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A parallel algorithm for generating molecular integrals
over MO basis sets
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Abstract

In the post Hartree–Fock theories such as multi-con6guration self consistent 6eld and con6guration in-
teraction, two electron integral transformation to molecular orbital sets is the most time consuming process
for large-scale calculations. Parallelization is key to minimize the computer time for it. Then, a parallel
integral-driven algorithm is presented for the integral transformation.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In the ab initio molecular orbital (MO) theories, the multi-con6guration self consistent 6eld (MC-
SCF) and con6guration interaction (CI) methods are well established as approaches to take electron
correlations into account [10]. From the computational point of view, the most time consuming
procedure in these theoretical frameworks is to transform two electron integrals from atomic orbital
(AO) to MO basis sets. This transformation is inevitable, since their energy expressions are given in
terms of these integrals. In this paper, a parallel integral-driven algorithm to transform two electron
integrals from AOs to MOs on parallel computers such as PC clusters is presented. In the following
sections, the conventional transformation algorithm is reviewed 6rst and then the new method is
introduced along with some benchmark results.

∗ Corresponding author.
E-mail address: takada@frl.cl.nec.co.jp (T. Takada).

0377-0427/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(02)00541-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82340899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


352 K. Nakata et al. / Journal of Computational and Applied Mathematics 149 (2002) 351–357

2. Conventional integral transformation scheme

Two electron integrals over AOs, �, are de6ned as

(rs|tu) =
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By using the relations between AOs and MOs, that is,

�a =
N∑
r

cra�r; (2)

the two electron integrals over MOs are simply generated to be

(ab|cd) =
N∑
r

N∑
s

N∑
t

N∑
u

cracsbctccud(rs|tu); (3)

where N is the number of the atomic orbitals. With a primitive method having eight do loops for
the indices of both AOs and MOs, the number of the numerical operations is N 8. But, a very
eFcient algorithm has been invented for the transformation, consisting of the four steps [10]. This
idea has been implemented in major ab initio MO codes like Gaussian98 [3], GAMESS [2] and
so on. The 6rst step, for example, is written in Fig. 1 and similar procedures are repeated three
more times for transforming from t to c and so on. In this algorithm, the number of the numerical
operations is 4N 5 in total. Conventionally, two electron integrals over AOs are stored on disks and
sorted in proper sequences for transformations. But, as molecular sizes to be calculated are growing,
the set of integrals to be stored is quickly beyond the storage capacity. On the other hand, in the
Hartree–Fock scheme, the direct method [1] became common, in which these two electron integrals
are evaluated repeatedly in SCF cycles and each of them is accumulated instantly into the Fock
matrix by multiplying density matrix elements. However, since the energy expressions in MCSCF
and CI are given in terms of the molecular integrals over MOs, the transformation is requisite.

Simple application of the conventional algorithm on parallel computers causes the following prob-
lems, that is,

(1) Since the two electron integrals over AOs are independent of one another, evaluations of these
integrals are easily parallelized. But, all the integrals are needed for obtaining one single integral
over MOs, causing serious bottleneck by heavy wall-to-wall transmissions among processors.

Fig. 1. First step of the conventional algorithm for transforming two electron integrals from AOs to MOs.
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(2) To avoid such bottleneck, all the integrals over AOs must be calculated on each processor,
which loses the bene6t of the parallel computations of two electron integrals.

This conIict has been preventing usage of parallel computers for the post Hartree–Fock calculations.
However, as is well recognized in HPC communities, parallelization is now key for large-scale
simulations in any research 6eld, no matter what kind of computers, vector or scalar parallel, are
used. From this background, as seen below, a new transformation algorithm is invented here to
overcome the diFculty, which makes it possible to carry out large-scale calculations even with the
post Hartree–Fock theories on parallel computers.

3. A parallel algorithm for integral transformations

Fig. 2 schematically illustrates the new transformation algorithm. The indices of AO’s, that is, r
and s are assigned to a processor, which are denoted as R and S in the 6gure. That is, a pair of R
and S, is distributed to a processor and all the combinations of t and u are considered there. After
evaluating the set of the integrals, (RS|allall), the transformation from u to d is carried out in the

Fig. 2. Parallel algorithm for transforming two electron integrals from AOs to MOs.



354 K. Nakata et al. / Journal of Computational and Applied Mathematics 149 (2002) 351–357

Table 1
Numerical operation in conventional and present algorithms

Conventional Presenta

Operations Memory Operations Memory

First N 4n N 4 + N 3n N 2n N 2 + Nn
Second N 3n2 N 3n+ N 2n2 Nn2 Nn+ N 2

Third N 2n3 N 2n2 + Nn3 n3 n2 + n3

Fourth Nn4 Nn3 + n4 n4 n3 + n4

Gathering — — N 2n4 —
aFor one processor.

6rst step. Then, the second step is performed. In the third step, the orbital, S, is transformed to all
the MOs denoted by B. Note that only one component of S is involved in the (RB|cd) integrals.
Similarly, the transformation from R to A is carried out as the fourth step, where another do loop for
B is needed. When all the transformations have been completed, the set of the integrals, (AB|allall)
exists on every processor, which has only the contributions from the assigned orbitals of R and
S. Therefore, these integrals must be gathered on one processor to obtain the correct two electron
integrals (ab|cd) over the molecular orbitals.

Another integral-driven transformation scheme has been presented in [9], in which N 6 operations
are required, since pair-wise transformation for the overlap charges is carried out. For the direct CI
matrix generation, a similar parallelization algorithm using only the index of r has been proposed
by [6].

An MCSCF framework called complete active space SCF (CASSCF) has been proposed in [8],
which gives a simple energy expression in the MCSCF methodology and consequently a smaller set
of molecular orbitals is needed for the transformed integrals. Let n be the number of the CAS orbitals,
which is at most nearly 10 in the recent calculations and then n�N holds for large basis sets. In
Table 1, the number of numerical operations and working memory sizes are summarized along with
the conventional technique. The total operations for the conventional are nN 4 + n2N 3 + n3N 2 + n4N ,
while the present requires N 2(nN 2 +n2N+n3 +n4)+n4N 2 operations. As a result, n4N (N−1)+n4N 2

operations are extra. However, the cost for these operations is certainly negligible in comparing with
the 6rst step, if N is more than 200. The number of numerical operations for the 6rst step is
10 × 2004, while the extra operations are 104 × (2 × 2002 − 200), which is only 5% of the former.
Since permutations between r and s, and between (rs) and (tu) are no longer taken in the present
algorithm, evaluation of the integrals over AOs is four times more than the conventional one.

It should be noticed that no transmissions among processors are required until all the transforma-
tions to obtain (AB|allall) integrals are completed and the number of two electron integrals to be
calculated is still kept to be N 4 through the whole processors. Actually, it is a half of N 4. Therefore,
it is concluded that the present algorithm solved the contradiction mentioned above.

This algorithm has been implemented in the CASSCF package of AMOSS-H13, which has been
being developed by the NEC quantum chemistry group and is especially designed for large molecules
like bio-related molecules.
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Table 2
Elapsed time, speed up and parallelization ratioa

Basis set Processors

1 2 4 8 16 32

MINI-4 (122 AO’s)
Elapsed time (s) 1890 950 495 252 139 76
Speed up 1 1.99 3.82 7.49 13.59 24.81
Ratio (%) — 99.49 98.44 99.04 98.82 99.06

MIDI-4 (224 AO’s)
Elapsed time (s) 4417 2189 1130 595 296 161
Speed up 1 2.02 3.91 7.42 14.93 27.45
Ratio (%) — 100.88 99.22 98.89 99.52 99.47
aEstimated from Amdahl’s law.

4. Benchmarks

The speed-up measured on a PC cluster is shown in Table 2. The molecule used is artemisin
(C15H22O5). The basis sets are MINI-4 (122 AOs) and MIDI-4 (224 AOs) proposed in [7]. The
computer system for the benchmark consists of 33 Pentium III (933MHz) processors with local
memory of 1GB each and the OS and communication library are RedHat Linux 6.2 and LAM=MPI
6.5.4. One processor works as the master and the rest are used to be slaves. That is, the master
processor spawns the tasks for integral evaluations and transformations to the slaves. In the CASSCF
theory, the MOs are divided into three subspaces, that is, inner (I) for doubly occupied space, active
(A) for CAS and secondly (S) for virtual. Consequently, for the augmented Hessian scheme based
on the Newton–Raphson numerical procedure [4,11] to achieve rapid convergences, the following
integral types appear: (AA|AA), (IA|AA), (SA|AA), (II|AA), (IS|AA), (SS|AA), (IA|IA), (IA|SA),
(SA|SA), (II|SA), (IS|IA), (IS|SA), (SS|IA), (SS|II), (SI|SI). The elapsed times in Table 2 are for
from the 6rst to third steps shown in Fig. 1, while the integral evaluation itself is included. The
fourth step is located deep inside a program unit with other functions for the performance eFciency
and the separated measurement is rather diFcult on the present code. From Table 2, it is clearly
seen that the present algorithm works quite well on the parallel computer system. The parallelization
ratios are estimated from Amdahl’s law [5] using the measured speed up.

To show applicability of the present method, the transformations for the following molecules
are carried out and the results are shown in Table 3. Up to now, the numbers of the AOs for
the post-Hartree–Fock calculations are limited around several hundreds and therefore the data are
showing that the present algorithm is promising.

5. Conclusions

Molecular simulations are expected to be key for the research 6elds like bioinformatics and
nano-technology, since the most fundamental procedures are all chemical phenomena, which are
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Table 3
Memory sizes and elapse time on PC cluster (32 processors)

Molecules Numbers of AOs, I, A, S Local memory (MB)a Elapse time (min)

C15H22O5 122 (MINI-4), 72, 8, 42 2 1.3
224 (MIDI-4), 72, 8, 144 5 2.7

C31H43NO3 218 (MINI-4), 126, 8, 84 6 2.6
401 (MIDI-4), 126, 8, 267 18 12.3

C30H52O26 332 (MINI-4), 216, 8, 108 14 17.5
608 (MIDI-4), 216, 8, 384 51 96.2

C86H26 456 (MINI-4), 267, 8, 181 29 52.8
826 (MIDI-4), 267, 8, 551 105 312.3

C72H76N8O12Mg2 548 (MINI-4), 338, 8, 202 45 119.2
994 (MIDI-4), 338, 8, 648 173 834.3

aFor one processor and the estimations in Table 1 is for extreme cases that every diPerent pair of r and s is assigned
to diPerent processors.

to be theoretically predicted by quantum mechanics. The ab initio MO theories are well established
as numerical frameworks to solve the Schrodinger equation. The Hartree–Fock theory has been ap-
plied to large biological molecules, by taking advantage of its theoretical simplicity. But, as is seen
in this article, applications of the post-Hartree–Fock theories have been impractical for the heavy
integral transformations. To describe chemical reactions, there are some cases in which mixing of a
few con6guration state functions are essential to give proper dissociation limits or correct activation
energies. In these calculations that may happen in biological molecules, the CASSCF is de6nitely
useful.

A new parallel algorithm is presented to transform two electron integrals from AOs to MOs for
the post-Hartree–Fock calculations. There are no transmissions needed among the processors until the
half-transformed integrals are all generated. Gathering these integrals is completed at the end once
and the data size to be transmitted is only in the order of n4. Furthermore, the number of two electron
integrals to be calculated is kept to be still an order of N 4 through the entire cluster system. From
these advantages of the present algorithm, much larger calculations than present become practical
soon on PC clusters.

The results of the benchmarks demonstrate high scalabilities of up to 32 processors. Since the
parallelization is accomplished by the indices of the overlap charges denoted by r and s, the number
of processor to be used reaches up to the range of millions for calculations even discussed here and
benchmarks with more processors are necessary for testing applicability of the algorithm to such
computers.
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