FEBS Letters 582 (2008) 2916-2922

Metabolomic profiling of *Drosophila* using liquid chromatography Fourier transform mass spectrometry

M.A. Kamleh^a, Y. Hobani^b, J.A.T. Dow^b, D.G. Watson^{a,*}

^a SIBPS, University of Strathclyde, 27, Taylor Street, Glasgow G4 0NR, UK ^b Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK

Received 21 May 2008; revised 12 July 2008; accepted 14 July 2008

Available online 25 July 2008

Edited by Lukas Huber

Abstract Hydrophilic interaction chromatography (HILIC) interfaced with an Orbitrap Fourier transform mass spectrometer (FT-MS) was used to carry out metabolomic profiling of the classical *Drosophila* mutation, *rosy* (*ry*). This gene encodes a xanthine oxidase/dehydrogenase. In addition to validating the technology by detecting the same changes in xanthine, hypoxanthine, urate and allantoin that have been reported classically, completely unsuspected changes were detected in each of the tryptophan, arginine, pyrimidine and glycerophospholipid metabolism pathways. The rosy mutation thus ramifies far more widely than previously detected.

© 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Metabolomics; Fourier transform mass spectrometry; Drosophila

1. Introduction

Of the metazoans, *Drosophila melanogaster* offers perhaps the best trade-off between genetic tractability, availability of well-characterized genetic mutant stocks, and organismal complexity [1,2] and is thus ideal for metabolomic studies. Some mutations in metabolic pathways have been studied for nearly a century; and interactions with, and epistatic interactions between, similar mutations, established.

The ry mutant was originally identified as an eye colour mutation and was found to encode xanthine oxidase/dehydrogenase, an enzyme in the purine metabolism pathway [3]. Ry mutants accumulate the enzyme's substrates, xanthine and 2amino-4-hydroxypteridine as larvae plus hypoxanthine in the adult; xanthine forms calculi in the malpighian tubules, bloating and distorting them [4]. The ry mutants lack the corresponding enzyme products uric acid and isoxanthopterin [5]. Remarkably, ry mutations exactly recapitulate xanthinuria type I, the renal disease caused by mutation of the human homologue of ry, across over 400 M years of divergent evolution [6].

Recently work was published indicating that the xanthine oxidase gene is necessary for mediating the effects of juvenile hormone (JH). In the absence of xanthine oxidase the cuticle

*Corresponding author. Fax: +44 1415522562.

of the insect did not develop properly when stimulated by JH [7]. As we will demonstrate in this paper the ry mutation ramifies into metabolic pathways remote from purine metabolism which may be required for cuticle development.

Mass spectrometry is being increasingly applied to metabolomics [8–11]. The Orbitrap mass spectrometer offers similar performance to classical FT-MS but without the requirement for a high strength magnetic field [12] and it is readily coupled to chromatographic systems. The *ry* mutation provides an excellent model to test this technology.

2. Materials and methods

2.1. Chemicals

HPLC grade acetonitrile and water were obtained from VWR International Ltd. (Lutterworth, UK). AnalaR grade formic acid (98%) was obtained from BDH-Merck (Dorset, UK). Metabolite standards were obtained from Sigma Aldrich (Dorset, UK).

2.2. Drosophila stocks

Drosophila melanogaster were kept in vials of standard medium at 25 °C and 55% r.h. on a 12:12 photoperiod. Stocks used were Canton S wild-type flies, and ry^{506} homozygotes (Bloomington Stock Center). Seven day old adult flies were anaesthetized by chilling on ice and then ground whole into 50% methanol:50% water. Ten flies were found to provide ample experimental material. Sexes were kept separate for the analysis. Following extraction, samples were stored at -24 °C until the day of analysis. Immediately prior to analysis samples were brought to room temperature, shaken and then centrifuged for 5 min at 3500 rpm and 180 µl portions of each sample were withdrawn and transferred to a chromatographic vial.

2.3. LC-MS method

LC–MS data were acquired using a LTQ Orbitrap instrument (Thermo Fisher Scientific, Hemel Hempstead, UK) set at 30000 resolution. Sample analysis was carried out under positive ion mode. The mass scanning range was m/z 50–1200 and the capillary temperature was 200 °C. The LC–MS system was run in binary gradient mode. Solvent A was 0.1% v/v formic acid/water and solvent B was acetonitrile containing 0.1% v/v formic acid; the flow rate was 0.3 ml/min. A ZIC-HI-LIC column 5 µm 150 × 4.6 mm (HiChrom, Reading, UK) was used for all analyses. The gradient was as follows: 80% B (0 min) – 70% B (12 min) – 70% B at 22 min – 80% B at 30 min. The injection volume was 25 µl. Mass measurement was externally calibrated just before commencing the experiment, and was internally calibrated by lock masses. Background ions at m/z 180.10505 (C₆H₁₈NO₃Si) and m/z 81.52057 (C₆H₉N₃Ca) were used as lock masses.

2.4. Data processing

Data pre-treatment was performed using Excel-Visual basic application (VBA) subroutines (Microsoft Excel-2007) developed in-house. Multivariate analysis was carried out using SIMCA-P version 11.0.0.0 Umetrics AB.

0014-5793/\$34.00 © 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.febslet.2008.07.029

E-mail address: d.g.watson@strath.ac.uk (D.G. Watson).

3. Results and discussion

Fig. 1 shows extracted ion traces, taken from an analysis of wild-type (WT) flies, for some metabolites associated with purine catabolism [13]: uric acid, allantoin, xanthine, hypoxanthine, guanine, guanosine and guanosine monophosphate. One hundred and twenty four standards were run in order to establish retention times, some of the standards, e.g. ATP did not elute from the Hilic column probably due to strong anion exchange interactions. Table 1 shows the elemental compositions for compounds related to pathways upstream from uric acid with an indication of the closeness of the mass match to the predicted composition. Uric acid, xanthine, guanine and guanosine all elute at similar retention times but are, importantly, removed from the phospholipid peaks which can cause ion-suppression. Adenosine monophosphate elutes much later than the rest of the metabolites because of its stronger interaction with the hydrophilic layer associated with the column surface. In the current method it was not possible to reliably observe di- and triphosphates; the exception was NAD (Fig. 1).

To carry out chemometric analysis we had to dispense with the chromatographic dimension and sum the ions across the whole chromatographic range. A VBA sub routine was developed to look up the most common mass forms (M + H, M + Na and M + 2/2) of 59 metabolites (Supplementary infor-

Fig. 1. Narrow-range extracted ion traces extracted across a range of 0.02 amu showing the metabolites related to uric acid biosynthesis from female wild-type *Drosophila*.

1	1	<i>,</i>	00	8	2
Compound	Elemental composition MH ⁺	Retention time (min)	Deviation (ppm)	Nearest match within 2 ppm	Deviation (ppm)
Uric acid	C ₅ H ₄ N ₄ O ₃	9.5	0.552	_	_
Allantoin	$C_4H_7N_4O_3$	10.4	0.083	_	-
Xanthine	$C_5H_4N_4O_2$	7.8	-0.340	_	-
Hypoxanthine	C ₅ H ₄ N ₄ O	8.6	-0.783	_	-
Guanine	C ₅ H ₅ N ₅ O	8.6	-0.22	_	-
Guanosine	$C_{10}H_{13}N_5O_5$	9.6	0.298	$C_{11}H_{13}N_6O_2Na$	-0.669
Biopterin isomer	$C_9H_{11}N_5O_3$	7.3	-0.025	$C_{10}H_{11}N_6Na$	-1.179
Biopterin isomer	$C_9H_{11}N_5O_3$	9.4	-0.109	$C_{10}H_{11}N_6Na$	-1.263
Dihydrobiopterin	$C_9H_{13}N_5O_3$	9.2	0.266	$C_{10}H_{11}N_6Na$	-0.878
Inosine	$C_{10}H_{12}N_4O_5$	8.7	-0.088	$C_{11}H_{20}ONNaS_2$	0.802
AMP	$C_{10}H_{14}N_5O_7P$	14.1	0.02	C ₁₅ H ₁₁ O ₄ N ₅ Na	0.128

Mass spectrometric data for metabolites in close proximity, according to the Kegg database (Fig. 2), to the xanthine oxidase lesion in ry

mation Fig. S1) directly involved in the purine/pyrimidine metabolism pathway [13] (Supplementary information Table S1). The analytical method was able to observe 23 of these metabolites, which were introduced into SIMCA-P+11 for PCA (Supplementary information Fig. S2) in which *ry* and WT flies were clearly separated. Other metabolites found to be highly variable were adenine, AMP, adenosine and deoxy-

adenosine, which were up-regulated in ry mutants; and allantoin, uridine, uracil and thymine, which were down-regulated in ry (Tables 2 and 3). Fig. 2 shows the metabolic pathways closely associated with the conversion of xanthine into uric acid [13]. The mass spectrometric profile rapidly confirms what is known from classical work [5,6], although it clearly detects perturbations further from the original lesion than was previ-

Table 2 Metabolite changes identified in female *ry* flies compared to WT

Metabolite/metabolic pathway	Formula	Recorded mass	Retention time (min)	Hits in METLIN	Female		
				(filtered)	Ratio ry/WT	<i>P</i> -value	
Uric acid related							
Uric acid	$C_5H_4N_4O_3$	169.0356	9.6	1	5.65×10^{-4}	0.000762	
Allantoin	$C_4H_6N_4O_3$	159.013	10.5	1		0.000119	
Hypoxanthine	C ₅ H ₄ N ₄ O	137.0458	8.8	1	15.66	0.000192	
Xanthine	$C_5H_4N_4O_2$	153.0407	7.9	1	0.047	0.000319	
Guanine	C ₅ H ₅ N ₅ O	152.0567	8.6	3	2.83	0.001	
Guanosine	$C_{10}H_{12}N_5O_5$	284 0989	9.6	1	2.89	0.003	
Biopterin	$C_0H_{11}N_5O_2$	238 0935	94	5	3.03	4.1×10^{-9}	
Dihydrobionterin	CoH12NcO2	240 1091	94	3	5 47	1.21×10^{-6}	
Dihydropterin	C _z H _o N _z O ₂	196 0829	7.9	1	0.13	0.013	
Inosine	Culture N.O.	269.088	87	2	4 69	0.005	
AMP	$C_{10}H_{12}H_{4}O_{5}$	348 0704	14.1	2	1.46	0.005	
	C ₁₀ 11 ₁₄ 1 4 5071	348.0704	14.1	2	1.40	0.055	
Tryptophan pathway metabolites							
Tryptophan	$C_{11}H_{12}N_2O_2$	205.09715	9.9	2	0.53	0.005	
Hydroxytryptophan	$C_{11}H_{12}N_2O_3$	221.0921	9.4	1	1.87	0.028	
Kynurenine	$C_{10}H_{12}N_{2}O_{3}$	209.921	9.5	1	3.35	5.53×10^{-8}	
Hydroxykynurenine	$C_{10}H_{12}N_2O_4$	225.0921	10.7	1	0.405	2.5×10^{-7}	
Osmolytes							
Choline glycerophosphate	CH NO P	258 1101	13.0	1	14 57	4×10^{-11}	
Charanhasphaethanalamina	$C \parallel NO P$	216 1101	12.7	1	14.57	4×10^{-10}	
Chalina	$C_{5}\Pi_{14}NO_{6}\Gamma$	104 107	12.7	1	1 22	2 × 10	
Choline	$C_5\Pi_{14}NO$	104.107	13.0	1	1.55	0.000	
Pyrimidines							
Cytosine	C ₄ H ₅ N ₃ O	112.0505	13.5	1	14.31	0.002	
Uracil	$C_4H_4N_2O_2$	113.0346	8.0	1	0.921	0.6	
Uridine	$C_9H_{12}N_2O_6$	245.0768	8.0	2	0.9	0.617	
Argining nathway metabolites							
Citrulline	C.H. N.O.	176 103	13.4	1	0.200	0.004	
Ornithing	$C \parallel N O$	122 0072	17.4	1	0.299	0.004	
	$C_5\Pi_{12}N_2O_2$	100 11962	17.0	1	0.570	0.147 1.0×10 ⁻⁷	
L-Homocurumne	$C_7H_{15}N_3O_3$	190.11862	17.8	1	0.011	1.9 × 10	
Misc metabolites							
Alanine	$C_3H_7NO_2$	90.055	13.2	2	1.93	8.4×10^{-8}	
Glutamic acid	C ₅ H ₉ NO ₄	148.0604	12.2	4	1.75	0.000314	
Glutamine	$C_5H_{10}N_2O_3$	147.0764	12.9	5	1.32	0.000566	
Threonine	C ₄ H ₉ NO ₃	120.0655	12.5	2	0.526	3.2×10^{-5}	
Nicotinamide	CeHeN20	123.0553	7.8	1	1.55	0.00016	
Valine	$C_{5}H_{11}NO_{2}$	118.08613	12.0	5	1.06	0.494	
-	- 5 11 - 42						

Table 3						
Metabolite changes	identified in	n male ry	flies	compared t	o W	Т

$\frac{\text{time (nin)}}{\text{(filtered)}} \frac{\text{(filtered)}}{\text{Ratio ry/WT}} \frac{P \cdot value}{P \cdot value}$ $\frac{Uric acid}{Uric acid} C_3H_4N_4O_3 169.0356 9.6 1 2.5 \times 10^{-2} 0.000596$ Allantoin C_4H_4N_4O_3 159.013 10.5 1 0.018 0.002 Hypoxanthine C_4H_4N_4O_1 157.0448 & 8.8 1 10.844 4.9 \times 10^{-5} Guanosine C_4H_5N_4O_1 52.05677 7.9 1 20.665 5.5 \times 10^{-7} Guanosine C_4H_5N_4O_1 52.05677 7.9 1 20.665 5.5 \times 10^{-7} Guanosine C_4H_5N_4O_1 52.05677 8.6 3 1.255 0.0733 Guanosine C_4H_5N_4O_1 52.05677 8.6 3 1.255 0.0733 Guanosine C_4H_5N_4O_1 52.05677 8.6 3 1.257 0.000518 \\ Dihydrobiopterin C_4H_5N_4O_2 205.09715 9.4 3 5.188 1.2 \times 10^{-6} Dihydrobiopterin C_1H_5N_4O_2 205.09715 9.9 2 0.214 0.006 10.0011 0.509 0.004 14.1 2 1.075 0.43 $Tryptophan C_{11}H_5N_5O_2 205.09715 9.9 2 0.36 6.4 \times 10^{-7}$ Hydroxytryptophan C_{11}H_5N_5O_2 205.09715 9.9 2 0.36 6.4 \times 10^{-7} 1.075 0.43 1.0044 0.004 1004 0.004 0.004 1007 1 0.509 0.004 1004 0.004 1007 1 0.345 7.1 \times 10^{-7} 0.0044 1004 1007 1 0.345 7.1 \times 10^{-7} 0.0044 1004 1007 1 0.345 7.1 \times 10^{-7} 0.0044 1004 0.004 1007 1 0.345 7.1 \times 10^{-7} 0.004 1004 0.004 1007 1 0.345 7.1 \times 10^{-7} 0.004 1004 0.004	Metabolite/metabolic pathway	Formula	Recorded mass	Retention time (min)	Hits in METLIN	Male	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					(filtered)	Ratio ry/WT	P-value
Uric acid C, H ₄ N ₄ O ₃ 169.0356 9,6 1 2,5 × 10 ⁻³ 0,000596 Allantoin C, H ₄ N ₄ O ₃ 159.013 10,5 1 0,018 0,002 Hypoxanthine C, H ₄ N ₄ O ₅ 133.0407 7,9 1 20.665 5,5 × 10 ⁻⁷ Guanine C, H ₄ N ₅ O ₅ 152.0567 8,6 3 1,325 0,073 Guanosine C, H ₄ N ₅ O ₅ 284.0989 9,6 1 1,119 0,527 Biopterin C, H ₄ N ₅ O ₅ 284.0989 9,6 1 1,119 0,527 Biopterin C, H ₄ N ₅ O ₅ 240.1091 9,4 3 5,188 1,2 × 10 ⁻⁶ Dihydrobiopterin C, H ₄ N ₅ O ₅ 269.088 8,7 2 2,023 0,011 AMP C ₁₀ H ₄ N ₅ O ₅ 205.09715 9,9 1 0,214 0,006 Inosine C ₁₀ H ₁₂ N ₅ O ₅ 205.09715 9,9 2 0,36 6,4 × 10 ⁻⁷ Hydroxytryptophan C ₁₁ H ₄ N ₅ O ₅ 205.09715 9,9 2 0,36 6,4 × 10 ⁻⁷ Hydroxytryptophan C ₁₁ H ₄ N ₅ O ₅ 205.09715 9,9 2 0,36 6,4 × 10 ⁻⁷ Hydroxytryptophan C ₁₁ H ₄ N ₅ O ₅ 205.09715 9,9 2 0,36 6,4 × 10 ⁻⁷ Guanosytryptophan C ₁₁ H ₄ N ₅ O ₅ 205.09715 9,9 1 0,509 0,004 Kynarcnine C, GH ₁₂ N ₅ O ₄ 225.0921 10.7 1 0,509 0,004 Hydroxytryptophan C ₁₄ H ₄ N ₅ O ₄ 225.0921 10.7 1 0,345 7,1 × 10 ⁻⁷ <i>Osmolytes</i> Choline Jydrop 25, 1 0,509 0,004 Hydroxytryptophan C ₁₄ H ₄ N ₅ O ₄ 225.0921 10.7 1 0,345 7,1 × 10 ⁻⁷ <i>Osmolytes</i> Choline Jycerophosphate Cytosine C ₄ H ₄ N ₅ O ₄ 120.055 13.5 1 2,571 0,016 Uracil C, H ₄ N ₅ O ₃ 110.0346 8,0 1 0,402 0,002 <i>Arginine pathway metabolites</i> Circuline C ₄ H ₄ N ₅ O ₃ 113.0346 8,0 1 0,402 0,002 <i>Arginine pathway metabolites</i> Circuline C ₄ H ₄ N ₅ O ₃ 176.103 13.4 1 0,548 0,442 Oracil C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,248 0,036 L'Homocitrulline C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,248 0,036 L'Homocitrulline C, H ₄ N ₅ O ₃ 190.11862 17.8 1 0,00009 0,00031 <i>Mise metabolites</i> L'Homocitrulline C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,248 0,042 Oracil C, H ₄ N ₅ O ₃ 190.11862 17.8 1 0,00009 0,00031 <i>Mise metabolites</i> L'Homocitrulline C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,248 0,042 Oracil C, H ₄ N ₅ O ₃ 190.11862 17.8 1 0,00009 0,00031 <i>Mise metabolites</i> L'Homocitrulline C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,248 0,056 L'Homocitrulline C, H ₄ N ₅ O ₃ 176.103 13.4 1 0,0752 0,075 Bittamia acid C, GH ₅ NO ₄ 148.0604 12.2 4 0,871 0,094 Gittamine	Uric acid related						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Uric acid	$C_5H_4N_4O_3$	169.0356	9.6	1	2.5×10^{-9}	0.000596
	Allantoin	$C_4H_6N_4O_3$	159.013	10.5	1	0.018	0.002
$\begin{split} \begin{array}{c} X_{an}^{*} hine & C_{4}^{*} H_{N} V_{Q} & 133.0407 & 7.9 & 1 & 20.665 & 5.5 \times 10^{-7} \\ Guanoine & C_{5} H_{3} N_{3} O & 152.0567 & 8.6 & 3 & 1.325 & 0.073 \\ Guanosine & C_{10} H_{13} N_{3} O_{3} & 238.0935 & 9.4 & 5 & 1.576 & 0.000518 \\ Biopterin & C_{3} H_{1,N} O_{3} & 238.0935 & 9.4 & 5 & 1.576 & 0.000518 \\ Dihydrobipterin & C_{4} H_{1,N} O_{3} & 240.1091 & 9.4 & 3 & 5.188 & 1.2 \times 10^{-6} \\ Inosine & C_{10} H_{12} N_{10} O_{2} & 290.0829 & 7.9 & 1 & 0.214 & 0.006 \\ Inosine & C_{10} H_{12} N_{10} O_{2} & 290.988 & 8.7 & 2 & 2.023 & 0.011 \\ AMP & C_{10} H_{12} N_{2} O_{2} & 205.09715 & 9.9 & 2 & 0.36 & 6.4 \times 10^{-7} \\ Hydroxytryptophan & C_{11} H_{12} N_{2} O_{2} & 220.9921 & 9.5 & 1 & 0.64 & 0.004 \\ Kynurenine & C_{10} H_{12} N_{2} O_{2} & 225.0921 & 10.7 & 1 & 0.345 & 7.1 \times 10^{-7} \\ Oanolytes & & & & & & & & & & & & & & & & & & &$	Hypoxanthine	C ₅ H ₄ N ₄ O	137.0458	8.8	1	10.844	4.9×10^{-5}
	Xanthine	$C_5H_4N_4O_2$	153.0407	7.9	1	20.665	5.5×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Guanine	C ₅ H ₅ N ₅ O	152.0567	8.6	3	1.325	0.073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Guanosine	C10H13N5O5	284.0989	9.6	1	1.119	0.527
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Biopterin	C ₉ H ₁₁ N ₅ O ₃	238.0935	9.4	5	1.576	0.000518
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dihydrobiopterin	C ₀ H ₁₃ N ₅ O ₃	240.1091	9.4	3	5.188	1.2×10^{-6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dihydropterin	C7HoN5O2	196.0829	7.9	1	0.214	0.006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inosine	$C_{10}H_{12}N_4O_5$	269.088	8.7	2	2.023	0.011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AMP	$C_{10}H_{14}N_5O_7P$	348.0704	14.1	2	1.075	0.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tryptophan pathway metabolites						
	Tryptophan	C ₁₁ H ₁₂ N ₂ O ₂	205.09715	9.9	2	0.36	6.4×10^{-7}
Kynurenine $C_{10}H_{12}N_2O_3^2$ 209.921 9.5 1 0.64 0.004 Hydroxykynurenine $C_{10}H_{12}N_2O_4$ 225.0921 10.7 1 0.345 7.1×10^{-7} Osmolytes C_{holine} $C_{g}H_{21}NO_6P$ 258.1101 13.9 1 9.56 1.8×10^{-11} Glycerophosphate $C_{g}H_{21}NO_6P$ 258.1101 13.9 1 9.56 1.8×10^{-11} Glycerophosphoethanolamine $C_{g}H_{14}NO_6P$ 216.1101 12.7 1 9.672 8.7×10^{-8} Choline $C_{3}H_{14}NO$ 104.107 13.0 1 0.792 0.09 Pyrimidines $C_{ytosine}$ $C_{4}H_{5}N_{5}O$ 112.0505 13.5 1 2.571 0.016 Uracil $C_{4}H_{3}N_{2}O_{2}$ 113.0346 8.0 1 0.402 0.002 Uridine $C_{9}H_{12}N_{2}O_{6}$ 245.0768 8.0 2 0.5 0.209 Arginine pathway metabolite $C_{e}H_{13}N_{3}O_{3}$ 176.103 13.4 1 0.348 0.042 Citrulline $C_{9}H_{12}N_{2}O_{2}$ 133.0972 17.6 1 0.128 0.036 L-Homocitrulline $C_{3}H_{7}NO_{2}$ 90.055 13.2 2 1.259 0.075 Misc metabolites $A_{10}NO_{4}$ 148.0604 12.2 4 0.871 0.094 Glutamine $C_{3}H_{10}NO_{3}$ 120.0655 13.2 2 0.578 0.000221 Misc metabolites $A_{10}NO_{3}$ 120.0655 <	Hydroxytryptophan	$C_{11}H_{12}N_{2}O_{3}$	221.0921	9.4	1	0.509	0.004
Hýdroxykynurenine $C_{10}H_{12}N_2O_4$ 225.092110.710.3457.1 × 10 ⁻⁷ OsmolytesC Choline glycerophosphate $C_8H_{21}NO_6P$ 258.110113.919.56 1.8×10^{-11} Glycerophosphoethanolamine $C_5H_{14}NO_6P$ 216.110112.719.672 8.7×10^{-8} Choline $C_5H_{14}NO_6P$ 216.110112.719.672 8.7×10^{-8} Choline $C_5H_{14}NO_6P$ 216.110112.719.672 8.7×10^{-8} Choline $C_5H_{14}NO_6P$ 216.110113.010.7920.09PyrimidinesC $C_4H_5N_5O$ 112.050513.512.5710.016Uracil $C_4H_5N_2O_6$ 245.07688.020.50.209Arginine pathway metaboliteC $C_6H_{13}N_3O_3$ 176.10313.410.3480.042Ornithine $C_5H_{12}N_2O_2$ 133.097217.610.1280.036L-Homocitrulline $C_7H_{15}N_3O_3$ 190.1186217.810.000090.00031Misc metabolitesMisc metabolitesMisc metabolitesMisc metabolitesMisc metabolitesAlanine $C_3H_7NO_2$ 90.05513.221.2590.075glutamic acid $C_3H_9NO_4$ 148.060412.240.8710.094Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.52 <td>Kynurenine</td> <td>$C_{10}H_{12}N_{2}O_{3}$</td> <td>209.921</td> <td>9.5</td> <td>1</td> <td>0.64</td> <td>0.004</td>	Kynurenine	$C_{10}H_{12}N_{2}O_{3}$	209.921	9.5	1	0.64	0.004
Osmolytes CsH21NO6P 258.1101 13.9 1 9.56 1.8×10^{-11} Glycerophosphoethanolamine $C_5H_{14}NO_6P$ 216.1101 12.7 1 9.672 8.7×10^{-8} Choline $C_5H_{14}NO$ 104.107 13.0 1 0.792 0.09 Pyrimidines C $C_4H_5N_3O$ 112.0505 13.5 1 2.571 0.016 Uracil $C_4H_4N_2O_2$ 113.0346 8.0 1 0.402 0.002 Uracil $C_9H_{12}N_2O_6$ 245.0768 8.0 2 0.5 0.209 Arginine pathway metabolite C CH_{13}N_3O_3 176.103 13.4 1 0.348 0.042 Ornithine $C_5H_{12}N_2O_2$ 133.0972 17.6 1 0.128 0.036 t-Homocitrulline $C_1H_{15}N_3O_3$ 190.11862 17.8 1 0.00009 0.00031 Misc metabolites A A 148.0604 12.2 4 0.871 0.094 Gluta	Hydroxykynurenine	$C_{10}H_{12}N_2O_4$	225.0921	10.7	1	0.345	7.1×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Osmolytes						
	Choline glycerophosphate	C ₈ H ₂₁ NO ₆ P	258.1101	13.9	1	9.56	1.8×10^{-11}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Glycerophosphoethanolamine	C ₅ H ₁₄ NO ₆ P	216.1101	12.7	1	9.672	8.7×10^{-8}
$\begin{array}{c ccccccccccc} Pyrimidines & C_4H_5N_3O & 112.0505 & 13.5 & 1 & 2.571 & 0.016 \\ Uracil & C_4H_4N_2O_2 & 113.0346 & 8.0 & 1 & 0.402 & 0.002 \\ Uridine & C_9H_{12}N_2O_6 & 245.0768 & 8.0 & 2 & 0.5 & 0.209 \\ \hline \\ Arginine pathway metabolite & & & & & & & & & \\ Citrulline & C_6H_{13}N_3O_3 & 176.103 & 13.4 & 1 & 0.348 & 0.042 \\ Ornithine & C_5H_{12}N_2O_2 & 133.0972 & 17.6 & 1 & 0.128 & 0.036 \\ L-Homocitrulline & C_7H_{15}N_3O_3 & 190.11862 & 17.8 & 1 & 0.00009 & 0.00031 \\ \hline \\ Misc metabolites & & & & & & & & \\ Alanine & C_3H_7NO_2 & 90.055 & 13.2 & 2 & 1.259 & 0.075 \\ glutamic acid & C_5H_9NO_4 & 148.0604 & 12.2 & 4 & 0.871 & 0.094 \\ Glutamine & C_5H_{10}N_2O_3 & 147.0764 & 12.9 & 5 & 1.11 & 0.233 \\ Threonine & C_4H_9NO_3 & 120.0655 & 12.5 & 2 & 0.578 & 0.000221 \\ Nicotinamide & C_6H_6N2_O & 123.0553 & 7.8 & 1 & 0.732 & 0.081 \\ Valine & C_5H_{11}NO_2 & 118.08613 & 12.0 & 5 & 0.76 & 0.016 \\ \hline \end{array}$	Choline	C ₅ H ₁₄ NO	104.107	13.0	1	0.792	0.09
$\begin{array}{cccc} Cytosine & C_4H_5N_3O & 112.0505 & 13.5 & 1 & 2.571 & 0.016 \\ Uracil & C_4H_4N_2O_2 & 113.0346 & 8.0 & 1 & 0.402 & 0.002 \\ Uridine & C_9H_{12}N_2O_6 & 245.0768 & 8.0 & 2 & 0.5 & 0.209 \\ \hline \end{tabular} \label{eq:action}$	Pyrimidines						
Uracil Uridine $C_4H_4N_2O_2$ $C_9H_{12}N_2O_6$ 113.0346 245.07688.0 8.010.402 0.50.002 0.209Arginine Arginine pathway metaboliteC $G_{H_{13}N_3O_3}$ 176.103 176.10313.4 1.410.348 0.1280.042 0.0062Ornithine L-HomocitrullineC_6H_{13}N_3O_3 C_7H_{15}N_3O_3176.103 190.1186213.4 1.610.348 0.1280.042 0.0065Misc metabolites AlanineC C_7H_1SN_3O_3190.1186217.8 1.2210.00009 0.00031Misc metabolites GlutamineC C_5H_9NO_4148.0604 148.060412.2 12.24 40.871 0.0940.094 0.00221Glutamine NicotinamideC 6H_6N2_0120.065512.5 12.52 20.578 0.5780.000221 0.00221Nicotinamide ValineC 6H_6N2_0118.0861312.0 12.00.7660.016	Cytosine	C ₄ H ₅ N ₃ O	112.0505	13.5	1	2.571	0.016
Uridine $C_9H_12N_2O_6$ 245.0768 8.0 2 0.5 0.209 Arginine pathway metaboliteCitrulline $C_6H_{13}N_3O_3$ 176.103 13.4 1 0.348 0.042 Ornithine $C_5H_12N_2O_2$ 133.0972 17.6 1 0.128 0.036 L-Homocitrulline $C_7H_15N_3O_3$ 190.11862 17.8 1 0.00009 0.00031 Misc metabolitesAlanine $C_3H_7NO_2$ 90.055 13.2 2 1.259 0.075 glutamic acid $C_5H_9NO_4$ 148.0604 12.2 4 0.871 0.094 Glutamine $C_5H_{10}N_2O_3$ 147.0764 12.9 5 1.11 0.233 Threonine $C_4H_9NO_3$ 120.0655 12.5 2 0.578 0.000221 Nicotinamide $C_6H_6N2_O$ 123.0553 7.8 1 0.732 0.081 Valine $C_5H_{11}NO_2$ 118.08613 12.0 5 0.76 0.016	Uracil	$C_4H_4N_2O_2$	113.0346	8.0	1	0.402	0.002
Arginine pathway metaboliteCitrulline $C_6H_{13}N_3O_3$ 176.10313.410.3480.042Ornithine $C_5H_{12}N_2O_2$ 133.097217.610.1280.036L-Homocitrulline $C_7H_{15}N_3O_3$ 190.1186217.810.000090.00031Misc metabolitesMisc metabolitesQlutamic acid $C_3H_7NO_2$ 90.05513.221.2590.075glutamic acid $C_5H_9NO_4$ 148.060412.240.8710.094Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	Uridine	$C_9H_{12}N_2O_6$	245.0768	8.0	2	0.5	0.209
Citrulline $C_6H_{13}N_3O_3$ 176.10313.410.3480.042Ornithine $C_5H_{12}N_2O_2$ 133.097217.610.1280.036L-Homocitrulline $C_7H_{15}N_3O_3$ 190.1186217.810.000090.00031Misc metabolitesAlanine $C_3H_7NO_2$ 90.05513.221.2590.075glutamic acid $C_5H_9NO_4$ 148.060412.240.8710.094Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	Arginine pathway metabolite						
	Citrulline	$C_{6}H_{13}N_{3}O_{3}$	176.103	13.4	1	0.348	0.042
L-Homocitrulline $C_7H_{15}N_3O_3$ 190.1186217.810.000090.00031Misc metabolitesAlanine $C_3H_7NO_2$ 90.05513.221.2590.075glutamic acid $C_5H_9NO_4$ 148.060412.240.8710.094Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	Ornithine	$C_5H_{12}N_2O_2$	133.0972	17.6	1	0.128	0.036
Misc metabolitesAlanine $C_3H_7NO_2$ 90.05513.221.2590.075glutamic acid $C_5H_9NO_4$ 148.060412.240.8710.094Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	l-Homocitrulline	$C_7H_{15}N_3O_3$	190.11862	17.8	1	0.00009	0.00031
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Misc metabolites						
	Alanine	$C_3H_7NO_2$	90.055	13.2	2	1.259	0.075
Glutamine $C_5H_{10}N_2O_3$ 147.076412.951.110.233Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	glutamic acid	C ₅ H ₉ NO ₄	148.0604	12.2	4	0.871	0.094
Threonine $C_4H_9NO_3$ 120.065512.520.5780.000221Nicotinamide $C_6H_6N2_O$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	Glutamine	$C_5H_{10}N_2O_3$	147.0764	12.9	5	1.11	0.233
Nicotinamide $C_6H_6N_{2o}$ 123.05537.810.7320.081Valine $C_5H_{11}NO_2$ 118.0861312.050.760.016	Threonine	C ₄ H ₉ NO ₃	120.0655	12.5	2	0.578	0.000221
Valine $C_5H_{11}NO_2$ 118.08613 12.0 5 0.76 0.016	Nicotinamide	$C_6H_6N2_O$	123.0553	7.8	1	0.732	0.081
	Valine	$C_5H_{11}NO_2$	118.08613	12.0	5	0.76	0.016

ously possible and identifies effects in the guanosine/guanine arm of the purine metabolism pathway, that had previously not been described.

In a non-targeted approach a VBA subroutine was developed in-house to eliminate artifacts and lock masses and to correct and to align the samples in the m/z direction. All observed masses were introduced into SIMCA-P for PCA, which showed a clear clustering of WT compared with ry flies with the males and females of WT and ry clustering together (Fig. 3). Metabolites which were found to vary significantly between ry and WT were confirmed with an allowed deviation of ± 1 ppm. Isotopic patterns were additionally used to prune the number of suggested formulae and confirm the elemental composition [14], the elements that were allowed for elemental matching are shown in Table S2 (Supplementary information). The METLIN data base [15] contains over 26000 metabolite structures and provides useful additional confirmation of compound identity.

It was found that 3-hydroxykynurenine levels were lower in ry (Tables 2 and 3) and kynurenine was correspondingly elevated, suggesting that the enzyme responsible for 3-hydroxyl-

ating kynurenine displays reduced activity. This should have an effect on pigmentation since the ommochrome pigments are formed in *Drosophila* via this pathway. It was observed that levels of riboflavin which is necessary for the biosynthesis of the FAD co-factor required for hydroxylation of kynurenine, were much lower in *ry*. This may be purely due to malabsorption of the vitamin in *ry*.

Another observation is that glycerophosphotidylcholine (GPC) levels are far higher in *ry* (Tables 2 and 3). GPC is a counteracting osmolyte and has been found to accumulate in mammalian renal medullary cells, in response to high extracellular concentrations of NaCl or urea, maintaining osmotic balance without denaturing proteins within the cell which would occur in the presence of high concentrations of inorganic ions [16,17]. *Inebriated* mutants of *Drosophila*, which lack an osmolyte transporter in the malpighian tubule, are hypersensitive to NaCl [18]. Terrestrial insects are considered to be uricotelic eliminating nitrogenous waste as insoluble uric acid crystals, thus conserving water [19]. As *ry* mutants are unable to make uric acid, elimination is likely to occur in the form of hypoxanthine and xanthine. Although some xanthine is deposited as

Fig. 2. Some of the metabolic network in close proximity to the ry lesion.

renal calculi in ry mutants [5], both xanthine and particularly hypoxanthine are more water soluble than uric acid [20] thus nitrogen excretion in ry may require higher rates of water loss. Accumulation of GPC in tissues may thus help to compensate for osmotic stress.

Arginine metabolism is also affected in *ry*. Perhaps the observed accumulation of dihydrobiopterin (DHBT) causes an inhibition of tetrahydrobiopterin (THBT) recycling (Fig. 2). One of the isomers of DHBT is known to be an inhibitor of THBT regeneration [21] and THBT is required as a co-factor in arginine oxidation which results in the formation of NO and citrulline. Accumulation of DHBT in vascular tissue may have a role in insulin resistance where it inhibits vasodilation through inhibiting NO production [22]. Tables 2 and 3 list some additional metabolites that are significantly altered in ry mutants including pyrimidine metabolites, such as cytosine and uracil. Ry has been widely used as a selectable marker in mutant stocks, and on early synthetic P-element constructs [23]. It is clear that the impact of ry on the fly ramifies widely; and so ry, like ebony, is a particularly poor choice of marker because of its pleiotropy.

Since a third of genes in a typical metazoan genome have neither obvious functions based on their encoded protein structures nor evocative tissue distributions, it has been considered that reverse genetics, coupled to painstaking analysis of informative functional phenotypes, is the best approach to identify function in both plants and animals [24,25]. However, such studies are critically limited by the lack of informative

Fig. 3. PCA separation of male and female WT flies from male and female ry flies based on global metabolite profile.

phenotypes to study in genetic model organisms – the so-called phenotype gap [2,26] – metabolomics can provide an alternative method of adding value to the many thousands of unstudied mutant stocks available today. Metabolomics has already been employed in pioneering studies in *Drosophila* [27–29]. The combination of *Drosophila* and ZICHILIC-FTMS, with the downstream computational methods we describe here, can provide precision and comprehensiveness that will allow rapid progress.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.febslet.2008. 07.029.

References

- Dow, J.A.T. (2007) Model organisms and molecular genetics fro endocrinology. Gen. Comp. Endocrinol. 153, 3–12.
- [2] Dow, J.A.T. and Davies, S.A. (2003) Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol. Rev. 83, 687–729.
- [3] Keith, T.P., Riley, M.A., Kreitman, M., Lewontin, R.C., Curtis, D. and Chambers, G. (1987) Sequence of the structural gene for xanthine dehydrogenase (rosy locus) in *Drosophila melanogaster*. Genetics 116, 67–73.
- [4] Bonse, A. (1967) Studies on the chemical nature and formation of the urinary conglomerate in the malpighian vessels of the rosy mutant of *Drosophila melanogaster*. Z. Naturforsch B 22, 1027– 1029.
- [5] Mitchell, H.K. and Glassman, E. (1959) Hypoxanthine in rosy and maroon-like mutants of *Drosophila melanogaster*. Science 129, 268.
- [6] Dent, C.E. and Philpot, G.R. (1954) Xanthinuria: an inborn error of metabolism. Lancet I, 182–185.

- [7] Zhou, X. and Riddiford, L.M. (2008) Rosy function is required for juvenile hormone effects in *Drosophila melanogaster*. Genetics 178, 273–281.
- [8] Kaddurah-Daouk, R., Kristal, B.S. and Weinshilboum, R.M. (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol. 48, 653– 683.
- [9] Wilson, I.D., Plumb, R., Granger, J., Major, H., Williams, R. and Lenz, E.M. (2005) HPLC–MS based methods for the study of metabonomics. J. Chromatogr. B 817, 67–76.
- [10] Kind, T., Tolstikov, V., Fiehn, O. and Weiss, R.H. (2007) A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem. 363, 185–195.
- [11] Kamleh, A., Barrett, M.P., Wildridge, D., Burchmore, R.J.S., Scheltema, R.A. and Watson, D.G. (2008) Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun. Mass Spectrom. 22, 1918–1919.
- [12] Hu, Q.Z., Noll, R.J., Li, H.Y., Makarov, A., Hardman, M. and Crooks, R.G. (2005) The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443.
- [13] Kanehisa, M., Goto, S., Kawashima, S. and Nakaya, A. (2002) The KEGG data bases at GenomeNet. Nucleic Acids Res. 30, 42– 46.
- [14] Kind, T. and Fiehn, O. (2006) Metabolomic data base annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7, 234.
- [15] <<u>http://metlin.scripps.edu/></u>
- [16] Zablocki, K., Miller, S.P.F., Garica-Perez, A. and Burg, M.B. (1991) Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc. Natl. Acad. Sci. 88, 7820–7824.
- [17] Gallazzini, M., Ferraris, J.J.D., Kunin, M., Morris, R.G. and Burg, M.B. (2006) Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proc. Natl. Acad. Sci. 103, 152–15265.
- [18] Huang, X., Huang, Y., Chinnappan, R., Bocchini, C., Gustin, M.C. and Stern, M. (2002) The *Drosophila* inebriated-encoded neurotransmitter/osmolyte transporter: dual roles in the control of neuronal excitability and the osmotic stress response. Genetics 160, 561–569.

- [19] Yokota, S.D. and Shoemaker, V.H. (1981) Xanthine excretion in a desert scorpion, *Paruroctonus mesaensis*. J. Comp. Physiol. B. Biochem. Syst. Environ. Physiol. 142, 423–428.
- [20] Merck Index 2007.[21] Thony, B., Auerbach, G. and Blau, N. (2000) Tetrahydrobiop-
- terin biosynthesis, regeneration and functions. Biochem. J. 347, 1–16.
 [22] Shinozaki, K., Kashiwagi, A., Nishio, Y., Okamura, T., Yoshida,
- [22] Shihozaki, K., Kashiwagi, A., Nishio, F., Okahura, T., Ioshida, Y., Masada, M., Toda, N. and Kikkawa, R. (1999) Abnormal biopterin metabolism is a major cause of impaired endotheliumdependent relaxation through nitric oxide/O₂ -imbalance in insulin-resistant rat aorta. Diabetes 48, 2437–2445.
- [23] Rubin, G.M. and Spradling, A.C. (1983) Vectors for P elementmediated gene transfer in *Drosophila*. Nucleic Acids Res. 11, 6341–6351.
- [24] Adams, M.D. and Sekelsky, J.J. (2002) From sequence to phenotype:reverse genetics in *Drosophila melanogaster*. Nat. Rev. Genet. 3, 189–198.

- [25] Ballinger, D.G. and Benzer, S. (1989) Targeted gene mutations in Drosophila. Proc. Natl. Acad. Sci. 86, 9402–9406.
- [26] Dow, J.A.T. (2003) The *Drosophila* phenotype gap and how to close it. Brief Funct. Genomic Proteomic 2, 121–127.
- [27] Feala, J.D., Coquin, L., McCulloch, A.D. and Paternostro, G. (2007) Flexibility in energy metabolism supports hypoxia tolerance in *Drosophila* flight muscle: metabolomic and computational systems analysis. Mol. Syst. Biol. 3, 99.
- [28] Fyrst, H., Zhang, X.Y., Herr, D.R., Byun, H.S., Bittnan, R., Phen, V.H., Harris, G.L. and Saba, J.D. (2008) Identification and characterization by electrospray mass spectrometry of endogenous *Drosophila sphingadienes*. J. Lipid Res. 49, 597–606.
- [29] Ueyama, M., Chertemps, T., Labeur, C. and Wicker-Thomas, C. (2005) Mutations in the desat1 gene reduces the production of courtship stimulatory pheromones through a marked effect on fatty acids in *Drosophila melanogaster*. Insect Biochem. Mol. Biol. 35, 911–920.