network in this neighborhood and hence its metrizability.
But then z,, — y for some sequence S = {z,: n € w} C X while the closure of S
in X is homeomorphic to Sw the space X being normal. This gives a contradiction
proving that there are no isolated points in 5X \ X.

Let Zy be any metrizable compactification of X. Let Ay be the set of isolated points
of Zy (which of course has to be countable) and 7p: 86X — Zp the natural map. For
any z € Ap pick different ¢,,u, € 7r0‘1(z) and a continuous map f,:8X — [0, 1] with
fo(t.) =1, fi(u;) = 0. Now let

m = WoA(A{le S Ao}) ﬁX — Z],
where Z, = m(6X) is a metrizable compact space. Clearly there exists a continuous
onto map 7} : Z1 — Zp with ) | X = id.
Let A C Z; \ X be the (again countable) set of isolated points of Z; \ X. Use the

same procedure to find a metrizable compactification Z; of X and a map 7?:Z, — Z).
After having repeated this construction w times we will have an inverse system

n n+l
Tp—1

7rl 772 71':‘ ,

of metrizable compactifications of X such that #!™" [ X = idx. Now we have

i+l
if z € A; (= the set of isolated points of Z; \ X), then |(z1*")~'(2)] > 2. (*)

We claim that the space Z = lim Z,, is what required. Indeed, it is evident that Z is
—

an extension of X. If z € Z \ X is isolated, then there is an n € w with ¢, (2) isolated
in Z, \ X (here ¢, : Z — Z, is nth limit projection) because ¢, (Z \ X) C Z, \ X for
all n. Now ¢, (z) is not only isolated in Z, \ X but |o;;!(¢n(2))] = 1 which implies
{7+ 1)~ (pn(2))] = 1 while this contradicts (*). O

Lemma 3.3. Let Z be a second countable space with a totally bounded metric p. Let
v = {UCZ: U#0+#Z\U and U is clopen in Z and p(U,Z\U) > 0}.

Then for every € > O the set {U € v: p(U, Z\ U) > ¢} is finite.

Proof. Indeed, if it were not so, then there would have been an infinite 7/ C v with

p(U,Z\U) > e forall U € +'. Let z;,...,2z, be an £/2-net in Z with respect to the
metric p; this exists by the total boundedness of p. Now for every U € +' if z; € U then

O(zi)={yeZ plyz)<e}CcU=U= U {Oc(z): z, € U}.



O.T. Alas et al. / Topology and its Applications 71 (1996) 203-215 213

But there are only finitely many subsets of the finite family {O(z;): i = 1,...,n} so
there will be two different U, V € ' with

U= J{O(z): icA} =V

for some A C {1,...,n}, which is a contradiction. O

Lemma 3.4. Suppose that we have a metrizable compact space Z with a metric p and a
sequence {{Tn, yn}: 1 € w} of disjoint two-element subsets of Z. If limp, 00 p(Tn, yn) =
0 then q(Z) will be a metrizable compact space, where q is a quotient map defined on
Z by identifying the points x,, and y, for all n € w.

Proof. We have a closed decomposition F of Z consisting of one- or two-point subsets
of Z. To prove that the relevant quotient map gives a Hausdorff space (that’s all we
actually need) we must check that for any F' € F and for any open U O F there is a
V € T(F,Z) such that GNV # @ implies G C U for any G € F (see [6, p. 92]).

Choose an € > 0 with O (F) C U. Let V. = O.p(F) \ A, where A = {G €
F: diam(G) > £/2}. The set V is an open neighborhood of F' the set A being finite by
limy, 00 P(Tn, Yn) = 0. It is straightforward that V is as required. O

Now let us take up to the proof of Theorem 3.1.

Using Lemma 3.2 find a metrizable (with a metric p) compact Z > X with X dense
in Z and Z \ X perfect. The set « of all proper clopen subsets of Z is countable and
pU,Z\NU) > 0forany U € v. Letn = {UN(Z\ X): U € v}. All elements of 7
are proper, because there are no open compact subsets of X. Clearly, for any U € 7
there is an ey > 0 such that p(U,(Z \ X)\ U) > ey. Hence by Lemma 3.3 we have
limye, p(U,(Z\X)\U) = 0.

Letn = {Up: n € w}and let , € Uy \ X, v € (Z\ X) \ U, be such that
p(@n, yn) < 2p(Un, (Z\ X)\ Uy) for all n € w. Using perfectness of Z \ X we can
choose {xn,yn} C Z\ X in such a way that {Z,,, yn} N {Zm,Ym} = 0 if m # n.

Now identify z, and y, for all n € w. The resulting space ¥ = ¢(Z) will be a
compact metrizable (by Lemma 3.4) extension of X.

We claim that Y is connected. Indeed, if U is a proper clopen subset of Y, then ¢~ (U)
is a proper clopen subset of Z and therefore ¢~ (U) N (Z \ X) = U, for some n € w
which is impossible, because ¢~'(U) is saturated with respect to {{zn,yn}: n € w}.
This contradiction proves Theorem 3.1. O

Corollary 3.5. Let X be a locally separable metric space without open compact sub-
spaces. Then X has a Tychonoff connectification.

Proof. It is well known, that every such space is a discrete union of separable metrizable
spaces. Evidently, none of these clopen separable metric summands has proper compact
open subspaces. Hence we can use Theorem 3.1 to densely embed X into a discrete
union of connected metrizable compact spaces. Now every summand of this union has
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a point which is not in X. Pick it and identify all the points thus chosen. The resulting
space will be a connected Tychonoff extension of X. O

4. Formulating unsolved problems

In this section we pose twenty natural questions we did not succeed in solving while
working at this paper. Of course we could ask many more, but the following are repre-
sentative, illustrate the wide scope of the field and appear to be interesting.

Question 4.1. Is it consistent with ZFC that every countable dense in itself Tychonoff
space is countably connectifiable?

Question 4.2, Is it consistent with ZFC that every countable dense in itself Hausdorff
Urysohn space is countably connectifiable?

Question 4.3. Is it consistent with ZFC that every countable dense in itself Hausdorff
space is countably connectifiable?

Question 4.4. Let X be a countable dense in itself Tychonoff space such that X \ X
has a dense o-compact subspace. Is then X countably connectifiable?

Question 4.5. Let X be a countable dense in itself Tychonoff w-connectifiable space.
Does X have a strongly connectifying family (see Corollary 2.5)?

Question 4.6. Let X be a countable dense in itself Tychonoff sequential space. Is then
X countably connectifiable?

Question 4.7. Let X be a countable dense in itself Tychonoff Frechet-Urysohn space.
Is then X countably connectifiable?

Question 4.8. Let X be a countable dense in itself Tychonoff space with X \ X sep-
arable. Is then X countably connectifiable?

Question 4.9. Let X be a countable dense in itself Tychonoff space. Does X have a
Tychonoff (then clearly uncountable!) connectification?

Question 4.10. Let X be a Tychonoff space with a countable network and without open
compact subspaces. Does X have a Tychonoff connectification?

Question 4.11. Let X be metric space without open compact subspaces. Does X have
a Tychonoff connectification?

Question 4.12. Let X be metric space without open compact subspaces. Does X have
a metrizable connectification?
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Question 4.13. Let X be a countable dense in itself Hausdorff space. Does X have a
dense Tychonoff subspace?

Question 4.14. Let X be a countable dense in itself Hausdorff space. Does X have a
dense Urysohn subspace?

Question 4.15. Let X be a countable dense in itself Hausdorff Urysohn space. Does X
have a dense Tychonoff subspace?

Question 4.16. Let X be a countable dense in itself Hausdorff space which has a dense
Tychonoff subspace. Is then X countably connectifiable?

Question 4.17. Let X be a countable dense in itself Hausdorff space which has an
w-connectifiable dense subspace. Is then X countably connectifiable?

Question 4.18. Let X be a countable dense in itself Hausdorff Urysohn space which
has an w-connectifiable dense subspace. Is then X countably connectifiable?

Question 4.19. Let X be a countable dense in itself Tychonoff space which has an
w-connectifiable dense subspace. Is then X countably connectifiable?

Question 4.20. Let G be a countable nondiscrete Hausdorff topological group. Is G
countably connectifiable?
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