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New smoothing procedures in contact mechanics
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Abstract

This paper presents recent methods to improve numerical simulation of contact problems by smoothing.
The main idea is to combine contact surfaces regularization with an automatic adjustment of both penalty
parameter and load step. The underlying goal is to provide handle situations frequently met in an industrial
context.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many di<culties due to geometrical and material nonlinearities arise when dealing with numerical
simulation of contact problems. In a FEM context, the contact zone is represented by a surface
which is only piecewise di:erentiable. When large slips occur, the lack of smoothness may create
undesirable abrupt changes of both normal and tangential vector components. Moreover, these e:ects
may alter the residual vector and impede convergence. A number of authors have proposed to smooth
or average the normal vector [4,11]. Interpolation techniques based on curved, patches can be used
[9,13]. The approach presented here consists in creating a smooth representation of the contact
surface with the use of a meshfree technique denoted as di:use approximation. The idea of building
a geometrical model using a second-order equation has been Brst introduced by Rassineux [10] in
a remeshing context of discrete data. We have extended the technique to smoothing of the contact
geometry [2]. Recently, Belytschko has proposed a similar approach [1].
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The contact formulation leads to variational inequalities. To solve this problem, a variety of
numerical methodologies has been proposed. Among them, penalty method can be easily implemented
in any Bnite element code but the optimum choice of the penalty parameter may be di<cult [8]. In
order to reduce this problem, an automatic adjustment of the penalty parameter appears necessary
[7]. We propose in this paper, an adjustment with respect to penetration criterion.

Strong nonlinearities occur with contact phenomena. Newton methods are generally used to solve
these problems. However, when too many changes of contact conditions occur, Newton Raphson
algorithms may not converge. In this context, an algorithm for automatic load incrementation for
path-dependent problems with contact can be used [5,12]. The main idea of our method is to limit
the number of changes of contact status at each load step.

This paper is organized as follows: Section 2 presents the contact surface smoothing procedure.
The automatic adjustments both of penalty parameter and load step are described in Sections 3 and
4. In Section 5, examples demonstrate the e<ciency of the proposed algorithms.

2. Contact surface smoothing procedure

Let us consider two potential contact zones beforehand deBnite, denoted as master and slave zone.
The master zone is made of a collection of facets resulting from the Bnite element mesh of the
master solid. Let xi denote the position of a node from this set. The slave zone is made of a set of
nodes likely to come into contact with the master zone. The aim is to determine an approximation
Sd
g of the contact surface using only the data of nodes xi with the di:use approximation technique.

The determination of the di:use surface Sd
g requires the deBnition of a reference frame Rd linked to

all nodes xi. This reference plane is a least-squares Bt plane calculated from nodes xi. Coordinates
of a master node xi in this reference frame are written in capital letters (X i

1 ; X
i
2 ; X

i
3) and those of a

slave node xc with the exhibitor c; (X c
1 ; X

c
2 ; X

c
3 ). This di:use surface is built from a succession of

local approximations. The approach associates with each slave node xc, a local approximation Sd of
the contact surface.

2.1. Di=use approximation and contact

The local approximation at node xc is described by the following surface equation:

fxc(X1; X2) = X3: (1)

The expression of fxc is given by using a polynomial basis p, of k terms:

fxc(X1; X2) =
j=k∑
j=1

pj(x− xc)j

= pT(x− xc)�: (2)

In this expression, pj; j = 1; : : : ; k, is a term of the polynomial basis. j; j = 1; : : : ; k is the jth
component of vector � which must be given. We use a quadratic basis:

p= [1; X1 − X c
1 ; X2 − X c

2 ; (X1 − X c
1 )2; (X2 − X c

2 )(X1 − X c
1 ); (X2 − X c

2 )2]T: (3)
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The objective is now to determine �. This vector is calculated by using a weighted least-squares
method, based on the minimization of the di:erence between the altitude X i

3 of xi and function fxc
evaluated at this node. This leads to the following Jxc criterion:

Jxc(�) =
i=n∑
i=1

w(xi ; xc){(pT(xi − xc)� − X i
3}2: (4)

In this expression, w(xi ; xc) for i = 1; : : : ; n, denoted as wi is the weight function associated with
node xi. The determination of vector � requires the calculation of the minimum of Jxc given by

9Jxc
9� = 0: (5)

Vector � must be the solution of the system deBned by

PTWP� =PTWZ: (6)

Z is vector of the third components of all nodes xi , used in the approximation and P is formed
by the polynomial basis p evaluated at each node xi :

Z = [X 1
3 ; X

2
3 ; : : : ; : : : ; : : : ; X

n
3 ]T and P= [p1; p2; : : : ; : : : ; : : : ; pn]T; (7)

pi = [1; X i
1 − X c

1 ; X
i
2 − X c

2 ; (X
i
1 − X c

1 )2; (X i
2 − X c

2 )(X i
1 − X c

1 ); (X i
2 − X c

2 )2]T:

W is the diagonal by block matrix of the weights:

W =




w1 0 · · · · · · · · · 0

0 w2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · wn


 : (8)

The resolution of system (6) leads to the determination of � and thus to the knowledge of the local
approximation of the contact surface associated with node xc.

2.2. New description of the contact geometry

Initially, the deBnition of the gap is given by the new description of the contact surface. This
distance is usually deBned as the minimal distance between a slave node xc and the master surface.
It would thus be necessary to associate with the slave node, a point xd

g belonging to the di:use
surface Sd

g . This point should be the projection of xc on Sd
g . However, the equation of the di:use

surface is not explicit and a succession of local approximations is necessary to deBne it. The idea is
to use a local approximation at node xc instead of the global approximation. Therefore, we introduce
xd deBned as the projection of xc on Sd. A statement is made that the vector between xc and xd
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and normal vector �d (associated with the surface Sd at the point xd) are collinear which leads to

xc − xd = gd
n�

d : (9)

Scalar gd
n (the di:use gap) describes the contact state on the regularized surface.

2.3. Description of the three-dimensional di=use contact element

In this part, the regularization of the contact surface is associated with the Bnite element method
in order to build the three-dimensional di:use contact element. The major di:erence between the
traditional node-facet approach and our technique is that the contact is driven by potential contact
nodes and not only by the nodes of the potential contact facet. Indeed, both slave and master surfaces
can be seen as a set of nodes: a slave node xc is supposed in contact with a master zone composed
of n nodes xi.

The contact element described here is composed of a slave node xc and n nodes xi. These nodes
are the nodes which have been used to build the local approximation associated with xc. The vector
of the unknowns of this element is ud:

ud = [xc; x1; x2; : : : : : : xn]T: (10)

To deBne a three-dimensional di:use contact element the contact elementary residual vector and
the tangent matrix must be explicitly given. General expression of Rd

c and Kd
c depends on the new

expression of the contact surface.
It can be proved that the quantity necessary for the determination of the contact residual vector

Rd
c is the Brst variation of gd

n [6]. Variation �gd
n is evaluated by using the intrinsic properties of the

regularized contact surface to obtain

�gd
n = �udT

N d
c ; (11)

where N d
c is a 3(n + 1) components vector and �ud is the variation of ud.

When a penalty method is used, the contact residual vector is thus a 3(n+ 1) components vector
given by

Rd
c = −�ngd

nN
d
c ; (12)

where �n is the penalty parameter.
The expression of the second variation of gd

n can be written as

K�gd
n = �udT

Md
cKu

d : (13)

The contact tangent matrix is a matrix belonging to M3(n+1);3(n+1) and it is given by

Kd
c = �ngd

nM
d
c + �nN d

c N dT

c : (14)

All expressions of these quantities can be found in Ref. [3].

3. Adjustment of the penalty parameter

The numerical treatment of the contact constraints is based on two main strategies: the penalty
method and the Lagragian multiplier methods. Both approaches have their advantages and their



D. Chamoret et al. / Journal of Computational and Applied Mathematics 168 (2004) 107–116 111

drawbacks. The penalty method can be easily implemented in an existing Bnite element code. This
is the reason why it is used so frequently. The penalty method estimates the contact force as

Tn =

{ −�ngn if gn6 0;

0 otherwise;
(15)

where �n is the penalty parameter and gn, the gap. The main disadvantage of this technique is the
adequate choice of the penalty parameter. A bad choice can lead to unconditioned sti:ness matrix
when the penalty parameter is too important or, to unacceptable penetration if it is too small. In this
situation, an algorithm to adjust the penalty parameter must be developed.

The proposed algorithm adjusts the penalty parameter with respect to the required accuracy of
the penetration. On the one hand, a too important penetration, i.e. unacceptable from a physical
point of view, means that the penalty parameter is too small. So, it appears necessary to increase
this parameter. On the other hand, if the penetration is acceptable, the penalty parameter can be
decreased. For a converged node xk at time t; t+Kt�kn the penalty parameter at time t + Kt will be
governed by a law of the following type:

t+Kt�kn =F(|tgkn|; gmin; gmax)t�kn with F=




|tgkn|
gmax

if |tgkn|¿gmax;

|tgkn|
gmin

if |tgkn|¡gmin;

1 otherwise;

(16)

where tgkn and �kn are the gap and the penalty parameter associated with xk at time t. Function F
depends on both the absolute value of the gap of xk at time t and on two quantities speciBed by the
user. gmin and gmax are, respectively, the minimum and maximum penetration allowed by the user.

The penalty is adjusted by controlling the gap. This choice is driven by the convergence of
the displacements requirement of the Newton method. We notice that the control of gmin and gmax

improve both the accuracy and the reliability of the technique.

4. Adjustment of the time step

Numerical problems can occur when too many nodes come into contact during the same time
step. Ideally, one node at a time should come into contact. The aim of our technique is to limit the
number of nodes coming into contact during a time step by using a prediction–correction algorithm.
Initially, a prediction of the conBguration at time t + Kt is realized. A corrected load step Ktcor is
performed. Then, the calculation is repeated with this new load step and the conBguration at the
time t + Ktcor is evaluated.

Let us consider a slave node likely to come into contact with a master face. We suppose that this
reference face is unchanged between times t and t + Kt and xk , that the studied node remains in
contact with the same face. The gap at xk at time t (resp. t + Kt) is denoted as tgkn (resp. t+Ktgkn).
We seek a new load step Ktcor such as the considered node comes exactly into contact at time
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t + Ktcor. For each node likely to come into contact, a coe<cient �k is deBned by

�k =
tgkn

tgkn − t+Ktgkn
: (17)

For all the nodes which are likely to come into contact between times t and t + Kt, coe<cients �k
are evaluated and sorted in an ascending order:

�16 �26 · · · · · ·6 �Nc6 · · ·6 �Npc ; (18)

where Npc is the number of nodes likely to come into contact. The corrected load step Kcor is given
by the following rule:

Ktcor = �Kt: (19)

The goal of the proposed method is to limit the number of nodes coming into contact to Nc. So,
the coe<cient is obtained by considering the relation:

� = �Nc : (20)

5. Numerical examples

The algorithms have been implemented in the Bnite element code SYSTUS and tested on both
academic and industrial examples. In the studied situations, the contact is assumed to be frictionless.

5.1. Pinch of pipes

This example deals with contact problem between two deformable bodies in three dimensions.
A pipe is pinched between two identical parallel plates. The dimensions of the pipe and the plates
are as follows: l = 200 mm, r = 90 mm, R = 100 mm, L = 75 mm, e = 20 mm. Only one quar-
ter of the model is used because of symmetry reason (Fig. 1(a)). The plates and the pipe have

Fig. 1. Pinch of pipes: (a) Bnite element model and (b) deformed conBguration.
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Fig. 2. Contact between a plate and a rigid cylinder: (a) geometry and (b) Bnite element model.

the same mechanical properties: E=20 000 MPa and �=0:3. The load consists in a vertical imposed
displacement of 100 mm at the end of the plate (Fig. 1(a)).

The test was performed with a traditional contact algorithm and with our surface regularization
technique. The computations have been performed for both cases. We observe that the number of
iterations can be reduced when the surface smoothing procedure is used. The deformed conBguration
can be seen in Fig. 1(b). The CPU time is not increased.

5.2. Contact between a plate and a rigid cylinder

We consider the contact between a plate and a rigid cylinder. The dimensions of the plate are as
follows: L= 70 mm, e= 4 mm and l= 20 mm. The plate is submitted to an imposed pressure on Sp

and Se is embedded (Fig. 2(a)). The pressure is displayed gradually until P = 200 MPa by steps of
20 MPa. The mechanical properties of the plate are: E = 200 000 MPa; � = 0:3. The Bnite element
model can be seen in Fig. 2(b).

This test was performed with a traditional contact algorithm and with our technique of automatic
adjustment of the penalty parameter. The displacements requirement is 10−6 mm. So, gmin and gmax

have been chosen close to this reference value, gmin = 10−6 mm and gmax = 5 × 10−6 mm.
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Fig. 3. Evolution of the penalty parameter and of the penetration: (a) classical approach and (b) automatic adjustment.

With a traditional contact algorithm, the computations have not been performed. The required
precision was not reached for P = 120 MPa. With the proposed adjustment, numerical di<culties
have been reduced and the computations have been performed. Fig. 3(a) shows the evolution of
the penalty parameter and of the penetration for speciBc contact node with a classical approach. It
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Fig. 4. Flattening of a spherical cup: (a) Bnite element model and (b) deformed conBguration.

has to be noted that the penalty parameter strongly decreases, which can explain the strong increase
of the penetration. Fig. 3(b) shows the penetration and penalty parameter with our strategy. In this
case, the penalty parameter is increased to obtain the penetration between gmin and gmax. We can
talk about “penetration convergence”.

5.3. Flattening of a spherical cup

The studied structure is a spherical shape with the following characteristics: R=101 mm, r=99 mm,
e=2 mm and =45◦ (Fig. 4(a)). Material properties are E=50 000 MPa and �=0:3. The structure is
subjected to an internal pressure P=200 MPa. The contact between the spherical shape and the rigid
plane is assumed to be frictionless. An axisymmetric two-dimensional model is used. The internal
pressure is displayed gradually until P = 200 MPa by steps of 5 MPa. The Bnite element model can
be seen in Fig. 4(a) and the deformed conBguration in Fig. 4(b). The test is carried out with an
automatic adjustment of the load step. The data of this adjustment is Nc = 5.

The technique is very e<cient when the load step given by the user is too small. Our initial
choice has led to 40 steps. It can be reduced to 9 steps by using our approach. Fig. 5 illustrates this
phenomenon and emphasizes a non-linear evolution of load step.

6. Conclusion

A new approach for the regularization of frictionless contact surfaces has been proposed in this
paper. Unlike a traditional approach in which the contact nodes are given by a reference master
face, here contact nodes are searched with a neighbourhood criterion. A set of nodes likely to come
into contact is used to create a local geometrical mode by di:use approximation. Two strategies of
adjustment have also been presented. The adjustment of penalty is based on a control of the gap.
The load step is adjusted in order to limit the number of changes of contact status during each load
step.
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